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Abstract

In clinical phase II studies, the efficacy of a promising therapy is tested in patients for
the first time. Based on the results, it is decided whether the development programme
should be stopped or whether the benefit-risk profile is promising enough to justify the
initiation of large phase III studies. In oncology, phase II trials are commonly conducted
as single-arm trials with planned interim analyses to allow for an early stopping for futil-
ity. The specification of an adequate study design that guarantees control of the type I
and II error rates is a key task in the planning stage of such a trial. A variety of sta-
tistical methods exists which can be used to optimise the planning and analysis of such
studies. However, there are currently neither commercial nor non-commercial software
tools available that support the practical application of these methods comprehensively.
The R package OneArmPhaseTwoStudy was implemented to fill this gap. The package
allows determining an adequate study design for the particular situation at hand as well
as monitoring the progress of the study and evaluating the results with valid and efficient
analyses methods. This article describes the features of the R package and its application.

Keywords: clinical trial, single-arm study, two-stage design, binary data, exact method, adap-
tive design.

1. Introduction
In phase II clinical trials, the activity of a new therapy is evaluated to decide whether it
warrants further investigation in large-scale phase III trials. In oncology, these trials are
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frequently performed in a single-arm design (Gan, Grothey, Pond, Moore, Siu, and Sargent
2010; Baghdadi and Laffler 2013). The primary endpoint is commonly a binary outcome
measuring therapy response based on tumor shrinkage (Eisenhauer et al. 2009). For ethical
and economical reasons, these trials are usually performed with interim analyses to allow for an
early termination in case of a low observed response rate (“stop for futility”). Due to logistic
restrictions and limited gain in statistical efficiency when increasing the number of interim
analyses (Chen 1997), two-stage designs are most commonly applied. Early termination due
to overwhelming activity (“stopping for efficacy”) plays no major role for these phase II
studies as there is no ethical imperative for early stopping in this situation. Furthermore,
the collection of sufficient information on efficacy and safety in phase II is important before
initiating a large phase III program.

We consider two-stage designs with the option of early stopping for futility where the null
hypothesis H0 : π ≤ π0 is tested at one-sided level α and where the power 1− β is evaluated
at a response rate π1 > π0. By searching algorithms based on the exact binomial distribution,
designs fulfilling the type I and type II error restrictions can be identified. These designs are
characterized by the sample size for the first and second stage, n1 and n − n1, respectively,
and by the boundary values r1 and r (r1 < r). The study is continued after the first stage
if the number of responses at the interim analysis is greater than r1, and the null hypothesis
can be rejected after stage 2 if the total number of responses exceeds r. Usually, several
solutions (n1, r1, n, r) exist and additional criteria are required for selecting a specific design.
Simon (1989) proposed the “minimax design” minimizing the maximum sample size n and the
“optimal design” minimizing the expected sample size under the null hypothesis among those
two-stage designs satisfying the constraints. Other criteria are available such as “admissible
designs” (Jung, Lee, Kim, and George 2004) that are compromises between the minimax and
the optimal design. By the choice of an adequate design, control of the type I and type II error
rate is assured. A further important demand from a biostatistical viewpoint is the appropriate
estimation of the treatment effect in the analyses. Treatment effect estimates obtained from
phase II studies are used to compare the activity of different therapies under investigation and
are the basis of planning the proceeding phase III studies. However, the common maximum
likelihood estimator (MLE) is typically biased in multi-stage designs that allow for early
stopping (Kunz and Kieser 2012). Similarly, calculation of the “naive” confidence interval
without taking the sequential nature of the trial into account does usually not guarantee the
desired coverage probability. Therefore, proper methods are required that are tailored to the
design applied.

The above described two-stage designs foresee early stopping only after the first stage. How-
ever, it may become evident during the course of the trial that, based on the currently observed
results, it is very unlikely or even impossible to reject the null hypothesis after the second
stage. This disadvantage of standard two-stage designs can be resolved by implementing a
statistical monitoring of the results and a curtailment procedure. The idea is to stop the trial
if the probability to reject the null hypothesis, given the observed number of responses, falls
below a pre-specified threshold (“stochastic curtailment”) or is zero (“non-stochastic curtail-
ment”). Curtailment can be restricted to the second stage only (Ayanlowo and Redden 2007)
or can be performed in both stages (Kunz and Kieser 2012). Whether or not to implement a
curtailment procedure depends on the balance between the reduction of sample size and the
loss in power to be expected in the specific situation at hand. Again, appropriate methods
and related software are needed.
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The “classical” two-stage designs described above require conduct of the study exactly as
pre-defined by specification of (n1, r1, n, r). Changing the design mid-course includes the risk
of compromising the type I error rate (Englert and Kieser 2012a). However, if, for example,
an unexpected high response rate is observed at the interim analysis, it may be desirable to
reduce the sample size for the second stage. Recently, flexible single-arm two-stage designs
have been developed that allow (data-driven) modifications of the initially specified design
while still controlling the type I error rate (Englert and Kieser 2012a,b). Furthermore, it turns
out that using these designs may even lead to an increased statistical efficiency (Englert and
Kieser 2012b). Application of these methods is therefore highly attractive but requires related
software. The same holds true for the so-called subset designs that allow a simultaneous
assessment of two nested endpoints.
Currently available software for single-arm phase II studies are restricted to “classical ”
two-stage-designs and focus on specific aspects. For example, there are a number of non-
commercial (e.g., Kirk and Fay 2014; Seshan 2015; Southwest Oncology Group 2015) and
commercial software packages (e.g., Cytel 2015, NCSS 2015, SAS Institute Inc. 2015 and
StataCorp 2015) providing the feature of determining Simon’s optimal and minimax design.
Admissible designs are implemented in two other programs (Jung et al. 2004; Kunz and Kieser
2011b). In addition, there are a number of web-based software tools. These are not explic-
itly referenced here, because a quality assessment of the source code is not directly possible.
Until now, there exists no software dealing with flexible phase II designs. Furthermore, no
software package is currently available that allows a comprehensive support of all aspects
when performing single-arm phase II studies, namely planning, conduct and analysis. The
R (R Core Team 2017) package OneArmPhaseTwoStudy (Wirths 2017) that is described
below fills this gap. The package is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=OneArmPhaseTwoStudy. As a helpful
supplement, we recommend the validated, web-based software tool implemented by Englert
(https://imbi.shinyapps.io/phaseII-app/). This tool is based on the work of Englert
and Kieser (2015) which allows for a proper dealing with over- and underrunning.
The paper is organized as follows. In Section 2, we outline the statistical methods for single-
arm two-stage designs. Implementation of these methods in the OneArmPhaseTwoStudy
package as well as its features are described in Section 3. In Section 4, its application is
demonstrated by an example, and we provide a brief discussion in Section 5.

2. Methods

2.1. Classical single-arm two-stage designs

Identification of designs

For a two-stage design defined by (n1, r1, n, r) the probability of rejecting the null hypothesis
in case of a true response rate π∗ is given by

1−

B(n1, r1, π
∗) +

min(n1,r1)∑
x=r1+1

b(n1, x, π
∗)B(n− n1, r − x, π∗)

 , (1)

https://CRAN.R-project.org/package=OneArmPhaseTwoStudy
https://imbi.shinyapps.io/phaseII-app/
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where B(·) denotes the cumulative binomial distribution and b(·) the binomial probability
mass function (see e.g., Simon 1989). Evaluating (1) at π∗ = π0 or π∗ = π1 provides the
type I error rate and power, respectively. The probability of early stopping (PET ) and the
expected sample size (EN ) under the null hypothesis are given by

PET (π0) = B(n1, r1, π0), (2)
EN (π0) = n1 + (1− PET (π0))(n− n1). (3)

Under all designs fulfilling the type I and type II error constraints, the optimal design is
defined as the one with the smallest EN (π0) and the minimax design is the one with smallest
total sample size n. If more than one design exists with smallest n, the one with smallest
EN (π0) is selected as minimax design (Simon 1989). Admissible designs minimize the Bayes
risk qn+ (1− q)EN (π0) for a given weight q ∈ [0, 1] (Jung et al. 2004). In general, a design is
admissible not only for a single value but for a range of values for q. Admissible designs show
a higher total sample size than the minimax design but a smaller total sample size than the
optimal design and vice versa with respect to EN (π0).
The algorithm to determine two-stage designs fulfilling the requirements with respect to the
type I and II error and among the optimal, minimal, and admissible designs follows the
description in Kunz and Kieser (2011b). A crude algorithm searches for each value of n over
n1 ∈ [1, n − 1], r1 ∈ [0, n1 − 1] and r ∈ [r1 + 1, n − 1] for those designs for which expression
(1) is less than or equal to α at π∗ = π0 and at least 1 − β at π∗ = π1. This approach can
be improved as follows. The starting values of the searching procedure are determined based
on the following considerations. As (1− π)n1 ≤ B(n1, r1, π1), the constraint with respect to
the type II error rate leads to n1 > log(β)/ log(1 − π1). Hence, for β 6= 1 − π1 the starting
value for n1 is ceil(log(β)/ log(1 − π1)) while it is 2 for β = 1 − π1. Here, ceil(x) denotes
the function which returns the smallest integer value that is not less than x. As n has to be
larger than n1, the starting value for n is n1 + 1. For every pair (r1, n1) with r1 ∈ [0, n1 − 1]
it is checked whether B(n1, r1, π1) ≥ 1− β, as it can be shown that this inequality has to be
true in order to find a parameter set (n1, r1, n, r) which fulfills the type II error condition.
If this is not the case, n1 is increased by 1 and the search continues; if the inequality holds
true, the algorithm searches over r in the range of [r1 + 1, n − n1 + r1]. For every value of
r, B(n, r, π1) < β has to hold true for any solution. Therefore, this condition is checked and
the search over r is stopped and continued with the next r1 whenever the inequality does not
hold true. Otherwise, the type I error rate and power are calculated via (1) and the algorithm
continues.
To improve the search algorithm, the OneArmPhaseTwoStudy package provides a method to
approximate a maximal sample size maxN such that the search algorithm stops if n = maxN .
The parameter maxN is approximated in a way that the optimal design is included among the
identified designs. To determine maxN , n1 is set to the minimal possible value (as described
above) and r1 is set to 0. After that, an algorithm searches over all possible values of maxN
and r ∈ [1,maxN ], where maxN is increased until a combination of r1, n1, r, and maxN
is found such that the corresponding error constraints are fulfilled. The idea behind this
approach is that maxN has to be very large when n1 is set to the minimal possible value
and r1 is set to 0. There is no formal proof that the search algorithm will always find the
optimal design when using maxN as upper boundary for the total sample size. However, in
the multitude of examples we considered there was no case indicating this approach may be
wrong.
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If not all possible designs should be identified but only optimal, minimax, and admissi-
ble designs, the algorithm can be further improved by taking into account the inequalities
EN (π0)optimal ≤ EN (π0)admissible ≤ EN (π0)minimax and n1 < EN (π0) for π0 > 0. Therefore,
n1 is smaller than EN (π0)admissible for admissible designs and smaller than EN (π0)optimal for
the optimal design. Consequently, the above described algorithm starts searching for n1 up
to a maximal value of n− 1 until the first solution is identified. The maximal value for n1 is
then replaced by EN (π0) of this design, and whenever another solution is identified the upper
bound of the range of n1 is replaced with the smallest EN (π0) found so far.

Point estimation, confidence intervals, and p values

In an early work by Girshick, Mosteller, and Savage (1946), unbiased estimators for several
samples from binomial distributions were developed. Based on this approach, Jung and Kim
(2004) derived an unbiased estimator for the true response rate and proved that it is the
uniformly minimum variance unbiased estimator (UMVUE). Let t1 denote the number of
responses in the first stage and t denote the cumulative number of responses when the trial
is continued to the second stage, then this estimator is given by

π̂UMVUE =



(
n1 − 1
t1 − 1

)
(
n1

t1

) = t1
n1

if t1 ≤ r1,

min[t−1,n1−1]∑
i=max[r1,t−1−n+n1]

(
n1 − 1
i

)(
n− n1

t− 1− i

)
min[t,n1]∑

i=max[r1+1,t−n+n1]

(
n1

i

)(
n− n1

t− i

) if t1 > r1.

(4)

For the derivation of appropriate p values and confidence intervals that match the test decision
and that take into account the sequential nature of the design, an ordering of the sample
space has to be defined. Armitage (1957) suggested a stage-wise ordering of the sample
space. In the case of Simon’s design, stage-wise ordering means that outcomes observed in
the second stage of the trial are more extreme than outcomes observed in the first stage of the
trial. Another option would be to sort the sample space based on the UMVUE. For Simon’s
design this approach, however, leads to the same ordering. The corresponding p value is
given by Jung, Owzar, and George (2006) and Koyama and Chen (2008). For the stage-
wise ordering, Koyama and Chen (2008) derived the p value for testing H0 : π ≤ π0 by

p =


1−

t−1∑
x1=0

(
n1

x1

)
πx1

0 · (1− π0)n1−x1 if t ≤ r1,

n1∑
x1=r1+1

(
n1

x1

)
πx1

0 (1− π0)n1−x1 ·
n−n1∑

x2=max[0,t−x1]

(
n− n1

x2

)
πx2

0 (1− π0)n−n1−x2 if t > r1.

(5)
This p value reflects the decision rule of the underlying design in that the null hypothesis
can be rejected at level α if and only if p ≤ α. Furthermore, a two-sided (1− 2α)-confidence
interval [π̂L, π̂U ] can be obtained by inverting the test: [π̂L, π̂U ] includes all values π∗0 for
which the p value for testing H∗0 : π ≤ π∗0 within the given two-stage design lays within the
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interval [α, 1− α]. Note that this (1− 2α)-confidence interval (CI) matches the test decision
as the null hypothesis H0 is rejected if and only if π̂L > π0. Jovic and Whitehead (2010)
give a nice overview on the computation and evaluation of point estimates and confidence
intervals for single-arm two-stage designs.

Non-stochastic and stochastic curtailment
Non-stochastic and stochastic curtailment are based on the conditional power, i.e., the prob-
ability to reject H0 : π ≤ π0 after the second stage under the alternative π = π1 given the
results observed so far. If we denote by ñ, 0 ≤ ñ ≤ n, the number of patients for which
the outcome has been observed and by k the number of responses that occurred for these
patients, the null hypothesis cannot be rejected after the second stage if r1−k+1 > n1− ñ or
r− k+ 1 > n− ñ, independently on any result that may be observed for future patients. The
conditional power is thus zero in those cases, and stopping the trial for this reason is referred
to non-stochastic curtailment. Stochastic curtailment means to stop the study for futility if
the conditional power falls below a pre-defined threshold θ (0 < θ < 1). A formula for the
conditional power when a stochastic curtailment procedure is applied in both stages of the
study is given in the Appendix of Kunz and Kieser (2012). This formula was implemented
in our package to allow a simulation-based investigation of the effect of including stochastic
curtailment with a defined threshold θ. Monte Carlo simulations are used to generate possible
study outcomes based on the corresponding binomial distribution under H0 and H1, respec-
tively. The type I and type II error rates are estimated by the relative frequencies of rejection
or acceptance of H0 over all simulated data sets. Furthermore, PET (π0) and EN (π0) are
simulated analogously.

2.2. Adaptive single-arm two-stage designs

The “classical” two-stage designs discussed in Section 2.1 require strict adherence to the
sample sizes and decision rules pre-specified in the planning stage of the study. In case of
deviations from these values, control of the type I error rate is no longer guaranteed (Englert
and Kieser 2012a). For practical applications, this is a severe restriction. Englert and Kieser
(2012b) defined the conditional error function for two-stage designs with discrete outcomes
based on the approach initially introduced for continuous test statistics (see, e.g., Proschan
and Hunsberger 1995; Posch and Bauer 1999; Müller and Schäfer 2001). It can be shown that
any “classical” one-arm two-stage design with a binary endpoint can be re-written in terms
of the conditional error function CE , which is given by

CE(k) =


0 if k ≤ r1,

1−B(n2, r − k, π0) if r1 < k ≤ r,
1 if k > r,

(6)

where k defines the number of responses observed in the first stage. The p values p1 and
p2 of the first and second stage, respectively, are given by p1(k) = 1 − B(n1, k − 1, π0) and
p2(l) = 1 − B(n − n1, l − 1, π0), where k and l denote the number of observed responses at
stage 1 and 2. Then the null hypothesis can be rejected if p2(l) ≤ CE(k). Furthermore,
the type I error rate is controlled when applying this decision rule even if arbitrary design
modifications are performed after the first stage, e.g., a recalculation of the sample size based
on the results of the interim analysis (Englert and Kieser 2012b). Due to the discreteness
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of the outcome and with it the test statistic, the available type I error rate α is usually not
exhausted but the actual level

α′ =
n1∑

k=0
CE(k)PH0(P1 = p1(k)) (7)

generally falls below α. By increasing the boundaries of the “natural” conditional error
function CE(k) given above and thereby implementing the remaining level α−α′, the conser-
vatism can be reduced and the efficiency can be increased (Englert and Kieser 2012b). Such
a modification of the conditional error function can be done in a multitude of ways. The
software package includes the options of increasing the boundaries equally, proportionally to
the probability of observing p1(k), or increasing only the smallest value of the conditional
error function that is unequal to zero.

2.3. Subset designs
Lin, Allred, and Andrews (2008) proposed a single-arm phase II design which is based on two
endpoints where a response for endpoint 1 implies a response for endpoint 2. Thus, endpoint 1
defines a subset of endpoint 2, as, e.g., in case of disease-free survival and overall survival as
endpoints 1 and 2. These designs are also called “Simon’s designs with ordinal outcomes”.
However, due to ease of readability we use the term “subset design”. The decision to continue
to the second stage is based only on one endpoint. In our package we implemented a subset
design where the decision to proceed is based on endpoint 1.
The global test problem for the subset design is given by

H0 : (H1
0 : πsub ≤ πsub0) ∩ (H2

0 : πsuper ≤ πsuper0),
versus (8)

Ha : (H1
a : πsub > πsuba) ∪ (H2

a : πsuper > πsupera
),

where πsub and πsuper denote the true response rates for endpoint 1 (subset) and endpoint 2
(superset), respectively. The probabilities πsub0 and πsuper0 denote the response rates for
endpoint 1 and endpoint 2 under the global null hypothesis, and πsuba and πsupera

denote the
response rates under the global alternative hypothesis.

Identification of designs
The subset design implemented in the OneArmPhaseTwoStudy package is defined by the
parameters (n1, r1, n, r, s), where more than r1 responses for endpoint 1 under the first n1
patients are needed to proceed to the second stage. To reject H0 after the second stage, more
than r responses for endpoint 1 or more than s responses for endpoint 2 under all n enrolled
patients are needed.
The probability of rejecting the global null hypothesis for true response rates π∗sub and π∗super
is given by

1−

 r1∑
x1=0

b(n1, x1, π
∗
sub) +

min[r,n1]∑
x1

min[s,n1]∑
y1=x1

m(n1, x1, y1 − x1, π
∗
sub, π

∗
super − π∗sub)

·
min[r−x1,s−y1]∑

x2=0

min[n2,s−y1]∑
y2=x2

m(n2, x2, y2 − x2, π
∗
sub, π

∗
super − π∗sub)

 ,
(9)
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where m(·) denotes the multinomial probability mass function and n2 = n − n1 (see e.g.,
Kunz and Kieser 2011a).
Evaluating (9) at π∗sub = πsub0 and π∗super = πsuper0 or π∗sub = πsub1 and π∗super = πsupera

provides the type I error rate and power, respectively. The probability of early termination
and the expected sample size under the global null hypothesis are based on the subset endpoint
only and are therefore given by

PET (πsub0) =
r1∑

x1=0
b(n1, x1, πsub0), (10)

EN (πsub0) = n1 + (1− PET (πsub0)) · n2. (11)

Under all designs fulfilling the type I and type II error constraints, the optimal design is
defined as the one with the smallest EN (πsub0). If this solution is not unique, the one with
the highest power is chosen. The minimax design is the one with smallest total sample size
n. If more than one design with smallest n exists, the one with smallest EN (πsub0) is selected
as minimax design (Kunz and Kieser 2011a). Admissible designs can be derived in the same
way as described in Section 2.1.
The algorithm to determine subset designs fulfilling the type I and II error requirements and
to choose among them the optimal, minimal, and admissible designs follows the description in
Kunz (2011). This algorithm has many similarities with the algorithm described in Section 2.1
to detect Simon’s designs but includes only a few changes. As before, a naive algorithm to
detect subset designs searches for each value of n over n1 ∈ [1, n − 1] and r1 ∈ [0, n1 − 1] as
well as r ∈ [r1 + 1, n − n1 + r1] and s ∈ [r, n] for those designs for which expression (9) is
less than or equal to α at π∗sub = πsub0 and π∗super = πsuper0 and equal or larger than 1 − β
at π∗sub = πsub1 and π∗super = πsuper1 . This approach can be improved in a similar way as
described in Section 2.1. The starting value for n1 is determined in the same way as for
the Simon’s design but is based on the response rate for endpoint 1 under the alternative
hypothesis. Therefore, n1 is ceil(log(β)/ log(1 − πsub1)) while it is 2 for β = 1 − πsub1 . As
n has to be larger than n1, the starting value for n is n1 + 1. As for the Simon’s two-
stage designs, the same inequality B(n1, r1, πsuba) ≥ 1 − β has to hold true for every pair
(r1, n1) with r1 ∈ [0, n1 − 1]. If the inequality does not hold true, n1 is increased by 1 and
the search continues; otherwise, the algorithm searches backwards over r in the range of
[n− n1 + r1, r1 + 1]. Because of the fact that the actual type I error rate for Simon’s design
α′simon for the parameter set (n1, r1, n, r) is smaller or equal to the actual type I error rate of
a subset design with the same parameters, the condition α′simon(n1, r1, n, r) ≤ α is checked for
every value of r. If it holds true, the algorithm searches over s in the range of [r, n−1], else r1 is
increased and the search continues. The last step of the algorithm is to check whether the type
II error rate of the multinomial test for the parameter set (n1, r1, n, r, s) under the alternative
is less than β. If this condition holds true, the type I error rate and power are calculated
via (9) and the algorithm continues. Otherwise, s is skipped and r is decreased by 1. As for
Simon’s design, the inequalities EN (πsub0)optimal ≤ EN (πsub0)admissible ≤ EN (πsub0)minimax
and n1 < EN (πsub0) hold true for subset designs, which leads to the same improvement of
the algorithm as described in Section 2.1.

Point estimation, confidence intervals, and p values

Based on the work of Girshick et al. (1946), the uniformly minimum variance unbiased esti-
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mator for endpoint 1 (π̂sub,UMVUE) can be obtained by (4), and for endpoint 2 (π̂super,UMVUE)
the estimator is given by

π̂super,UMVUE =

t1
n1

+

r1∑
i=0

(
n1 − 1
i

)(
n1 − 1− i
u1 − t1 − 1

)
r1∑

i=0

(
n1

i

)(
n1 − i
u1 − t1

) if t1 ≤ r1,

min[t−1,n1−1]∑
i=max[r1,t−1−n+n1]

(
n1 − 1
i

)(
n− n1

t− 1− i

)
min[t,n1]∑

max[r1+1,t−n+n1]

(
n1

i

)(
n− n1

t− i

) +

min[n1−1,t]∑
i=max[r1+1,t−n+n1]

(
n1 − 1
i

)(
n− n1

t− i

)(
n− t− 1
u− t− 1

)
min[n1,t]∑

i=max[r1+1,t−n+n1]

(
n1

i

)(
n− n1

t− i

)(
n− t
u− t

) if t1 > r1,

(12)

where t1 denotes the number of observed responses for endpoint 1 in the first stage, u1
denotes the observed responses for endpoint 2 in the first stage, and t and u denote the
observed responses for endpoint 1 and 2 in the whole trial.
For the derivation of appropriate p values that match the test decision, Kunz (2011) derived
the following formula

pexact =
n1∑

x1=r1+1

n1∑
y1=x1

n−n1∑
x2=max[0,t−x1]

n−n1∑
y2=max[x2,u−y1]

(
n1
y1

)(
y1
x1

)(
n− n1
y2

)(
y2
x2

)

·πx1+x2
sub0

(πsuper0 − πsub0)y1+y2−x1−x2(1− πsuper0)n−y1−y2 .

(13)

Since the exact p value depends on πsub0 and πsuper0 , the confidence interval for the response
rate of endpoint 1 depends on the response rate of endpoint 2 and vice versa. This results
in a one-sided confidence area which is called the confidence set (Reiczigel, Abonyi-T’oth,
and Singer 2008). The boundary of this area is given by all combinations of π̂sub,lower and
π̂super,lower with pexact(π̂sub,lower, π̂super,lower) = α.
The idea and implementation of (non-)stochastic curtailment can be applied to subset designs
in the same way as described in Section 2.1 for the Simon’s designs.

3. Structure of the package

3.1. Package overview

The OneArmPhaseTwoStudy package consists of 25 functions. These functions are imple-
mented for the purpose of planning, monitoring, and analyzing one-arm phase II studies with
binary outcomes. The supported designs are two-stage designs with a single endpoint as well
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as subset designs, where for the single endpoint designs the “classical” as well as the adap-
tive variants are available. In the following, all functions will be outlined. Each section is
separated into the three parts planning, monitoring, and analysis.

3.2. Classical two-stage designs

The OneArmPhaseTwoStudy package implements 8 functions, which are provided solely for
the “classical” two-stage designs. In the following each of these functions will be described.

Planning classical two-stage designs
In the planning stage, a main task is to identify an adequate design for the given study
situation at hand. Our package implements three functions to fulfill this purpose, which will
be described below.
The algorithm to find possible designs for given values of α, β, π0, and π1 requires a high
computational effort. Therefore, the package uses the programming language C++ internally.
Because C++ is a compiled language, computations can be performed up to 80 times faster.
The R package Rcpp (Eddelbuettel and François 2011) is used to establish a link between R
and C++ code. This link is established by calling the function setupSimon.

setupSimon(alpha = 0.05, beta = 0.05, p0 = 0.1, p1 = 0.3)

returns what we will reference as a ‘simon’ object. This ‘simon’ object allows access to an
internally used C++ object. The arguments alpha, beta, p0, and p1 correspond to α, β,
π0, and π1, respectively. The parameters can be changed any time by invoking the function
setSimonParams.
Once a ‘simon’ object is generated, the function getSolutions can be used to start the search
algorithm described in Section 2.1 to identify possible designs for given α, β, π0, and π1

getSolutions(simon = setupSimon(), useCurtailment = FALSE,
curtail_All = FALSE, cut = 0, replications = 10000, upperBorder = 0)

The first argument passed to getSolutions must be a pre-specified ‘simon’ object. To in-
vestigate the effect of (non-)stochastic curtailment, the argument useCurtailment must be
set to TRUE. By this, the function getSolutions will determine the changes in the type I and
II error rate for all identified designs as well as the impact on PET (π0) and EN (π0). The
threshold θ for the conditional power can be specified by the argument cut and has to be cho-
sen as a value between 0 and 1. To evaluate the effect of different thresholds simultaneously,
the argument curtail_All can be set to TRUE. In this case, the algorithm will calculate the
effect of curtailment for all values from the value of cut to 1 in steps of 0.05. This allows the
user to get an impression which threshold is weighing the best decrease in sample size and
the loss in power. The argument replications determines how many studies are simulated
to evaluate the effect of curtailment. Due to the fact that C++ is used internally, even large
values for replications (like 100,000) lead to results within a couple of seconds (tested on
a computer with a dual core processor with 2.8GHz).
The function getSolutions returns a list object containing several data frames which sum-
marize all identified designs and the consequences of curtailment. The application of function
getSolutions is described in Section 4.



Journal of Statistical Software 11

0 10 20 30 40

0
2

4
6

8
10

Patients Enrolled

O
bs

er
ve

d 
R

es
po

ns
es

r1, r
n1, n
Stopping Rules
Observed Response

● ● ●

● ●

● ● ● ● ● ● ●

● ● ● ● ●

●

Figure 1: Example of a graphics generated by the function plot_simon_study_state without
curtailment.

Monitoring classical two-stage designs

The OneArmPhaseTwoStudy package includes the two functions plot_simon_study_state
and getCP_simon which are dedicated to monitoring purposes. The first function allows the
user to get a graphical overview of the current status of the study. An exemplary call of this
function is given below.

R> set.seed(25)
R> design <- getSolutions()$Solutions[3, ]
R> stoppingRules <- data.frame(Enrolled_patients = c(design$n1, design$n),
+ Needed_responses_ep1 = c(design$r1, design$r))
R> enrolledPat <- data.frame(ep1 = rbinom(18, 1, design$p1))
R> plot_simon_study_state(stoppingRules, enrolledPat, design$r1, design$n1,
+ design$r, design$n)

This call results in the output shown in Figure 1. The horizontal green dashed lines indicate
the critical values (r1, r) for the given two-stage design, whereas the blue lines denote the
sample size for the interim and the final analysis (n1, n). The black circles depict the patients
which have already been enrolled. The red area illustrates the stopping rules for the given
design. If the black circles enter the red area, the study has to be stopped. Moreover, the user
can easily see when the interim analysis has to be performed and which number of responses
is required for continuation. When the design is planned without curtailment, the stopping
rules are simply defined by r1, n1, r, and n. If curtailment is applied, these stopping rules
change as there are more options to stop for futility. Figure 2 shows the same design as
illustrated in Figure 1 but with stochastic curtailment for a threshold of θ = 0.2 which can
be generated through the call given below.

R> set.seed(25)
R> tmp <- getSolutions(useCurtailment = TRUE, cut = 0.2)
R> design <- tmp$Solutions[3, ]
R> stoppingRules <-
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Figure 2: Example of a graphics generated by the function plot_simon_study_state with
stochastic curtailment.

+ tmp$Curtailment_Results$`StoppingrulesForID:2`$`Stoppingrules_for_Row:1`
R> names(stoppingRules) <- c("Needed_responses_ep1", "Enrolled_patients")
R> enrolledPat <- data.frame(ep1 = rbinom(18, 1, design$p1))
R> plot_simon_study_state(stoppingRules, enrolledPat, design$r1,
+ design$n1, design$r, design$n)

The second function dedicated to monitoring purposes is the function getCP_simon which
allows calculating the conditional power at any time point of an ongoing study. This function
can also be used to decide whether a study should be stopped for futility when (non-)stochastic
curtailment is applied. As arguments, this function requires specification of the number of
observed responses, the number of enrolled patients, and the design parameters r1, n1, n, and
π1.

Analyzing classical two-stage designs
As the conduct of interim analysis is included in the monitoring procedure, this section focuses
on the functions provided for the final analysis of a “classical” two-stage designs, which are
get_p_KC, get_CI, and get_UMVUE_GMS.
The function get_p_KC calculates the exact p value based on the approach of Koyama and
Chen (2008) according to (5) given in Section 2.1. With this tool, the user can decide whether
to reject or accept H0. Based on the function get_p_KC it is possible to derive the (1−2α)-CI
given by [π̂L, π̂U ], which can be calculated by calling the function get_CI. Internally, this
function performs a stage-wise ordering by iterating over different values for π̂L, which is
increased with every iteration step. Analogously, π̂U is decreased with every iteration step
as long as the values of get_p_KC(π̂L) and get_p_KC(π̂U ) are less than α. As mentioned in
Section 2.1, H0 can be rejected if and only if π0 is less than π̂L. The definition of this function
is illustrated below.

get_CI(k, r1, n1, n, alpha = 0.05, precision = 4)

The first argument has to be set to the number of observed responses. The following four
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arguments correspond to r1, n1, n, and α, respectively. The argument precision can be
used to select to which digit the result of get_CI should be accurate.
Besides a correct test decision, the estimated response rate plays a major role in the planning
of proceeding phase III studies. Therefore, the package includes the function get_UMVUE_GMS
which implements the UMVUE of the true response rate based on the work of Jung and Kim
(2004) (see Section 2.1). The listing below illustrates the definition of this function

get_UMVUE_GMS(k, r1, n1, n),

where k, r1, n1, and n correspond to the number of observed responses, the critical value
for the first stage, the number of patients enrolled in the first stage, and the total number of
patients enrolled in the whole trial, respectively. The calculation of the UMVUE is illustrated
in Section 4.3.

3.3. Adaptive two-stage designs

As described in Section 2.2, every “classical” two-stage design presented in Section 2.1 can
be “translated” into an adaptive design and may furthermore be improved with respect to
efficiency. The OneArmPhaseTwoStudy package provides eight functions which implement
the algorithms described in Section 2.2.

Planning adaptive two-stage designs

To plan an adaptive two-stage design, the first step is to identify a “classical” two-stage design
using the functions described in Section 3.2. After that, a rule to increase the boundaries
of the conditional error function CE(k) must be specified. For this purpose, the package
implements four functions denoted by getD_none, getD_equally, getD_proportional, and
getD_distributeToOne. These functions return data frames with all possible values of k
(number of observed responses at the interim analysis) and the corresponding value of the
conditional error function. The function getD_none corresponds to the case where the re-
maining level α − α′ is not used to modify the conditional error function but where the
original function CE(k) is used. The functions getD_equally, getD_proportional, and
getD_distributeToOne spend the remaining level α − α′ by increasing the boundaries re-
turned by CE(k) either equally, proportionally to the probability of observing p1(k), or to
the smallest value of CE(k) that is unequal to zero, respectively.

Monitoring adaptive two-stage designs

For monitoring purposes, the same functions as described in Section 3.2 can be used. The
main differences to a “classical” design occur during the conduct of the interim analysis, which
is described in the next section.

Analyzing adaptive two-stage designs

As mentioned in Section 2.2, adaptive designs allow to modify the number of patients to
be enrolled in the second stage based on the results of the interim analysis. The package
implements three functions which are dedicated for this purpose and which are denoted by
getCP, getN2, and get_r2_flex.
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The function getCP returns the conditional power of the study if the number of patients to be
enrolled in the second stage is changed to n2 when k responses were observed at the interim
analysis and under the assumption that p1 is the true response rate.

getCP(n2, p1, design, k, mode = 0, alpha = 0.05)

The argument design is to be specified as a data frame containing the columns r1, n1, r, n,
and p0 which correspond to the values of r1, n1, r, n, and π0. The assumed true response rate
is that under the alternative hypothesis and is given by p1. The argument mode dedicates in
which way the remaining level α− α′ is spent to modify the boundaries returned by CE(k).
mode has to be a value in {0, 1, 2, 3} where 0 indicates that the remaining level was not
spent (getD_none), 1 indicates a proportional spending (getD_proportional), 2 indicates
an equal spending (getD_equally), and 3 stands for an allocation to the smallest value of
CE(k) which is unequal to zero. The argument alpha specifies the overall type I error rate
of the study.
The function getN2 returns the number of patients to be enrolled in the second stage in order
to achieve the specified conditional power.

getN2(cp, p1, design, k, mode = 0, alpha = 0.05)

The arguments of getN2 are exactly the same as for getCP with the only difference that the
first argument specifies the conditional power the study should achieve.
Changing the number of patients to be enrolled after the interim analysis results in a different
critical value to be applied to the number of responses observed in the second stage of the
study. To calculate the new value for r2, the function get_r2_flex can be used. This function
requires three arguments: The first argument is the conditional error (value of the modified
CE(k)), the second is π0, and the last argument is n2. As outlined in Section 2.2, H0 can be
rejected if p2(l) ≤ CE(k), where p2(l) is implemented in the function getP.

3.4. Subset designs
The following sections will outline all functions of the OneArmPhaseTwoStudy package which
support the subset designs described in Section 2.3.

Planning subset designs
Planning a subset design follows similar steps as for the “classical” two-stage designs with a
single endpoint described in Section 3.2. The corresponding functions supporting these steps
for subset designs are given by setupSub1Design, setSub1Params, and getSolutionsSub1.
Similar to the procedure described in Section 3.2, at first a ‘sub1’ object has to be defined
which establishes a link between C++ and R code. By this, it is possible to perform the cal-
culations much faster as compared to plain R code. Nevertheless, the identification of subset
designs is computationally more intensive than the identification of “classical” designs. There-
fore, depending on the underlying parameter constellation it may take several minutes until
all possible designs are identified. To generate a ‘sub1’ object, the function setupSub1Design
is used which is illustrated below.

setupSub1Design(alpha = 0.1, beta = 0.1, pc0 = 0.6, pt0 = 0.7, pc1 = 0.8,
pt1 = 0.9)
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The arguments alpha and beta are used to specify the significance level and the type II error
rate. The other arguments are used to set πsub0 , πsuper0 , πsuba , and πsupera

, respectively. The
arguments can be changed any time by invoking the function setSub1Params.
The identification of subset designs is similar to the two-stage designs with a single endpoint.
The function getSolutionsSub1 starts the search algorithm described in Section 2.3. This
function accepts the same arguments as getSolutions but uses a ‘sub1’ object instead of a
‘simon’ object. Moreover, the function getSolutionsSub1 provides the additional arguments
skipS, skipR, and skipN1 which should be set either to TRUE or FALSE. These arguments
instruct the search algorithm to skip the range of s, r or n1 every time a design is identified
which fulfills the type I and II error constraints. This results in a performance improvement.
However, if one or more of these arguments are set to TRUE the algorithm will only be able to
determine the minimax, admissible, and optimal design among the identified designs. This
does not assure that the overall minimax, admissible, and optimal designs are found.

Monitoring subset designs
The OneArmPhaseTwoStudy package provides two functions for monitoring subset designs.
The function plot_sub1_study_state generates a plot similar to the one as described in
Section 3.2. The listing below illustrates the application of this function.

R> sub1 <- setupSub1Design(0.05, 0.1, 0.5, 0.6)
R> design <- getSolutionsSub1(sub1, FALSE, FALSE, FALSE)$Solutions[4, ]
R> sr <- data.frame(Enrolled_patients = c(design$n1, design$n),
+ Needed_responses_ep1 = c(design$r1, design$r),
+ Needed_responses_ep2 = c(0, design$s))
R> tmp_ep1 <- rbinom(8, 1, design$pc1)
R> tmp_ep2 <- tmp_ep1 | rbinom(8, 1, design$pt1)
R> enrolledPat <- data.frame(ep1 = tmp_ep1, ep2 = tmp_ep2)
R> plot_sub1_study_state(sr, enrolledPat, design$r1, design$n1, design$r,
+ design$s, design$n)

This call results in the plot shown in Figure 3. The dashed green lines indicate the critical
values for endpoint 1 (r1, r). The dark blue line represents the critical value for endpoint 2 (s).
The red dashed lines indicate the sample sizes for the first stage and for the whole trial (n1,n).
The red and the blue area represent the stopping rules for endpoint 1 and 2, respectively.
Finally, the connected black circles represent the number of responses for endpoint 1 and the
x-es represent the number of responses for endpoint 2.
The second function dedicated to monitoring purposes is get_conditionalPower which can
be used to calculate the conditional power for a given subset design in a similar manner as de-
scribed in Section 3.2 for the “classical” two-stage designs. The function requires specification
of the number of observed responses for endpoint 1 and 2 as well as the number of enrolled
patients. Moreover, the parameter set (r1, n1, r, s, n, πsuba , πsupera

) has to be provided.

Analyzing subset designs
The OneArmPhaseTwoStudy package implements four functions which can be used to per-
form the final analysis of a subset design, three of which are designated to calculate the exact
p value and the confidence set which are described in Section 2.3.
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Figure 3: Example of a graphics generated by the function plot_sub1_study_state.

The function get_p_exact_subset computes the exact p value for a given subset design (see
Equation 13). The function is defined as follows.

get_p_exact_subset(t, u, r1, n1, n, pc0, pt0, sub1 = setupSub1Design())

The first two arguments t and u have to be set equal to the number of responses observed for
endpoint 1 and 2, respectively. The following arguments correspond to the values of r1, n1,
n, πsub0 , and πsuper0 . As the decision to proceed to the second stage of the study is based on
r1 only, the function does not depend on the parameters r and s. The last argument sub1 is
internally used by the function get_confidence_set and should not be overwritten.
As described in Section 2.3, the confidence interval for the response rate of endpoint 1 de-
pends on the response rate of endpoint 2 and vice versa which results in a so-called con-
fidence set. The boundaries of this confidence set can be calculated through the func-
tion get_confidence_set. Internally, this function uses get_p_exact_subset for differ-
ent values of pc0 and pt0 to determine different sets of [π̂sub,lower, π̂super,lower] for which
pexact(π̂sub,lower, π̂super,lower) ≤ α. To illustrate the calculated confidence set, the function
plot_confidence_set can be used. A call of this function results in a plot as shown in Fig-
ure 4 where the green area represents the confidence set. The black dot illustrates the point
estimate of the true response rates of endpoint 1 and 2 given by [π̂sub,UMVUE, π̂super,UMVUE].
Finally, the red area indicates the acceptance area which means that H0 cannot be rejected
if the confidence set overlaps with this region.
The point estimates π̂sub,UMVUE and π̂super,UMVUE are provided by function get_UMVUE_GMS
for the subset endpoint and function get_UMVUE_GMS_subset_total for the superset end-
point.
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Figure 4: Example of a graphics generated by the function plot_confidence_set.

3.5. Graphical user interface

In addition to the R package OneArmPhaseTwoStudy, a graphical user interface (GUI) was
developed in order to provide an easy to use application. The GUI is implemented in
Qt (Nord and Chambe-Eng 2017) which is an extension to the C++ standard (for more
information visit http://qt-project.org/). This extension is especially suited for the
development of platform-independent graphical interfaces. The purpose of the GUI is to
provide the full functionality of the OneArmPhaseTwoStudy package to users with no or
limited knowledge in R. Internally, the GUI uses the R package Rinside (Eddelbuettel and
François 2015) to access the OneArmPhaseTwoStudy package. A GUI installer for Win-
dows can be downloaded at http://www.klinikum.uni-heidelberg.de/fileadmin/inst_
med_biometrie/Aktuelles/R-Paket/installer.exe). Also the source code is available on
GitHub at https://github.com/imbi-heidelberg/OneArmPhaseTwoStudy_GUI. The tools
provided by the GUI are the same as described in the Sections 3.2 to 3.4. Therefore, the
following subsections will only exemplarily illustrate the application of the GUI.

Study planning with the GUI

To plan a new study, the option “Create new study” in the “File” menu must be selected.
After that, some general information like the study name, the principal investigator, and the
name of the involved biometrician must be provided. Once the general information has been
entered, the GUI displays a window with all available design options (Figure 5).
At first, a choice between Simon’s two-stage design or the subset design must be made. If
“Simon’s Design” is selected (see section a) of Figure 5), all necessary design parameters (α,
β, π0, π1) have to be entered in section b) of Figure 5. After that, the search algorithm
described in Section 2.1 can be started by pressing the button “Start calculation” which
internally invokes the function getSolutions provided by the R package. All identified
designs are displayed in a table as illustrated in section c) of Figure 5. With a click into the

http://qt-project.org/
http://www.klinikum.uni-heidelberg.de/fileadmin/inst_med_biometrie/Aktuelles/R-Paket/installer.exe
http://www.klinikum.uni-heidelberg.de/fileadmin/inst_med_biometrie/Aktuelles/R-Paket/installer.exe
https://github.com/imbi-heidelberg/OneArmPhaseTwoStudy_GUI
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Figure 5: Design calculation with the GUI: a) Selection of design type; b) Area for entering
the required design parameters (α, β, π0, π1); c) Table to display the identified designs.

Figure 6: Overview of the characteristics of the selected design provided by the GUI as the
final step of the planning phase.
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Figure 7: The “Study details” page of the monitoring mode of the GUI.

table, the user can select which design to use. The GUI provides an overview of all selections
made during the planning of the study by clicking “Next” (see Figure 6).
If the selected design should be applied, the user has to click on the “Create study” button.
Then a save menu will be provided so that this design can be re-used for monitoring and
analysis of the study at any time later.

Monitoring with the GUI

After planning a new or opening a previously saved study, the GUI continues to the monitoring
mode. To add a new patient to the study, a patient ID must be provided and the information
whether or not a response was observed for this patient. With a click on “Add patient” the
provided information is included into the study. It is possible to save the current study state
at any time through the “File” menu.
Moreover, the monitoring mode of the GUI provides three different pages which sum up all
available information up to the current study state. The first page “Study details” displays
all design parameters as well as the number of enrolled patients, the number of observed
responses, and the current conditional power (Figure 7). On the second page “Enrolled
patients”, all included patients are displayed in a table. The third page “Study progress” (see
Figure 8) shows a graphical overview of the current study state, which is internally generated
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Figure 8: The “Study progress” page of the monitoring mode of the GUI.

through a call of the function plot_simon_study_state (see Section 3.2).
After having entered n1 patients, a pop-up message gives the information that the interim
analysis is to be performed. Depending on the number of observed responses, the pop-up
message reports whether the study has to be stopped or can proceed to the second stage.
If the study was planned in an adaptive design, the number of patients to be enrolled in the
second stage of the trial can be changed at the interim analysis. Note that it is impossible
to change the number of patients to be enrolled in the second stage after more than n1
patients are enrolled. If further patients are added to the study, the GUI switches back to
the monitoring mode until n patients in total are included.

Analyzing with the GUI

After having entered a total of n patients, the GUI switches to the final analysis window
which shows the results of the test decision as well as the estimated response rate together
with the confidence interval (see Figure 9).
In the middle of the screen, the graphical overview of the study with all enrolled patients is
displayed, which is internally obtained by a call of plot_simon_study_state (see Section 3.2).
All design parameters are displayed in the group box “Study design”. The group box “Final
study state” contains the number of enrolled patients, the number of observed responses, and
the exact p value which is internally calculated through invocation of get_p_KC. Moreover,
two point estimators are provided, namely the MLE and the UMVUE. The MLE is simply
calculated by the number of observed responses divided by the number of enrolled patients.
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Figure 9: Final analysis window of the GUI.

For the calculation of the UMVUE, the GUI internally invokes the function get_UMVUE_GMS.
Finally, the (1− 2α)-CI is displayed which is calculated with the function get_CI.

4. Example

4.1. Planning
Razak et al. (2013) conducted a single-arm phase II trial to investigate the clinical activity
of a new orally administered agent in recurrent or metastatic squamous-cell cancer of the
head and neck. Primary endpoint was objective response for which the null hypothesis H0 :
π ≤ π0 = 0.05 was assessed at one-sided level α = 0.05. A power of 1 − β = 0.80 should be
reached for a true objective response rate of π1 = 0.15. Simon’s optimal two-stage design was
implemented. This design is identified by calling the function getSolutions that provides
the result (n1, r1, n, r) = (23, 1, 56, 5). All designs fulfilling the constraints with respect to
the type I and type II error rate with a maximum sample size of at most 100 are obtained by
using the following code.

R> simon <- setupSimon(0.05, 0.20, 0.05, 0.15)
R> designs <- getSolutions(simon, upperBorder = 100)$Solutions
R> hidecol <- c(-1, -6, -7, -9, -11, -14, -15, -16)
R> designs[, hidecol]
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Figure 10: Graphical overview generated by the function plot_simon_study_state.

This generates the following output (note that some columns are hidden due to space limita-
tions).

r1 n1 r n enP0 petP0 Alpha Beta Type
1 0 21 5 52 41.44 0.3406 0.0432 0.1986
2 1 30 5 52 39.82 0.5535 0.0430 0.1980 MiniMax
3 0 18 5 53 39.10 0.3972 0.0453 0.1970
4 1 27 5 53 37.24 0.6061 0.0448 0.1968 Admissible
5 1 25 5 54 35.37 0.6424 0.0463 0.1987 Admissible
6 1 24 5 55 34.51 0.6608 0.0483 0.1977
7 1 23 5 56 33.58 0.6794 0.0500 0.1997 Optimal

The maximum sample size of the minimax design is by four lower than for the optimal design
while its expected sample size is by more than six higher. Two admissible designs are identified
with maximum and expected sample size in between the minimax and optimal ones.

4.2. Statistical monitoring

Four responses were observed in the 23 evaluable patients of the first stage and thus the study
proceeded to stage two, which can be seen in the graphical overview (Figure 10) generated
by calling

R> set.seed(20)
R> sr <- data.frame(Enrolled_patients = c(23, 56),
+ Needed_responses_ep1 = c(1, 5))
R> enrolledPat <- data.frame(ep1 = logical(23))
R> enrolledPat[sample.int(23, 4), ] <- TRUE
R> plot_simon_study_state(sr, enrolledPat, 1, 23, 5, 56)

Here, the black circles which represent the enrolled patients together with the observed re-
sponses do not fall into the red area at the interim analysis which is indicated by the vertical
blue dotted line.
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Let us assume that two responses were observed within the 23 patients of the first stage. The
study could then be continued but the conditional power to reject the null hypothesis after
the second stage amounts to

R> getCP_simon(2, 23, 1, 23, 5, 56, 0.15)

[1] 0.7504551

If after a total of 25 (30 / 35) patients still only two responses were observed, the conditional
power amounts to 0.7039 (0.5615 / 0.3887) and one may think about stopping the trial for
futility based on stochastic curtailment considerations.

4.3. Analysis

After the second stage, seven responses were observed for the 56 evaluable patients enrolled
in the study performed by Razak et al. (2013). As r = 5, this leads to the rejection of the null
hypothesis. The MLE of the response rate is 7/56 = 0.11 and the related “naive” two-sided
90%-CI and one-sided p value that do not take into account the sequential design, are given by
[0.0602, 0.2006] and p = 0.0212, respectively. To obtain the UMVUE as well as the 90%-CI
and p value tailored to the sequential nature of the design, the functions get_UMVUE_GMS,
get_CI, and get_p_KC have to be called.

R> results <- data.frame(UMVUE = 0, CI_low = 0, CI_high = 0, p_value = 0)
R> results$UMVUE <- get_UMVUE_GMS(7, 1, 23, 56)
R> results$CI_low <- get_CI(7, 1, 23, 56)$CI_low
R> results$CI_high <- get_CI(7, 1, 23, 56)$CI_high
R> results$p_value <- get_p_KC(7, 1, 23, 56, 0.05)
R> results

This results in the following output.

UMVUE CI_low CI_high p_value
1 0.1379133 0.0617 0.21439 0.01882311

As can be seen, the MLE underestimates the response rate which is a general feature in
two-stage designs with the option of early stopping for futility. Consequently, reporting this
estimate may then lead to an inappropriate judgment of the treatment effect.

4.4. Planning and performing adaptive designs

As an alternative to the “classical” Simon’s optimal design, the study by Razak et al. (2013)
could also have been planned within an adaptive framework that allows to react in a flexi-
ble way to unforeseen events by data-driven modifications while still controlling the type I
error rate. The flexible counterpart of Simon’s optimal design that exhausts the available
significance level by equal allocation of the available undershoot in type I error rate to the
conditional error function can be obtained by calling getD_distibuteToOne.
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R> simon <- setupSimon(0.05, 0.20, 0.05, 0.15)
R> optimal_design <- getSolutions(simon)$Solutions[7, ]
R> optimal_design
R> getD_equally(optimal_design, 0.05)[1:15, ]

This results in the following output.

k ce
1 0 0.00000000
2 1 0.00000000
3 2 0.08085087
4 3 0.22730544
5 4 0.49677692
6 5 0.81810800
7 6 1.00000000
8 7 1.00000000
9 8 1.00000000
10 9 1.00000000
11 10 1.00000000
12 11 1.00000000
13 12 1.00000000
14 13 1.00000000
15 14 1.00000000

Values of the conditional error function of 0 or 1, respectively, mean that the study is to
be stopped for futility (number of observed responses is less than or equal to r1) or efficacy
(number of observed responses is greater than r) after the first stage. Let us assume that
five responses were observed within the 23 patients of the first stage. With the “classical”
Simon’s optimal design, further 33 patients must be included in stage two although only
one additional response has to occur to reject the null hypothesis. In contrast, the adaptive
design allows recalculation of the sample size taking into account the result observed in the
interim analysis. Within the conditional error rate approach pursued in the adaptive design
framework, a p value smaller or equal to 0.818108 has to be achieved in the second stage.
Calling the function getN2 results in

R> getN2(0.8, 0.15, optimal_design, 5, 2)

[1] 10

Based on these considerations the total sample size n could, for example, be changed from 56
(23 + 33) to 33 (23 + 10) maintaining a conditional power of 80%, which corresponds to the
initial power the study was planned for. Choice of an adaptive design may therefore have led
to a much smaller sample size and thus to considerable savings in time and financial resources.
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5. Discussion
In this article, we presented an overview of the OneArmPhaseTwoStudy package to plan,
monitor, and analyze single-arm two-stage clinical trials with a binary outcome. The theory
behind the implemented methods is sketched, the package is described in detail, and prac-
tical application is illustrated by a real clinical study example. Although to our knowledge
OneArmPhaseTwoStudy provides the most comprehensive spectrum of methods of available
software tools in this field, there are several options for extension of the package. Such ex-
tensions may cover designs with more than two stages (Chen 1997) or alternative designs
with more than one endpoint (Kunz and Kieser 2011a, 2012). One of the methodological re-
search we are currently pursuing and whose results will be integrated in the package concerns
construction of point estimates and confidence intervals for adaptive single-arm two-stage
designs. Finally, we are working on the problem on how flexible designs can be used to deal
with the situation that the initially specified sample sizes n1 or n are not exactly met. As
this is frequently the case in practice, the availability of related methods and software would
be a further major step forward.
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