
JSS Journal of Statistical Software
September 2017, Volume 80, Issue 7. doi: 10.18637/jss.v080.i07

Feature Selection with the R Package MXM:
Discovering Statistically Equivalent Feature Subsets

Vincenzo Lagani
University of Crete

Giorgos Athineou
University of Crete

Alessio Farcomeni
Sapienza – University of Rome

Michail Tsagris
University of Crete

Ioannis Tsamardinos
University of Crete

Abstract

The statistically equivalent signature (SES) algorithm is a method for feature selection
inspired by the principles of constraint-based learning of Bayesian networks. Most of
the currently available feature selection methods return only a single subset of features,
supposedly the one with the highest predictive power. We argue that in several domains
multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily
providing only one has several drawbacks. The SES method attempts to identify multiple,
predictive feature subsets whose performances are statistically equivalent. In that respect
the SES algorithm subsumes and extends previous feature selection algorithms, like the
max-min parent children algorithm.

The SES algorithm is implemented in an homonym function included in the R package
MXM, standing for mens ex machina, meaning ‘mind from the machine’ in Latin. The
MXM implementation of SES handles several data analysis tasks, namely classification,
regression and survival analysis. In this paper we present the SES algorithm, its imple-
mentation, and provide examples of use of the SES function in R. Furthermore, we analyze
three publicly available data sets to illustrate the equivalence of the signatures retrieved
by SES and to contrast SES against the state-of-the-art feature selection method LASSO.
Our results provide initial evidence that the two methods perform comparably well in
terms of predictive accuracy and that multiple, equally predictive signatures are actually
present in real world data.

Keywords: feature selection, constraint-based algorithms, multiple predictive signatures.

http://dx.doi.org/10.18637/jss.v080.i07

2 Feature Selection with the R Package MXM

1. Introduction

Feature selection is one of the fundamental tasks in the area of machine learning. Generally
speaking, the process of feature or variable selection aims to identify a subset of features that
are relevant with respect to a given task; for example, in regression and classification it is
often desirable to select and retain only the subset of variables with the highest predictive
power. The main goals of feature selection usually are (a) to improve the performance of
a predictive model, (b) to avoid the cost associated with measuring all the features and (c)
to provide a better understanding of the predictive model, and by extension of the data, by
eliminating useless or redundant features (Guyon and Elisseeff 2003). To date, almost all
feature selection algorithms return a single feature subset.
In our experience, it is often the case that multiple feature subsets are approximately equally
predictive for a given task. Low statistical power due to an insufficient sample size can simply
make it impossible to distinguish the predictive performance of two or more signatures in a
statistically meaningful way. More intriguingly, the physical process that generates the data
could be possibly characterized by a high level of redundancy: several of its components can
have similar or identical behavior/scope. Measurements taken over redundant components
would be equivalent to each other, and there would be no particular reason for preferring one
over the other for inclusion in a predictive subset. This problem is particularly relevant in
biology, where nature uses redundancy for ensuring resilience to shocks or adverse events.
Discovering multiple and statistically equivalent feature subsets has several advantages in
our opinion. First, knowing that multiple equally predictive subsets actually exist increases
the understanding of the specific problem at hand. In contrast, identifying a single subset of
relevant features can lead to ignore factors that may play an important role for understanding
the dynamics of the problem under study. On more practical terms, equally predictive subsets
may differ in terms of the cost/effort needed for measuring their respective components. Thus,
providing multiple, alternative subsets can have a great impact in contexts where some factors
may be technically difficult or excessively expensive to measure.
Recently, algorithms that generate multiple, equivalent feature sets have been developed (Stat-
nikov and Aliferis 2010; Huang, Tsamardinos, Raghu, Kaminski, and Benos 2015), including
the statistically equivalent signatures (SES) method (Tsamardinos, Lagani, and Pappas 2012),
which is implemented in the R (R Core Team 2017) package MXM (Tsamardinos, Lagani,
Athineou, Tsagris, Borboudakis, and Roumpelaki 2017). SES is a constraint-based, feature
selection algorithm that attempts to identify multiple, equally predictive signatures, where
with signatures we indicate minimal size sets of features with maximal predictive power. SES
subsumes and extends previous work on feature selection, particularly the max-min parent
children (MMPC) algorithm (Tsamardinos, Brown, and Aliferis 2006) and related extensions
(Lagani and Tsamardinos 2010; Lagani, Kortas, and Tsamardinos 2013), by implementing a
heuristic method for identifying equivalences among predictors. Other statistical approaches
producing several models for the same task exist, for example model averaging (Buckland,
Burnham, and Augustin 1997). In this approach several competitive models are first gener-
ated and then combined together for producing a single, global model. The key difference
with SES is that model averaging models can have different predictive capabilities, while
SES-retrieved signatures are assumed to be equally predictive. Model averaging methods
are already available in several R packages, like MuMIn (Barton 2016), glmulti (Calcagno
and de Mazancourt 2010), AICcmodavg (Mazerolle 2016), BMA (Raftery, Hoeting, Volinsky,

Journal of Statistical Software 3

Painter, and Yeung 2015).
Finally, to the best of our knowledge, the MXM package is one of the few open-source code
software packages providing implementations of constraint-based feature selection algorithms.
The MMPC algorithm has been previously implemented in the bnlearn package (Scutari
2010) along with several Bayesian network learning methods, and the Tetrad IV software
(Landsheer 2010) provides implementations of numerous casual-discovery oriented constraint-
based methods. The MATLAB (The MathWorks Inc. 2014) library Causal Explorer (Aliferis,
Statnikov, Tsamardinos, and Brown 2003) has been the first software offering feature selection
oriented constraint-based methods, but the code is not open-source.
In the rest of the paper we present the SES algorithm and detail its characteristics. Moreover,
we introduce the MXM package and provide some practical examples for illustrating its use.
Finally, we empirically evaluate the results of the SES algorithm on three different data sets,
and we contrast our results against the widely used LASSO selection algorithm (Friedman,
Hastie, and Tibshirani 2010). Our results support claims that SES is able to return signatures
that are statistically equivalent, and whose predictive performances are comparable with the
ones of a state-of-the-art feature selection method.

2. Multiple signature selection with SES algorithm

The SES algorithm (Tsamardinos et al. 2012) belongs to the class of constraint-based, feature
selection algorithms (Tsamardinos et al. 2006), a class of algorithms that ground their root
in the theory of causal analysis (Spirtes, Glymour, and Scheines 2000). Principles borrowed
from this theory allow for an important result: under some broadly accepted assumptions,
the optimal set of predictors for a given target variable consists in the Markov blanket (MB)
of the variable in the Bayesian network (BN) representing the data distribution at hand
(Tsamardinos and Aliferis 2003). Bayesian networks (Neapolitan 2004) are graphical models
that allow compact representations of multivariate distributions under the form of a direct
acyclic graph (DAG) and an appropriate parameterization. Nodes in the DAG represent
random variables, while edges represent conditional associations. When two nodes are directly
connected by an edge, then the association between the two corresponding variables holds in
the context of all other variables. Node A is a parent for node B (and B is a child of A)
if an edge from A is incident to B. The MB of a given target T is composed by the set of
parent and children (PC) of T plus any additional parent of T children (spouses). MMPC
was one of the first feature selection methods specifically designed in order to identify the PC
set of a given variable. It is interesting to note that PC and BN predictive capabilities are
often equivalent in practical applications, while PC is easier to identify (Tsamardinos et al.
2006). Finally, constraint-based algorithms have recently proven to be able to retrieve highly
predictive signatures (Aliferis, Statnikov, Tsamardinos, Mani, and Koutsoukos 2010).
From an algorithmic point of view, given a data set D defined over a set of n variables / pre-
dictors V and a target variable T (a.k.a. outcome), constraint-based feature selection methods
repetitively apply a statistical test of conditional independence in order to identify the subset
of variables that can not be made independent of the outcome given any other subset of vari-
ables in V . We denote with ind(X,T |W) any statistical test able to provide a p value pXT.W
for assessing the null hypothesis that the variables X and T are conditionally independent
given a set of variables W . Depending on the nature of the variables involved in the test

4 Feature Selection with the R Package MXM

(e.g., categorical, continuous, censored) the most appropriate conditional independence test
must be chosen (see Section 3.1 for further discussion). Finally, it is worthwhile to note that
under some additional assumptions, constraint-based methods have the interesting property
of uncovering (part of) the causal mechanism that produced the data at hand.
The SES algorithm also retrieves the PC set of target variables, and it subsumes the MMPC
algorithm by implementing an additional heuristic in order to retrieve multiple subsets that
are possible PC candidates. The iTIE∗ algorithm (Statnikov and Aliferis 2010) is based on
similar principles, but it adopts a different heuristic for identifying equivalence of features.
SES is summarized in Algorithm 1 through pseudo code. The proposed method accepts as
input a data set D, a target variable T , and two hyperparameters1: The threshold a for
assessing conditional independence and an upper bound k on the number of variables that
can be included in any conditional set. This latter parameter limits the complexity and the
computational requirements of the algorithm. The output of the method consists in a set E
of variables sets (queues) Qi, i = 1, . . . , n, such that each queue Qi contains variables that
are ‘equivalent’ to each other.
At initialization, an empty set S of selected variables is created, all variables V are considered
for inclusion in S (R ← V , where R is the set of variables considered for inclusion) and
each variable is considered equivalent only to itself (Qi ← i). During the main loop the
algorithm alternatively attempts to (a) include in S the variable maximally associated with
T conditioned on any possible subset of the variables already selected and (b) exclude from S
any variable X that is not any more associated with T given any subset Z of other variables
in S. Once a variable X is excluded from S, it cannot be inserted any more.
However, before eliminating X from S, the algorithm tries to identify any variable Y in Z
that is equivalent to X, by verifying whether pY T.Z′ > a when Z ′ ← (Z ∪ {X}) \ {Y }. If
such a variable exists, the list of X-equivalent variables QX is added to QY (in contrast, the
iTIE∗ algorithm tests whether pZT.Y > a, i.e., it checks if the whole set Z is equivalent to Y).
Finally, all equivalence lists Qi, i ∈ S, are returned as output.
One can then build a predictive signature by choosing one and only one variable from each
variable set Qi. To fix ideas, let us assume that E contains three queues, namely Q1 =
{X1, X4}, Q3 = {X3} and Q7 = {X7, X2}. Then there are a total of 2 · 1 · 2 = 4 possible sig-
natures, i.e., Sa = {X1, X3, X7}, Sb = {X1, X3, X2}, Sc = {X4, X3, X7}, Sd = {X4, X3, X2}.
In contrast, the sets {X1, X2} and {X1, X4, X3, X7} are not valid equivalent signatures, since
the first does not select any variable from Q3 and the latter includes two variables from the
same queue (Q1).

3. Package implementation
The MXM package for R currently implements the algorithm SES along with a variety of
different conditional independence tests. Conditional independence tests ind(X,T |W) are
the cornerstones upon which constraint-based algorithms, including SES, are built. Interest-
ingly, constraint-based algorithms can be applied to different types of data as far as they are
equipped with a conditional independence test suitable for the data at hand. Similarly, the
SES function can be applied on different types of outcome (continuous, time-to-event, categor-

1We define as “hyperparameter” any parameter that is not estimated from the data but that must be
provided a priori from the user.

Journal of Statistical Software 5

Algorithm 1 SES algorithm: Pseudo code.
1: Input:
2: Data set on n predictive variables V .
3: Target variable T .
4: Significance threshold a.
5: Max conditioning set k.
6:
7: Output:
8: A set E of size n of variable sets Qi, i = 1, . . . , n such that one can construct
9: a signature by selecting one and only one variable from each set Qi.

10:
11: // Remaining variables.
12: R← V
13: // Currently selected variables.
14: S ← �
15: // Sets of equivalences.
16: Qi ← i , for i = 1, . . . , n
17:
18: while R 6= � do
19: for all Xε{R ∪ S} do
20: if ∃Z ⊆ S \ {X}, |Z| ≤ k, s.t., pXT.Z > a then
21: R← R \ {X}
22: S ← S \ {X}
23: // Identify statistical equivalences, i.e., X and Y seem interchangeable.
24: if ∃Y εZ, s.t., Z ′ ← (Z ∪ {X}) \ {Y }, pY T.Z′ > a then
25: QY ← QY ∪QX
26: end if
27: end if
28: end for
29: M = argmax{XεR}min{Z⊆S,[Z]≤k}−pXT.Z
30: R← R \ {M}
31: S ← S ∪ {M}
32: end while
33: // Repeat the for-loop one last time.
34: // Pack all the identified equivalences in one data structure.
35: E ← �
36: for all i ∈ S do
37: E ← E ∪ {Qi}
38: end for
39: return E

ical) and predictors (continuous, categorical, mixed) if the appropriate test is provided. We
have implemented a number of these tests in order to grant the user a wide flexibility in terms
of the data analysis tasks that can be addressed with the MXM package. The SES function
even allows the users to provide their custom function for assessing conditional independence.
The following subsections further illustrate and elaborate upon the implemented functions.

6 Feature Selection with the R Package MXM

Name Outcome Predictors Regression Robust
option

testIndFisher Continuous Continuous Linear regression Yes
testIndSpearman Continuous Continuous Linear regression No
gSquare Categorical Categorical Contingency tables No
testIndReg Continuous Mixed Linear regression Yes
testIndRQ Continuous Mixed Quantile regression No
testIndBeta Proportions Mixed Beta regression No
testIndPois Count variable Mixed Poisson regression No
testIndNB Overdispersed

count variable
Mixed Negative binomial

regression
No

testIndZIP Zero inflated
count data

Mixed Zero inflated Poisson
regression

No

censIndCR Survival outcome Mixed Cox regression No
censIndWR Survival outcome Mixed Weibull regression No
testIndClogit Case-control Mixed Conditional logistic

regression
No

testIndLogistic Multinomial Mixed Multinomial regres-
sion

No

testIndLogistic Ordinal Mixed Ordinal regression No
testIndLogistic Binary Mixed Logistic regression No
testIndSpeedglm Continuous,

binary or counts
Mixed Linear, logistic and

Poisson regression
No

Table 1: Conditional independence tests implemented in MXM. For each test the type of
outcome, predictors, and regression method is specified in the respective columns. Some of
the tests can also employ a robust version of their respective regression method.

3.1. Conditional independence tests

Assessing dependence among two random variables is one of the oldest problems in statistics,
yet it is far from being solved (Reshef et al. 2011; Simon and Tibshirani 2014). Evaluating
the conditional independence ind(X,T |W) is further complicated by the presence of the
conditioning set W . Moreover, one may desire to deal with cases when X, T and W are
all continuous, categorical, or mixed. Two methods often used in the area of constraint-
based algorithms are Fisher’s test (Fisher 1924) and the G2 test (Spirtes et al. 2000). The
former is based on partial correlations and assumes continuous measurements and multivariate
normality, while the latter is based on contingency tables and can be applied on categorical
data. Both tests are implemented in MXM in the functions testIndFisher and gSquare,
respectively.
Beside these two functions, we have devised and implemented a number of different con-
ditional independence tests following an approach presented by Lagani and Tsamardinos
(2010). Briefly, ind(X,T |W) can be assessed by comparing two nested models, mod0 and
mod, obtained by regressing the target variable T on the conditioning setW alone and on the
conditioning set along with the candidate variable X, respectively. In R language formulas,
mod0 = T ∼ W and mod = T ∼ X + W . The p value pXT.W can be computed through a
log-likelihood ratio or χ2 test, depending on the nature of the two models. Table 1 summa-

Journal of Statistical Software 7

rizes the conditional independence tests implemented in MXM. Each test is characterized by
(a) the type of outcome and predictors it can deal with and (b) the regression method used
(if the test is derived according to the approach from Lagani and Tsamardinos 2010). Some
of the tests have the option of employing a robust version of the original regression method.

3.2. SES implementation

The SES function has been implemented with the aim of making its usage as intuitive as
possible for the user. Only two inputs are required, the matrix of predictor variables dataset
and the outcome variable target. The first can be either a numeric matrix, a data frame or an
object of the class ‘ExpressionSet’ from the Bioconductor (Gentleman et al. 2004) package
Biobase (Huber et al. 2015). The outcome can be encoded either as a numerical vector, a
(ordered) factor, or an object of the ‘Surv’ class defined in package survival (Therneau 2017).
Depending on the dataset and target specified by the user, the SES function is able to
automatically select the data analysis task to perform and the conditional independence test
to use:

1. Binary classification: In a binary classification task the objective of the analysis is to
find the model that better discriminates between two classes. An example of binary clas-
sification is discerning among Alzheimer and healthy patients on the basis of clinical
data. If the target variable is a factor with two levels, the SES function automati-
cally assumes that the problem is a binary classification task. The default conditional
independence test used is testIndLogistic.

2. Multi-class classification: This tasks is similar to the binary classification task, but
more than two classes are present. These classes may have an intrinsic order, e.g.,
they represent progressively more severe stages of the same cancer, or they may be
independent of each other, as for totally different types of diseases. In the first case an
ordered factor should be provided as target variable, while a non-ordered factor should
be provided in the second case. In both cases the default conditional independence
test is testIndLogistic, which automatically switches between multinomial logistic
(nominal outcome) or ordered logit (ordinal outcome) regression (Lagani et al. 2013).

3. Regression: In this case the scope of the analysis is to predict the values of a continuous
target, for example the expression of a given gene. For regression tasks the target
variable should be encoded as a numeric vector, and depending whether dataset con-
tains solely continuous or mixed (categorical/continuous) predictors the SES function
uses testIndFisher or testIndReg as conditional independence test, respectively.

4. Time-to-event/survival analysis: The scope of this type of analysis is to estimate the in-
cidence of an event over time. Survival analysis is conceptually similar to regression, but
differs for the presence of censorship, i.e., the exact time-to-event may be unknown for
part of the samples. Time-to-event analysis requires a ‘Surv’ object (package survival)
as target variable, and the default conditional independence test is testIndCR.

The user can override the default behavior of the SES function by directly specifying a test to
use or by providing a custom function for assessing conditional independence. For example,
the user can decide to use testIndPois instead of testIndFisher if target contains count

8 Feature Selection with the R Package MXM

values. The user can furthermore control the operation of the SES algorithm by specifying
the values for the hyperparameters a and k. The signature of the method along with a short
explanation of its arguments now follows:

SES(target, dataset, max_k = 3, threshold = 0.05, test = NULL,
ini = NULL, wei = NULL, user_test = NULL, hash = FALSE,
hashObject = NULL, robust = FALSE, ncores = 1)

• target: The class variable, encoded as a vector, factor, an ordered factor or a ‘Surv’
object. If a character or an integer is provided, then the corresponding column in
dataset is used as target.

• dataset: Either a data frame or a matrix (columns = variables, rows = samples).
Alternatively, an ‘ExpressionSet’ object.

• max_k: The maximum size for the conditioning set to use in the conditional indepen-
dence test.

• threshold: Cut-off value for assessing p value significance.

• test: The conditional independence test to use. If NULL, the SES function automatically
determines a suitable test depending on target and dataset.

• ini: In each run SES returns the results of the performed univariate tests. When SES is
run again on the same data with a different configuration, these results can be passed
as input for speeding up the computations.

• wei: A vector of weights to be used for applying weighted regression within the condi-
tional independence tests. The default value is NULL. It is not suggested when robust
is set to TRUE

• user_test: A user-defined conditional independence test (provided as a closure type
object). If user_test is provided, the test argument is ignored.

• hash: Logical variable which indicates whether to store (TRUE) or not (FALSE) the
statistics calculated during SES execution in a hash-type object. Default value is FALSE.
If TRUE the hash object is produced and returned in the SES output.

• hashObject: A list with the hash objects generated in a previous run of SES. Each time
SES runs with hash = TRUE it produces a list of hash objects that can be re-used in
order to speed up the next runs of SES.

• robust: A Boolean variable which indicates whether (TRUE) or not (FALSE) to use a
robust version of the statistical test if it is available. It takes more time than a non-
robust version but it is suggested in case of outliers. Default value is FALSE.

• ncores: An integer value indicating the number of CPUs to be used in parallel during
the first step of the SES algorithm, where univariate associations are examined.

Internally, the SES function has been optimized in order to improve computational perfor-
mances. Particularly, the code has been optimized at three different levels:

Journal of Statistical Software 9

• Algorithmic level: Constraint-based algorithms’ computational time is mainly spent for
assessing conditional independence. We adopted an algorithmic optimization already
presented in Tsamardinos et al. (2006) in order to avoid performing twice the same
conditional independence test. Assuming variable Y enters in S at iteration n, so that
Sn+1 = Sn ∪Y , then the minimum association (maximum p value) between any eligible
variable X and the target T conditioned on any subset of Sn+1 can be written as:

max
(

max
Z⊂Sn\X

pXT.Z , max
Z⊂Sn\X

pXT.Z∪Y

)
.

That means that at each iteration only the conditioning sets including the new variable
Y should be taken in consideration for assessing pXT.Z , if the quantity maxZ⊂Sn\X pXT.Z
has been previously stored.

• Caching intermediate results: The SES function can re-use the results of conditional
independence tests calculated in a previous run in order to speed-up successive compu-
tations. This feature is specifically devised for cases when the method must be run on
the same data with different configurations of the hyperparameters a and k.

• Parallel computing: The first step of the SES algorithm separately assesses the univari-
ate association of each variable with the target T ; this is a prototypical example of an
embarrassingly parallel task, that can be executed on multiple CPUs, by setting the
ncores argument of the SES function equal to 2 or more.

4. Using SES

In this section, we provide examples of the use of the SES function on simulated, continuous
data. All examples were run with MXM version 0.9.9. (The package is frequently updated,
and subsequent releases may provide slightly different results.)

4.1. Installing and loading the package

MXM and its dependencies are available from the Comprehensive R Archive Network (CRAN).
The package does not require any external dependency for data analysis tasks that can be
addressed with the testIndFisher conditional independence test (i.e., both predictors and
outcome are continuous variables). A number of external packages are required for using the
other conditional independence tests: ordinal (Christensen 2015) and nnet (Venables and Rip-
ley 2002) for testIndLogistic with ordinal and multinomial outcome, respectively. Package
survival is needed for censIndCR, censIndWR and testIndClogit, while quantreg (Koenker
2017) is necessary for testIndRQ. Package MASS (Venables and Ripley 2002) is required for
performing some of the log-likelihood ratio tests, for the robust version of Fisher’s test and
for testIndNB. Package hash (Brown 2013) is suggested for faster computation, while foreach
(Revolution Analytics and Weston 2015b; Kane, Emerson, and Weston 2013) and doParallel
(Revolution Analytics and Weston 2015a) allow for parallel computing during the first step
of the algorithm. Finally, SES supports ‘ExpressionSet’ objects as input if the Bioconductor
package Biobase is loaded.

R> library("MXM")

10 Feature Selection with the R Package MXM

4.2. Discovering multiple feature signatures

In the following example we simulate a simple continuous data set where the target variable is
associated with a subset of the predictors. Collinear variables are then included in the data set
in order to create equivalent signatures. SES is then run with fixed threshold a and maximum
conditioning set k. Successively, we re-run the SES function with a different configuration
on the same data, but this time we re-use the p values previously computed and stored as a
hash object. The results show both the capability of SES in retrieving the correct equivalent
signatures and the gain in computational time ensured by the hash-based mechanism.
First run SES on simulated data:

R> set.seed(12345678)
R> library("hash")
R> dataset <- matrix(runif(1000 * 300, 1, 100), nrow = 1000, ncol = 300)
R> target <- 3 * dataset[, 10] + 2 * dataset[, 200] +
+ 3 * dataset[, 20] + runif(1000, 0, 10)
R> dataset[, 15] <- dataset[, 10]
R> dataset[, 250] <- dataset[, 200]
R> dataset[, 230] <- dataset[, 200]
R> system.time({sesObject <- SES(target, dataset, max_k = 5,
+ threshold = 0.2, test = "testIndFisher", hash = TRUE,
+ hashObject = NULL)})

The output of the SES function is an object of the class ‘SESoutput’ with elements:

• selectedVars: The selected variables, i.e., the signature of the target variable.

• selectedVarsOrder: The order of the selected variables according to increasing p val-
ues.

• queues: A list containing lists (queues) of equivalent features, one for each variable
included in selectedVars. A signature equivalent to selectedVars can be built by
selecting a single feature from each queue.

• signatures: A matrix reporting all equivalent signatures (one signature for each row).

• hashObject: The hash object caching the statistic calculated in the current run.

• pvalues: This vector reports the strength of the association of each predictor with
the target, in the context of all other variables. Specifically, for each variable X the
maximal p value found over all ind(X,T |Z) executed during the algorithm is reported.
Lower values indicate higher association.

• stats: The statistics corresponding to the reported pvalues.

• univ: A list containing the results from the univariate tests.

• max_k: The max_k option used in the current run.

• threshold: The threshold option used in the current run.

Journal of Statistical Software 11

• runtime: The run time of the algorithm; a numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed time.

• test: The name of the statistical test used in the current run.

• rob: The value of the robust option, either TRUE or FALSE.

Methods implemented for the ‘SESoutput’ object are:

• summary(x = ‘SESoutput’): Summary view of the ‘SESoutput’ object.

• plot(object = ‘SESoutput’, mode = "all"): Bar plots of the p values for the cur-
rent ‘SESoutput’ object in comparison to the threshold. Argument mode can be either
"all" or "partial", using only the first 500 p values of the object.

R> summary(sesObject)

Selected Variables: [1] 10 20 200

Selected Variables ordered by pvalue: [1] 20 10 200

Queues' summary (# of equivalences for each selectedVar):

10 20 200
#of equivalences 2 1 3

Number of signatures: [1] 6

hashObject summary:
Length Class Mode

stat_hash 180 hash S4
pvalue_hash 180 hash S4

Summary of the generated pvalues matrix:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.3464 0.5379 0.5473 0.7289 1.0000

Summary of the generated stats matrix:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.3467 0.6162 0.8288 0.9421 23.8300

Univariate associations:
$stat
[...]

$pvalue
[...]

12 Feature Selection with the R Package MXM

$flag
[...]

$stat_hash
<hash> containing 180 key-value pair(s).
[...]

$pvalue_hash
<hash> containing 180 key-value pair(s).
[...]

max_k option: [1] 5

threshold option: [1] 0.2

Test: testIndFisher
Total Runtime:

user system elapsed
0.088 0.000 0.090

Robust:
[1] FALSE

Variable 20 must be included in the final model. The user can then choose one predictor
between variable 10 and another, and one between variable 200 and another two. The resulting
six equivalent models have approximately the same predictive performance and are all based
on three predictors.
We now re-apply the SES function on the same data by using the cached statistics used in the
previous run. The results are identical, and the computational time significantly decreases.

R> hashObj <- sesObject@hashObject
R> sesObject2 <- SES(target, dataset, max_k = 2, threshold = 0.01,
+ test = "testIndFisher", hash = TRUE, hashObject = hashObj)
R> summary(sesObject2)

Selected Variables: [1] 10 20 200

Selected Variables ordered by pvalue: [1] 20 10 200

Queues' summary (# of equivalences for each selectedVar):

10 20 200
#of equivalences 2 1 3

Number of signatures: [1] 6

hashObject summary:

Journal of Statistical Software 13

Length Class Mode
stat_hash 180 hash S4
pvalue_hash 180 hash S4

Summary of the generated pvalues matrix:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2399 0.4598 0.4780 0.6985 1.0000

Summary of the generated stats matrix:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.3874 0.7394 1.0000 1.1760 23.8300

Univariate associations:
$stat
[...]

$pvalue
[...]

$flag
[...]

$stat_hash
<hash> containing 180 key-value pair(s).
[...]

$pvalue_hash
<hash> containing 180 key-value pair(s).
[...]

max_k option: [1] 2

threshold option: [1] 0.01

Test: testIndFisher
Total Runtime:

user system elapsed
0.012 0.000 0.009

Robust:
[1] FALSE

4.3. Identifying the best combination of SES hyperparameters

Selecting the best configuration of hyperparameters is an important step in any data analysis
task; finely tuning a statistical method often allows to achieve significantly better perfor-

14 Feature Selection with the R Package MXM

mances than naively using the default configuration. The package MXM provides a dedicated
function, namely cv.ses, for automatically identifying the optimal configuration for the SES
algorithm hyperparameters a and k. This function internally applies a model selection schema
based on stratified cross-validation (Tsamardinos, Rakhshani, and Lagani 2014).
In more detail, cv.ses partitions the available data in a given number of folds, each containing
approximately the same number of samples. Each fold is used in turn as test set, while the
remaining data form the training set. The latter is used for training a predictive model
on the features selected by SES, that is successively applied on the test set for obtaining
testable predictions. Performances are computed for each fold and then averaged. This whole
procedure is repeated for each combination of a and k over their respective, user-specified
ranges, and the optimal configuration {a∗, k∗} corresponds to the values that produced the
best average performance. The users can either provide their own pre-specified folds, or have
them generated internally within cv.ses.
The type of predictive model to fit on the training data, as well as the performance metric
to use depends on the data analysis task at hand. For classification tasks, logistic regression
and the receiver operator characteristic (ROC) area under the curve (AUC; Fawcett 2006)
are the default choice. Regression problems are addressed with standard linear regression
and the mean square error (MSE) metric, the latter defined as ∑i(yi − ŷi)2/n, where n
is the number of test instances and yi, ŷi are the actual target value and the prediction
for instance i, respectively. Survival analysis tasks require specialized methods, namely the
Cox proportional-hazards model (Cox 1972) and the concordance index (CI; Harrell 2001)
performance metric. The CI has an interpretation similar to the AUC, ranging in [0, 1]
with 0.5 indicating random predictions and 1 corresponding to a perfect rank of the test
instances. Package survival is required for the computation of the CI metric. The user has
also the possibility of providing customized functions for predictive modeling and performance
evaluation. The signature of the cv.ses function is the following:

R> cv.ses(target, dataset, wei = NULL, kfolds = 10, folds = NULL,
+ alphas = c(0.1, 0.05, 0.01), max_ks = c(3, 2), task = NULL,
+ metric = NULL, modeler = NULL, ses_test = NULL, ncores = 1)

The argument target, dataset, wei and ncores are as in the SES function. Other arguments
are specified below.

• kfolds: The number of folds to partition the data in.

• folds: A list specifying the folds to use. If provided then kfolds is ignored.

• alphas and max_ks: The ranges of values to be evaluated for the hyperparameters a
and k, respectively.

• task: A character specifying the type of task to perform: "C" for classification, "R" for
regression and "S" for survival analysis.

• metric, modeler, ses_test: User-specified functions for the performance metric, pre-
dictive modeling and conditional independence test to use, respectively.

We now apply the cv.ses function to the simulated data presented in Section 4.2:

Journal of Statistical Software 15

R> cv.ses.object <- cv.ses(target, dataset, kfolds = 10, task = "R")

The best SES configuration and its respective performance can be easily retrieved:

R> cv.ses.object$best_performance

[1] -4.653002

R> cv.ses.object$best_configuration

$id
[1] 2

$a
[1] 0.1

$max_k
[1] 2

5. Experimental validation
We further evaluate the capabilities of the SES algorithm and the MXM package on real world
data. Particularly, we aim at investigating (a) if the signatures retrieved by the algorithm
provide statistically equivalent predictive performances, and (b) whether these performances
are comparable with the ones provided by the state-of-the-art feature selection algorithm
LASSO, as implemented in the R package glmnet (Friedman et al. 2010). All data and
scripts for replicating the results of this comparison are freely available as supplementary
material.

5.1. Data sets description

We use three different data sets for our experiments. All data sets are formed by continuous
predictors, but largely differ in the number of samples/variables and in the type of outcome

Name # samples # variables Task Outcome
Breast Cancer 286 17816 Classification

analysis
Binary, rarest class
frequency: 36%

AquaticTox 322 6652 Regression
analysis

Continuous

Vijver-2002 295 70 Survival
analysis

Right-censored,
number of events: 88

Table 2: Data sets used for the experiments. For each data set the table reports the
number of samples, the number of variables/predictors, task to accomplish (classifica-
tion/regression/survival analysis) and the type of outcome. References for each data set
are reported in the text.

16 Feature Selection with the R Package MXM

(see Table 2). Moreover, each data set comes from a different application domain. The
first, Breast Cancer, is targeted at the discrimination of estrogen-receptor positive (ER+)
or estrogen-receptor negative (ER−) tumors using gene expression measures. This data set
is publicly available in the package breastCancerVDX (Schroeder, Haibe-Kains, Culhane,
Sotiriou, Bontempi, and Quackenbush 2011). The AquaticTox data set leads to a quantitative
structure-activity relationship (QSAR) regression problem. The data are freely available in
the package QSARdata (Kuhn 2013). The task here is to predict the toxicity of 322 different
compounds on the basis of a set of 6652 molecular descriptors produced by the software
Dragon (Talete srl. 2013). The Vijver-2002 data (Van De Vijver et al. 2002) contains the
expression measures of breast cancer patients and the aim is to relate them with their survival
time.

5.2. Experimentation protocol

Derivation and assessment of predictive models

In order to empirically evaluate the performance of the proposed method we have repeated
the following experimentation procedure 500 times, each time using different data splits.
First, data are split in a training set Dtrain and in a hold-out set Dholdout, each containing 50%
of all samples. The best hyperparameter configuration for SES is identified on the training set
through a ten-fold cross-validation model selection procedure, where the SES hyperparameters
are varied within a ∈ [0.01, 0.05, 0.1] and k ∈ [2, 3]. SES is then run on the whole Dtrain with
the best hyperparameters for identifying the optimal signatures. A predictive model for
each signature is finally estimated based on Dtrain and applied on Dholdout for estimation
of the performance. Logistic, linear and Cox regression procedures are used for obtaining
the predictive models, depending on whether the outcome is binary, continuous or time-to-
event, respectively. Appropriate performance metrics are used accordingly: AUC is used for
binary classification, continuous outcomes are evaluated through the MSE, while CI is used
for evaluating the performance of Cox regression models. MSE quantifies the prediction error,
thus lower values indicate better performances, while the reverse holds for AUC and CI. Data
splitting is stratified for classification and survival tasks, i.e., an equal proportion of instances
of each class (or of censored/non-censored cases) is kept in each data split.

Contrasting against LASSO

SES and LASSO are used in turn as feature selection algorithm in the experimentation proto-
col described in the previous section, and they are compared on the basis of the performances
obtained on all Dholdout. In each repetition the same data split is used for both algorithms, in
order to ensure a fair comparison. Recall that LASSO selects only a single subset of relevant
variables, while SES potentially retrieves multiple signatures. Thus we arbitrarily select the
first signature retrieved by SES for comparison with LASSO. This is not necessarily the best
one, and can be deemed to be chosen with a systematic random sampling. In the cross-
validation step of the experimentation protocol, the range of values over which we optimize
the hyperparameter λ for the LASSO algorithm is automatically determined by the least
angle regression (LARS; Efron, Hastie, Johnstone, and Tibshirani 2004) fitting procedure.

Journal of Statistical Software 17

Number of signatures

1 2 3 4 5 6 7 8 9 10+
Breast Cancer 156 120 32 54 11 30 2 25 2 68
AquaticTox 17 27 6 11 5 19 0 16 5 394
Vijver-2002 39 259 8 107 3 33 0 22 0 29

Table 3: Frequency of signature multiplicity. Each cell reports how many times j equivalent
signatures are retrieved for its corresponding data set (row), where j is the number reported
on top of the cell’s column. The notation 10+ indicates 10 or more signatures.

2.5% Median 97.5%
Breast Cancer 0.09% 1.59% 6.32%
AquaticTox 0.04% 4.05% 13.33%
Vijver-2002 0.04% 1.32% 5.30%

Table 4: Quantiles of the coefficient of variation (CV) of the SES performances. Results are
reported separately for each data set (rows).

5.3. Results

Assessing the equivalence of SES signatures

Table 3 reports the distribution over 500 repetitions of the number of signatures identified by
SES for each data set. Each row refers to one data set, while each column to a given number
of signatures. The results indicate that the number of retrieved signatures is highly dependent
upon the specific data set. Particularly, both AquaticTox and Vijver-2002 tend to produce
multiple equivalent signatures, while a single signature is found for the Breast Cancer data
set 156 times in 500 repetitions. Interestingly, the number of retrieved signatures is highly
variable across repetitions: For the AquaticTox data set, simply splitting the data in different
Dtrain and Dholdout sets leads to number of signatures ranging from 1 to 217800. This shows
that the detection of equivalent features is strongly influenced by the specific sample at hand.
We now investigate whether the retrieved signatures achieve performances that are actually
equivalent. For each data set and for each repetition where at least two signatures are re-
trieved, we compute the SES performances’ coefficient of variation (CV). The CV is defined
as the ratio between standard deviation and mean value, and it measures the dispersion of
a distribution standardized with respect to the magnitude of its measurements. Figure 1
and Table 4 show that in all data sets the median CV value is well below 5%, indicating that
within each repetition the performances of the retrieved signatures are extremely close to each
other. The AquaticTox data set produces the highest CV values, marked as circles/outliers in
Figure 1. We also observe that the higher the number of signatures, the higher the coefficient
of variation (Spearman correlation: 0.74 Vijver, 0.28 Breast Cancer, 0.49 AquaticTox data
set, p value < 0.001 in all cases). This result is not unexpected. When few signatures are
retrieved, each signature differs from the other for only one or two features, and thus their
predictive performances are expected to be similar. When thousands of signatures are pro-
duced, their heterogeneity increases, as well as the deviation of their performances. It can be
concluded though that the algorithm is generally stable, with very rare exceptions, and leads
in general to signatures with very close predictive performance. It could be argued that the

18 Feature Selection with the R Package MXM

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●●●
●

●

●
●
●●

●

●

●●

●
●

●●●●
●

●

●
●

●

●

AquaticTox BreastCancer Vijver−2002

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Coefficient of Variation for SES performances

Figure 1: Boxplot of the SES performances’ coefficient of variation across the 500 iterations
for each data set.

2.5% Mean 97.5%
Breast Cancer −0.150 −0.053 0.007
AquaticTox −0.244 −0.103 0.047
Vijver-2002 −0.070 −0.007 0.035

Table 5: Quantiles of the difference in performance between SES and LASSO. Positive values
indicate SES outperforming LASSO.

variation in the estimated predictive performance is often an order of magnitude lower than
the performance estimates themselves.

Contrasting SES and LASSO

Table 5 shows the 95% confidence intervals of the paired differences in performance between
SES and LASSO, computed over 500 repetitions. For each data set, the differences are
computed in such a way that positive values indicate SES outperforming LASSO, and vice
versa. The table shows that for all data sets the confidence intervals cross zero, thus on
these three data sets the SES and LASSO methods are not statistically different at the 0.05
significance level. Figure 2 reports the distribution for the differences in performances between
the two methods. Here the equivalence between the two methods on the Vijver-2002 data
set is even more evident, while differences in performances for the AquaticTox data set show
quite a large variability. Table 6 shows the distribution of the number of selected variables
over the 500 repetitions. SES is generally quite parsimonious, and it usually selects the same
number of variables, independently by the data split, as demonstrated by the low standard
deviations over the 500 repetitions. In contrast, the number of variables selected by LASSO
widely varies across repetitions. SES also selects much fewer variables for all data sets, thus
producing more parsimonious models.

Journal of Statistical Software 19

●

●

●●

●

●●

●

●

●●

●●●●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●●
●
●●

●

●
●

AquaticTox BreastCancer Vijver−2002

−
0.

4
−

0.
2

0.
0

0.
2

Difference in performances between SES and Lasso

Figure 2: Boxplot of the difference among SES and LASSO performances across the 500
iterations for each data set.

Average
SES

Average
LASSO

StD. SES StD.
LASSO

Breast Cancer 6.06 10.63 3.88 15.43
AquaticTox 7.18 148.36 1.81 65.09
Vijver-2002 4.22 11.13 1.37 4.27

Table 6: Distribution of the number of variables selected by SES and LASSO. For each
method and data set both the average number and the standard deviation (St.D.) of selected
variables is reported.

6. Discussion and conclusions
In the present work we introduced the R package MXM, which implements the SES algo-
rithm for selecting statistically equivalent sets of predictive signatures. The package further
implements a number of conditional independence tests able to cope with a variety of data
types. These tests can be used alone (for inference or causal discovery) or in conjunction with
the SES function, in order to deal with several data analysis tasks, including (multi-class)
classification, regression and survival analysis.
We used three real world, publicly available data sets from different application areas for
evaluating the capabilities of the software. Multiple signatures were actually identified for
all data sets, indicating that equivalences among predictors are frequently present in real
applications. Deviation among the signatures’ performances proved to be particularly low,
indicating that the signatures have almost equal predictive power.
We further contrasted the performance of the SES algorithm against the LASSO method.
We attempted to have a comparison as fair as possible, so we always compared the LASSO
signature against the first one retrieved by SES. In the context of our experiments, SES was
more stable in terms of number of variables selected across different data splits, while LASSO

20 Feature Selection with the R Package MXM

in general selects a higher number of variables. The two methods had also quite comparable
performance in terms of predictive capabilities. These results are in agreement with previous
theoretical results (Meinshausen and Bühlmann 2006): under some quite general conditions,
LASSO retrieves a superset of the Markov blanket of the target variable, meaning that all
variables needed for optimal prediction plus some noisy variables are selected. In contrast,
SES is devised for retrieving the parent-children set of the target variable, i.e., a subset
of the Markov blanket. Thus, it is not surprising that in our experimentation SES selects
fewer variables and does not outperform LASSO. We also note that these results may be
influenced by the restricted range of values over which SES hyperparameters a and k have
been optimized.
The aim of this paper is not an assessment of SES, of course; and results in Section 5.3 are
not conclusive. A more extensive comparison study is currently under preparation in order to
exhaustively evaluate SES capabilities and contrast its performance against a range of feature
selection methods. In conclusion, our limited experiments indicate that:

• Multiple, equally performing signatures naturally occur in real world data sets, either
due to equivalence among predictors or to impossibility to distinguish them due to
limited sample size. In either case, this phenomenon should be duly taken into account
while retrieving predictive feature subsets.

• The signatures retrieved by the SES algorithm provide predictive performances ex-
tremely close to each other in all data sets included in our analyses, demonstrating in
fact to be equally predictive.

• SES and LASSO provide comparable results, and SES is generally more parsimonious
and sheds light on the characteristics of the problem at hand by identifying equivalences
hidden into the data.

We keep developing package MXM by adding new conditional independence tests, as well
as new functionalities. For example, the MMPC algorithm, which performs feature selection
without providing multiple solutions, and the PC and MMHC algorithms, two methods for
constructing the skeleton of a Bayesian network. Future work will focus on both algorithmic
and implementation improvements. In future extensions SES will attempt to retrieve the
Markov blanket of the target variable, i.e., the variable set with theoretically the highest
predictive power. The aggregation of models trained on equivalent signatures for improving
predictive performances is also under consideration. In addition, we aim at extending package
MXM in the areas of model selection and performance estimation (Tsamardinos et al. 2014),
two fields closely related to the problem of feature selection.

Acknowledgments
The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant
Agreement n. 617393. The work was also co-funded by the STATegra EU FP7 project,
No. 306000 and by the EPILOGEAS GSRT ARISTEIA II project, No. 3446. We sincerely
thank Damjan Krstajic and Giorgos Borboudakis for their invaluable comments, suggestions
and critical reading of the manuscript.

Journal of Statistical Software 21

References

Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010). “Local Causal and
Markov Blanket Induction for Causal Discovery and Feature Selection for Classification
Part I: Algorithms and Empirical Evaluation.” Journal of Machine Learning Research, 11,
171–234.

Aliferis CF, Statnikov AR, Tsamardinos I, Brown LE (2003). “Causal Explorer: A Causal
Probabilistic Network Learning Toolkit for Biomedical Discovery.” In The 2003 Interna-
tional Conference on Mathematics and Engineering Techniques in Medicine and Biological
Sciences (METMBS ’03).

Barton K (2016). MuMIn: Multi-Model Inference. R package version 1.15.6, URL https:
//CRAN.R-project.org/package=MuMIn.

Brown C (2013). hash: Full Feature Implementation of Hash/Associated Arrays/Dictionaries.
R package version 2.2.6, URL https://CRAN.R-project.org/package=hash.

Buckland ST, Burnham KP, Augustin NH (1997). “Model Selection: An Integral Part of
Inference.” Biometrics, pp. 603–618. doi:10.2307/2533961.

Calcagno V, de Mazancourt C (2010). “glmulti: An R Package for Easy Automated Model
Selection with (Generalized) Linear Models.” Journal of Statistical Software, 34(12), 1–29.
doi:10.18637/jss.v034.i12.

Christensen RHB (2015). “ordinal: Regression Models for Ordinal Data.” R package version
2015.6-28, URL https://CRAN.R-project.org/package=ordinal.

Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society
B, 34, 187–220. doi:10.2307/2985181.

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). “Least Angle Regression.” The Annals
of Statistics, 32(2), 407–499. doi:10.1214/009053604000000067.

Fawcett T (2006). “An Introduction to ROC Analysis.” Pattern Recognition Letters, 27,
861–874. doi:10.1016/j.patrec.2005.10.010.

Fisher RA (1924). “The Distribution of the Partial Correlation Coefficient.” Metron, 3,
329–332.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–13. doi:10.
18637/jss.v033.i01.

Gentleman R, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L,
Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C,
Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang
J (2004). “Bioconductor: Open Software Development for Computational Biology and
Bioinformatics.” Genome Biology, 5(10), R80. doi:10.1186/gb-2004-5-10-r80.

https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=hash
http://dx.doi.org/10.2307/2533961
http://dx.doi.org/10.18637/jss.v034.i12
https://CRAN.R-project.org/package=ordinal
http://dx.doi.org/10.2307/2985181
http://dx.doi.org/10.1214/009053604000000067
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1186/gb-2004-5-10-r80

22 Feature Selection with the R Package MXM

Guyon I, Elisseeff A (2003). “An Introduction to Variable and Feature Selection.” Journal of
Machine Learning Research, 3, 1157–1182. doi:10.1162/153244303322753616.

Harrell FE (2001). Regression Modeling Strategies – With Applications to Linear Models,
Logistic Regression, and Survival Analysis. Springer-Verlag, New York. doi:10.1007/
978-1-4757-3462-1.

Huang GT, Tsamardinos I, Raghu V, Kaminski N, Benos PV (2015). “T-Recs: Stable Selec-
tion of Dynamically Formed Groups of Features with Application to Prediction of Clinical
Outcomes.” In Pacific Symposium on Biocomputing (PSB).

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S,
Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI,
MacDonald J, Obenchain V, ś AKO, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum
D, Waldron L, Morgan M (2015). “Orchestrating High-Throughput Genomic Analysis with
Bioconductor.” Nature Methods, 12(2), 115–121. doi:10.1038/nmeth.3252.

Kane MJ, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive
Data.” Journal of Statistical Software, 55(14), 1–19. doi:10.18637/jss.v055.i14.

Koenker R (2017). quantreg: Quantile Regression. R package version 5.33, URL https:
//CRAN.R-project.org/package=quantreg.

Kuhn M (2013). QSARdata: Quantitative Structure Activity Relationship (QSAR) Data Sets.
R package version 1.3, URL https://CRAN.R-project.org/package=QSARdata.

Lagani V, Kortas G, Tsamardinos I (2013). “Biomarker Signature Identification in “Omics”
Data with Multi-Class Outcome.” Computational and Structural Biotechnology Journal, 6,
e201303004. doi:10.5936/csbj.201303004.

Lagani V, Tsamardinos I (2010). “Structure-Based Variable Selection for Survival Data.”
Bioinformatics, 26(15), 1887–1894.

Landsheer JA (2010). “The Specification of Causal Models with Tetrad IV: A Review.”
Structural Equation Modeling, 17, 703–711. doi:10.1080/10705511.2010.510074.

Mazerolle MJ (2016). AICcmodavg: Model Selection and Multimodel Inference Based
on (Q)AIC(c). R package version 2.0-4, URL https://CRAN.R-project.org/package=
AICcmodavg.

Meinshausen N, Bühlmann P (2006). “High-Dimensional Graphs and Variable Selec-
tion with the Lasso.” The Annals of Statistics, 34(3), 1436–1462. doi:10.1214/
009053606000000281.

Neapolitan RE (2004). Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle
River.

Raftery A, Hoeting J, Volinsky C, Painter I, Yeung KY (2015). BMA: Bayesian Model
Averaging. R package version 3.18.6, URL https://CRAN.R-project.org/package=BMA.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

http://dx.doi.org/10.1162/153244303322753616
http://dx.doi.org/10.1007/978-1-4757-3462-1
http://dx.doi.org/10.1007/978-1-4757-3462-1
http://dx.doi.org/10.1038/nmeth.3252
http://dx.doi.org/10.18637/jss.v055.i14
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=QSARdata
http://dx.doi.org/10.5936/csbj.201303004
http://dx.doi.org/10.1080/10705511.2010.510074
https://CRAN.R-project.org/package=AICcmodavg
https://CRAN.R-project.org/package=AICcmodavg
http://dx.doi.org/10.1214/009053606000000281
http://dx.doi.org/10.1214/009053606000000281
https://CRAN.R-project.org/package=BMA
https://www.R-project.org/

Journal of Statistical Software 23

Reshef DN, Reshef YA, Finucane HK, Grossman SR, Mcvean G, Turnbaugh PJ, Lander ES,
Mitzenmacher M, Sabeti PC (2011). “Detecting Novel Association in Large Data Sets.”
Science, 334(6062), 1518–1523. doi:10.1126/science.1205438.

Revolution Analytics, Weston S (2015a). doParallel: Foreach Parallel Adaptor for the par-
allel Package. R package version 1.0.10, URL https://CRAN.R-project.org/package=
doParallel.

Revolution Analytics, Weston S (2015b). foreach: Provides Foreach Looping Construct for
R. R package version 1.4.3, URL https://CRAN.R-project.org/package=foreach.

Schroeder M, Haibe-Kains B, Culhane A, Sotiriou C, Bontempi G, Quackenbush J (2011).
breastCancerVDX: Gene Expression Datasets Published by Wang et al. (2005) and Minn
et al. (2007) (VDX). R package version 1.6.0, URL https://www.bioconductor.org/
packages/release/data/experiment/html/breastCancerVDX.html.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

Simon N, Tibshirani R (2014). “Comment on “Detecting Novel Associations in Large Data
Sets” by Reshef et al., Science, Dec 16, 2011.” ArXiv preprint.

Spirtes P, Glymour CN, Scheines R (2000). Causation, Prediction, and Search. MIT Press.
doi:10.1007/978-1-4612-2748-9.

Statnikov A, Aliferis CF (2010). “Analysis and Computational Dissection of Molecular Signa-
ture Multiplicity.” PLoS Computational Biology, 6(5), e1000790. doi:10.1371/journal.
pcbi.1000790.

Talete srl (2013). Dragon: Application for the Calculation of Molecular Descriptors. Talete
srl., Milano. URL http://www.talete.mi.it/products/dragon_description.htm.

The MathWorks Inc (2014). MATLAB – The Language of Technical Computing, Version
R2014b. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/.

Therneau T (2017). survival: A Package for Survival Analysis in S. R package version 2.41-3,
URL https://CRAN.R-project.org/package=survival.

Tsamardinos I, Aliferis CF (2003). “Towards Principled Feature Selection: Relevancy, Fil-
ters, and Wrappers.” In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics.

Tsamardinos I, Brown LE, Aliferis CF (2006). “The Max-Min Hill-Climbing Bayesian Net-
work Structure Learning Algorithm.” Machine Learning, 65(1), 31–78. doi:10.1007/
s10994-006-6889-7.

Tsamardinos I, Lagani V, Athineou G, Tsagris M, Borboudakis G, Roumpelaki A (2017).
MXM: Discovering Multiple, Statistically-Equivalent Signatures. R package version 1.0.0,
URL https://CRAN.R-project.org/package=MXM.

Tsamardinos I, Lagani V, Pappas D (2012). “Discovering Multiple, Equivalent Biomarker
Signatures.” In 7th Conference of the Hellenic Society for Computational Biology and
Bioinformatics (HSCBB12).

http://dx.doi.org/10.1126/science.1205438
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=foreach
https://www.bioconductor.org/packages/release/data/experiment/html/breastCancerVDX.html
https://www.bioconductor.org/packages/release/data/experiment/html/breastCancerVDX.html
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.1007/978-1-4612-2748-9
http://dx.doi.org/10.1371/journal.pcbi.1000790
http://dx.doi.org/10.1371/journal.pcbi.1000790
http://www.talete.mi.it/products/dragon_description.htm
http://www.mathworks.com/products/matlab/
https://CRAN.R-project.org/package=survival
http://dx.doi.org/10.1007/s10994-006-6889-7
http://dx.doi.org/10.1007/s10994-006-6889-7
https://CRAN.R-project.org/package=MXM

24 Feature Selection with the R Package MXM

Tsamardinos I, Rakhshani A, Lagani V (2014). “Performance-Estimation Properties of
Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization.” In
A Likas, K Blekas, D Kalles (eds.), Artificial Intelligence: Methods and Applications,
volume 8445 of Lecture Notes in Computer Science, pp. 1–14. Springer-Verlag. doi:
10.1007/978-3-319-07064-3_1.

Van De Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ,
Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L,
van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002). “A
Gene-Expression Signature as a Predictor of Survival in Breast Cancer.” The New England
Journal of Medicine, 347(25), 1999–2009. doi:10.1056/nejmoa021967.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York. doi:10.1007/978-0-387-21706-2.

Affiliation:
Vincenzo Lagani
Computer Science Department
University of Crete
Heraklion, Greece
and
Gnosis Data Analysis P.C.
Heraklion, Greece

Giorgos Athineou, Michail Tsagris
Computer Science Department
University of Crete
Heraklion, Greece

Alessio Farcomeni
Department of Public Health and Infectious Diseases
Sapienza – University of Rome
Rome, Italy

Ioannis Tsamardinos (corresponding author)
Computer Science Department
University of Crete
Heraklion, Greece
and
Gnosis Data Analysis P.C.

http://dx.doi.org/10.1007/978-3-319-07064-3_1
http://dx.doi.org/10.1007/978-3-319-07064-3_1
http://dx.doi.org/10.1056/nejmoa021967
http://dx.doi.org/10.1007/978-0-387-21706-2

Journal of Statistical Software 25

Heraklion, Greece
Telephone: +30 2810 39 3575
Fax: +30 2810 39 1428
E-mail: tsamard@csd.uoc.gr
URL: http://www.mensxmachina.org/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
September 2017, Volume 80, Issue 7 Submitted: 2015-10-01
doi:10.18637/jss.v080.i07 Accepted: 2016-05-22

mailto:tsamard@csd.uoc.gr
http://www.mensxmachina.org/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v080.i07

	Introduction
	Multiple signature selection with SES algorithm
	Package implementation
	Conditional independence tests
	SES implementation

	Using SES
	Installing and loading the package
	Discovering multiple feature signatures
	Identifying the best combination of SES hyperparameters

	Experimental validation
	Data sets description
	Experimentation protocol
	Derivation and assessment of predictive models
	Contrasting against LASSO

	Results
	Assessing the equivalence of SES signatures
	Contrasting SES and LASSO

	Discussion and conclusions

