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Abstract

Many statistical learning methods such as matrix completion, matrix regression, and
multiple response regression estimate a matrix of parameters. The nuclear norm regular-
ization is frequently employed to achieve shrinkage and low rank solutions. To minimize
a nuclear norm regularized loss function, a vital and most time-consuming step is singular
value thresholding, which seeks the singular values of a large matrix exceeding a threshold
and their associated singular vectors. Currently MATLAB lacks a function for singular
value thresholding. Its built-in svds function computes the top r singular values/vectors
by Lanczos iterative method but is only efficient for sparse matrix input, while afore-
mentioned statistical learning algorithms perform singular value thresholding on dense
but structured matrices. To address this issue, we provide a MATLAB wrapper func-
tion svt that implements singular value thresholding. It encompasses both top singular
value decomposition and thresholding, handles both large sparse matrices and structured
matrices, and reduces the computation cost in matrix learning algorithms.

Keywords: matrix completion, matrix regression, singular value thresholding (SVT), singular
value decomposition (SVD), sparse, structured matrix, MATLAB.

1. Introduction

Many modern statistical learning problems concern estimating a matrix-valued parameter.
Examples include matrix completion, regression with matrix covariates, and multivariate
response regression. Matrix completion (Candès and Recht 2009; Mazumder, Hastie, and
Tibshirani 2010) aims to recover a large matrix of which only a small fraction of entries
are observed. The problem has sparked intensive research in recent years and is enjoying a
broad range of applications such as personalized recommendation system (ACM SIGKDD and
Netflix 2007) and imputation of massive genomics data (Chi, Zhou, Chen, Del Vecchyo, and
Lange 2013). In matrix regression (Zhou and Li 2014), the predictors are two dimensional
arrays such as images or measurements on a regular grid. Thus it requires a regression
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coefficient array of same size to completely capture the effects of matrix predictors. Another
example is regression with multiple responses (Yuan, Ekici, Lu, and Monteiro 2007; Zhang,
Zhou, Zhou, and Sun 2017), which involves a matrix of regression coefficients instead of a
regression coefficient vector.
In these matrix estimation problems, the nuclear norm regularization is often employed to
achieve a low rank solution and shrinkage simultaneously. This leads to a general optimization
problem

minimize `(B) + λ‖B‖∗, (1)

where ` is a relevant loss function, B ∈ Rm×n is a matrix parameter, ‖B‖∗ =
∑
i σi(B) =

‖σ(B)‖1 (sum of singular values of B) is the nuclear norm of B, and λ is a positive tuning
parameter that balances the trade-off between model fit and model parsimony. The nuclear
norm plays the same role in low-rank matrix approximation that the `1 norm plays in sparse
regression. Generic optimization methods such as accelerated proximal gradient algorithm,
majorization-minorization (MM) algorithm, and alternating direction method of multipliers
(ADMM) have been invoked to solve optimization problem (1). See, e.g., Mazumder et al.
(2010); Boyd, Parikh, Chu, Peleato, and Eckstein (2011); Parikh and Boyd (2013); Chi et al.
(2013); Lange, Chi, and Zhou (2014) for matrix completion algorithms and Zhou and Li
(2014); Zhang et al. (2017) for the accelerated proximal gradient method for solving nuclear
norm penalized regression. All these algorithms involve repeated singular value thresholding,
which is the proximal mapping associated with the nuclear norm regularization term

A 7→ arg min 1
2‖X −A‖2F + λ‖X‖∗. (2)

Let the singular value decomposition of A be Udiag(σi)V > =
∑
i σiuiv

>
i . The solution of (2)

is given by
∑
i(σi − λ)+uiv

>
i (Cai, Candès, and Shen 2010). Some common features charac-

terize the singular value thesholding operator in applications. First the involved matrices are
often large. For matrix completion problems, m,n can be at order of 103 ∼ 106. Second only
the singular values that exceed λ and their associated singular vectors are needed. Third the
involved matrix is often structured. In this article, we say a matrix is structured if matrix-
vector multiplication is fast. For example, in matrix completion problems, A is of the form
“sparse + low rank”. That isA = M+LR>, whereM is sparse and L ∈ Rm×r andR ∈ Rn×r
are low rank r � min{m,n}. Although A is not sparse itself, matrix-vector multiplications
Av and w>A cost O(m+n) flops instead of O(mn). Storing the sparse matrix M and L and
R also takes much less memory than the full matrix A. All these characteristics favor the
iterative algorithms for singular value decomposition such as the Lanczos bidiagonalization
method (Golub and Van Loan 1996).
Most algorithms for aforementioned applications are developed in MATLAB (The MathWorks
Inc. 2013), which however lacks a convenient singular value thresholding functionality. The
most direct approach for SVT is applying full SVD through svd and then soft-threshold
the singular values. This approach is in practice used in many matrix learning problems
according to the distributed code, e.g., Kalofolias, Bresson, Bronstein, and Vandergheynst
(2014); Chi et al. (2013); Parikh and Boyd (2013); Yang, Wang, Zhang, and Zhao (2013);
Zhou, Liu, Wan, and Yu (2014); Zhou and Li (2014); Zhang et al. (2017); Otazo, Candès,
and Sodickson (2015); Goldstein, Studer, and Baraniuk (2015), to name a few. However, the
built-in function svd is for full SVD of a dense matrix, and hence is very time-consuming and
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computationally expensive for large-scale problems. Another built-in function svds wraps
the eigs function to calculate top singular triplets using iterative algorithms. However the
current implementation of svds is efficient only for sparse matrix input, while the matrix
estimation algorithm involves singular value thresholding of dense but structured matrices.
Another layer of difficulty is that the number of singular values exceeding a threshold is often
unknown. Therefore singular value thresholding involves successively computing more and
more top singular values and vectors until hitting below the threshold.
To address these issues, we develop a MATLAB wrapper function svt for the SVT computa-
tion. It is compatible with MATLAB’s svds function in terms of computing a fixed number of
top singular values and vectors of sparse matrices. However it is able to take functional handle
input, offering the flexibility to exploit matrix structure. More importantly, it automatically
performs singular value thresholding with a user-supplied threshold and can be easily used as
a plug-in subroutine in many matrix learning algorithms.
We discuss implementation details in Section 2 and describe syntax and example usage in
Section 3. Section 4 evaluates numerical performance of the svt function in various situations.
We conclude with a discussion in Section 5.

2. Algorithm and implementation
Our implementation hinges upon a well-known relationship between the singular value decom-
position of a matrix A ∈ Rm×n, m ≥ n, and the eigenvalue decomposition of the symmetric

augmented matrix
(

0 A>

A 0

)
(Golub and Van Loan 1996, Section 8.6). Let the singular

value decomposition of A be UΣV >, where U ∈ Rm×n, Σ ∈ Rn×n and V ∈ Rn×n. Then(
0 A>

A 0

)
= 1√

2

(
V V
U −U

)
·
(

Σ 0
0 −Σ

)
· 1√

2

(
V V
U −U

)>
. (3)

Therefore the SVD of A can be computed via the eigen-decomposition of the augmented
matrix. Our wrapper function utilizes MATLAB’s built-in eigs function for computing the
top eigenvalues and eigenvectors of large, sparse or structured matrices.
In absence of a threshold, svt is similar to svds and calculates the top singular values and
vectors. Since we allow function handle input, users can always take advantage of special
structure in matrices by writing a user defined function for calculating matrix-vector multi-
plication. This is one merit of svt compared with MATLAB’s svds.
With a user input threshold, svt does singular value thresholding in a sequential manner. It
first computes the top k (default is 6) singular values and vectors. Two methods have been
implemented to gradually build up the requested subspace. Let Ur, Vr and σi, i = 1, . . . , r, be
the singular values and vectors accrued so far. In the deflation method (Algorithm 1), we
obtain next batch of incre (default is 5) singular values and vectors by working on the deflated
matrixA−Urdiag(σ1, . . . , σr)V >r . In the succession method (Algorithm 2), originally hinted
in Cai et al. (2010), we work onA directly and retrieve top k, k+incre, k+2·incre, . . . singular
values and vectors of the original matrix A successively. Both algorithms terminate as soon
as a singular value below the threshold is identified. Efficiency of these two algorithms are
compared in Section 4.5.
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Algorithm 1: Singular value thresholding based on deflation method.
1 Initialization: mat = [0, A>;A, 0], iter = min(m,n);
2 while iter > 0 do
3 [eigvec, eigval]← eigs(mat, k);
4 i← i{eigval<=λ};
5 if i 6= na then
6 w ← [w, eigvec(:,1:i−1)];
7 e← [e, eigval(1:i−1)];
8 break
9 else

10 w ← [w, eigvec];
11 e← [e, eigval];
12 end
13 iter ← iter − k;
14 k ← min(incre, iter);
15 mat← mat− w · e · w>;
16 end
17 S ← e;
18 w ←

√
2 · w;

19 U ← w(n+1:end,:);
20 V ← w(1:n,:);
21 return [U, S, V ]

Algorithm 2: Singular value thresholding based on succession method.
1 Initialize mat = [0, A>;A, 0], iter = min(m,n);
2 while iter > 0 do
3 [eigvec, eigval]← eigs(mat, k);
4 i← i{eigval<=λ};
5 if i 6= na then
6 w ← eigvec(:,1:i−1);
7 e← eigval(1:i−1);
8 break
9 else

10 w ← eigvec;
11 e← eigval;
12 end
13 iter ← iter − k;
14 k ← min(k + incre, iter);
15 end
16 S ← e;
17 w ←

√
2 · w;

18 U ← w(n+1:end,:);
19 V ← w(1:n,:);
20 return [U, S, V ]
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3. The MATLAB function aspect
We demonstrate various usages of svt in this section. A complete demonstration script with
output is available on the software web page http://hua-zhou.github.io/svt/.
To find the top k singular values and vectors of a matrixA, the usage is the same as MATLAB’s
built-in function svds. A can be either full or sparse. By default, it computes the top 6
singular values and vectors

[U, S, V] = svt(A)

To request top 15 singular values and vectors, we use

[U, S, V] = svt(A, 'k', 15)

Users can also supply a function handle, instead of the matrix itself, that computes matrix-
vector multiplication. This allows svt to utilize a special structure other than sparsity. For
example, suppose A is a 1000-by-1000 “sparse plus low rank” matrix M +LR>, where M is
sparse and L,R ∈ R1000×5 are two skinny and tall matrices. To compute the top 15 singular
values and vectors, we first define a function that computes Av or w>A for arbitrary vectors
v,w of compatible dimensions

function Av = Afun(v, trans)
if trans

Av = (v' * M)' + R * (v' * L)';
else

Av = M * v + L * (R' * v);
end

end

and then call

[U, S, V] = svt(Afun, 'k', 15, 'm', 1000, 'n', 1000)

Note the function Afun needs to have access to the variables M, L and R and is best declared
as a sub-function in the main computation routine. The dimensions of matrix are required
when using a functional handle. ’m’ is the number of rows and ’n’ is the number of columns.
Great convenience of svt comes from singular value thresholding. That is to compute the
singular values that exceed a threshold λ and associated singular vectors. The code

[U, S, V] = svt(A, 'lambda', 0.1)

computes the singular values and vectors of a matrix A that exceed 0.1. A can be either
full or sparse. For a non-sparse, structured matrix, we can use the same function handle for
singular value thresholding

[U, S, V] = svt(Afun, 'lambda', 0.1, 'm', 1000, 'n', 1000)

Again the dimensionality of the matrix must be specified by setting ’m’ and ’n’. By de-
fault, svt uses the deflation method for locating all singular values and vectors above the
threshold. Users can change to the succession method by

http://hua-zhou.github.io/svt/
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[U, S, V] = svt(A, 'lambda', 0.1, 'method', 'succession')

or

[U, S, V] = svt(Afun, 'lambda', 0.1, 'm', 1000, 'n', 1000, 'method', ...
'succession')

For singular value thresholding, users can specify the number of top singular values to try
in the first iteration and then increment the size in subsequent iterations by the ’k’ and
’incre’ options respectively. The command

[U, S, V] = svt(A, 'lambda', 0.1, 'k', 15, 'incre', 3)

computes the top 15 singular values and vectors in the first iteration and then adds 3 more in
each subsequent iteration until hitting the singular values below threshold 0.1. This option
is useful when users have a rough idea how many singular values are above the threshold and
can save considerable computation time. The default values are k = 6 and incre = 5.

4. Numerical experiments
In this section, we evaluate the numerical performance of svt in different scenarios and com-
pare it with the MATLAB built-in functions svd and svds. We conduct these experiments
on a desktop with an Intel Quad Core CPU @ 3.20 GHz and 12 GB of RAM. Computing
environment is Linux MATLAB R2013a 64-bit version. For testing purpose, we use 5 square
sparse matrices and 4 rectangular sparse matrices of varying sizes downloaded from the Uni-
versity of Florida sparse matrix collection (Davis and Hu 2011). For each numerical task,
10 replicate runs are performed and the average run time and standard error are reported,
unless stated otherwise. Sparsity of a matrix A is defined as the proportion of zero entries, 1
- nnz(A)/numel(A).

4.1. Top k singular values and vectors of sparse matrices

Table 1 reports the run times of svt, svds and svd for computing the top 6 singular values
and associated vectors of sparse matrices. In this case, svt internally calls svds thus their
run times should be indistinguishable. The huge gain of svt/svds in large sparse matrices
simply demonstrates the advantage of the iterative method over the full decomposition method
implemented in svd.

4.2. Top k singular values and vectors of “sparse + low rank” matrices

This example tests the capability of svt to take functional handle input. We generate struc-
tured matrices by adding a low rank perturbation to a sparse matrix. Let M ∈ Rn×n
be a sparse test matrix. We form a “sparse + low rank” matrix A = M + LR>, where
L,R ∈ Rn×10 have independent standard normal distributed entries. Table 2 shows the av-
erage run times of svt with function handle input and svds with input A itself to compute
the top 6 singular values and vectors based on 10 simulation replicates. It clearly shows the
advantage of exploiting the special matrix structure over applying the iterative algorithm to
the full matrix directly. The speed-up is up to 100 fold for large matrices.
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Matrix Size Sparsity svt svds svd
bfwb398 398 0.9816 0.0396 (0.0003) 0.0393 (0.0004) 0.0450 (0.0001)
rdb800l 800 0.9928 0.0944 (0.0008) 0.0941 (0.0009) 0.2184 (0.0007)
tols1090 1090 0.9970 0.0549 (0.0007) 0.0592 (0.0005) 0.4377 (0.0006)
mhd4800b 4800 0.9988 0.0579 (0.0029) 0.0536 (0.0026) 249.1995 (0.0143)
cryg10000 10000 0.9995 0.1550 (0.0019) 0.1580 (0.0017) 1773.6812 (0.2014)

Table 1: Top 6 singular values and vectors of sparse matrices by svt, svds and svd. Reported
are the average run time (in seconds) and standard error (in parentheses) based on 10 runs.

Matrix Size Sparsity svt (fh input) svds
bfwb398 398 0.9816 0.0176 (0.0011) 0.0408 (0.0009)
rdb800l 800 0.9928 0.0240 (0.0005) 0.2115 (0.0014)
tols1090 1090 0.9970 0.0780 (0.0009) 0.9396 (0.0079)
mhd4800b 4800 0.9988 0.0471 (0.0001) 5.6700 (0.0166)
cryg10000 10000 0.9995 0.1909 (0.0022) 44.2213 (0.4373)

Table 2: Top 6 singular values and vectors of “sparse + low rank” matrices by svt and svds.
Structured matrices are formed by adding a random rank-10 matrix to the original sparse test
matrix. Reported are the average run time (in seconds) and standard error (in parentheses)
based on 10 simulation replicates.

Matrix Size Sparsity svt svd
bfwb398 398 0.9816 0.3633 (0.0012) 0.0456 (0.0001)
rdb800l 800 0.9928 0.7716 (0.0047) 0.2237 (0.0005)
tols1090 1090 0.9970 0.4295 (0.0012) 0.4451 (0.0011)
mhd4800b 4800 0.9988 1.3733 (0.0075) 249.4558 (0.0423)
cryg10000 10000 0.9995 3.1157 (0.0152) 1773.0692 (0.3403)

Table 3: Singular value thresholding of sparse matrices by svt and svd. Reported are the
average run time (in seconds) and standard error (in parentheses) based on 10 runs. The
threshold value is pre-determined to catch the top 50 singular values.

4.3. Singular value thresholding of sparse matrices

In this example we compare the singular value thresholding capability of svt with the strategy
of full singular value decomposition by svd followed by thresholding on sparse test matrices.
The threshold value is pre-determined such that the top 50 singular values are above threshold.
By default, svt starts with k = 6 singular values and then add more than 5 in each subsequent
iteration. Results are presented in Table 3. For matrices of size less than 1000, svt is less
efficient due to the overhead of repeated calling iterative algorithms until hitting the threshold.
For large matrices, svt shows 100 ∼ 1000 fold speed-ups.

4.4. Singular value thresholding of “sparse + low rank” matrices

This example investigates singular value thresholding of structured matrices. “Sparse + low
rank” matrices are generated by the same mechanism as in Section 4.2. Results in Table 4
show roughly the same pattern as in Table 3. Speed-up of svt is most eminent for large



8 svt: Singular Value Thresholding in MATLAB

Matrix Size Sparsity svt (fh input) svt (matrix input) svd
bfwb398 398 0.9816 1.3540 (0.1486) 1.4209 (0.1744) 0.0502 (0.0002)
rdb800l 800 0.9928 2.4144 (0.0089) 2.8655 (0.0194) 0.2569 (0.0005)
tols1090 1090 0.9970 0.5100 (0.0023) 1.3044 (0.0051) 0.4455 (0.0005)
mhd4800b 4800 0.9988 5.6852 (0.1462) 89.9854 (3.3959) 48.9117 (0.0122)
cryg10000 10000 0.9995 3.5793 (0.0145) 104.0540 (0.2411) 443.3518 (0.1034)

Table 4: Singular value thresholding of “sparse + low rank” matrices. Reported are the
average run time (in seconds) and standard error (in parentheses) based on 10 simulation
replicates. Structured matrices are formed by adding a random rank-10 matrix to the original
sparse test matrix. The threshold value is pre-determined to catch the top 50 singular values.

Matrix Size Sparsity Deflation Succession
bfwb398 398 0.9816 0.3626 (0.0012) 0.4055 (0.0026)
rdb800l 800 0.9928 0.7636 (0.0048) 0.8670 (0.0019)
tols1090 1090 0.9970 0.4250 (0.0016) 0.5167 (0.0013)
mhd4800b 4800 0.9988 1.3761 (0.0110) 2.3382 (0.0227)
cryg10000 10000 0.9995 3.1782 (0.0173) 5.8789 (0.0648)

Table 5: Comparison of deflation and succession methods for singular value thresholding
of sparse matrices. Reported are the average run time (in seconds) and standard error (in
parentheses) based on 10 runs. The threshold is pre-determined to catch the top 50 singular
values.

matrices. To evaluate the effectiveness of exploiting structure in singular value thresholding,
we also call svt with input A directly, which apparently compromises efficiency.

4.5. Deflation versus succession method for singular value thresholding

Table 5 compares the efficiency of the deflation and succession strategies for singular value
thresholding of sparse test matrices. The threshold value is pre-determined such that the top
50 singular values are above the threshold. Both methods start with k = 6 singular values
and then add 5 more in each subsequent iteration. The deflation method is in general faster
than the succession method.
A similar comparison is done on “sparse + low rank” structured matrices, which are generated
in the same way as in Section 4.2. The threshold is again set at the 50th singular value of each
matrix. The average run time and standard error are reported in Table 6. We found non-
convergence of the underlying ARPACK routine when applying the deflation method to the
rdb800l and mhd4800 matrices. The non-convergence is caused by clustered eigenvalues. It is
well known that ARPACK works best for finding eigenvalues with large separation between
unwanted ones, and non-convergence is typical when dealing with ill conditioned matrices
(Lehoucq and Sorensen 1996). When this happens, we restart with the succession method
and continue from the current subspace.

4.6. Large-scale singular value thresholding

The purpose of this section is to demonstrate the performance of svt on large rectangular
matrices. For the first two test matrices (bibd_20_10 and bibd_22_8), “sparse + low rank”
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Matrix Size Sparsity Deflation Succession
bfwb398 398 0.9816 1.2936 (0.0588) 2.0956 (0.0059)
rdb800l 800 0.9928 2.3758 (0.0187) 1.3863 (0.0118)
tols1090 1090 0.9970 0.5084 (0.0022) 0.6088 (0.0011)
mhd4800b 4800 0.9988 5.6008 (0.1598) 4.4027 (0.0396)
cryg10000 10000 0.9995 3.5636 (0.0129) 6.3697 (0.0621)

Table 6: Comparison of deflation and succession methods for singular value thresholding of
“sparse + low rank” matrices. Reported are the average run time (in seconds) and standard
error (in parentheses) based on 10 simulation replicates. The threshold is pre-determined to
catch the top 50 singular values.

Matrix Size Sparsity 5th 20th 50th
bibd_20_10 (190, 184756) 0.7632 0.0350 0.6152 11.2083
bibd_22_8 (231, 319770) 0.8788 0.0372 2.6438 4.1058

stormG2_1000 (528185, 1377306) 0.9999 0.2518 1.0394 12.6890
tp-6 (142752, 1014301) 0.9999 1.6373 20.2409 41.3021

Table 7: Singular value thresholding of large rectangular matrices. Reported are the run time
(in minutes) of svt from one replicate. The threshold value is pre-determined to catch the
top 5, 20, and 50 singular values respectively.

matrices are generated by the same mechanism as in Section 4.2. For the other two matrices
(sotrmG2_1000 and tp-6), singular value thresholding is performed on the original sparse
matrices. The threshold is set at the 5th, 20th, and 50th singular value of each matrix
respectively. Table 7 displays the run time of svt from one replicate. The full singular value
decomposition svd takes excessively long time for these 4 problems so its results are not
reported.

4.7. Application to matrix completion problem

To demonstrate the effectiveness of svt as a plug-in computational routine in practice, we con-
duct a numerical experiment on the spectral regularization algorithm for matrix completion
(Mazumder et al. 2010), which minimizes

1
2
∑

(i,j)∈Ω
(xij − yij)2 + λ‖X‖∗ (4)

at a grid of tuning parameter values λ. Here Ω indexes the observed entries yij and X = (xij)
is the completed matrix. Algorithm 3 lists the computational algorithm, which involves
repeated singular value thresholding (lines 4–6). See Chi et al. (2013) for a derivation from
the majorization-minimization (MM) point of view. Although A(t) is is a dense matrix, it
can be written as

A(t) = PΩ(Y ) + PΩ⊥(X(t))
= [PΩ(Y )− PΩ(X(t))] + X(t),

where X(t) is a low rank matrix at large values of λ (only few singular values survive after
thresholding), and PΩ(·) is a binary projection operator onto the observed entries. Fortu-
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Algorithm 3: MM algorithm for minimizing the penalized loss (4).
1 Initialize X(0) ;
2 repeat
3 A(t) ← PΩ(Y ) + PΩ⊥(X(t)) ;
4 SVD Udiag(a(t))V > ← A(t) ;
5 x(t+1) ← (a(t) − λ)+ ;
6 X(t+1) ← Udiag(x(t+1))V > ;
7 until objective value converges;

Size Sparsity Rank Grid points svt (fh input) svt (matrix input) svd
500 0.95 5 15 0.8541 0.7335 0.5466

1000 0.95 5 19 2.9359 4.0803 4.2763
2000 0.95 5 20 10.3611 35.7058 40.1562
3000 0.95 5 20 20.6781 69.3164 138.8011
4000 0.95 5 20 52.2150 175.2524 335.2373
5000 0.95 5 20 71.8051 246.3738 630.2729

Table 8: Run time of matrix completion problem using different singular value thresholding
methods. Reported are the run time (in minutes) for the whole solution path. Path following
is terminated whenever 20 grid points are exhausted or the rank of solution goes beyond 10
(twice the true rank).

nately, in many applications, large values of λ are the regime of interest, which encourages
low rank solutions. That means most of the time A(t) is of the special form “sparse + low
rank” that enables extremely fast matrix-vector multiplication.
In the numerical experiment, we generate a rank-5 matrix by multiplying two matrices M =
LR>, where L,R ∈ Rn×5 have independent standard normal distributed entries. Then, we
add independent standard Gaussian noise to corrupt the original parameter matrix M , that
is Y = M + ε. 5% entries of Y are randomly chosen to be observed. The dimension n of our
synthetic data ranges from 500 to 5000. For each n, we minimize (4) at a grid of 20 points.
The grid is set up in a linear manner as in Mazumder et al. (2010).

lambdas = linspace(maxlambda * 0.9, maxlambda / 5, 20)

Here maxlambda is the largest singular value of the input matrix Y with missing entries set
at 0. Warm start strategy is used. That is the solution at a previous λ is used as the start
point for the next λ. Path following is terminated whenever all 20 grid points are exhausted
or the rank of the solution exceeds 10 (twice the true rank). Three methods for singular value
thresholding are tested: svt using functional handle input, svt using matrix input A(t), and
full singular value thresholding by svd followed by thresholding. Table 8 shows the run time
in minutes for obtaining the whole solution path. Speed-up of svt increases with matrix size
and utilizing the “sparse + low rank” structure via functional handle boosts the performance.
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5. Discussion
We develop a MATLAB wrapper function svt for singular value thresholding. When a fixed
number of top singular values and vectors are requested, svt expands the capability of
MATLAB’s built-in function svds by allowing function handle input. This enables appli-
cation of the iterative method to dense but structured large matrices. More conveniently,
svt provides a simple interface for singular value thresholding, the key step in many ma-
trix learning algorithms. Our numerical examples have demonstrated efficiency of svt in
various situations. The svt package is continuously developed and maintained at GitHub
http://hua-zhou.github.io/svt/.
We describe a few future directions here. Our wrapper function utilizes the well-known
relationship between SVD and eigen-decomposition of the augmented matrix (3) and builds
on the MATLAB’s eigs function, which in turn calls the ARPACK subroutines (Lehoucq,
Sorensen, and Yang 1997) for solving large scale eigenproblems. An alternative is to use
the PROPACK library (Larsen 1998), an efficient package for singular value decomposition
of sparse or structured matrices. This involves distributing extra source code or compiled
programs but may further improve efficiency. Both ARPACK and PROPACK implement
Krylov subspace method and compute a fixed number of top eigenvalues or singular values.
Thus singular value thresholding has to be done in a sequential manner. The recent FEAST
package (Plizzi and Kestyn 2012) is an innovative method for solving standard or generalized
eigenvalue problems, and is able to compute all the eigenvalues and eigenvectors within a
given search interval, which is particularly attractive for the singular value thresholding task.
However users must provide an initial value for the number of eigenvalues in the search
interval. If the initial guess is too small, the program will exit. In real applications of singular
value thresholding, such an estimate may be hard to obtain. Further investigation of the
feasibility of using FEAST for singular value thresholding is underway.
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