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Abstract

In recent years, targeted minimum loss-based estimation methodology has been used to
develop estimators of parameters in longitudinal data structures (Gruber and van der Laan
2012; Petersen, Schwab, Gruber, Blaser, Schomaker, and van der Laan 2014; Schnitzer,
Moodie, van der Laan, Platt, and Klein 2013). These methods are implemented in the
ltmle package for R. The ltmle package provides methods to estimate intervention-specific
means and measures of association including the average treatment effect, causal odds
ratio and causal risk ratio and parameters of a longitudinal working marginal structural
model. The package allows for multiple time point treatments, time-varying covariates
and right censoring of the outcome. In this paper we described the usage of the ltmle
package and provide examples.

Keywords: targeted minimum loss-based estimation, longitudinal data, causal inference, esti-
mation, R.

1. Introduction

Targeted minimum loss-based estimation (TMLE) is a framework for constructing regular
and asymptotically linear estimators for a parameter in a statistical model (van der Laan
and Rose 2011; van der Laan and Rubin 2006). TMLE methodology has been applied to
many parameters that are interpretable as causal quantities in observational studies under
assumptions. Examples include the average treatment effect (ATE), average treatment effect
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among the treated (ATT), controlled direct effects (CDE), natural direct and indirect effects
(NDE and NIE), and causal effects of multiple time point interventions (van der Laan and
Rose 2011; Moore and van der Laan 2009; van der Laan and Gruber 2012; Zheng and van der
Laan 2012; Lendle, Subbaraman, and van der Laan 2013).
The tmle (Gruber and van der Laan 2012) package for R (R Core Team 2017) provides
estimators for parameters when all potential confounders are baseline (pre-exposure) variables,
including the ATE, the CDE, and the parameters of a marginal structural model (MSM)
for a single time point intervention. The tmle package also allows for missing outcomes
when variables needed for the missing at random assumption to hold are not affected by the
exposure. The package is available on the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=tmle and is described by Gruber and van der Laan
(2012).
A new R package, ltmle, has been developed to estimate parameters in longitudinal data
structures. The ltmle package implements an estimator for intervention-specific means devel-
oped by Robins (2000, 2002); Bang and Robins (2005); van der Laan and Gruber (2012) (and
by extension the ATE, CDE, causal risk ratio and causal odds ratio,) and an estimator for
parameters of a longitudinal working marginal structural model developed by Petersen et al.
(2014). The ltmle package also extends some of the capabilities of tmle by allowing outcome
missingness to depend on post-baseline covariates. In this article we describe usage of the
ltmle package. We have omitted many technical details and focus on practical usage of the
ltmle through examples. For details on the method, including examples working through the
estimation procedure with a few time points, see Petersen et al. (2014) and Schnitzer et al.
(2013). The package is available on CRAN at cran.r-project.org/package=ltmle.
The article is organized as follows: in Section 2 the observed data structure and causal
and statistical models are defined, as well as notation used in later sections; in Section 3
intervention-specific mean parameters are introduced and the ltmle package is used to es-
timate those parameters in examples; in Section 4, we define an MSM and demonstrate
estimation of the parameters though an example; in Section 5 we discuss planned extensions
to the package.

2. Observed data and statistical and causal models

2.1. Observed data structure and notation

In longitudinal studies, data are collected on observations at multiple time points and can be
subject to censoring. One observation O is coded as

O = (L(0), A(0), . . . , L(K), A(K), L(K + 1)).

We observe n independent and identically distributed copies of O with distribution P0. The
L variables, or nodes, are covariates and the outcome of interest, and the A nodes are inter-
vention nodes. Baseline covariates are called L(0). The outcome variable, if it is measured at
time k, is Y (k), which is part of L(k) for k = 1 . . . ,K + 1. Elements of L(k) other than Y (k)
are time-varying covariates. Multiple time-varying covariates can be included, and different
time-varying covariates can occur at different time points. If there are no measured covariates
or outcome at time k, L(k) is null.

https://CRAN.R-project.org/package=tmle
cran.r-project.org/package=ltmle
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The intervention node A(k) = (A1(k), A2(k)) can in general include both a binary treatment
(A1(k)) and a right censoring indicator (A2(k)). However, an intervention node does not
necessarily need to include both treatment and censoring, so treatment or censoring nodes
can be back to back. Back to back binary treatment nodes can be used to code treatments
with more than two levels. For example, a 4 level treatment can be coded with pairs of
treatment nodes: (0, 0), (0, 1), (1, 0), and (1, 1). Throughout, by censoring we mean right
censoring, but other types of censoring and missingness can be handled using the treatment
nodes. We describe this in Section 5.
We use an overbar with a time index to denote the history of a variable or function from
time 0 up to the given time. For example, L̄(k) = (L(0), L(1), . . . , L(k)). If the time index
is omitted, the overbar denotes history up to the last time point, e.g., L̄ = L̄(K + 1) and
Ā = Ā(K).
We use Pa(·) to denote the parents of a node. The parents of L nodes are all previous nodes in
the time ordering: Pa(L(k)) = (L̄(k− 1), Ā(k− 1)). The parents of an intervention node are
a known subset of the nodes occurring before the intervention node and potentially affect it.

2.2. Causal model and counterfactuals

In the previous section, we discuss the distribution of observed data. Given a data set, we
can estimate parameters of this distribution, which we call statistical parameters. Without
more structure, statistical parameters do not have a causal interpretation. To formally define
a causal quantity we want to estimate, we first specify a structural causal model (SCM) or
non-parametric structural equation model (Pearl 1995, 2000, 2009).
An SCM is a way to encode knowledge about the relationships of variables. In our case, the
SCM will allow us to write each observed variable as an unknown deterministic function of
the past variables and an unobserved error.
With the SCM, we can define counterfactuals: outcomes that would have happened had some
(treatment or exposure) variables taken a possibly different value than they had in reality.
The SCM implies a set of possible probability distributions for the counterfactual random
variables of interest. Using the SCM, we can translate a scientific question of interest into a
well defined causal quantity, which is a function of the distribution of counterfactuals. We
call this a causal parameter.
We suppose that each component of the observed data structure is generated by a function
of its parents and an unobserved exogenous error. Let

L(k) = fL(k)(Pa(L(k)), UL(k)) for k = 0, . . .K + 1

and
A(k) = fA(k)(Pa(A(k)), UA(k)) for k = 0, . . .K.

The functions fL(k) and fA(k) are deterministic and non-parametric. The U components are
the unobserved errors and are random with an unknown distribution.
The counterfactuals we are interested in are defined by a sequence of treatments that we
choose, called a static treatment regime, or more generally by a deterministic rule that depends
on L values at previous time points, called a dynamic regime. A dynamic regime is a collection
of deterministic functions, d = (dk : k ∈ {0, . . . ,K + 1}), for assigning treatment at time k as
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a function of the past L nodes. For a dynamic regime d, define the counterfactual

Ld(k) = fL(k)((L̄d(k − 1), dk(L̄d(k − 1))), UL(k)) for k = 0, . . . ,K + 1,

letting L̄d(−1) be null for convenience. That is, we replace the intervention nodes in fL(k)
with those set by our rule, and previous L nodes by their previously generated counterfactual
values. The counterfactual values of L are then generated sequentially for each time point k.
Though the mathematical definition of a dynamic regime is more complicated than a static
regime, dynamic regimes are often more realistic and intuitive because in practice, treatment
decisions are usually made based on the current and past state of a patient, and not pre-
specified as in a static regime. As an example, a rule might be to start a patient on treatment
1 at time 0, and to keep her on that treatment until some biomarker measured at each time
point falls below a certain level. Once the biomarker crosses a threshold, the treatment is
then switched to 0. Typically we are only interested in counterfactuals under no censoring,
so we assume dk always sets A2(k) = 0.
A static regime is a special case of a dynamic regime, where treatment is set according to a
predetermined sequence ā that is not a function of past L nodes. For most of the remainder
of the article we will limit the discussion to dynamic regimes, but we include an example of
a static regime in Section 3.2.

2.3. Identifiability

As described in Section 2.2, the causal parameters we wish to estimate in the following sections
are parameters of the distribution of counterfactuals L̄d for d ∈ D, a set of regimes of interest.
In order to estimate these parameters from the observed data, we need to determine if the
distribution of L̄d is identifiable, meaning that we can express the distribution of L̄d in terms
of the distribution of the observed data. We briefly review identifiability assumptions here.
For further discussion, please see (Robins 1986; van der Laan and Gruber 2012; Petersen et al.
2014).
Two key assumptions that allow us to identify the distribution of L̄d are the sequential ran-
domization assumption Robins (1986) (Assumption 1) and the positivity assumption (As-
sumption 2).

Assumption 1.
A(k) ⊥ Ld | Pa(A(k)) for k = 1, . . . ,K.

Assumption 2.

P0(A(k) = dk(L̄(k)) | L̄(k), Ā(k − 1) = d̄(L̄(k − 1))) > 0 almost everywhere.

Under Assumptions 1 and 2, the distribution of the counterfactual L̄d is identified by the
longitudinal G-computation formula(Robins 1986). Informally, Assumption 1 means that we
must be able to assume that at each time point k, all common causes of the L nodes and
A(k) are observed and included in our dataset. This is a “no unmeasured confounders” type
assumption. Assumption 1 puts no restrictions on the observed data distribution P0 so does
not affect our statistical model. Assumption 2 can be interpreted as assuming that each
observation has a positive probability of following rule d at each time point.
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Though not required for identifiability, we may make additional assumptions about the condi-
tional distribution of intervention nodes given the past on top of Assumption 2. For example,
we may make a Markov type assumption by assuming the conditional probability of treat-
ment only depends on a fixed number of recent time points. Our statistical model, the set of
possible distributions for the observed data, is semiparametric in general.
One class of causal parameters of interest is the intervention-specific mean, E0(Yd(t)) for a
particular intervention d and time t, where E0 denotes expectation. We may be interested
in the intervention-specific mean under different d ∈ D and t ∈ τ , where τ ⊆ {1, . . . ,K + 1}
is the set of times of interest. If we are only interested in the counterfactual Y s at one time
point, say the last, then τ = {K+1}. If we are interested the counterfactual Y s as a function
of time, τ can include more or all time points where an outcome Y is measured.
Bang and Robins (2005) show that under Assumptions 1 and 2, E0(Yd(t)) can be identified
through a sequence of recursively defined conditional expectations, which we define here. For
t ∈ τ , let

Q̄d,tL(t) = E0(Y (t) | L̄(t− 1), Ā(t− 1) = d̄t−1(L̄(t− 1))).

This is the regression of Y (t) given the observed past covariates, but with intervention nodes
set based on rule d. This quantity, Q̄d,tL(t), is then regressed on covariates and intervention
nodes set by d up to time t − 2, then that object is regressed on t − 3, and so on until time
0. For k = t− 1, . . . , 1,

Q̄d,tL(k) = E0(Q̄d,tL(k+1) | L̄(k − 1), Ā(k − 1) = d̄k−1(L̄(k − 1))).

For notational convenience, let L̄(−1) and Ā(−1) be the null, so Q̄d,tL(0) is constant. Under the
above assumptions, E0(Yd(t)) = Q̄d,tL(0). For more details and a derivation of these terms, see
van der Laan and Gruber (2012) and Petersen et al. (2014).
A second class of causal parameters are the parameters of a working marginal structural
model, which depend on E0(Yd(t)) for d ∈ D, t ∈ τ . The recursive conditional expecta-
tion representation of the target statistical parameter for intervention-specific means can be
extended to working MSMs(Bang and Robins 2005; Petersen et al. 2014).
In Sections 3 and 4, the intervention-specific mean and working marginal structural model
parameters are described in more detail, and we show how the ltmle package can be used to
estimate them.

2.4. Additional notation

Here we define some additional notation we will use when describing the usage of the package.
Call the collection of all of these sequential regressions

Q̄ = (Q̄d,tL(k) : t ∈ τ, k ∈ {1, . . . , t}, d ∈ D).

For k = 1, . . . ,K, let

gk(A(k) | Pa(A(k))) =g1,k(A1(k) | Pa(A1(k)))g2,k(A2(k) | Pa(A2(k)))
=P0(A1(k) | Pa(A1(k)))P0(A2(k) | Pa(A2(k)))

be the conditional distribution of each intervention node A(k) given its parents. These con-
ditional distributions make up the so-called intervention distribution. The time ordering of
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treatment and censoring nodes at a given time point can be chosen by the user in the im-
plementation of the TMLE algorithm in the ltmle package. Let gk = (g1,k, g2,k) and let
g = (gk : k ∈ {0, . . .K}) be the entire intervention mechanism.
The procedures in the ltmle package use estimates of the sequential regressions Q̄d,tL(k), and
the intervention mechanism components g1,k and g2,k. For some t ∈ τ and starting with
k = t, an initial estimate of Q̄d,tL(k) is updated using an estimate of g0:k−1 = ∏k−1

j=0 gj . Then,
for k = t− 1 down to 1 and using the updated estimate of Q̄d,tL(k+1) as the outcome, an initial
estimate of Q̄d,tL(k) is computed and subsequently updated with an estimate of g0:k−1 (Petersen
et al. 2014). The user can specify how each component is estimated as we demonstrate in the
following sections.

3. Intervention-specific means

3.1. Causal parameter

For a regime d, we may be interested in the mean counterfactual outcome at some time point
if all observations in the population followed that rule. Without loss of generality, suppose
this time is K + 1, and let Y = Y (K + 1). We call this an intervention-specific mean, and it
can be written as E0(Yd).
We may also be interested in comparing two different regimes, d and d′. One possible com-
parison is the additive effect, the difference in intervention-specific means:

E0(Yd)− E0(Yd′).

If the outcome a binary indicator of an event, the intervention-specific mean is also the
probability of the event, so two regimes can also be compared with a causal risk ratio,

E0(Yd)
E0(Yd′) ,

or a causal odds ratio,
E0(Yd)

1−E0(Yd)
E0(Yd′ )

1−E0(Yd′ )

.

In order to be able to interpret estimates based on the observed data as estimates of these
quantities, Assumptions 1 and 2 must hold for d and d′.

3.2. Estimation using the ltmle package

Estimation of an intervention-specific mean or a comparison (additive effect, risk ratio or odds
ratio) between two intervention-specific means with the ltmle package is performed with the
ltmle function.
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Specification of the data set
The data set is passed to ltmle through the data argument as a data frame, with L(0)
variables in the first (leftmost) columns, then A(1), L(1), and so on. Treatment nodes, A1(k),
and censoring nodes, A2(k), are specified by the Anodes and Cnodes arguments, respectively.
Censoring nodes should be coded as a factor with levels ’censored’ or ’uncensored’. The
values of variables after a censoring node with level ’censored’ are ignored and can be NA.
Outcome nodes, Y (k) are specified with the Ynodes argument, and time-varying covariates,
the components of L nodes other than the Y nodes, are specified with the Lnodes argument.
Baseline covariates, L(0), are not included in Lnodes. These arguments are specified with
column indexes or names in the data frame.
The ltmle function can handle continuous or binary outcomes, and it detects the type of
outcome automatically. If all outcome variables listed in the Ynodes option are binary, then
an additional option, survivalOutcome must be specified. If Y (k) is an indicator of an event
that could go from 1 back to 0 or occur more than once, survivalOutcome should be FALSE.
If Y (k) is an indicator of an event at or before time k that can only happen once such as death
or first heart attack, then survivalOutcome should be TRUE. The second case is discussed in
more detail in an example below.
The ltmle function assumes the time point of interest is at time K + 1. If the time point of
interest is some other time, we can simply ignore variables from later time points, and only
include variables up to the time point of interest in data.

Specification of the treatment regime
A static treatment regime is specified with the abar argument, which is a binary vector with
one entry for each A1 node. A dynamic regime is specified by the rule argument, which takes
a function that operates on a single row of data, which is a named vector. The function returns
a binary vector with one entry per A1 node corresponding to the treatment that observation
would receive at that node under the dynamic regime of interest. For example, for a data set
with two treatment nodes, a regime might assign treatment at time 1 for every observation
and then only assign treatment at time 2 to those observations for which a variable ‘score’ is
greater than some threshold, say 10. This would be coded as

ltmle(..., rule = function(row) c(1, ifelse(row["score"] > 10, 1, 0)))

Alternatively, a dynamic regime can be specified by passing a matrix to the abar argument
with one row per observation, where each row corresponds to the vector of treatments (with
one entry per A1 node) that observation would receive under the regime of interest.

Specification of estimation for sequential regressions and intervention mechanism
Both the sequential regressions Q̄ and intervention mechanism g need to be estimated in the
TMLE procedure. Consistency and efficiency of the final estimate depend on consistency
of estimates for Q̄ and g. By consistent, we mean that estimates of components of Q̄ and
g converge to the true values under P0, Q̄0 and g0. The components of both Q̄ and g are
all conditional means, so estimating these components comes down to regression. However,
because our goal is to estimate a target parameter, which is averaged over the covariates,
we are not particularly interested in interpreting the fit of any one of these regressions for a
component of Q̄ or g.
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Components of Q̄ and g can be estimated with parametric generalized linear models using R’s
glm function, but because the model is non-parametric, parametric models for each component
are generally not correctly specified. In practice, more flexible estimation is recommended.
The super learner algorithm (van der Laan, Polley, and Hubbard 2007) can also be used to
estimate components of Q̄ and g as implemented in the SuperLearner package. This is a data
adaptive algorithm which can leverage a variety of candidate estimators already available in R
including flexible machine learning algorithms and parametric models. The algorithm chooses
the best weighted combination of candidate estimators via cross-validation. This combination
is guaranteed to perform asymptotically as well or better than any algorithm in the library of
candidate algorithms, and has also been demonstrated to perform well with realistic sample
sizes (van der Laan et al. 2007).
Choosing between glm and the super learner algorithm (as well as which candidate estimators
to include in super learner) involves a trade off between bias, variance, and computation time.
The glm will generally have higher bias and lower variance than super learner as well as lower
computation time. A super learner estimator with a library of diverse candidate estimators
will generally have lower bias than a single parametric model, so super learner estimates are
more likely to be consistent when estimating components of Q̄ and g.
The TMLE is doubly robust, meaning consistent estimation only one of Q̄ or g is needed for
consistency of the final estimate. When both Q̄ and g are estimated consistently the TMLE
is efficient, meaning that the TMLE achieves the best possible variance asymptotically. As
a result, using the super learner algorithm with a library of many candidate estimators is
recommended.
When glm is used, components of the intervention mechanism g1,k and g2,k are estimated with
logistic regression. Logistic regression is also used for components of Q̄. First, Y variables are
automatically transformed to be between 0 and 1. When an outcome is bounded by 0 and 1,
the negative Bernoulli log likelihood is a valid loss function for the conditional mean (Gruber
and van der Laan 2010), so logistic regression can also be used on any outcome that is between
0 and 1, even if it is not binary, such as Q̄K+1,d

k . Estimates based on logistic regression have
the attractive property that all predicted means will also be bounded by 0 and 1, which is
not the case for linear regression. Keeping the estimates for Q̄d,t properly bounded ensures
that the final parameter estimates will respect their bounds, and reduces bias and variance
in small samples (Gruber and van der Laan 2010). If Y variables were originally transformed
to be between 0 and 1, the package automatically transforms estimates back to the original
scale.
The use of SuperLearner is determined by the SL.library argument, which is either NULL,
indicating glm is to be used, or a list with elements "Q" for the library to be used to estimate
Q̄ and "g" for the library for estimating g. If one is NULL, then it is estimated with glm.
We show an example using super learner below, and more information can be found in the
documentation for the ltmle package (Schwab, Lendle, Petersen, and van der Laan 2017).
Formulas can be specified for estimating components of Q̄ and g using the Qform and gform
arguments, which are vectors of strings to be coerced to formulas with one formula for each
time point. More details on the structure of the formulas are given in the package documen-
tation(Schwab et al. 2017). When super learner is used, the functional form of the formulas is
unimportant; all variables on the right hand side of the formulas are considered as predictor
variables passed to the candidate estimators when estimating the regression. If other func-
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tions of the predictor variables are desired when using super learner, for example interaction,
polynomial, or spline terms, they are specified using the appropriate candidate estimators.
For details on creating custom candidate estimators for super learner, see Polley, LeDell, and
van der Laan (2017). If the Qform and gform arguments arguments are left unspecified, the
formulas default to main terms regressions that include all parent nodes in the time ordering.
Finally we can choose to estimate Q̄d,tL(k) either using all observations or stratifying by regime,
and only using observations following regime d. This is set by the stratify argument. When
stratifying by regime, there will typically be less bias in the estimate of Q̄d,tL(k), resulting
in less bias in the final TMLE estimate, but there may be more variance in the estimate,
particularly if there are few observations following rule d. Similarly, without stratifying, an
estimate of Q̄d,tL(k) will typically be less variable but bias may increase due to smoothing over
all observations.

Additional options

In some cases, we may have additional information about the data. Specifically, we may know
g1,k or g2,k. For example, in a clinical trial, it may be possible to switch from treatment 1
to treatment 0 throughout the study, but not from treatment 0 to 1. For any patient with
A(k−1) = 0, we know the probability that A(k) is 1 given its parents is 0. This knowledge can
be specified with the deterministic.g.function argument. Similarly, knowledge about Q̄
can be specified with the deterministic.Q.function argument. Usage details are provided
in the package documentation (Schwab et al. 2017).

Example 1: Static treatment regime

In this example we have a simulated dataset of 500 observations with two post-baseline time
points and censoring. Baseline covariates are called L0.a, L0.b, and L0.c. Treatment assigned
at baseline is A0, and C0 is a censoring indicator. Covariates at time 1 are L1.a, L1.b, the
value of the outcome at time 1 is called Y1, and treatment and censoring variables are A1
and C1, respectively. The outcome of interest is called Y2. The Y variables are continuous
and between 0 and 1. Code to generate the example dataset is given in the supplementary
material.
Suppose we are interested in the mean outcome at time 2 if both treatment nodes are set to 1,
i.e., ā = (1, 1) and our target parameter is E0(Yā). We begin by specifying L, A, and Y nodes
and then call the ltmle function. A standard error and confidence interval is computed with
summary. The variance estimate is based on the variance of the estimated influence curve.

R> Lnodes <- c("L1.a", "L1.b")
R> Anodes <- c("A0", "A1")
R> Cnodes <- c("C0", "C1")
R> Ynodes <- c("Y1", "Y2")
R> EY.11 <- ltmle(exData1, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,
+ Ynodes = Ynodes, abar = c(1, 1), estimate.time = FALSE)
R> print(summary(EY.11))

Estimator: tmle
Call:
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ltmle(data = exData1, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,
Ynodes = Ynodes, abar = c(1, 1), estimate.time = FALSE)

Parameter Estimate: 0.47833
Estimated Std Err: 0.010726

p-value: <2e-16
95% Conf Interval: (0.45731, 0.49935)

If instead we would like to estimate the average treatment effect comparing ā to another
treatment, say ā′ = (0, 0) , we can pass a list with named elements treatment and control
to the abar argument of ltmle. The ATE, E0(Yā) − E(Yā′), is computed with summary. If
the outcome is binary, this also computes the causal risk ratio and causal odds ratio. Again,
the variance is estimated using the estimated influence curve.

R> ATE <- ltmle(exData1, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,
+ Ynodes = Ynodes, abar = list(treament = c(1, 1), control = c(0, 0)),
+ estimate.time = FALSE)
R> print(summary(ATE))

Estimator: tmle
Call:
ltmle(data = exData1, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,

Ynodes = Ynodes, abar = list(treament = c(1, 1), control = c(0,
0)), estimate.time = FALSE)

Treatment Estimate:
Parameter Estimate: 0.47833
Estimated Std Err: 0.010726

p-value: <2e-16
95% Conf Interval: (0.45731, 0.49935)

Control Estimate:
Parameter Estimate: 0.30126
Estimated Std Err: 0.007591

p-value: <2e-16
95% Conf Interval: (0.28638, 0.31614)

Additive Treatment Effect:
Parameter Estimate: 0.17707
Estimated Std Err: 0.012274

p-value: <2e-16
95% Conf Interval: (0.15302, 0.20113)

Example 2: Dynamic treatment regime and super learner
With the same data set, we may be interested in the mean counterfactual outcome, E(Yd),
under a dynamic regime d where treatment at time 0 is set to 1, and at time 1, treatment is set
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to 1 if L1.b is positive, and 0 otherwise. Additionally, we will now estimate the components of
g with the super learner algorithm, and continue to estimate Q̄ with glm. Instead of choosing
the default library, we will specify one. The specified library requires that packages nnet
(Ripley 2016), gam (Hastie 2017), and glmnet (Friedman, Hastie, and Tibshirani 2010) are
installed.

R> d <- function(row) c(1, ifelse(row["L1.b"] > 0, 1, 0))
R> SL.lib <- c("SL.glm", "SL.stepAIC", "SL.nnet", "SL.gam", "SL.glmnet")
R> EY.d <- ltmle(exData1, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,
+ Ynodes = Ynodes, rule = d, SL.library = list(Q = NULL, g = SL.lib),
+ estimate.time = FALSE)
R> print(summary(EY.d))

Estimator: tmle
Call:
ltmle(data = exData1, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,

Ynodes = Ynodes, rule = d, SL.library = list(Q = NULL, g = SL.lib),
estimate.time = FALSE)

Parameter Estimate: 0.43755
Estimated Std Err: 0.010608
p-value: <2e-16
95% Conf Interval: (0.41676, 0.45834)

Example 3: Survival analysis

In this example, we use a modified version of the dataset in the previous example, with
continuous Y nodes replaced with survival indicators. If the outcome of interest is survival,
Y (k) is a binary variable indicating that the event of interest occurred at or before time k.
Then for a regime d, 1 − E(Yd) is interpretable as a counterfactual survival probability, so
E0(Yd) is the probability of an event at or before time K + 1 under regime d.
A survival outcome is specified by setting the survivalOutcome argument to TRUE. This tells
the procedure that once a Y node has jumped from 0 to 1, indicating that the event has
occurred, it will remain at 1 at subsequent time points. The ltmle function will terminate
with an error if the data argument does not conform to this structure.
Because the target parameter can be interpreted as a probability, when two regimes are
compared, summary displays an estimated risk ratio and odds ratio in addition to the additive
effect. Note that risk ratios and odds ratios are also displayed when the Y variables are
binary but survivalOutcome=FALSE. We demonstrate this by comparing regimes ā = (1, 1)
and ā′ = (0, 0).

R> ATE.survival <- ltmle(exData2, Anodes = Anodes, Cnodes = Cnodes,
+ Lnodes = Lnodes, Ynodes = Ynodes, survivalOutcome = TRUE,
+ abar = list(treatment = c(1, 1), control = c(0, 0)),
+ estimate.time = FALSE)
R> print(summary(ATE.survival))
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Estimator: tmle
Call:
ltmle(data = exData2, Anodes = Anodes, Cnodes = Cnodes, Lnodes = Lnodes,

Ynodes = Ynodes, survivalOutcome = TRUE, abar = list(treatment = c(1,
1), control = c(0, 0)), estimate.time = FALSE)

Treatment Estimate:
Parameter Estimate: 0.29047
Estimated Std Err: 0.042383

p-value: 7.2068e-12
95% Conf Interval: (0.2074, 0.37354)

Control Estimate:
Parameter Estimate: 0.021726
Estimated Std Err: 0.011103

p-value: 0.050366
95% Conf Interval: (0, 0.043487)

Additive Treatment Effect:
Parameter Estimate: 0.26875
Estimated Std Err: 0.043813

p-value: 8.5747e-10
95% Conf Interval: (0.18287, 0.35462)

Relative Risk:
Parameter Estimate: 13.37

Est Std Err log(RR): 0.53145
p-value: 1.0658e-06

95% Conf Interval: (4.7179, 37.887)

Odds Ratio:
Parameter Estimate: 18.434

Est Std Err log(OR): 0.5614
p-value: 2.0925e-07

95% Conf Interval: (6.1341, 55.396)

3.3. Summary of key arguments to the ltmle function

For full details, see the documentation for the ltmle package (Schwab et al. 2017).

• data: A data frame where the order of the columns corresponds to the time-ordering
of the model.

• Anodes: Names or indexes of treatment nodes.

• Cnodes: Names or indexes of censoring nodes.

• Lnodes: Names or indexes of time-varying covariate nodes.
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• Ynodes: Names or indexes of outcome nodes.

• survivalOutcome: Set to TRUE if the outcome is an event that can occur only once, e.g.,
death or first diagnosis of a disease, or FALSE, the default, otherwise. Must be FALSE
for continuous outcomes.

• Qform: A character vector of regression formulas for Q̄.

• gform: A character vector of regression formulas for g.

• abar: A binary vector of length length(Anodes) or matrix of size n by length(Anodes)
of counterfactual treatment assignments or a list of length 2 (to contrast two treat-
ments).

• rule: A function to be applied to each row (a named vector) of data that returns a
numeric vector of treatment assignments of length length(Anodes) or a list of length 2.

• gbounds A vector of lower and upper bounds on estimated g components.

• Yrange: Optionally specify the range of all Y nodes.

• deterministic.g.function: Optional information on A and C nodes that are deter-
ministic.

• stratify: If TRUE stratify on following abar when estimating Q̄ and g. If FALSE, the
default, pool over abar.

• SL.library: Optional character vector of libraries to pass to use with the SuperLearner
package. NULL indicates that glm should be used to estimate Q̄ and g. default indicates
a standard set of libraries. May be separately specified for Q̄ and g.

• estimate.time: If TRUE, compute a rough estimate of runtime based on an initial
estimate using only 50 observations.

• deterministic.Q.function: Optional information on Q̄ given deterministically.

• observation.weights: Optional sampling weights for each observation.

4. Marginal structural models for static and dynamic regimes

4.1. Causal parameter

In some settings, the researcher might be interested in how the counterfactual expected out-
come varies as a function of static or regime, or time. One way to specify such a target
parameter is with a MSM (Robins 1998), or if we do not want to assume that model is
correct, a working MSM (Neugebauer and van der Laan 2007). Marginal structural mod-
els were originally developed for static regimes and were later extended to dynamic regimes
(Neugebauer and van der Laan 2007; Robins, Orellana, and Rotnitzky 2008).
The true dose response curve as a function of treatment regimes in a set D at time t ∈ τ is
(E0(Yd(t)) : d ∈ D, t ∈ τ). Recall that τ is the index set of time points of interest. We can
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summarize this curve using an MSM, Θ = {mβ : β}. When the outcome is binary or bounded
by 0 and 1, we can use a logistic model, as implemented in the ltmle package:

logitmβ(d, t) =
J−1∑
j=0

βjφj(d, t).

Here logit is the log odds function: logit(x) = log(x/(1− x)). When the outcome of interest
is an indicator of survival at or before that time point and the probability of an observation
having an event at a particular time point is small given that they are at still at risk for the
event, the logistic working MSM can be used to approximate a time dependent Cox model
by including a separate intercept term for each time point (Hernán, Brumback, and Robins
2000).
In general, mβ does not capture the true functional form of E0(Yd(t)), so we treat {mβ : β} as
a working model. The working model is a way of summarizing the true dose response curve
with a few parameters. We define the causal quantity of as a projection onto the model:

β0 = arg min
β

−E0
∑
t∈τ

∑
d∈D

h(d, t){Yd(t) log(mβ(d, t)) + (1− Yd(t)) log((1−mβ(d, t))}

where h(d, t) is a user specified weight function. If the functional form of E0(Yd(t)) is correctly
described by mβ, then h does not affect β0 and will only affect the efficiency of the estimation
procedure. The current version of the ltmle package weights by the empirical probability of
following rule d by default, or uses constant weights, i.e., h(d, t) = 1, when the argument
weight.msm is FALSE.

4.2. Estimation using the ltmle package
Estimation of the parameters of an MSM is done with the ltmleMSM function. The data set
is specified in the same way as the ltmle function described in Section 3.2. Regimes are
specified as functions as described in Section 3.2 but all regimes in D are passed to ltmle at
once as a list via the regimes argument.
Estimation methods for components of Q̄ and g are specified as described in Section 3.2. At
a given time point k, the same formula is used for all t ∈ τ for Q̄d,tk . For example, suppose
time points of interest include times 2 and 3. The sequential regressions Q̄d,21 and Q̄d,31 are
estimated using the same formula in the Qform argument corresponding to k = 1.

Specification of the MSM
The time points of interest, τ , can include all times with a Y node, or just a subset. This is
specified with the argument final.Ynodes, which is a vector of the variable names of Y (t)
for t ∈ τ .
The functional form of the MSM is specified via the working.msm argument as a character
string to be coerced to a formula with Y on the left hand side. The variables on the right
hand side are summary functions of d and t, φj(d, t), and the names are don’t need to be
the same as variable names in data. In fact, using different names is recommended to avoid
confusion.
The values of φj(d, t) are specified with the summary.measures argument. This is a |D|×m×
|τ | array where m is the number of variables on the right hand side of working.msm. The di-
mension names for the 2nd dimension of summary.measures should correspond to the variable
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names on the right hand side of the working.msm formula. The value of summary.measures[i,
"varname", k] is the value of varname, a variable in working.msm for the ith regime in D
at the kth time point in τ . We demonstrate the construction of summary.measures in the
example below.

Additional options

Like in the ltmle function, knowledge about Q̄ and g can be specified with the
deterministic.acnode.function and deterministic.Q.function arguments.
We can choose to perform the targeting step of TMLE by pooling across regimes, which is the
default, or to stratify by regime before performing the targeting step. The latter choice is the
method described in Schnitzer et al. (2013). Stratifying by regime essentially yields a more
saturated model for Q̄ so bias may be decreased, but, particularly when there are only a few
observations following some regimes, the variance can be higher in small samples. Petersen
et al. (2014) discuss scenarios where one choice may perform better than the other in more
detail. This is specified through the pooled argument.

Example 4: MSM

In this example, we use a simulated dataset included in the package (sampleDataForLtmleMSM)
based on an example in Petersen et al. (2014). The real dataset cannot be distributed, but
code from the original analysis is available via a web supplement (Petersen et al. 2014). Here
n = 200. Prior to baseline, all patients were receiving treatment 0, and after baseline may be
switched to treatment 1 at time 0, 1, or 2, or may never switch. The outcome is a survival
outcome, so Y (k) is an indicator of death at or before time k up to K + 1 = 3. There is one
time-varying covariate, CD4 count at each time point and no censoring.
We are interested in how the risk of death is related to choice of switching time following
immunological failure. Let i = 0, . . . , 3 be the switch time, and define regime di as setting
A(k) = 0 for k < i and A(k) = 1 for k ≥ i. The regime d3 denotes never switching. Because
these regimes do not depend on covariates, they are static regimes, but MSMs can also be
specified with dynamic regimes in general. We choose as a working MSM

logitmβ(di, t) = β0 + β1t+ β2 max(t− i, 0).

This is specified with the working.msm argument as "Y ~ time + pmax(time - switch.time,
0)". We demonstrate the construction of the summary.measures array in the code below.

R> Lnodes <- c("CD4_1", "CD4_2")
R> Anodes <- c("A0", "A1", "A2")
R> Ynodes <- c("Y1", "Y2", "Y3")
R> D <- list(function(row) c(1, 1, 1), function(row) c(0, 1, 1),
+ function(row) c(0, 0, 1), function(row) c(0, 0, 0))
R> summary.measures <- array(dim = c(4, 2, 3))
R> dimnames(summary.measures)[[2]] <- c("switch.time", "time")
R> summary.measures[, , 1] <- cbind(0:3, rep(1, 4))
R> summary.measures[, , 2] <- cbind(0:3, rep(2, 4))
R> summary.measures[, , 3] <- cbind(0:3, rep(3, 4))
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Figure 1: Estimated counterfactual survival curves for working MSM.

R> MSM.estimates <- ltmleMSM(sampleDataForLtmleMSM$data, Anodes = Anodes,
+ Lnodes = Lnodes, Ynodes = Ynodes, survivalOutcome = TRUE,
+ regimes = D, summary.measures = summary.measures, final.Ynodes = Ynodes,
+ working.msm = "Y ~ time + pmax(time - switch.time, 0)",
+ estimate.time = FALSE)
R> print(summary(MSM.estimates))

Estimator: tmle
Estimate Std. Error CI 2.5% CI 97.5% p-value

(Intercept) -3.6255 0.5133 -4.6316 -2.619 1.63e-12 ***
time 0.7364 0.2163 0.3124 1.160 0.000664 ***
pmax(time - switch.time, 0) -0.4155 0.2088 -0.8248 -0.006 0.046633 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Examining the parameter estimates, we see that the coefficient for pmax(time - switch.time,
0) is negative. This suggests switching treatments earlier generally reduces the odds of death.
We plot the estimated counterfactual survival curves at discrete times 1, 2, and 3 in Figure 1.
The plot was created using the ggplot2 (Wickham 2009) package.

4.3. Summary of key arguments to the ltmleMSM function

For full details, see the documentation for the ltmle package (Schwab et al. 2017).

• data: A data frame where the order of the columns corresponds to the time-ordering
of the model.

• Anodes: Names or indexes of treatment nodes.



Journal of Statistical Software 17

• Cnodes: Names or indexes of censoring nodes.

• Lnodes: Names or indexes of time-varying covariate nodes.

• Ynodes: Names or indexes of outcome nodes.

• survivalOutcome: Set to TRUE if the outcome is an event that can occur only once, e.g.,
death or first diagnosis of a disease, or FALSE, the default, otherwise. Must be FALSE
for continuous outcomes.

• Qform: A character vector of regression formulas for Q̄.

• gform: A character vector of regression formulas for g.

• gbounds A vector of lower and upper bounds on estimated g components.

• Yrange: Optionally specify the range of all Y nodes.

• deterministic.g.function: Optional information on A and C nodes that are deter-
ministic.

• stratify: If TRUE stratify on following abar when estimating Q̄ and g. If FALSE, the
default, pool over abar.

• SL.library: Optional character vector of libraries to pass to use with the SuperLearner
package. NULL indicates that glm should be used to estimate Q̄ and g. default indicates
a standard set of libraries. May be separately specified for Q̄ and g.

• estimate.time: If TRUE, compute a rough estimate of runtime based on an initial
estimate using only 50 observations.

• deterministic.Q.function: Optional information on Q̄ given deterministically.

• observation.weights: Optional sampling weights for each observation.

• regimes: A binary array of dimension n by length(Anodes) by number of regimes of
counterfactual treatment assignments, or a list of rule functions.

• working.msm: A character formula for the working marginal structural model.

• final.Ynodes: A subset of Ynodes used in the MSM to pool over a set of outcome
nodes. By default, all Ynodes are included.

• summary.measures: An array of dimension number of regimes by number of summary
measure by length(final.Ynodes). Each slice along the first dimension summarizes
a regime, and can be used on the right hand side of working.msm.

• msm.weights: Weights for the working MSM. Defaults to "empirical", where each
regime is weighted by the empirical proportion of observations following that regime at
each time point. If NULL, weights of 1 are used. User specified weights can be given as
an array of dimension n by number of regimes by length(final.Ynodes).
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5. Discussion

The ltmle package was developed to provide researchers access to a flexible implementation
of the TMLE algorithm for general longitudinal data structures. Two large classes of causal
parameters are estimated by the package, namely the intervention-specific mean and compar-
isons of two intervention-specific means, estimated by the ltmle function, and the parameters
of a logistic working MSM, estimated by the ltmleMSM function. The longitudinal data struc-
ture allows for baseline covariates, multiple time point treatments, time-varying covariates,
and censoring.

The censoring nodes in the package handle right censoring. However, treatment nodes can be
used to handle other types of censoring. If a variable can be missing at some time points and
observed again in the future, we can create an additional treatment node at each time point
whose value indicates whether the variable is missing or not. Then, we set this new treatment
node to prevent missingness when define regimes of interest. For time-varying covariates other
than the outcome that are subject to missingness, there is another option. We can encode
that variable as a pair in an L node: an indicator of missingness, and observed value if it is
not missing, or a dummy value, say 0, if it is missing. This information is always observed.
In either case, Assumption 1, the sequential randomization assumption, and Assumption 2,
the positivity assumption, must hold for the observed data structure including the new A or
L nodes.

The TMLE estimates are doubly robust; thus the estimates are consistent if either of the
estimates of Q̄ or g are consistent. When both are consistent, the TMLE estimates are
efficient. The procedures in ltmle provide access to data adaptive machine learning algorithms
through the SuperLearner package, which can improve the chance that Q̄ and g are estimated
consistently.

In addition to TMLE estimates calculated by default, both the ltmle and ltmleMSM func-
tions can calculate non-targeted substitution estimates using the gcomp argument, or inverse
probability of treatment weighted (IPTW) estimates using the iptw.only argument. The
non-targeted substitution estimates use only an estimate of Q̄, and IPTW estimates use only
an estimate of g. Since these estimates are only based on either Q̄ or g, they are not doubly
robust.

Variance and standard error estimates currently provided by the package are based on the
estimated influence curve. These estimates are correct asymptotically when estimates of Q̄
and g are both consistent, and conservative when only g is estimated consistently. However,
in small samples, estimates of variance may be poor. Variance estimation is particularly
challenging when the positivity assumption is nearly violated, or, for binary outcomes, when
the outcome is very rare. This can lead to inflated type I errors and poor confidence interval
coverage. The bootstrap is an alternate choice for variance and confidence interval estimation
(Petersen et al. 2014). Planned extensions to the package include alternate variance estimates.

Additionally, when a binary outcome is rare, estimation of Q̄ is difficult, and final TMLE
estimates can have high bias and variance in moderate sample sizes. Another planned addition
to the package will provide an alternate method for estimating Q̄ in this setting, resulting in
less bias and variance in the final TMLE estimates.
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Computational details

• R version 3.4.1 (2017-06-30), x86_64-pc-linux-gnu

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: splines, methods, stats, graphics, grDevices, utils, datasets, base

• Other packages: MASS 7.3-47, ggplot2 2.2.1, glmnet 2.0-10, Matrix 1.2-10,
foreach 1.4.3, ltmle 0.9-9-3, SuperLearner 2.0-22, nnls 1.4, nnet 7.3-12, gam 1.14-4,
knitr 1.16.4

• Loaded via a namespace (and not attached): Rcpp 0.12.11, magrittr 1.5,
colorspace 1.3-2, lattice 0.20-35, plyr 1.8.3, tools 3.4.1, iterators 1.0.8,
matrixStats 0.52.2, lazyeval 0.2.0, tibble 1.2, labeling 0.3, stringi 1.1.5, munsell 0.4.3,
stringr 1.2.0, grid 3.4.1, digest 0.6.12, codetools 0.2-15, compiler 3.4.1, speedglm 0.3-2,
highr 0.6, gtable 0.2.0, assertthat 0.2.0, evaluate 0.10, scales 0.4.1
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