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Abstract

This paper presents Rtadf (right-tail augmented Dickey-Fuller), an EViews add-in that
facilitates the performance of time series based tests that help detect and date-stamp asset
price bubbles. The detection strategy is based on a right-tail variation of the standard
augmented Dickey-Fuller (ADF) test where the alternative hypothesis is of a mildly explo-
sive process. Rejection of the null in each of these tests may serve as empirical evidence
for an asset price bubble. The add-in implements four types of tests: standard ADF,
rolling window ADF, supremum ADF (SADF; Phillips, Wu, and Yu 2011) and general-
ized SADF (GSADF; Phillips, Shi, and Yu 2015). It calculates the test statistics for each
of the above four tests, simulates the corresponding exact finite sample critical values and
p values via Monte Carlo methods, under the assumption of Gaussian innovations, and
produces a graphical display of the date stamping procedure.

Keywords: rational bubble, ADF test, sup ADF test, generalized sup ADF test, mildly explo-
sive process, EViews.

1. Introduction
Empirical identification of asset price bubbles in real time, and even in retrospect, is surely
not an easy task, and it has been the source of academic and professional debate for several
decades.1 One strand of the empirical literature suggests using time series estimation tech-
niques while exploiting predictions made by finance theory in order to test for the existence of
bubbles in the data. The main idea, based on asset pricing theory, suggests that the existence
of a bubble component in an observed asset price should be manifested in its dynamics and its
stochastic properties. More specifically, theory predicts that if a bubble exists, prices should
inherit its explosiveness property. This in turn enables formulating statistical tests aimed at

1There is a large amount of academic debate with regard to the theoretical plausibility of bubbles (Brun-
nermeier 2008; Iraola and Santos 2008). This paper deals with bubbles of the rational type (also known as
‘rational bubbles’), i.e., bubbles consistent with the rational expectations hypothesis (Blanchard and Watson
1982).

http://dx.doi.org/10.18637/jss.v081.c01
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detecting evidence of explosiveness in the data.2

One of the attempts to test for rational bubbles in the context of the stock market is found in
Diba and Grossman (1988), where the authors suggest using reduced form stationarity tests
with regard to stock prices and observable market fundamentals, and to rule out bubbles if the
former is found no more explosive than the latter. Evans (1991), however, questions the power
of such stationarity based tests in the presence of a periodically collapsing bubble (i.e., one that
spontaneously occurs and bursts), an apparent feature of actual stock prices seen in the data.
Using simulation methods, Evans (1991) shows that standard unit root and cointegration
tests fail to reject the null of no bubble in the presence of periodically collapsing bubbles.
Despite his findings, Evans (1991) leaves open the question of a better identification strategy.
More recently, new bubble detection strategies were developed and presented by Phillips,
Wu, and Yu (2011, hereafter PWY) and Phillips, Shi, and Yu (2015, hereafter PSY). These
strategies are based on recursive and rolling ADF unit root tests that enable us to detect
bubbles in the data and to date-stamp their occurrence. These types of tests use a right-tail
variation of the augmented Dickey-Fuller unit root test wherein the null hypothesis is of a
unit root and the alternative is of a mildly explosive process.3 PWY and PSY show that
using recursive and rolling tests results in higher power in the detection of bubbles, compared
to standard tests on the whole sample. In a Monte Carlo study, Homm and Breitung (2012)
compare several time series based tests for the detection of bubbles and find that the PWY
strategy performs relatively well in detecting periodically collapsing bubbles and in real time
monitoring. Phillips et al. (2015) show through a Monte Carlo study that the PSY strategy
outperforms the PWY strategy in the presence of multiple bubbles.
This paper introduces Rtadf, an EViews (IHS Inc. 2013) add-in available from http://www.
eviews.com/Addins/rtadf.aipz. It allows end users to easily test for the existence of bub-
bles, by readily applying four variations of the right-tail ADF unit root test, in line with
the reduced form approach for bubble detection described above. The four tests consist of
the standard ADF test, a rolling window ADF test, the more recent PWY supremum ADF
(SADF) test and the PSY generalized SADF (GSADF) test. The add-in performs two main
tasks. First, it calculates the relevant test statistic, according to the selected test. Second,
the add-in derives the corresponding exact finite sample critical values by performing a Monte
Carlo simulation, under the assumption of Gaussian innovations. Moreover, the add-in allows
the user to choose between performing a sequential and a parallel simulation. I show that
using the latter option results in significant reduction of computational time as the number
of recursions needed to complete the simulation rises. (This is most relevant for the GSADF
test.)
The rest of the paper is organized as follows. Section 2 presents a basic theoretical model
of rational bubbles in a standard asset pricing model. Section 3 introduces the details of
the econometric strategy used to detect explosive behavior in asset prices. Section 4 provides
general instructions on how to use the Rtadf add-in within the EViews environment. Section 5
presents a hands-on illustration of Rtadf. Finally, Section 6 concludes.

2For recent surveys on econometric tests for bubbles, see Gürkaynak (2008) and Homm and Breitung (2012).
3Phillips and Magdalinos (2007) define a mildly explosive root using the following data generating process

yt = δnyt−1 + εt,

where δn = 1 + c
kn

, and where (kn)n∈N is a sequence increasing to ∞ such that kn = o(n) as n → ∞. Limit
theory for mildly explosive processes is developed in Phillips and Magdalinos (2007).

http://www.eviews.com/Addins/rtadf.aipz
http://www.eviews.com/Addins/rtadf.aipz
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2. Asset pricing with rational bubbles
In this section a formal model of asset pricing with a rational bubble is presented. We start
by specifying the definition of the single period return on an asset:

Rt+1 ≡
Pt+1 +Dt+1

Pt
, (1)

where Rt+1 > 1 is the gross return on holding the asset from period t to t + 1, Pt is the
price of the asset measured at the end of period t (i.e., the ex-dividend price) and Dt+1 is the
dividend the asset holder is entitled to for holding the stock from period t to t+ 1
Next, following Campbell and Shiller (1988) we write a log-linear approximation of Equation 1

pt = κ+ ρpt+1 + (1− ρ) dt+1 − rt+1, (2)

where pt ≡ log(Pt), dt ≡ log(Dt), rt ≡ log(Rt), ρ = 1/
[
1 + e(p−d)

]
with p− d being the

average log price-to-dividend ratio, and

κ = − log(ρ)− (1− ρ) log
(1
ρ
− 1

)
.

Solving Equation 2 by forward iteration and taking expectations yields the following log-linear
approximation of the log price-to-dividend ratio:

pt − dt = κ

1− ρ +
∞∑
i=0

ρiEt (∆dt+1+i − rt+1+i) + lim
i→∞

ρiEt (pt+i − dt+i) . (3)

The right hand side of Equation 3 can be decomposed into two components,

pt − dt = ft + bt, (4)

where
ft = κ

1− ρ +
∞∑
i=0

ρiEt (∆dt+1+i − rt+1+i) (5)

is the fundamental component, stated in terms of the expected dividend growth rate and
expected returns, and where

bt = lim
i→∞

ρiEt (pt+i − dt+i) (6)

is commonly referred to as the rational bubble component. The latter is the focus of the
bubble tests described below.
Under the transversality condition, which implies no-Ponzi game, limi→∞ ρ

iEtpt+i = 0, and
the possibility of a bubble is ruled out. Thus, the observed price equals the fundamental
price. In contrast, the existence of a strictly positive bubble component, i.e., the situation
where actual price exceeds what is implied by fundamentals, requires that investors expect to
be compensated for overpayment (over the fundamental price) by the expected appreciation
of the bubble component. In other words, investors are willing to pay a premium over the
fundamental price only because they expect this premium to appreciate in the next period.
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Note that this behavior is completely consistent with the rational expectations assumption,
hence the name ‘rational bubble’.
More importantly, note that Equation 6 implies a submartingale property for bt since

Et(bt+1) = 1
ρ
bt =

[
1 + e(p−d)

]
bt, (7)

where
[
1 + e(p−d)

]
> 0. Thus, when bt 6= 0, the log bubble component grows at rate g, where

g = e(p−d) > 0.
This model reveals important insights regarding the stochastic properties of pt−dt, according
to which, we can formulate an econometric test designed to rule out the presence of a rational
bubble component in an observed asset price. To see this, note that the stochastic properties
of pt−dt, implied by Equation 3, are determined by those of ft and bt. In turn, the dynamics
of ft are determined by expected ∆dt and rt. If ∆dt and rt are at most I(1) processes,
evidence of explosiveness in pt− dt (in this model) can only be the result of the presence of a
bubble, i.e., bt 6= 0. Thus, a test for the presence of a bubble can be formulated as a test for
explosive behavior in log price-to-dividend ratio, pt − dt.

3. Testing for bubbles
Following the conventions of PSY, assume the following random walk process with an asymp-
totically negligible drift:

yt = dT−η + θyt−1 + et, et
iid∼ N(0, σ2), θ = 1, (8)

where d is a constant, η is a localizing coefficient that controls the magnitude of the drift as
the sample size, T , approaches infinity and εt is the error term.4

Four test strategies implemented by the Rtadf add-in (which includes the ones suggested
by PWY and PSY) are all based on some variation of the following reduced form empirical
equation:

yt = µ+ δyt−1 +
p∑
i=1

φi∆yt−i + εt, (9)

where yt is the variable in question (e.g., the price of a stock), µ is an intercept, p is the
maximum number of lags, φi for i = 1, . . . , p are the differenced lags coefficients and εt is the
error term. Testing for a bubble (explosive behavior) is based on a right-tail variation of the
standard ADF unit root test where the null hypothesis is of a unit root and the alternative
is of a mildly explosive autoregressive coefficient. Formally, we test for

H0 : δ = 1,
H1 : δ > 1.

Before proceeding to a description of the tests included in Rtadf, some notation is needed.
For simplicity of exposition, we use a sample interval of [0, 1] (i.e., we normalized the original
sample by T ). Denote by δr1,r2 and by ADF r1,r2 the coefficient estimated by Equation 9 and

4PSY set d, η and θ to unity, while PWY effectively set η →∞ (i.e., random walk without a drift).
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Figure 1: Illustration of the ADF procedure.
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Figure 2: Illustration of the RADF procedure.

its corresponding ADF statistic over the (normalized) sample [r1, r2]. In addition, denote by
rw the (fractional) window size of the regression, defined by rw = r2 − r1 and by r0 the fixed
initial window, set by the user. The difference between the tests relates to the manner of
setting r1 and r2.
The first test included in Rtadf is a simple right-tailed version of the standard ADF unit root
test. In this case, r1 and r2 are fixed to the first and last observations, respectively, of the
whole sample, where in this case, rw = r0 = 1 (see Figure 1).5 However, the critical values
for testing the null hypothesis differ from the ones used in the usual ADF unit root test since
we now need the right-tail of the statistic’s nonstandard distribution.
The second type of test, the rolling ADF (RADF) test, is a rolling version of the first test in
which the ADF statistic is calculated over a rolling window of fixed size specified by the user,
i.e., rw = r0 for all estimations. At each step of the RADF procedure, the window’s start and
end point (r1 and r2 respectively) are incremented one observation at a time (see Figure 2).
Each estimation yields an ADF statistic, denoted as ADF r1,r2 . The RADF statistic is defined
as the supremum ADF r1,r2 statistic among all possible windows.6

The SADF test, suggested by PWY, is based on recursive calculations of the ADF statistics
with a fixed starting point and an expanding window, where the initial size of the window is
set by the user. The estimation procedure is as follows (see Figure 3): The first observation
in the sample is set as the starting point of the estimation window, r1, i.e., r1 = 0. Next,
the end point of the initial estimation window, r2, is set according to some choice of minimal
window size, r0, such that the initial window size is rw = r2 (again, in fraction terms). Finally,
the regression is recursively estimated, while incrementing the window size, r2 ∈ [r0, 1], one
observation at a time. Each estimation yields an ADF statistic denoted as ADF r2 . Note that
in the last step, estimation will be based on the whole sample (i.e., r2 = 1 and the statistic
will be ADF1). The SADF statistic is defined as the supremum value of the ADF r2 sequence
for r2 ∈ [r0, 1]:

SADF(r0) = sup
r2∈[r0,1]

{ADF r2}. (10)

5The t-statistic from this test matches the one reported by EViews.
6Note that the windows in the RADF procedure are overlapping.
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Figure 3: Illustration of the SADF procedure.
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Figure 4: Illustration of the GSADF procedure.

Test Null hypothesis Alternative hypothesis
ADF Unit root Explosive process
SADF Unit root Single periodically collapsing bubble period
GSADF Unit root Multiple periodically collapsing bubbles

Table 1: A summary of the tests’ null and alternative hypotheses according to Phillips et al.
(2015).

The fourth and last test is the generalized SADF (GSADF), suggested by PSY. This test
generalizes the SADF test by allowing more flexible estimation windows, wherein, unlike the
SADF procedure, the starting point, r1, is also allowed to vary within the range [0, r2 − r0]
(see Figure 4). Formally, the GSADF statistic is defined as

GSADF(r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF r2
r1}. (11)

3.1. Date-stamping bubble periods

As PWY and PSY show, the SADF and GSADF procedures can also be used, under general
regularity conditions, as a date-stamping strategy that consistently estimates the origination
and termination of bubbles. In other words, if the null hypothesis of either of these tests is
rejected, one can estimate the start and end points of a specific bubble (or bubbles). The
date-stamping procedures will now be presented in brief.7

The first date-stamping strategy is based on the SADF test. PWY propose comparing each
element of the estimated ADF r2 sequence to the corresponding right-tailed critical values
of the standard ADF statistic to identify a bubble initiating at time Tr2 . The estimated

7For a detailed presentation see Phillips et al. (2011), Phillips and Yu (2011) and Phillips et al. (2015).
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origination point of a bubble is the first chronological observation, denoted by Tre , in which
ADF r2 crosses the corresponding critical value from below, while the estimated termination
point is the first chronological observation after Tre , denoted by Trf

, in which ADF r2 crosses
the critical value from above. Formally, the estimates of the bubble period (as fractions of
the sample) are defined by

r̂e = inf
r2∈[r0,1]

{
r2 : ADF r2 > cvβT

r2

}
, (12)

r̂f = inf
r2∈[r̂e,1]

{
r2 : ADF r2 < cvβT

r2

}
, (13)

where cvβT
r2 is the 100(1 − βT )% critical value of the standard ADF statistic based on [Tr2 ]

observations.8,9

Similarly, the estimates of the bubble period based on the GSADF are given by

r̂e = inf
r2∈[r0,1]

{
r2 : BSADF r2(r0) > cv

βTr2
r2

}
, (14)

r̂f = inf
r2∈[r̂e,1]

{
r2 : BSADF r2(r0) < cv

βTr2
r2

}
, (15)

where cvβT
r2 is the 100(1− βT )% critical value of the sup ADF statistic based on [Tr2 ] obser-

vations. BSADF(r0) for r2 ∈ [r0, 1], is the backward sup ADF statistic that relates to the
GSADF statistic by the following relation

GSADF(r0) = sup
r2∈[r0,1]

{BSADF r2(r0)}. (16)

4. Instructions and details

4.1. Installation

In essence, EViews add-ins are EViews programs packed in a way that makes them feel and
look like built-in EViews procedures.10 This relatively new feature enables adding procedures
and functionalities that have yet to be implemented in official releases of EViews. By using
the add-ins feature and program language, the user is able to augment standard written
programs with an interactive user interface, thus making them more suitable to address a
general purpose and user friendly. Moreover, unlike regular EViews programs, add-ins have
the ability to run directly from EViews objects and/or by commands.
EViews add-ins are available for EViews users with versions 7.1 and above. Installing the
Rtadf add-in (or any other add-in for that matter) on an existing copy of EViews can be
done manually by downloading the self-extracting installation file from the download section
at the EViews website at http://www.eviews.com/Addins/addins.shtml where it is listed

8In order to asymptotically eliminate type I errors, there is a need to let βT → 0 as T → 0. However, in
applied work it is convenient to use a constant βT such as 5%.

9Phillips and Yu (2011) argue that the dating rule requires that the duration of the bubble be non-negligible.
In Phillips et al. (2015) the authors define log(T )/T as a minimal lasting time for a bubble period.

10For R users, the concept is similar to R packages and also similar to tool-boxes for MATLAB users.

http://www.eviews.com/Addins/addins.shtml
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Figure 5: Dialog box.

under Rtadf∗.11 Alternatively, EViews users with version 8 can download the add-in while
inside EViews by clicking Add-ins → Manage Add-ins, selecting the Rtadf add-in from the list
presented under the Available tab and clicking the Install button. In general, note that all
other add-ins available on the list are written either by the EViews staff or by outside users.
Each add-in published on the EViews website (including Rtadf) has a corresponding support
thread in the EViews add-in Support forum, which can be found at http://forums.eviews.
com/viewforum.php?f=2.

4.2. Using the add-in

The Rtadf add-in can only be run from a series object. Initiating the add-in’s dialog box is
done by opening a series object and then clicking Proc → Add-ins → Right Tail ADF tests.
The test dialog box, presented in Figure 5, enables the user to set the sample period, type of
test, initial window size (as a fraction or number of observations), deterministic terms in the
test equation and the number of lags in the ADF equation (p in Equation 9), where it can be
either fixed by the user, or automatically selected according to some information criterion.
In addition, it allows the user to choose the option of simulating critical values for the test
(thus prompting the simulation dialog box described below) and whether to view a graph
that includes the sequence of ADF statistics, the corresponding critical value sequence and
the actual series.
Toggling the “simulate critical values” option will later prompt the simulation dialog box (see
Figure 6). If the “simulate critical values” option is checked, there is also a need to choose the
simulation tool. Two options are currently available: EViews and MATLAB. Simulation via
EViews uses a single core, while choosing MATLAB will use the multicore capabilities of your
machine. Note that simulation via MATLAB is only available for RADF, SADF and GSADF
and requires having MATLAB as well as the Parallel Computing Toolbox.
In each case, critical values simulations for all four tests are performed according to the

11The asterisk next to the add-in’s name indicates the add-in was developed by an EViews user rather than
by IHS EViews.

http://forums.eviews.com/viewforum.php?f=2
http://forums.eviews.com/viewforum.php?f=2
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following steps:

1. Draw one realization at length T based on the null model (given by Equation 8).

2. Estimate Equation 9 by OLS (with or without recursion, depending on the test).

3. Store the relevant test statistic (ADF/RADF/SADF/GSADF).

4. Repeat Steps 1–3 N times (where N is a large number).

5. Calculate the 90%, 95% and 99% quantiles of the distribution of the relevant statistic.

Quantiles calculated in Step 4 can then be used for testing the null of unit root against the
alternative of an explosive process. In addition, the simulation output includes the p value
of the test statistic, defined as the probability of observing a statistic as extreme as we did
under the null, calculated as

p(τ̂) = 1
N

N∑
j=1

I(τj > τ̂), (17)

where τ̂ is the estimated test statistic (ADF, RADF, SADF or GSADF), N is the number
of replications, I(·) denotes the indicator function which is equal to 1 if the argument is true
and 0 otherwise and τj are the simulated test statistics (j = 1, . . . , N). The sequences of
critical values, which are necessary for the date-stamping procedure, are also derived by the
simulation.
The simulation setup in Rtadf is very flexible, allowing the user to specify the type of test,
appropriate sample size, number of replications, deterministic terms in the test equation,
initial window size, significance level for the critical value sequence (i.e., β), specification of
the parameters of the data generating process for the null hypothesis (i.e., set values for d,
η and θ in Equation 8). In addition the user can choose whether to use T or Trw in the null
model when calculating the simulated critical value sequence (the latter is more accurate but
can be very time consuming for large samples while the former is less accurate but faster).12

As previously mentioned, the output of the simulation procedure is the 90, 95 and 99 percent
quantiles of the finite sample distribution of the statistic in question, the relevant p value of
the test statistic and the relevant critical values sequence for the date-stamping process.

4.3. Run-time comparisons

The results of the running time simulations are presented in Table 2. All tests were run
using EViews 9 and MATLAB 2014a (with the Parallel Computing Toolbox installed). The
hardware used includes a core i7-4702MQ CPU with 16 GB RAM.
The table includes the running time (in seconds) for all four tests and for two sample sizes
– 100 and 200 observations. As we can see, for 100 observations, in the RADF and the
SADF tests, there is not much of a difference in running times between EViews and MATLAB.
The reason for this similarity is that for a small number of replications, the communication
time between EViews and MATLAB and the time it takes to set up a multi-core session,
outweighs the benefits of the parallelized simulation. When the sample size is doubled to

12Note that by default, sample size and initial window size used in the previous step are shown in the
simulation dialog box.
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Figure 6: Critical values simulation dialog box.

Test type T = 100
r0=0.19

T = 200
r0=0.14

EViews MATLAB EViews MATLAB
ADF 0.538 – 0.53 –
RADF 16.75 17.52 34.60 17.52
SADF 16.56 15.19 34.71 17.90
GSADF 715.45 62.29 3197.87 232.75

Table 2: Comparison of running times (in seconds) of the tests.

200 observations, the efficiency of multi-core calculations kicks in, and enables MATLAB to
outperform EViews by being roughly 50% faster than the single core simulation in EViews. As
for the GSADF test, which involves many more estimations per replication, using the parallel
computing option improves running time by more than 90%(!).

4.4. Usage via the command line
The Rtadf add-in can also be called via the command line. This feature enables using the
add-in’s capabilities as an integrated part of other EViews programs. The syntax is given by
series_name.rtadf(options ),
where the available options are detailed in Table 3. Next, we show a couple of command line
examples. First, the command:

snp.rtadf(const, model = 3, print)

performs an SADF test on the series SNP with the test equation including a constant term
and prints the results. Second, the command:

nasdaq.rtadf(trend, model = 4, info = aic, lag = 4, win = 0.02, sim,
rep = 2000, graph, print)
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Basic options
const (default) Include a constant in the test equation.

trend Include a constant and a linear time trend in the test
equation.

none Do not include a constant or time trend.

info = arg (default = ‘fixed’) Either fixed or information criterion to use when com-
puting automatic lag length selection: ‘aic’ (Akaike),
‘sic’ (Schwarz), ‘hqc’ (Hannan-Quinn), ‘maic’ (modified
Akaike), ‘msic’ (modified Schwarz), ‘mhqc’ (modified
Hannan-Quinn).

lag = integer (default = 0) Either a fixed number of lags (if ‘fixed’ is chosen for the
‘info’ option) or maximum lag length to consider when
performing automatic lag length selection.

Test options
model = integer (default = 1) Type of test: ‘1’ (ADF), ‘2’ (RADF), ‘3’ (SADF),

‘4’(GSADF).

win = number Initial window size (in fraction terms or in number of
(default = bT (0.01 + 1.8/

√
T )c) observations).

Simulation options
sim Simulate critical values.

matlab Parallel simulation via MATLAB.

rep = integer (default = 1000) Number of replications of the simulation.

d = number (default = 1) See Equation 8.

eta = number (default = 1) See Equation 8.

theta = number (default = 1) See Equation 8.

beta = [0, 1] (default = 0.95) Significance level for the critical values sequence (see Sec-
tion 3.1).

Trw Use Trw instead of T (default) for calculating the sequence
of critical values.

Other options
graph Create a graph of the results.

print Print output from the test.

Table 3: Options for the command line.

performs a GSADF test on the series NASDAQ where the test equation includes a constant
and a deterministic linear time trend and the initial window size is set to 2% of the sample,
simulates critical values using 2000 replications, generates a graph and prints the results.

Third, the command:
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nasdaq.rtadf(trend, model = 4, info = aic, lag = 4, win = 0.02, sim, matlab,
rep = 2000, graph, print)

is similar to the above command, only now the simulation is run in parallel mode using
MATLAB.

5. Illustration
We now demonstrate in detail how to use Rtadf by replicating the results of the SADF test,
reported in Phillips et al. (2015), Table 8 (p. 33) and Figure 8 (p. 35). The analysis is based
on monthly data of the S&P 500 price-dividend ratio (the series object name in this example is
SNP) over the period of 1871:M1 to 2010:M12 that includes 1680 observations, see Figure 7.13

In order to start the bubble detection process with the price-dividend ratio (SNP) series,
first open the SNP series object and then click Proc → Add-ins → Right tail ADF tests (see
Figure 8).
Next, specify the test parameters as in PSY – see Figure 9(a) below – and then click the OK
button. Note that just like in PSY, the initial window size is set to 36 observations (which
constitutes approximately 2% of the whole sample), the lag length of the ADF test (p in
Equation 9) is set to zero. Make sure that the “simulating critical values” option is checked
so that the output includes the necessary critical values for testing the null hypothesis.
The simulation parameters are also specified in accordance with PSY by adjusting the pa-
rameters in the simulation dialog box, which prompts right after clicking the OK button in
the main dialog box, see Figure 9(b). Clicking OK results in finite sample critical values for
conducting the SADF test.14

Summary output of the SADF test is displayed in Figure 10(a). The output is presented
13The data used in PSY can be downloaded from https://sites.google.com/site/shupingshi/PrgGSADF.

zip?attredirects=0.
14The simulation in this example may take a while since it involves running (1680− 36)× 2000 = 3, 288, 000

regressions. (On our Intel Core i5 with 4GB of memory it took over an hour.)
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Figure 7: S&P 500 price-dividend ratio, 1871:M1–2010:M12.

https://sites.google.com/site/shupingshi/PrgGSADF.zip?attredirects=0
https://sites.google.com/site/shupingshi/PrgGSADF.zip?attredirects=0
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Figure 8: S&P 500 SADF Proc menu.

(a) Test dialog box. (b) Simulation dialog box.

Figure 9: Parameter settings for the S&P 500 SADF test and simulation.

within the series object and it includes two panels.15 The top panel is a table that holds
the estimated SADF t-statistic followed by the corresponding (right-tail) 90%, 95% and 99%
critical values derived from the simulated statistic’s distribution. Note that the sup value of
this sequence is 3.443, whereas in Phillips et al. (2015) it equals 3.30. However, using the
MATLAB code published by PSY, gives an SADF statistic that equals 3.443.16 The simulated
critical values, which appear below the SADF statistic, match exactly those in PSY, Table 8.
The bottom panel of the spool presents the date-stamping procedure for the SADF test. The

15In this example, the output was extracted to an EViews spool object by clicking on the ‘Freeze’ button.
16The add-in’s estimate of the GSADF statistic for the SNP series (not shown) is the same as the one in

PSY.
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Period No. Phillips et al. (2015) Rtadf
1 1879:M10–1880:M4 1879:M5–1880:M4
2 1997:M07–2001:M8 1997:M7–2002:M5

Table 4: Comparison of the results of the date-stamping procedures.

(a) Output spool. (b) Workfile with the added series. (marked
with the red rectangle.)

Figure 10: S&P 500 SADF output.

graph includes the SNP series (in green), the ADF r2 statistic sequence (in blue) and the
corresponding 95% critical values sequence (in red). The data used to plot the graph are
now available as series objects within the workfile under the names ‘sadf’ (the blue line) and
‘sadf_cv’ (the red line), see Figure 10(b).17 The add-in successfully identifies two bubble
periods, just like in PSY, though with minor differences in the start and end point (see
Table 4). In addition, the add-in identifies one bubble period lasting four months in the
beginning of the sample and a couple of ‘blips’ of bubbles lasting for one observation (i.e., one
month). The source of discrepancy might be differences in the random number generator used
by each software. However, if we ignore “too-short-lasting” bubble periods (PSY recommend
to restrict identification to ones lasting more than log(T ) units of time measures, which in
this case equals log(1680) ≈ 7 months), the results are very similar.
Note that the whole procedure described in this section can be accomplished via the execution
of a single command line:

snp.rtadf(model = 3, win = 36, sim, rep = 2000, Trw, graph, print)

Concluding the illustration, the SADF test results point to the presence of at least one bubble
in the S&P 500 price index at the 1% significance level (since 3.443 > 2.141). However, since

17The names of these series will change according to the test we use. For instance, if we apply the GSADF
test, the output will include two new series objects named ’gsadf’ (the sequence of the BSADF statistics values)
and ’gsadf_cv’ (the sequence of the corresponding critical values). Note that each run of the test runs over
the previous output. Hence, if there is a need to save these series, copy them under different names.
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there seems to be evidence for at least two bubble periods (1879–1880 and 1997–2002), as a
second step (which is not pursued here), there is justification to use the GSADF test.

6. Concluding remarks
This paper presents a new EViews add-in, Rtadf, that implements newly developed asset price
bubble detection strategies, all based on right-tail versions of the standard reduced form ADF
unit root test, where the null of unit root is tested against the alternative of a mildly explosive
process. In this case, rejection of the null for a specific time series may serve as evidence of
an asset price bubble.
This paper began with a short background on the methodological developments of reduced
form econometric approaches for bubble detection alongside a theoretical asset pricing model
which helps to clarify the rationale behind the reduced form approach. Next, we gave a brief
technical discussion on the bubble detection tests included in Rtadf, and finally, a simple
illustration of using the add-in in the context of the S&P 500 stocks index was presented.
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