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Abstract

In this paper, we develop generalized hierarchical Bayesian ANOVA, to assist exper-
imental researchers in the behavioral and social sciences in the analysis of experiments
with within- and between-subjects factors. The method alleviates several limitations of
classical ANOVA, still commonly employed in those fields of research. An accompanying
R Package for BANOVA is developed. It offers statistical routines and several easy-to-use
functions for estimation of hierarchical Bayesian ANOVA models that are tailored to the
analysis of experimental research. MCMC simulation is used to simulate posterior sam-
ples of the parameters of each model specified by the user. The core program is written
in R and JAGS. After preparing the data in the required format, users simply select an
appropriate model, and can estimate it without any advanced coding being required. The
main aim of the R package is to offer freely accessible resources for hierarchical Bayesian
ANOVA analysis, which makes it easy to use for applied researchers.
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1. Introduction
Because of its computational attractiveness and the ease of interpretation of its statistical
tests and the corresponding tables of means, ANOVA (Fisher 1921, 1925) is implemented in
most statistical packages and continues to garner tremendous popularity in applied research.
As it is about to celebrate its centennial, behavioral and social scientists still rely heavily on
ANOVA for the analysis of their data from experiments with human subjects (e.g., Cardinal
and Aitken 2005). Yet, the standard approach to ANOVA is based on several assumptions
that are often critically violated for the data typically collected in those fields of research.
First, ANOVA assumes a continuous homoscedastic i.i.d. normal distributed dependent vari-
able. Categorical variables, however, for which ANOVA has long known not to be appro-
priate (Cochran 1940), abound in the behavioral sciences. These include measurements of
perceptions, attitudes and intentions, on categorical rating and multiple choice scales, and
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binary and count measures of human attention, memory and decision making (Nunnaly 1967;
Thorndike 1971; Lord and Novick 1968). In addition, continuous measures such as response
times or monetary expenditures, which often have high skewness or kurtosis, are commonly
used as well. The distributional properties of most of these variables violate the assumptions
underlying ANOVA, and extensive research into the effect of these violations has shown that
they may lead to both excess type-I and type-II errors in classical significance testing (Ito
1980; Tan 1982; Tiku 1971). Transformations of the data, such as the log and square-root
(for counts), logit and arcsine (for proportions), rank (for ordered categorical variables), and
Box-Cox transformations have been used to render the empirical distribution closer to the
normal (Bartlett 1947; Box and Cox 1964; Draper and Hunter 1969; Conover and Iman 1976).
These transformations, however, often do not provide a satisfactory solution, because they
cause the ANOVA tables of means to lose some of their appealing interpretations, while signif-
icance levels of the transformed and original data often do not correspond. Modern statistical
solutions are available in the form of generalized linear models (McCullagh and Nelder 1989).
The application of GLMs capitalizes on the fact that ANOVA is a special case of linear re-
gression models, and GLMs extend regression models to a wide variety of models in which
the dependent variable follows one of many distributions in the exponential family. However,
for applied researchers a downside of the use of GLM to analyze designed experiments that
involve of multiple factors and interactions is that these need to be represented in the model
through dummy variables, and the interpretation of estimates of coefficients of these dummy
variables is not as easy as interpreting the output of ANOVA, and indeed may often be quite
cumbersome.

Second, in the behavioral sciences experiments often involve a combination of between- and
within-subjects factors, leading to nested and repeated measurement designs. For these de-
signs established (mixed, split-plot and repeated measures) ANOVA procedures are available
in most statistical packages. These mixed ANOVA models in question may have both fixed
and random effects (Hartley and Rao 1967; é 1957), but assume a balanced design, a continu-
ous dependent variable and categorical independent variables. Unbalanced designs, unequally
spaced measurements, and continuous covariates such as encountered in ANCOVA, violate
these assumptions. As a consequence, some experimental behavioral science researchers re-
sort to the application of hierarchical linear models (Breslow and Clayton 1993; Longford
1987; Raudenbusch 1988; Raudenbush 1999), in particular for the analysis of quasi(field)
experiments. These models, which take on various forms and are correspondingly labeled
with a variety of names in the literature, are all special cases of hierarchical Bayes models
(Lindley and Smith 1972; Press 2003; Gelman, Carlin, Stern, and Dunson 2013a). Extensive
treatments can be found in Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013b) and
Gelman and Hill (2006). These models allow for more general covariance structures and data
hierarchies than repeated measures ANOVA. Gelman (2005) argued the importance of hierar-
chical Bayes formulations of ANOVA, and showed how the principles of ANOVA are helpful in
understanding hierarchical linear models. In addition, hierarchical Bayes models can accom-
modate non-normal dependent variables that render the application of classical ANOVA and
hierarchical linear models problematic. The Bayesian approach in addition offers a number
of theoretical and pragmatic advantages as a framework for inference and testing that have
been widely acknowledged (Bernardo J 2000; Press 2003; Savage 1954). Indeed, in behavioral
research the advantages of Bayesian inference are increasingly recognized, in that it provides
inferences based on finite samples, and avoids some of the pitfalls of classical hypothesis
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testing (Gelman 2013; Kruschke 2013; Rouder, Speckman, Sun, Morey, and Iverson 2009).
Moreover, Hierarchical Bayes models can now be relatively easily be implemented using ex-
isting statistical software, such as BUGS (Lunn, Thomas, Best, and Spiegelhalter 2000) and
JAGS (Plummer 2016a).
Nevertheless, applied experimental researchers in the behavioral and social sciences continue
to resort to standard ANOVA in many cases in spite of its limitations and availability of
modern superior alternatives, because of its ease of application and interpretation, widespread
availability in standard statistical packages, lack of familiarity with better alternatives, and/or
the effort involved in programming alternative methods or interpreting their output. The
present paper attempts to help remedy this undesirable state of affairs by developing a frame-
work and accompanying R package for hierarchical Bayes ANOVA, called BANOVA, which
addresses the most salient limitations of classical ANOVA, yet is easy to use and retains many
of the familiar features of the outputs of classical ANOVA. Amongst others, it accommodates
a wide range of distributions for the dependent variable, hierarchical data structures and
between- and within- subjects categorical design factors, as well as continuous covariates.
The key insight behind the BANOVA approach is that ANOVA and ANCOVA are spe-
cial cases of linear regression and that once an ANOVA model is formulated as a hierarchi-
cal linear model, subject-level parameters become incidental and inference focuses entirely
on the population-level model, which is where main effects and interactions of within- and
between-subjects factors are represented and tested. Assuming that lower-level parameters
that describe subject heterogeneity follow normal distributions, it follows that variance de-
composition, tables of means and significance tests of main effects and interactions can be
computed, similar to how they would be computed in standard ANOVA, from the population-
level parameter estimates. This then allows for the analysis of dependent variables with a
wide variety of distributional forms with hierarchical models, while at the same time retaining
much of the appealing output from standard ANOVA for experimental data. The underly-
ing estimation methods in the package are Markov Chain Monte Carlo (MCMC) algorithms
implemented in the JAGS software. The user of the package needs to input the data and set
up a few parameters (or accept the defaults). The package then sets up a JAGS program
and analyses the data with a hierarchical Bayes ANOVA, using MCMC estimation. JAGS
was chosen as an interface, because after calling the R package, in addition to the estimation
results, the JAGS code will be available for inspection and modification by the statistically
more advanced behavioral researcher. Importantly, although the underlying models are hier-
archical Bayes models, the output of these models is presented in a form that is very familiar
to users of standard ANOVA, including tables of means with credible intervals, (Bayesian)
p values and effect sizes.
The remainder of this paper is organized as follows. In Section 2, we discuss the hierarchical
Bayesian approach to ANOVA. In Section 3, the architecture of the R package is discussed
and a brief tutorial is provided. Bayesian estimation of parameters and other quantities of
interest are described as well. We include examples in Section 4. The last section concludes
and suggests future work.

2. BANOVA models
We assume data are collected in an experiment in which a sample of subjects have partic-
ipated, and have been exposed to between-subject as well as within-subjects experimental
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manipulations. Repeated measurements of one or more dependent variables are taken on
each subject, while continuous or categorical covariates may have been measured as well. The
hierarchical Bayesian BANOVA approach then consists of sub-models at two levels: at level
1 the subject-level model, and at level 2 the population-level model. The subject-level model
represents the effects of within-subjects factors and covariates, and the population-level model
represents the influence of between-subjects factors. The population-level model allows for
the calculation of statistics that can be readily interpreted by applied researchers, as they
would with standard ANOVA.
In the subject-level model, each outcome of the dependent variable, yi, with i indexing data
points, is assumed to be generated from a particular distribution in the exponential fam-
ily, f(yi|µi) (and even other distributions can be accommodated). The mean, µi, of the
distribution depends on the independent variables through a suitable link function g(·) (Mc-
Cullagh and Nelder 1989). The within-subjects factors and their interactions are indexed by
p(p = 1, 2, . . . , P ). Each index p represents a batch of Jp coefficients: βpj,s, j = 1, . . . , Jp; where
s = 1, . . . , S indexes subjects. Note that if a subject-level covariate is continuous, Jp = 1,
so that ANCOVA models are also accommodated (but the present formulation relaxes their
“constant slope" assumption). The subject-level model is expressed as a generalized linear
regression model, with a design matrix X that contains all within-subjects factors and their
interactions, as well as a constant term, indexed by p = 0:

E(yi) = g−1(ηi), (1)

ηi =
P∑
p=0

Jp∑
j=1

Xp
i,jβ

p
j,si
, (2)

where si is the subject index corresponding to data point i.
The population-level model allows for unobserved heterogeneity among subjects, because the
subject-level coefficients βpj,s are assumed to follow a multivariate normal distribution. The
between-subjects factors and their interactions are indexed by q(q = 1, 2, . . . , Q); q = 0
denotes the constant term. Then, using the notation in Gelman (2005), the population-level
BANOVA is:

βpj,s =
Q∑
q=0

θpq
j,kq

s
+ δpj,s. (3)

Each index q represents a batch of Kq coefficients: θpqj,k, k = 1, . . . ,Kq; kqs indexes coefficient k
in batch q corresponding to the treatment of subject s. For example, in the simple case of one
3-level within-subjects factor D (P = 2, J1 = 1 and J2 = 3) and two 2-level between-subjects
factors A and B, and the AB-interaction, Q = 3, Equation 2 and Equation 3 reduce to (with
the parameter of the last level of each factor set to zero):

ηi = β0
1,s +

2∑
j=1

XD
i,jβ

D
j,si
, (4a)

β0
1,s = θ0

1 + θA1,kA
s

+ θB1,kB
s

+ θAB1,kAB
s
, (4b)

βD1,s = θD0
1 + θDA1,kA

s
+ θDB1,kB

s
+ θDAB

1,kAB
s
, (4c)

βD2,s = θD0
2 + θDA2,kA

s
+ θDB2,kB

s
+ θDAB

2,kAB
s
. (4d)
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Equation 4b contains the overall intercept (θ0
1) and the main effects of the between-subjects

factors A (θA1,kA
s
) and B (θB1,kB

s
) and their interaction (θAB1,kAB

s
). Equation 4c contains the

main effect of the (first level) of the within-subjects factor D (θD0
1 ), and its two-(θDA1,kA

s
, θDB1,kB

s
)

and three-way (θDAB
1,kAB

s
) interactions with the between-subjects factors A and B. Similarly,

Equation 4d contains the main effect of the second level of D (θD0
2 ), its two -way interactions

with A (θDA2,kA
s
) and B (θDB2,kB

s
), and the three-way interaction (θDAB

2,kAB
s

). Equations 4b to 4d
are thus similar to those of a standard ANOVA model with two 2-level factors and their
interaction.
The population-level BANOVA model can be expressed as a linear model with a design matrix
Z that contains all between-subjects factors and their interactions (and a constant term):

βpj,s =
K∑
k=1

Zs,kθ
p
j,k + δpj,s, (5)

where Zs,k is an element of Z, a S×K matrix of covariates, andK is the number of parameters.
θpj,k is a hyper-parameter that captures the effects of between-subjects factor q on the param-
eter βpj,s of within-subjects factor p. The error δpj,s is assumed to be normal: δpj,s ∼ N(0, σ2

p).
Proper, but diffuse priors are assumed: θpj,k ∼ N(0, s), and σ−2

p ∼ Gamma(a, b), where s, a, b
are hyper-parameters.
The BANOVA model is estimated capitalizing on the fact that it is a special case of hierar-
chical generalized linear models, that is, using Equations 1, 2 and 5. We use effects-coding
of the factors in the matrices X and Z (Overall, Spiegel, and Cohen 1975). It is important
to note that Equation 3 is the equation that is of key interest for inference. It contains the
parameters that specify the population-level BANOVA model. It is as if the subject-level
coefficients βpj,s are the (normally distributed) “dependent variables" in an ANOVA, specified
by the between-subjects factors in Equation 3. Thus, inferences focuses on the parameters in
Equation 3. Data that comes from a between-subject design, with only a single measurement
of the dependent variable for each subject, is also accommodated. In that case, Equations 2
and 5 reduce to a single Equation 2, where the subscript si is replaced by i. In the absence
of repeated measurements for each subject, unobserved heterogeneity is not identified for
most models. BANOVA can still be used in those cases, but reduces to a Generalized Linear
Model with a canonical link function. We next specify the specific outcome variables that are
accommodated in the R package.
Continuous responses: To model continuous data, a normal distribution can be assumed
for yi:

yi = ηi + εi; εi ∼ N(0, σ2), (6)

where ηi is defined in Equation 2, and the prior for the scale parameter σ, is specified through
σ−2 ∼ Gamma(α, β), with α and β hyper-parameters.
To describe data with “outliers" or fatter tails than the normal, the εi in Equation 6 can be
assumed to follow a t- distribution, with an unknown number of degrees of freedom, assumed
to follow a Poisson distribution:

εi ∼ t(0, φ2, ν), (7)

The priors are φ−2 ∼ Gamma(α, β), and ν ∼ Poisson(λ), with α, β, and λ hyper-parameters.
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Binary responses: To model data yi that take on the values 0 and 1, a Bernoulli distribution
is assumed,

yi ∼ Binomial(1, pi), pi = logit−1(ηi), (8)

where logit(x) = ln x
1−x is the standard logit link-function.

If the data yi represents the number of successes in a sequence of B independent Bernoulli
experiments, then,

yi ∼ Binomial(B, pi), pi = logit−1(ηi), (9)

Count responses: To model count data yi that can take on integer values 0, 1, 2, . . ., the
Poisson distribution is assumed:

yi ∼ Poisson(λi); λi = exp(ηi). (10)

Ordered categorical responses: To model data yi that are ordered categorical and can
take on the values ` = 1, . . . , L, an ordered logistic model is used,

Pr(yi > `) = logit−1(ηi − c`−1); ` = 1, . . . , L− 1. (11)

The cut-point parameters c` are constrained: 0 = c1 < c2 < · · · < cL−1. We assume c1 = 0,
and the other cut-points follow a normal distribution c` ∼ N(0, σ̄2

` ). The prior distribution
of σ̄2

` is σ̄2
` ∼ Uniform(0, d), with d a hyper-parameter.

Multinomial responses: To model data yi that are categorical and can take on the values
1, . . . , L, a multinomial logistic model (MNL) is used,

Pr(yi = `) = exp(ηi,`)∑L
`=1 exp(ηi,`)

(12)

where ηi,` =
∑P
p=0

∑Jp

j=1X
k,p
i,j,`β

p
j,si
, and Xk,p

i,j,` is the design matrix corresponding to each
response category `(` = 1, . . . , L) of yi.

3. BANOVA R package

3.1. Obtaining the software

The BANOVA software is an add-on package to the statistical software R. It is free and can be
downloaded from the Comprehensive R Archive Network (CRAN, https://CRAN.R-project.
org/package=BANOVA). The BANOVA package is implemented in R and JAGS. Thus, an
additional system requirement is the JAGS software, which can be freely downloaded from
http://mcmc-jags.sourceforge.net/. The package also imports three other packages, run-
jags (Denwood 2016), rjags (Plummer 2016b), and coda (Plummer, Best, Cowles, and Vines
2006) in order to connect R and JAGS and calculate convergence diagnostics. Note, these
three imported packages do not necessarily need to be installed before installing BANOVA.
They are automatically attached to the package and loaded when the package BANOVA is
loaded. However, the JAGS software must be installed in order to estimate any of the models
introduced above. The BANOVA package will automatically detect the location of JAGS
software and connect it via runjags. Once R and JAGS have been installed, BANOVA can
be loaded using the following command: library("BANOVA").

https://CRAN.R-project.org/package=BANOVA
https://CRAN.R-project.org/package=BANOVA
http://mcmc-jags.sourceforge.net/
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3.2. Functionality

BANOVA can fit the Bayesian hierarchical ANOVAmodels introduced in the previous section.
As explained there, the response variable may follow a wide variety of distributions including
normal, student’s t, Poisson, binomial, ordered and unordered multinomial distributions.
Each of the corresponding models can be fitted by a specific function in the package1. The
names of these functions have the form of ‘BANOVA.Binomial’, where the first part specifies the
general name and the second part after the ‘.’ specifies the form of the likelihood. Currently,
there are seven model classes included in the package.

1. BANOVA.Bernoulli() – the model in which the response variable follows a Bernoulli
distribution (Equation 8).

2. BANOVA.Binomial() – the model in which the response variable follows a binomial
distribution (Equation 9).

3. BANOVA.Multinomial() – the model in which the response variable follows an unordered
multinomial distribution (Equation 12).

4. BANOVA.Normal() – the model in which the response variable follows a normal distri-
bution (Equation 6).

5. BANOVA.ordMultinomial() – the model in which the response variable follows an or-
dered categorical distribution (Equation 11).

6. BANOVA.Poisson() – the model in which the response variable is considered a count
variable which follows a Poisson distribution (Equation 10).

7. BANOVA.T() – the model in which the response variable follows a t distribution (Equa-
tion 7).

The predictor for each Bayesian ANOVA model is specified as a regular R object, which is
similar to the lm() and glm() objects in R. This means that the summary(), print() and
predict() functions can be applied to the object in question after fitting the model. In
addition to the common R object functions, the package also includes several useful functions
such as conv.diag(), table.predictions(), table.pvalues() and so on. Their use is
illustrated in following sections.

3.3. Data input

When the data is in ‘.csv’ or other formats, it can be loaded with the R function read.csv()
or other import functions. The package expects the data imported to be in a long format
where each row corresponds to one trial, replication, or time point per subject. Thus, each
subject will have data in multiple rows. Subject ID values must be included in the data
(see Figure 1), and the other columns in the data set contain the dependent variable(s),
the covariates, and the between- and within- subjects experimental factors. The continuous
independent variables in the data are automatically mean-centered within the package. The

1The BANOVA package also comes with a function BANOVA.run(). This function has similar functionality
as the ones described in the paper but interfaces with the Stan (Carpenter et al. 2017) software. It is described
in detail in the manual.
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Figure 1: Example of the format of input data.

between-subjects variables, which are constant within each subject, will have the same value
in all rows containing the data for one subject. The attribute of each of the factors must be
specified as one of the following three classes: “integer", “numeric" or “factor". The function
class() in R can be used to check the classes of factors. For example,

R> class(x)
R> x <- as.factor(x)

For the multinomial response model (Equation 12), the required data format is different from
that shown in Figure 1. The within- subjects data for each subject must be stored in one
item of a ‘list’ in R. For example, if there are 100 subjects, then the list must contain 100
items where each item includes multiple rows that denote the values of the within-subjects
variables. The between-subjects data is stored in a separate data frame where each row
corresponds to one subject. The order of the between-subjects data must match the order
of within-subjects data. For example, although the ‘choicedata’ included in the BANOVA
package is already in a long format, both within-subjects and between-subjects data needs to
be further manipulated. The following R code can be used for that purpose:

R> data("choicedata")
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R> dataX <- list()
R> for (i in 1:nrow(choicedata)){
+ logP <- as.numeric(log(choicedata[i, 3:8]))
+ dataX[[i]] <- as.data.frame(logP)
+ }
R> dataZ <- choicedata[, 9:13]

Data checking for the multinomial and Poisson distributions is handled internally in the
package, and the as.integer operation for categorical response variables is also applied by
default.

3.4. Estimation of the coefficients

As explained above, the BANOVA model is estimated by capitalizing on the fact that it is
a special case of a hierarchical generalized linear model, that is, using Equations 1, 2 and 5.
The conditional posterior distribution, denoted by π(·), of the parameters βpj,s is obtained
from the likelihood and priors:

π(βpj,s|·) ∝ π(yi|β1, . . . ,βp, xi)π(β1|θ1,Z) · · ·π(βp|θp,Z)π(θ1) · · ·π(θp), (13)

where π(yi|β1, . . . ,βp, xi) is the likelihood determined by Equations 1, 2 and 6 to 12; βp =
(βp1, . . . ,β

p
Jp

), p = 1, . . . , P , with βpj = (βpj,1, . . . , β
p
j,s), j = 1, . . . , Jp, are the coefficients of fac-

tor p; θp = (θp1
j,k, θ

p2
j,k, . . . , θ

pQ
j,k ), j = 1, . . . , Jp, k = 1, . . . ,Kq the population-level parameters;

π(θp), p = 1, . . . , P denotes the prior of population-level parameters θp; and π(βp|θp,Z), p =
1, . . . , P , is the prior determined by the population model in Equation 3. We are interested
in the effects of between-subjects factors, captured by θpqj,k, k = 1, . . . ,Kq using the notation
in Equation 3. The conditional posterior distribution of the parameters θpqj,k is:

π(θpqj,k|·) ∝ π(βpj |θ
p,Z)π(θp)

= π(βpj |θ
p,Z)

∏
jk

π(θp1
j,k)

∏
jk

π(θp2
j,k) · · ·

∏
jk

π(θpQj,k ). (14)

where for each θpqj,k a normal prior is assumed, θpqj,k ∼ N(0, s), with hyper-parameter s.

3.5. Parameter values for the prior distributions

All prior distributions for the parameters are conjugate diffuse priors. For the parameters
in Equation 5, these priors are: θpj,k ∼ N(0, s), and σ−2

p ∼ Gamma(a, b), where s, a, b are
hyper-parameters. For Equation 6, the prior is: σ−2 ∼ Gamma(α, β), where α and β are
hyper-parameters. For Equation 7, the prior distributions are φ−2 ∼ Gamma(α, β) and
ν ∼ Poisson(λ), where α, β, λ are hyper-parameters. For Equation 11, the prior distributions
are σ̄2

` ∼ Uniform(0, d), for ` = 2, . . . , L− 1.
The values of the hyper parameters a, b, s in Equation 5 can be assigned by setting the
l2_hyper arguments of the BANOVA package. The values of the hyper parameters α, β in
Equation 6, or the hyper parameters α, β, λ in Equation 7 can be assigned by setting the
l1_hyper arguments for the BANOVA package. In absence of user input of these arguments,
the following default values are assumed: a = 1, b = 1, α = 1, β = 1. Note that these pa-
rameter values for the Gamma distributions imply a considerable prior probability on smaller
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values near zero (Gelman et al. 2013b). Further, the default values of the hyper-parameters
λ = 1 and s = 10−4. For the parameter d in Equation 11 the default value d = 100 is assumed.

3.6. Starting values and burn-in period

Successful implementation of MCMC algorithm requires proper starting values and a suffi-
ciently long burn-in period to ensure convergence. The default number of burn-in is set to
5000, and target draws is 2000. But users can choose different numbers via the arguments
of all BANOVA.*() functions. The burn-in draws are discarded. Default thinning is 1 in 10
draws. The starting values of all parameters are assigned by the R package. For example,
unconstrained parameters are assigned starting values drawn from a normal distribution using
the rnorm() function (the starting values of θpqj,k in Equation 14, for example).

3.7. JAGS code

Based on Equation 13 and 14, the models are built and estimated in JAGS (Just Another
Gibbs Sampler, Plummer (2003)). The JAGS program allows users to write their own models
and select prior distributions, and frees them from dealing with the implementation details
of models and samplers. The BANOVA package generates the JAGS code fully automati-
cally, and runs it. The JAGS software takes care of the work involved in estimating model
parameters by constructing a MCMC algorithm to sample from the posterior distributions of
the parameters. The various functions in the package capture the output of the MCMC al-
gorithms and perform the necessary calculations to present it in a format similar to standard
ANOVA. The JAGS code is produced as part of the output of our package, so that advanced
users can inspect and modify it. The following R command outputs the JAGS code generated
to a file:

R> sink("JAGScode.txt")
R> cat(res$JAGSmodel)
R> sink()

where res is a list returned from the BANOVA.* function. The code can then be modified and
run independently from the package.

3.8. Convergence diagnostics

There is a large number of convergence diagnostics available that can be used to assess whether
the MCMC chains have reached their stationary distributions (e.g., Gill 2007). In the output
of the package, two convergence diagnostics are reported: the Geweke diagnostic (Geweke
1992), and the Heidelberg and Welch (Heidelberger and Welch 1983) diagnostic. These two
convergence diagnostics may be applied with any MCMC method and are calculated based
on only a single MCMC chain, which saves some computation time and is less cumbersome
for the applied user. The functions geweke.diag and heidel.diag in R package coda are
incorporated in our package and used to compute the convergence diagnostics. If so desired
the user can apply other diagnostics from the coda package manually.
Geweke’s convergence diagnostic is calculated by taking the difference between the means
from the first mA iterations and the last mB iterations, where M is the total number of
iterations. If the ratios mA

M and mB
M are fixed and mA + mB < M , then the distribution of
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this diagnostic approaches a standard normal as M → ∞. In the package, mA = 0.1M and
mB = 0.5M .
The Heidelberg and Welch diagnostic is based on a test statistic to accept or reject the
null hypothesis that the Markov chain is at its stationary distribution. The present package
reports the Cramer-von Mises statistic to test for stationarity. The test is iteratively applied
on batches of draws from the posterior distributions. If the null hypothesis is rejected, the
first 10% of the iterations are discarded and the stationarity test repeated. If the test fails
again, an additional 10% of the iterations are discarded and the test is repeated. The process
continues until 50% of the iterations have been discarded and the test still rejects the null
hypothesis. Our package uses the function heidel.diag in the coda package and sets the
parameters ε = 0.1, pvalue = 0.5.
To obtain the convergence tests, the following R command is used:

R> conv.diag(res)

where res is a fitted object from any of the models.
In case the chain does not pass one or more of the convergence tests, a warning message will
be automatically displayed: ‘The chain may not have converged. Consider a longer burn-
in, speeding up the convergence by setting conv_speedup = T, or modifying the model.’ The
default number of burn-in draws is set to 5000, which the user can change manually to a larger
number. For speeding up of convergence when conv_speedup = T is specified, an additional
scale parameter is added which avoids the sampler getting stuck due to near-zero draws of
variance parameters, as suggested by Gelman et al. (2013b) and Gelman and Hill (2006).

3.9. Tables of predictions

One key output of the package is a table of predicted values, classified by the factors at both
level 1 and level 2. In line with ANOVA terminology these tables are called ‘tables of means’.
As explained above, effects-coding is used to estimate the parameters of categorical variables,
using the last level of each factor as the reference level. However, especially when there are
multiple factors and interactions, interpretation of the parameter estimates is cumbersome.
Therefore, posterior samples of each θpqj,k in Equation 3 generated by MCMC are used in
the calculation of ‘tables of means’, similar to those produced by standard ANOVA. The
advantage of doing this is that this output is familiar to behavioral applied researchers and
relatively easy to interpret. Because these statistics are computed for each draw from the
posterior distribution of the parameters, statistics from their posterior distributions are readily
available. The package therefore also computes 95% credible intervals.
Let θpqj,k,m denote the posterior sample of θpqj,k in mth (m = 1, 2, . . . ,M) draw of the MCMC
chain. Then the predicted grand mean is:

µ̄ =
∑
m g
−1(θ00

m )
M

, (15)

where θ00
m is themth draw of the level-2 intercept corresponding to the level-1 intercept, which

is equal to the grand mean. The 95% credible interval is simply provided by the 2.5% and
97.5% quantiles of the posterior distribution of {g−1(θ00)}.
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Higher order tables are computed as illustrated below. For example, in computing the one-
way table of predictions of a level-1 factor A, the posterior mean of its level j is calculated
as:

µ̄Aj =
∑
m g
−1(θ00

m + XA′
j θA0

m )
M

, (16)

where XA
j is the effects-coded column vector of factor levels, corresponding to level j of factor

A, in which all other factors and covariates are set to be 0; θA0
m is the mth draw of the vector

of level-2 intercepts corresponding to level-1 factor A.
As another example, in computing the one-way table of predictions of a level-2 factor B, the
posterior mean of its level j is calculated as:

µ̄Bj =
∑
m g
−1(θ00

m + Z′j,Bθ0B
m )

M
, (17)

where Zj,B is the effects-coded column vector of factor levels corresponding to level j of factor
B, in which all other factors and covariates are set to be 0; θ0B

m is the mth draw of the vector
of level-2 coefficients of the effect of factor B on the level-1 intercept.
Continuing the example, the means of the two-way table classified by A and B (level j of
factor A and level k of factor B) is calculated as:

µ̄ABj,k =
∑
m g
−1(θ00

m + XA′
j θABj,k,mZ′k,B)

M
, (18)

where θABj,k,m is the mth draw from the coefficient matrix, the kth row of which is a vector of
level-2 coefficients representing the effect of factor B on to the jth level of level-1 factor A.
Based on the above formulas, the function table.predictions() computes the tables of
predicted values, or ‘means’ and their posterior quantiles.

R> table.predictions(res)

3.10. Table of sums of squares and effect sizes

If the experimental design is balanced, the level-2 parameters in Equations 3 or 5 allow for
a variance decomposition to produce sums-of-squares and effect sizes. Both of these sets of
statistics are important in interpreting the results of experiments in behavioral and social
research. For this purpose, it is convenient to consider the BANOVA as a regression as in
Equation 5, so that for θpj = (θpj,1, θ

p
j,2, . . . , θ

p
j,K) the total sum of squares can be represented

as
SS(θpj ) = θp

′

j Z′βpj . (19)

In the package, Equation 19 is estimated as SS(θpj ) =
∑

θp′
j,mZ′βp

j,m

M where m indexes the
samples from the posterior distributions of θp

′

j and βpj . If the design matrix Z is orthogonal,
then the sum of squares attributable to each of the factors and their interactions can be
written in terms of the sub-matrices Zq of Z, which are associated with each factor q and its
coefficients θpqj = (θpqj,1, . . . , θ

pq
j,Kq

), q = 1, . . . , Q. (e.g., Draper and Smith 1998),

SS(θpqj ) = θpq
′

j Z′qβ
p
j , (20)
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Where θpqj is the vector of coefficients of the dummy variables corresponding to main effect

or interaction q. Equation 20 is estimated as SS(θpqj ) =
∑

θpq′
j,mZ′

qβp
j,m

M . For orthogonal designs
it holds that

SS(θpj ) = SS(θp1
j ) + SS(θp2

j ) + · · ·+ SS(θpQj ). (21)

If the design is not balanced, type III sum-of-squares are computed(interactions included).
These reflect the presence of an effect after the other main effects and interactions are ac-
counted for, and are valid in the presence of significant interactions (Fox 1997).
The effect size measures the degree of association between a model term(e.g., a main effect, an
interaction, a linear contrast) and the dependent variable, and is interpreted as the proportion
of variance that is attributable to that term. Effect sizes are of eminent importance in applied
research, where they are used as additional information next to statistical significance levels.
There are several measures of effect size (Kirk 1982; Tabachnick and Fidell 1989). Gelman
and Pardoe (Gelman and Pardoe 2006) define an R2 for multilevel models as follows. A
multilevel model with m equations can be written as:

θ
(m)
k = X(m)β(m) + ε

(m)
k . (22)

X(m) are the predictors at level m of the model; k = 1, . . . ,K indexes the observations at
levelm; and the errors ε(m)

k ∼ N(0, σ(m)). The θ(m)
k represent batches of regression coefficients

from level-1. Gelman and Pardoe now define the R2 as follows:

R2(m) = 1− E[S(ε(m)
k )]

E[S(θ(m)
k )]

. (23)

Here E[·] is the posterior mean, calculated by averaging across draws in the Gibbs sampler,
and S(·) represents the finite-sample operator, S(xi) =

∑n
i=1(xi − x̄)2 = (n − 1) × V ar(xi).

This R2 measure is an adjusted R2, because it averages over the uncertainty of the parameter
estimates through the expectation operator (across draws of the Gibbs sampler).
We generalize this to a partial effect size measure as follows. At levelm, the predictor variables
can be partitioned as X(m) = (X(m)

0 | . . . |X(m)
l | . . . |X(m)

L ), into L subsets of predictors, where
each subset corresponds to, for example, a set of dummy variables representing a single factor,
or representing an interaction. We let X(m)

0 denote the intercept dummy. The corresponding
subsets of coefficients are denoted as β(m,l)

k , and β(m)
0 is the intercept, which represents the

average effect of within-subject factor m. It holds that:

ε
(m)
k = θ

(m)
k −X(m)β(m), (24)

Which also defines how ε
(m)
k can be computed for each draw in the MCMC chain. We now

define a set of ‘partial residuals’:

ε
(m,−l)
k = θ

(m)
k −X(m)β(m) +X

(m)
l β(m,l), (25)

Note that at level-1 of hierarchical models for which data points,yi,j are non-normal, these
residuals are not well-defined. Therefore, all computations are at level 2 of the model. Various
sum-of-squares(SS) are defined as follows,
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the total SS for equation m is:

SS
(m)
Tot = E[S(θ(m)

k )]. (26)

The residual SS is:
SS

(m)
Res = E[S(ε(m))]. (27)

The SS for term l in equation m is:

SS
(m)
l = E[S(ε(m,−l))− S(ε(m))]. (28)

The SS for the intercept in equation m is:

SS
(m)
0 = E[θ(m)′

k θ
(m)
k − S(θ(m)

k )]. (29)

The latter SS of the intercept is the average effect of the within-subject factor. It is calculated
from the difference of the raw and adjusted sum-of-squares of θ(m)

k . From these SS we can
calculate a partial effect size, η2

P , for each of the M equations at level-2 (between-subject).
Partial η2

p have been argued to be a preferable measure (Lakens 2013). We define these partial
effect sizes as:

η2
p,l = SS

(m)
l

SS
(m)
l + SS

(m)
Res

= E

[
S(ε(m,−l))− S(ε(m))

S(ε(m,−l))

]
, (30)

and for the intercept η2
p,0 = SS

(m)
0

SS
(m)
0 +SS(m)

Res

.

In the case of 1-level (between-subject) models, similar measures of effect size, partial η2
p are

calculated, but using approximations to the level-1 error sum of squares (SSRes) by Nakagawa
and Schielzeth (2013). In the package, the function BAnova() performs all computations
discussed above and outputs a table of sums of squares and effect sizes,

R> BAnova(res)

3.11. Table of p values

The BANOVA package computes Bayesian p values for posteriors of each factor (Gill 2007),
which enables significance testing.
The two-sided Bayesian p value is obtained by first finding the one sided p value, or the
posterior probability that the coefficient is positive, P (θpqj,k > 0), or that it is negative

P (θpqj,k < 0), which are estimated from posterior samples as, respectively,
∑

m
(I(θpq

j,k,m
>0))

M ,

and
∑

m
(I(θpq

j,k,m
<0))

M . Then, the two sided p value is calculated as follows:

Pθ(θpqj,k) = 2×min(P (θpqj,k < 0), P (θpqj,k > 0)). (31)

If the coefficients θpqj,k1
, θpqj,k2

, . . . , θpqj,kJ
represent J > 2 levels of a factor, we calculate a single

p value to represent the significance differences among all levels, as in standard ANOVA.
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We compute the Bayesian p values in this case as follows2. Let θpqj,kmin
and θpqj,kmax

denote the
coefficients with the smallest and largest posterior mean. Then the value is defined as

min(Pθ(θpqj,kmin
), Pθ(θpqj,kmax

)). (32)

The function table.pvalues() in the BANOVA package computes p values for all factors
and outputs a table of p values.

R> table.pvalues(res)

It should be noted that p values are often misinterpreted and misused, especially when “levels
of significance" based on cutoff values such as 0.05 or 0.01 are reported (see for example, Nuzzo
(2014); Gelman (2013)). It is beyond the scope of this article to provide a detailed guide on
the proper use and interpretation of the Bayesian p values produced by the BANOVA package,
but we emphasize that conducting repeated analyses of the same data until a certain level
of significance is reached renders the reported significance levels useless. P-values should be
interpreted as measures of evidence of an effect in conjunction with other statistical measures
such as credible intervals and effect-sizes (See the American Statistical Association’s statement
on p values, Wasserstein and Lazar 2016).

4. Applications
In this section, we provide three applications of the BANOVA package to the analysis of previ-
ously published experimental studies. The first study by Etkin and Ratner (2012) investigated
how the perceived variety among products, as means to a goal, affects peoples’ motivation to
pursue that goal. In this application we illustrate a between-subjects BANOVA, with depen-
dent variables that are, respectively normal and ordered categorical. The second study, by
Ferraro, Kirmani, and Matherly (2013), examines the effects of conspicuous brand usage on
consumers’ attitudes toward a brand. In this application, we illustrate hierarchical BANOVA
models, with continuous covariates normal and t distributed dependent variables. The third
study by Wedel and Pieters (2015) investigates the effects of color on the rapid gist perception
of advertising. In this study, we illustrate the application of a hierarchical BANOVA with
both within- and between-subjects factors, and a binomial dependent variable.

4.1. Application 1: Impact of the variety among means on motivation

In this examples we illustrate the application of the BANOVA package on a data from a study
on goal attainment (Etkin and Ratner 2012). The study investigated how the perceived variety
(high vs. low) among products, as means to a subjects’ goal, affects the motivation to pursue
that goal. The hypothesis was that only when progress toward a goal is low, product variety
increases motivation to pursue the goal. In the study, 105 subjects were randomly assigned to
one of four conditions in a 2 (goal progress: low vs. high) × 2 (variety among means: low vs.
high) between-subjects design. The study used a “fitness goal", and the products used were
protein bars; variety was manipulated by asking subjects to think about how the products
were similar (low) or different (high); goal progress was primed by asking subjects questions

2It borrows the idea of Sheffé F test for multiple testing: the F statistic for testing the contrast with
maximal difference from zero.
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regarding the frequency of their recent workouts on low (0, 1, . . . , 5 or more) versus high (5
or less, 6, 7, . . . , 10) frequency scales. Subjects were asked questions regarding the similarity
of protein bars as a manipulation check, and the bid they were willing to make for the bars,
which are used as dependent variables in the study.
The data can be loaded by the following R command:

R> data("goalstudy")

The structure of the data is shown below:

R> head(goalstudy)

id perceivedsim progress prodvar bid
1 1 5 1 2 5
2 2 7 1 1 0
3 3 2 2 2 1
4 4 2 2 1 15
5 5 5 2 1 3
6 6 5 1 1 10

The between-subjects variables are: progress, which denotes the progress toward a goal (1:low,
2:high); prodvar, which denotes the amount of variety within the means to goal attainment
(1:low, 2:high); perceivedsim, which is a seven-point scale dependent variable measuring the
perceived similarity of the products (1 = not at all similar, 7 = very similar); and bid which
denotes the amount that subjects would be willing to pay for the products.
In the first analysis, we consider the log transform of the bid amount (log(bid + 1)) as the
dependent variable, assumed to follow a normal distribution. This analysis comprises a 2 (goal
progress: low vs. high) × 2 (variety among means: low vs. high) between-subjects BANOVA
of the bid amount. Since the study only involves a between-subjects design, the single level
model should be applied. A full two-level model that incorporates a within-subject model
with only an intercept is not identified. The function BANOVA.Normal() is used to execute
the analysis (the single level model is specified through the level 1 formula). Level 1 hyper-
parameters can be specified through the argument l1_hyper (see Section 3.5). For single level
models, l1_hyper also includes the hyper-parameter γ, where βpj,i ∼ N(0, γ) (see Equation 2
where si is replaced by i).

R> set.seed(123)
R> goalstudy$logbid <- log(goalstudy$bid + 1)
R> app_1 <- BANOVA.Normal(logbid ~ progress * prodvar, l1_hyper =
+ c(1,1,0.0001), data = goalstudy, id = goalstudy$id, burnin = 5000,
+ sample = 1000, thin = 20)

The posterior means and standard deviations of the hyper parameters are reported from
1000 target samples, with a thinning factor of 20 to reduce autocorrelation, and with 5,000
samples being discarded as the burn-in period, for a total of 25,000 samples. To confirm that
the chain has converged after the burn-in, the following R command outputs the Geweke’s
and the Heidelberg and Welch convergence diagnostics. The results are shown below,
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R> conv.diag(app_1)

Geweke Diag. & Heidelberger and Welch's Diag.
Geweke stationarity test Geweke convergence p value

(Intercept) passed 0.9207
progress1 passed 0.4004
prodvar1 passed 0.3560
progress1:prodvar1 passed 0.3451

H. & W. stationarity test H. & W. convergence p value
(Intercept) passed 0.7390
progress1 passed 0.0641
prodvar1 passed 0.0984
progress1:prodvar1 passed 0.6115

The Chain has converged.

The above result indicates that the chains converged well before the end of the burn-in. The
function trace.plot() provides visual diagnostics of convergence, some of the results are
shown in Figure 2.
The posterior means, standard deviations, 95% credible intervals and Bayesian p values of
hyper parameters are computed as follows, and the results are shown below. Note that
effect sizes are calculated here using Nakagawa and Schielzeth (2013). Following standard
conventions, we will call an effect ‘significant’ if the 95% posterior credible interval of the
parameter does not cover zero.

R> summary(app_1)

Call:
BANOVA.Normal(l1_formula = logbid ~ progress * prodvar, data = goalstudy,

id = goalstudy$id, l1_hyper = c(1, 1, 1e-04), burnin = 5000,
sample = 1000, thin = 20)

Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test Geweke convergence p value
(Intercept) passed 0.9207
progress1 passed 0.4004
prodvar1 passed 0.3560
progress1:prodvar1 passed 0.3451

H. & W. stationarity test H. & W. convergence p value
(Intercept) passed 0.7390
progress1 passed 0.0641
prodvar1 passed 0.0984
progress1:prodvar1 passed 0.6115

The Chain has converged.
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Figure 2: Trace plots of (selected) posterior distributions of the parameters of the goalstudy
application.

Table of sum of squares:
(Intercept) progress prodvar progress:prodvar Residuals Total

121.4737 0.0000 0.0000 6.6300 80.2442 207.1871

Table of effect sizes (95% credible interval):
(Intercept) progress prodvar progress:prodvar

0.6023 (0.59,0.61) 0.0000 (-0.05,0) 0.0000 (-0.06,0) 0.0763 (0.04,0.09)

Table of p-values (Multidimensional):
(Intercept) progress prodvar progress:prodvar

<0.0001 0.5720 0.6560 <0.0001

Table of coefficients:
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mean SD Quantile0.025 Quantile0.975 p.value
(Intercept) 1.0842 0.0859 0.9182 1.2480 <0.0001
progress1 0.0490 0.0881 -0.1251 0.2262 0.5720
prodvar1 0.0373 0.0885 -0.1468 0.1987 0.6560
progress1:prodvar1 -0.2665 0.0859 -0.4260 -0.0883 <0.0001

Signif.codes
(Intercept) ***
progress1
prodvar1
progress1:prodvar1 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table of predictions:

Grand mean:
1.0842

2.5% 97.5%
0.9182 1.2480

progress mean 2.5% 97.5%
1 1.1331 0.8711 1.3674
2 1.0352 0.7906 1.261

prodvar mean 2.5% 97.5%
1 1.1215 0.8774 1.3419
2 1.0469 0.7855 1.2995

progress prodvar mean 2.5% 97.5%
1 1 0.9039 0.5647 1.2239
2 1 1.339 0.9716 1.6646
1 2 1.3624 0.9966 1.7243
2 2 0.7313 0.3961 1.0531

Based on the table of p values and coefficients in the above results, the interaction between
variety among means (prodvar) and goal progress (progress) is significant, and the effect size
is 0.076. The table of predictions, which can also be produced with the command below,
shows that when goal progress was low (progress = 1), participants bid more for the products
when perceived variety was high (prodvar = 2) versus low (prodvar = 1). On the contrary,
when goal progress was high, participants bid more when perceived variety was low versus
high.

R> table.predictions(app_1)

To predict specific values of the dependent variable, the function predict() in R can be
applied to the objects returned by BANOVA.*(). For example, to predict the value of the
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dependent variable for the 3rd subject in the data set, with respectively a situation of low
goal progress and a high variety, the following R commands can be used:

R> predict(app_1, goalstudy[3, ])

Median 2.5% 97.5%
[1,] 0.72915 0.39608 1.05315

To predict the value of the dependent variable for a situation of low goal progress (progress:
1) and a high variety (prodvar: 2), respectively using the entire data set, the following R
commands can be used (the results are not shown):

R> predict(app_1, c(0, 0, 1, 2, 0, 0))

where all variables must have values, but only the values of ‘progress’ and ‘prodvar’ are
considered. To obtain the prediction for the entire training data,

R> predict(app_1, goalstudy)

Since even the log-normal distribution may not describe the bid data very well, it could also
be analyzed assuming a Poisson distribution for the bid amounts (there are only a few non-
integer values which are rounded, the program will automatically convert them to integers).
The following R commands constructs the BANOVA model (a two-level model is used since
the model is identified in this case) and summarizes the results shown below .

R> set.seed(200)
R> goalstudy$bid <- as.integer(goalstudy$bid + 0.5)
R> app_1a <- BANOVA.Poisson(bid ~ 1, ~ progress * prodvar, goalstudy,
+ goalstudy$id, burnin = 5000, sample = 1000, thin = 20)
R> summary(app_1a)

Call:
BANOVA.Poisson(l1_formula = bid ~ 1, l2_formula = ~progress *

prodvar, data = goalstudy, id = goalstudy$id, burnin = 5000,
sample = 1000, thin = 20)

Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test
(Intercept) : (Intercept) passed
(Intercept) : progress1 passed
(Intercept) : prodvar1 passed
(Intercept) : progress1:prodvar1 passed

Geweke convergence p value
(Intercept) : (Intercept) 0.8673
(Intercept) : progress1 0.1538
(Intercept) : prodvar1 0.7579
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(Intercept) : progress1:prodvar1 0.0121
H. & W. stationarity test

(Intercept) : (Intercept) passed
(Intercept) : progress1 passed
(Intercept) : prodvar1 passed
(Intercept) : progress1:prodvar1 passed

H. & W. convergence p value
(Intercept) : (Intercept) 0.4975
(Intercept) : progress1 0.4302
(Intercept) : prodvar1 0.9295
(Intercept) : progress1:prodvar1 0.3547

The Chain has converged.

Table of sum of squares:
(Intercept) progress prodvar progress:prodvar Residuals

(Intercept) 36.1956 0.1547 0.0000 18.8228 147.6913
Total

(Intercept) 202.4099

Table of effect sizes (95% credible interval):
(Intercept) progress prodvar

(Intercept) 0.2044 (0.06,0.37) 8e-04 (-0.04,0.03) 0.0000 (-0.04,0.02)
progress:prodvar

(Intercept) 0.1132 (0.04,0.2)

Table of p-values (Multidimensional):
(Intercept) progress prodvar progress:prodvar

(Intercept) <0.0001 0.5040 0.6740 0.0020

Table of coefficients:
mean SD Quantile0.025

(Intercept) : (Intercept) 0.5881 0.1564 0.2508
(Intercept) : progress1 0.0956 0.1390 -0.1741
(Intercept) : prodvar1 0.0583 0.1449 -0.2255
(Intercept) : progress1:prodvar1 -0.4320 0.1439 -0.7181

Quantile0.975 p.value Signif.codes
(Intercept) : (Intercept) 0.8683 <0.0001 ***
(Intercept) : progress1 0.3720 0.5040
(Intercept) : prodvar1 0.3464 0.6740
(Intercept) : progress1:prodvar1 -0.1574 0.0020 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table of predictions:

Grand mean:
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3.7094
2.5% 97.5%

2.7128 5.3568

progress mean 2.5% 97.5%
1 4.0816 2.6784 6.5408
2 3.3711 2.2097 5.3548

prodvar mean 2.5% 97.5%
1 3.9321 2.6417 6.331
2 3.4992 2.3334 5.813

progress prodvar mean 2.5% 97.5%
1 1 2.8089 1.6215 5.2839
2 1 5.5046 3.1436 10.6318
1 2 5.9309 3.3223 11.6468
2 2 2.0645 1.1538 3.8519

We next analyze the manipulation check variable: the perceived similarity of the products is
the dependent variable, and is expected to be different between the levels of the varmeans
factor. Since it is a seven-point scale variable, an ordered multinomial distribution is used.
The 2 (goal progress: low vs. high) × 2 (variety among means: low vs. high) BANOVA is
executed using the function BANOVA.ordMultinomial() in the BANOVA package. Since the
study only involves a between-subjects design, the single level model is used. All between-
subjects factors are included in the model. The analysis is done with the following commands,
the results are provided below.

R> set.seed(300)
R> app_2 <- BANOVA.ordMultinomial(perceivedsim ~ progress * prodvar,
+ data = goalstudy, id = goalstudy$id, burnin = 3000, sample = 1000,
+ thin = 5)
R> summary(app_2)

Call:
BANOVA.ordMultinomial(l1_formula = perceivedsim ~ progress *

prodvar, data = goalstudy, id = goalstudy$id, burnin = 3000,
sample = 1000, thin = 5)

Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test Geweke convergence p value
(Intercept) passed 0.2757
progress1 passed 0.3009
prodvar1 passed 0.0870
progress1:prodvar1 passed 0.5713
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H. & W. stationarity test H. & W. convergence p value
(Intercept) passed 0.8585
progress1 passed 0.7689
prodvar1 passed 0.2051
progress1:prodvar1 passed 0.7204

The Chain has converged.

Table of sum of squares:
(Intercept) progress prodvar progress:prodvar Residuals Total

987.7214 4.2523 78.4044 6.6463 171.0731 1248.0976

Table of effect sizes (95% credible interval):
(Intercept) progress prodvar progress:prodvar

0.8438 (0.76,0.91) 0.0234 (0,0.1) 0.3017 (0.11,0.47) 0.0355 (0,0.14)

Table of p-values (Multidimensional):
(Intercept) progress prodvar progress:prodvar

<0.0001 0.5700 <0.0001 0.2840

Table of coefficients:
mean SD Quantile0.025 Quantile0.975 p.value

(Intercept) 3.0133 0.4309 2.2665 4.0040 <0.0001
progress1 -0.1021 0.1749 -0.4397 0.2363 0.5700
prodvar1 0.8468 0.1936 0.4622 1.2150 <0.0001
progress1:prodvar1 0.1855 0.1723 -0.1341 0.5168 0.2840
Cutpoint[2] 1.408 0.3629 0.8159 2.2446 <NA>
Cutpoint[3] 2.2899 0.4144 1.6157 3.2244 <NA>
Cutpoint[4] 3.1432 0.4489 2.3404 4.1418 <NA>
Cutpoint[5] 4.3124 0.4915 3.4314 5.4008 <NA>
Cutpoint[6] 5.7013 0.5637 4.7653 6.8732 <NA>

Signif.codes
(Intercept) ***
progress1
prodvar1 ***
progress1:prodvar1
Cutpoint[2] <NA>
Cutpoint[3] <NA>
Cutpoint[4] <NA>
Cutpoint[5] <NA>
Cutpoint[6] <NA>
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
[...]

The chain converged well within the burn-in period. The posterior means and standard
deviations of the hyper parameters are reported from a total of 8,000 samples, with 3,000



24 BANOVA: Hierarchical Bayesian ANOVA in R

being discarded as the burn-in period, and the remaining 5,000 samples thinned by a factor
5. From the p values, we can see that only the variety factor (prodvar) has a significant effect
on the perceived similarity of the products and the table of sums of squares shows that the
effect size is relatively large. The table of predictions (not shown in the summary above) can
be produced with the following command, and the result is provided below.

R> table.predictions(app_2)

Table of means of the response
------------------------------

Grand mean:
4.2031

2.5% 97.5%
3.8889 4.5099

progress mean 2.5% 97.5%
1 4.113 3.6628 4.562
2 4.2915 3.8614 4.6916

prodvar mean 2.5% 97.5%
1 4.9194 4.4981 5.3237
2 3.4561 3.0323 3.8977

progress prodvar mean 2.5% 97.5%
1 1 4.9832 4.3987 5.5714
2 1 4.8483 4.2947 5.377
1 2 3.2103 2.6672 3.796
2 2 3.7096 3.1145 4.3472
[...]

From the table of predictions of the factor prodvar, we conclude that subjects perceived the
products as more similar when asked to think about how they were similar versus differ-
ent, which supports the experimental manipulation and is consistent with Etkin and Ratner
(2012). The function table.predictions() in the case of an ordered categorical variable
also provides a more detailed table with the probabilities of each response category. For ex-
ample, the table of probabilities corresponding to response 1 (not at all similar) of the variable
prodvar, is shown below (the remainder of the output for the other six response categories is
not shown). From the table, we can see that subjects are more likely to provide the response
value 1 when perceived variety was high, which is in line with the results above.

Table of probabilities for each category of the response
-------------------------------------------------------

Response : 1
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Grand mean:
0.0504

2.5% 97.5%
0.0176 0.0939

progress mean 2.5% 97.5%
1 0.056 0.0193 0.1054
2 0.0466 0.015 0.0964

prodvar mean 2.5% 97.5%
1 0.0231 0.0071 0.0492
2 0.1094 0.0413 0.1954

progress prodvar mean 2.5% 97.5%
1 1 0.0219 0.006 0.0502
2 1 0.0257 0.007 0.0607
1 2 0.142 0.0489 0.2717
2 2 0.087 0.0278 0.1786

To predict means corresponding to the first two data points in goalstudy, the predict()
command is used, which outputs the probabilities for each category of each data point.

R> predict(app_2, goalstudy[1:2, ])

Sample number Response Median 2.5% 97.5%
[1,] 1 1 0.13388 0.04889 0.27168
[2,] 1 2 0.24176 0.13774 0.38059
[3,] 1 3 0.20875 0.12556 0.31200
[4,] 1 4 0.17230 0.09704 0.26221
[5,] 1 5 0.13830 0.07083 0.22450
[6,] 1 6 0.05772 0.02522 0.12334
[7,] 1 7 0.02146 0.00724 0.05610
[8,] 2 1 0.01944 0.00599 0.05017
[9,] 2 2 0.05326 0.02177 0.11453

[10,] 2 3 0.08512 0.03998 0.16265
[11,] 2 4 0.14373 0.07451 0.23643
[12,] 2 5 0.26749 0.18634 0.37241
[13,] 2 6 0.25146 0.15141 0.38959
[14,] 2 7 0.14832 0.06601 0.29467

The JAGS code for the above model generated by the program can be easily retrieved by the
following R command.

R> cat(app_2$JAGSmodel)
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model{
for (i in 1:n){

y[i] ~ dcat(P[i,])
P[i,1] <- 1 - Q[i,1]
for (i.cut in 2: n.cut) {

P[i,i.cut] <- Q[i,i.cut-1] - Q[i,i.cut]
}
P[i,n.cut+1] <- Q[i,n.cut]
for (i.cut in 1:n.cut){

logit(Q[i,i.cut]) <- z[i,i.cut]
z[i,i.cut] <-beta1*X[i,1]+beta2*X[i,2]+beta3*X[i,3]+beta4*X[i,4]-
cutp[i.cut]*(1-equals(i.cut,1))

}
}
beta1~dnorm(0,1e-04)
beta2~dnorm(0,1e-04)
beta3~dnorm(0,1e-04)
beta4~dnorm(0,1e-04)
for (i.cut in 1: n.cut) {

cutp0[i.cut] ~ dnorm(0,tau.cut)
}
tau.cut ~ dunif(0,100)
cutp[1:n.cut] <- sort(cutp0)

}

Note that, for the convenience of generation of the JAGS code, the program uses a uniform
naming scheme for all level 1 and level 2 parameters which are different from the names in
the original data.

4.2. Application 2: Conspicuous brand usage

We next illustrate the BANOVA package on data from a study that examines consumers’
attitudes toward a brand after seeing another consumer conspicuously using it (Ferraro et al.
2013). Conspicuous brand usage occurs when a consumer draws attention to a brand she
uses by flaunting (Ferraro et al. 2013). 154 subjects from an online panel participated in the
study. Conspicuousness was manipulated as a between-subjects factor, by exposing subjects
to a forty-five seconds video in which the conspicuous usage of the brand (Apple ipad) was
manipulated (low vs high conspicuousness). In addition, the so called self-brand connection
was measured: this refers to the extent to which a consumers’ own self-concept matches the
image she has of a certain brand. Brand attitude was calculated as the average of three
seven-point scale questions (dislike/like, unfavorable/favorable and bad/good). The relation
between conspicuousness, self-brand connection, and brand attitudes was investigated. The
analysis aims to test the hypothesis that there are negative effects of conspicuous brand usage
on the attitudes toward the brand, only for subjects that have a low self-brand connection.
This example illustrates a BANOVA model with continuous covariates. Brand attitude is
considered as a continuous dependent variable, assumed to follow a normal distribution. Data
of this study can be loaded by the following R command:
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R> data("ipadstudy")

The data is displayed in the long format including only responses and between-subjects vari-
ables.

R> head(ipadstudy)

id attitude owner age gender conspic selfbrand apple_dl
1 1 3.000000 0 19 0 0 -2.3042672 3
2 2 5.333333 0 33 0 1 1.6957328 6
3 3 5.666667 0 25 1 0 -0.1614100 6
4 4 5.333333 1 41 0 1 -0.4471243 5
5 5 6.000000 1 38 1 1 0.2671614 6
6 6 4.000000 0 33 1 0 0.6957328 4

The between-subjects variables are: selfbrand, which is a numerical variable (mean centered)
representing self-brand connection; and conspic, which is a two-level factor corresponding to
the two levels of conspicuousness (0: low, 1: high). There are a number of control variables:
owner denotes whether participants owned the product (1: yes, 0: no); age in years; and
gender (1: female, 0: male). Finally id is the identification number of the subjects.
The BANOVA uses as a dependent variable the attitude toward the brand, measured by
averaging answers on three seven-point scales. The model can be estimated using the function
BANOVA.Normal() in the BANOVA package. Since it is a between-subjects design without
repeated measurements, the within-subjects model is not included. The between-subjects
covariates include owner, age, gender, selfbrand and the interaction between conspic and
selfbrand. The two-level factor conspic is effect-coded and the one-way between-subjects
BANOVA is specified as follows (note that the covariates must be mean centered: the program
will automatically do so).

R> set.seed(400)
R> app_3 <- BANOVA.Normal(attitude ~ owner + age + gender + selfbrand *
+ conspic, l1_hyper = c(1,1,0.0001), data = ipadstudy, id = ipadstudy$id,
+ burnin = 5000, sample = 1000, thin = 10)

The posterior means and standard deviations of the hyper parameters are reported from a
total 15,000 samples, with 5,000 being discarded as the burn-in period, and the remainder
thinned by a factor 10. The chain converged well within the burn-in period. The table of
sums-of-squares, effect sizes and p values, as well as the posterior means, standard deviations,
95% credible intervals, and p values of hyper parameters are computed as follows, the results
are shown below.

R> summary(app_3)

Call:
BANOVA.Normal(l1_formula = attitude ~ owner + age + gender +

selfbrand * conspic, data = ipadstudy, id = ipadstudy$id,
l1_hyper = c(1, 1, 1e-04), burnin = 5000, sample = 1000, thin = 10)
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Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test Geweke convergence p value
(Intercept) passed 0.8680
owner1 passed 0.8201
age passed 0.0341
gender1 passed 0.3474
selfbrand passed 0.3301
conspic1 passed 0.3339
selfbrand:conspic1 passed 0.9964

H. & W. stationarity test H. & W. convergence p value
(Intercept) passed 0.5686
owner1 passed 0.9509
age passed 0.0581
gender1 passed 0.4634
selfbrand passed 0.4829
conspic1 passed 0.3842
selfbrand:conspic1 passed 0.9657

The Chain has converged.

Table of sum of squares:
(Intercept) owner age gender selfbrand conspic selfbrand:conspic

4270.0702 10.8921 0.0000 0.0000 151.1170 6.8708 4.9632
Residuals Total
191.5908 4677.7778

Table of effect sizes (95% credible interval):
(Intercept) owner age gender

0.9571 (0.95,0.96) 0.0535 (0.02,0.09) 0.0000 (-0.03,0) 0.0000 (-0.04,0)
selfbrand conspic selfbrand:conspic

0.4403 (0.39,0.48) 0.0346 (0.01,0.04) 0.0252 (0,0.04)

Table of p-values (Multidimensional):
(Intercept) owner age gender selfbrand conspic selfbrand:conspic

<0.0001 0.0060 0.8840 0.8540 <0.0001 0.0160 0.0200

Table of coefficients:
mean SD Quantile0.025 Quantile0.975 p.value

(Intercept) 5.3832 0.1010 5.1850 5.5782 <0.0001
owner1 -0.3058 0.1088 -0.5084 -0.0854 0.0060
age -0.0009 0.0100 -0.0190 0.0191 0.8840
gender1 0.0180 0.0972 -0.1786 0.2080 0.8540
selfbrand 0.6272 0.0629 0.4995 0.7476 <0.0001
conspic1 0.2304 0.0892 0.0564 0.3922 0.0160
selfbrand:conspic1 -0.1298 0.0583 -0.2433 -0.0198 0.0200
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Signif.codes
(Intercept) ***
owner1 **
age
gender1
selfbrand ***
conspic1 *
selfbrand:conspic1 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table of predictions:

Grand mean:
5.3832

2.5% 97.5%
5.1850 5.5782

owner mean 2.5% 97.5%
0 5.0774 4.8465 5.3033
1 5.689 5.3597 6.0168

gender mean 2.5% 97.5%
0 5.4012 5.1007 5.6919
1 5.3652 5.1031 5.6141

conspic mean 2.5% 97.5%
0 5.6136 5.344 5.8727
1 5.1528 4.8807 5.4065

Based on the above estimates, conspicuousness, self-brand connection and the interaction:
conspicuousness × self-brand connection, significantly affect the attitude towards the brand,
consistent with Ferraro et al. (2013). Note that since since there are continuous covariates,
a type III analysis of variance is used, so that the sum of squares (and effect size) for each
effect is computed conditional upon all other effects. Thus they do not add up to the total
sum of squares.
In this application, the distribution of the dependent variable is continuous, but it may have
fatter tails than the normal. The function BANOVA.T() can be applied to construct a BANOVA
model in which the response variable is assumed to follow a student’s t distribution. This
permits (weakly) robust inference (Bernardo and Giron 1992), as it allows for fatter tails and
outliers in the data. The results, shown below, are similar to those in the results above which
supports their robustness, and are not discussed further here.

R> set.seed(600)
R> app_4 <- BANOVA.T(attitude ~ owner + age + gender + selfbrand * conspic,
+ l1_hyper = c(1, 1, 1, 0.0001), data = ipadstudy, id = ipadstudy$id,
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+ burnin = 3000, sample = 1000, thin = 5)
R> summary(app_4)

Call:
BANOVA.T(l1_formula = attitude ~ owner + age + gender + selfbrand *

conspic, data = ipadstudy, id = ipadstudy$id, l1_hyper = c(1,
1, 1, 1e-04), burnin = 3000, sample = 1000, thin = 5)

Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test Geweke convergence p value
(Intercept) passed 0.5343
owner1 passed 0.7222
age passed 0.1984
gender1 passed 0.9594
selfbrand passed 0.7945
conspic1 passed 0.9094
selfbrand:conspic1 passed 0.2856

H. & W. stationarity test H. & W. convergence p value
(Intercept) passed 0.7958
owner1 passed 0.3437
age passed 0.2535
gender1 passed 0.6414
selfbrand passed 0.5905
conspic1 passed 0.7354
selfbrand:conspic1 passed 0.3141

The Chain has converged.

Table of sum of squares:
(Intercept) owner age gender selfbrand conspic selfbrand:conspic

4270.0702 12.8796 0.0000 0.0000 148.2134 6.9809 5.2258
Residuals Total
192.3997 4677.7778

Table of effect sizes (95% credible interval):
(Intercept) owner age gender

0.9569 (0.95,0.96) 0.0624 (0.03,0.09) 0.0000 (-0.04,0) 0.0000 (-0.04,0)
selfbrand conspic selfbrand:conspic

0.4345 (0.39,0.47) 0.0350 (0.01,0.04) 0.0264 (0,0.04)

Table of p-values (Multidimensional):
(Intercept) owner age gender selfbrand conspic selfbrand:conspic

<0.0001 <0.0001 0.8320 0.6920 <0.0001 0.0060 0.0500

Table of coefficients:
mean SD Quantile0.025 Quantile0.975 p.value
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(Intercept) 5.4312 0.0967 5.2456 5.6154 <0.0001
owner1 -0.3402 0.0987 -0.5329 -0.1460 <0.0001
age 0.0019 0.0097 -0.0169 0.0202 0.8320
gender1 -0.0366 0.0892 -0.2182 0.1300 0.6920
selfbrand 0.5849 0.0614 0.4704 0.7053 <0.0001
conspic1 0.2305 0.0911 0.0633 0.4140 0.0060
selfbrand:conspic1 -0.1058 0.0562 -0.2174 0.0000 0.0500

Signif.codes
(Intercept) ***
owner1 ***
age
gender1
selfbrand ***
conspic1 **
selfbrand:conspic1 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table of predictions:

Grand mean:
5.4312

2.5% 97.5%
5.2456 5.6154

owner mean 2.5% 97.5%
0 5.091 4.8411 5.3216
1 5.7714 5.4671 6.0782

gender mean 2.5% 97.5%
0 5.3946 5.1216 5.6701
1 5.4678 5.2095 5.6989

conspic mean 2.5% 97.5%
0 5.6617 5.4181 5.9206
1 5.2007 4.9239 5.4655

4.3. Application 3: Gist perception of advertising

Finally, we illustrate the application of the BANOVA package in a study into the influence
of color on gist perception of advertising, which is the very rapid identification of ads during
brief exposures. Specifically, we analyze the effect of color on the perception of the gist of ads
when the advertising exposure is brief and blurred (Wedel and Pieters 2015). In the study,
116 subjects were randomly assigned to one condition of a 5 (blur: normal, low, medium,
high, very high) × 2 (color: full color, grayscale) between-subjects, × 2 (image: typical ads,
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atypical ads) within-subjects, mixed design. Participants were exposed to 40 images, 32 full-
page ads and 8 editorial pages. There were 8 ads per product category, with 4 typical and 4
atypical ones. Blur was manipulated by processing the advertising images with a Gaussian
blur filter of different radius. Subjects were flashed an image for 100msec. and then asked to
identify whether the image was an ad or not.
The data included in the package can be loaded into R using the data() function, i.e., using
the following R code:

R> data("colorad")

The structure of colorad is shown below using the head() function. It is in long format
including both within- subjects and between- subjects variables.

R> head(colorad)

id typic y blurfac color blur
1 1 0 8 2 1 3.6889
2 1 1 6 2 1 3.6889
3 2 0 12 4 0 4.7875
4 2 1 6 4 0 4.7875
5 3 0 11 2 0 3.6889
6 3 1 9 2 0 3.6889

Here, the within-subjects variable typic is a factor with 2 levels ‘0’ (typical ads) and ‘1’(atyp-
ical ads); between-subjects variables are: blur, a numerical variable representing the blur of
the image (the log-radius of a Gaussian blur filter used to produce the images); blurfac, a
factor variable with the five levels of blur; and color, a factor representing the color of the ads
with 2 levels ‘0’(full color) and ‘1’(grayscale). id is the subject identification number. The
dependent variable is the number of times ads were correctly identified as an ad, out of the
16 ads, for each subject for each level of typic.
We are interested in the effects of within- and between- subjects factors typic and color, and
the variable blur, as well as their interactions. The factor typic varies within individuals; the
factors blur, color and blur × color interaction vary between subjects.
The analysis of this experiment is executed with the function BANOVA.Binomial() in the
BANOVA package (the continuous covariate blur is mean centered by default). The R code
to implement the analysis is shown below. For this model, the BANOVA function call needs
to include the binomial total (16) as an additional argument.

R> data("colorad")
R> set.seed(700)
R> app_5 <- BANOVA.Binomial(y ~ typic, ~ color * blur, colorad, colorad$id,
+ as.integer(16), burnin = 3000, sample = 2000, thin = 5)

The posterior means and standard deviations of the hyper parameters are reported from a
total of 13,000 samples, with 3,000 being discarded as the burn-in period, and the remainder
thinned by a factor 5 to reduce autocorrelation. To confirm that the chain has converged
after the burn-in, the conv.diag(app_5) command outputs the convergence diagnostics and
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trace.plot(app_5) provides visual diagnostics of convergence (the results are not shown
here, but indicate that the chains converged well before the end of the burn-in).
The posterior means, standard deviations, 95% credible intervals and p values of hyper pa-
rameters are computed with the following command, and the results are shown below. Note
that each of these tables now have two rows, one for each between-subject model (intercept
and typic).

R> summary(app_5)

Call:
BANOVA.Binomial(l1_formula = y ~ typic, l2_formula = ~color *

blur, data = colorad, id = colorad$id, num_trials = as.integer(16),
burnin = 3000, sample = 2000, thin = 5)

Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test
(Intercept) : (Intercept) passed
(Intercept) : color1 passed
(Intercept) : blur passed
(Intercept) : color1:blur passed
typic1 : (Intercept) passed
typic1 : color1 passed
typic1 : blur passed
typic1 : color1:blur passed

Geweke convergence p value
(Intercept) : (Intercept) 0.5803
(Intercept) : color1 0.1613
(Intercept) : blur 0.2185
(Intercept) : color1:blur 0.0761
typic1 : (Intercept) 0.8919
typic1 : color1 0.2779
typic1 : blur 0.1391
typic1 : color1:blur 0.3443

H. & W. stationarity test
(Intercept) : (Intercept) passed
(Intercept) : color1 passed
(Intercept) : blur passed
(Intercept) : color1:blur passed
typic1 : (Intercept) passed
typic1 : color1 passed
typic1 : blur passed
typic1 : color1:blur passed

H. & W. convergence p value
(Intercept) : (Intercept) 0.5140
(Intercept) : color1 0.3020
(Intercept) : blur 0.3020



34 BANOVA: Hierarchical Bayesian ANOVA in R

(Intercept) : color1:blur 0.0762
typic1 : (Intercept) 0.1179
typic1 : color1 0.5091
typic1 : blur 0.0536
typic1 : color1:blur 0.5938

The Chain has converged.

Table of sum of squares:
(Intercept) color blur color:blur Residuals Total

(Intercept) 59.2977 2.4447 25.9849 8.7501 138.0372 228.8865
typic1 21.9561 1.8509 5.4538 6.9776 20.0264 50.5066

Table of effect sizes (95% credible interval):
(Intercept) color blur

(Intercept) 0.3010 (0.25,0.36) 0.0164 (-0.01,0.1) 0.1586 (0.11,0.21)
typic1 0.5228 (0.4,0.64) 0.0769 (-0.01,0.3) 0.2134 (0.1,0.36)

color:blur
(Intercept) 0.0559 (-0.01,0.21)
typic1 0.2372 (0,0.51)

Table of p-values (Multidimensional):
(Intercept) color blur color:blur

(Intercept) <0.0001 0.9960 <0.0001 0.1840
typic <0.0001 0.3970 <0.0001 0.0290

Table of coefficients:
mean SD Quantile0.025 Quantile0.975

(Intercept) : (Intercept) 0.4963 0.0566 0.3857 0.6093
(Intercept) : color1 -0.0029 0.1243 -0.2568 0.2432
(Intercept) : blur -0.1710 0.0300 -0.2301 -0.1106
(Intercept) : color1:blur 0.0394 0.0300 -0.0219 0.0984
typic1 : (Intercept) 0.3012 0.0343 0.2335 0.3681
typic1 : color1 -0.0598 0.0710 -0.1990 0.0823
typic1 : blur -0.0774 0.0176 -0.1122 -0.0431
typic1 : color1:blur 0.0385 0.0170 0.0058 0.0712

p.value Signif.codes
(Intercept) : (Intercept) <0.0001 ***
(Intercept) : color1 0.9960
(Intercept) : blur <0.0001 ***
(Intercept) : color1:blur 0.1840
typic1 : (Intercept) <0.0001 ***
typic1 : color1 0.3970
typic1 : blur <0.0001 ***
typic1 : color1:blur 0.0290 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Table of predictions:

Grand mean:
0.6216

2.5% 97.5%
0.5953 0.6478

typic mean 2.5% 97.5%
0 0.6894 0.6595 0.7172
1 0.5486 0.5178 0.5794

color mean 2.5% 97.5%
0 0.6209 0.5531 0.6828
1 0.6223 0.5561 0.6827

typic color mean 2.5% 97.5%
0 0 0.6759 0.5977 0.7426
0 1 0.7027 0.6319 0.7656
1 0 0.5627 0.4873 0.6323
1 1 0.5345 0.4634 0.605

Based on the above estimates, ad identification is significantly influenced by ad typicality
(typic): typical ads are identified more accurately as ads, compared to atypical ads. The
accuracy of ad identification is also affected by the degree of blur and its interaction with
typic. The three-factor interaction (blur × color × typic) is significant, which reveals that
color protects the identification of typical ads against blur, which is in line with the findings
of Wedel and Pieters (2015).
These results are based on the BANOVA model with blur as a continuous covariate. To
further understand the effects of blur, we can use the discrete variable blur (blurfac) in a
two-way BANOVA at the between-subjects level (and the factor typic again within-subjects),
using the following command:

R> set.seed(900)
R> app_6 <- BANOVA.Binomial(y ~ typic, ~ color * blurfac, colorad,
+ colorad$id, as.integer(16), burnin = 20000, sample = 3000, thin = 5)

Since the above model involves more parameters, a larger number of burn-in and target
samples are used to ensure the chains for all parameters converge: a total of 35,000. The
table of sums of squares, effect sizes and p values, as well as the posterior means, standard
deviations, 95% credible intervals and p values of the parameters are produced with the
function summary(), the results are presented below.

R> summary(app_6)
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Call:
BANOVA.Binomial(l1_formula = y ~ typic, l2_formula = ~color *

blurfac, data = colorad, id = colorad$id, num_trials = as.integer(16),
burnin = 20000, sample = 3000, thin = 5)

Convergence diagnostics:
Geweke Diag. & Heidelberger and Welch's Diag.

Geweke stationarity test
(Intercept) : (Intercept) passed
(Intercept) : color1 passed
(Intercept) : blurfac1 passed
(Intercept) : blurfac2 passed
(Intercept) : blurfac3 passed
(Intercept) : blurfac4 passed
(Intercept) : color1:blurfac1 passed
(Intercept) : color1:blurfac2 passed
(Intercept) : color1:blurfac3 passed
(Intercept) : color1:blurfac4 passed
typic1 : (Intercept) passed
typic1 : color1 passed
typic1 : blurfac1 passed
typic1 : blurfac2 passed
typic1 : blurfac3 passed
typic1 : blurfac4 passed
typic1 : color1:blurfac1 passed
typic1 : color1:blurfac2 passed
typic1 : color1:blurfac3 passed
typic1 : color1:blurfac4 passed

Geweke convergence p value
(Intercept) : (Intercept) 0.2356
(Intercept) : color1 0.3940
(Intercept) : blurfac1 0.3836
(Intercept) : blurfac2 0.8752
(Intercept) : blurfac3 0.0345
(Intercept) : blurfac4 0.3804
(Intercept) : color1:blurfac1 0.5241
(Intercept) : color1:blurfac2 0.3314
(Intercept) : color1:blurfac3 0.0385
(Intercept) : color1:blurfac4 0.4250
typic1 : (Intercept) 0.7581
typic1 : color1 0.5452
typic1 : blurfac1 0.5190
typic1 : blurfac2 0.0406
typic1 : blurfac3 0.3353
typic1 : blurfac4 0.7254
typic1 : color1:blurfac1 0.1974
typic1 : color1:blurfac2 0.1124
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typic1 : color1:blurfac3 0.2070
typic1 : color1:blurfac4 0.0933

H. & W. stationarity test
(Intercept) : (Intercept) passed
(Intercept) : color1 passed
(Intercept) : blurfac1 passed
(Intercept) : blurfac2 passed
(Intercept) : blurfac3 passed
(Intercept) : blurfac4 passed
(Intercept) : color1:blurfac1 passed
(Intercept) : color1:blurfac2 passed
(Intercept) : color1:blurfac3 passed
(Intercept) : color1:blurfac4 passed
typic1 : (Intercept) passed
typic1 : color1 passed
typic1 : blurfac1 passed
typic1 : blurfac2 passed
typic1 : blurfac3 passed
typic1 : blurfac4 passed
typic1 : color1:blurfac1 passed
typic1 : color1:blurfac2 passed
typic1 : color1:blurfac3 passed
typic1 : color1:blurfac4 passed

H. & W. convergence p value
(Intercept) : (Intercept) 0.4061
(Intercept) : color1 0.5476
(Intercept) : blurfac1 0.8945
(Intercept) : blurfac2 0.4246
(Intercept) : blurfac3 0.0972
(Intercept) : blurfac4 0.3817
(Intercept) : color1:blurfac1 0.3015
(Intercept) : color1:blurfac2 0.2675
(Intercept) : color1:blurfac3 0.2377
(Intercept) : color1:blurfac4 0.8629
typic1 : (Intercept) 0.6026
typic1 : color1 0.1678
typic1 : blurfac1 0.3973
typic1 : blurfac2 0.1046
typic1 : blurfac3 0.4756
typic1 : blurfac4 0.4426
typic1 : color1:blurfac1 0.6945
typic1 : color1:blurfac2 0.1133
typic1 : color1:blurfac3 0.4469
typic1 : color1:blurfac4 0.1558

The Chain has converged.
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Table of sum of squares:
(Intercept) color blurfac color:blurfac Residuals Total

(Intercept) 59.2418 5.2392 29.3149 1.0919 137.2747 232.0625
typic1 21.5893 2.0443 13.7377 1.9909 16.6845 55.9163

Table of effect sizes (95% credible interval):
(Intercept) color blurfac

(Intercept) 0.3020 (0.25,0.36) 0.0369 (0.01,0.07) 0.1762 (0.12,0.23)
typic1 0.5634 (0.44,0.68) 0.1083 (0.02,0.24) 0.4504 (0.31,0.59)

color:blurfac
(Intercept) 0.0080 (-0.03,0.04)
typic1 0.1058 (0.01,0.24)

Table of p-values (Multidimensional):
(Intercept) color blurfac color:blurfac

(Intercept) <0.0001 0.0073 <0.0001 0.1527
typic <0.0001 0.0020 <0.0001 0.0220

Table of coefficients:
mean SD Quantile0.025

(Intercept) : (Intercept) 0.4966 0.0572 0.3878
(Intercept) : color1 0.1542 0.0561 0.0457
(Intercept) : blurfac1 0.5556 0.1103 0.3468
(Intercept) : blurfac2 0.0511 0.1188 -0.1911
(Intercept) : blurfac3 0.0204 0.1090 -0.1929
(Intercept) : blurfac4 -0.0489 0.1110 -0.2608
(Intercept) : color1:blurfac1 -0.1618 0.1114 -0.3784
(Intercept) : color1:blurfac2 0.1162 0.1179 -0.1072
(Intercept) : color1:blurfac3 -0.0798 0.1080 -0.2902
(Intercept) : color1:blurfac4 0.0142 0.1098 -0.2022
typic1 : (Intercept) 0.3105 0.0321 0.2505
typic1 : color1 0.0917 0.0319 0.0313
typic1 : blurfac1 0.1602 0.0664 0.0296
typic1 : blurfac2 0.3655 0.0686 0.2328
typic1 : blurfac3 -0.0254 0.0613 -0.1461
typic1 : blurfac4 -0.1670 0.0618 -0.2874
typic1 : color1:blurfac1 -0.1480 0.0664 -0.2793
typic1 : color1:blurfac2 0.0357 0.0677 -0.0913
typic1 : color1:blurfac3 -0.0201 0.0614 -0.1395
typic1 : color1:blurfac4 0.0959 0.0599 -0.0219

Quantile0.975 p.value Signif.codes
(Intercept) : (Intercept) 0.6146 <0.0001 ***
(Intercept) : color1 0.2657 0.0073 **
(Intercept) : blurfac1 0.7732 <0.0001 ***
(Intercept) : blurfac2 0.2795 0.6487
(Intercept) : blurfac3 0.2316 0.8333
(Intercept) : blurfac4 0.1727 0.6607
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(Intercept) : color1:blurfac1 0.0612 0.1527
(Intercept) : color1:blurfac2 0.3467 0.3280
(Intercept) : color1:blurfac3 0.1415 0.4607
(Intercept) : color1:blurfac4 0.2306 0.9160
typic1 : (Intercept) 0.3764 <0.0001 ***
typic1 : color1 0.1564 0.0020 **
typic1 : blurfac1 0.2873 0.0113 *
typic1 : blurfac2 0.5010 <0.0001 ***
typic1 : blurfac3 0.0931 0.6900
typic1 : blurfac4 -0.0454 0.0067 **
typic1 : color1:blurfac1 -0.0225 0.0220 *
typic1 : color1:blurfac2 0.1686 0.5993
typic1 : color1:blurfac3 0.0997 0.7473
typic1 : color1:blurfac4 0.2134 0.1120
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table of predictions:

Grand mean:
0.6217

2.5% 97.5%
0.5957 0.6490

typic mean 2.5% 97.5%
0 0.6915 0.664 0.7195
1 0.5464 0.5147 0.5789

color mean 2.5% 97.5%
0 0.6572 0.6208 0.6933
1 0.5848 0.5461 0.6209

blurfac mean 2.5% 97.5%
1 0.7412 0.6924 0.7851
2 0.6336 0.5689 0.6925
3 0.6265 0.5704 0.6804
4 0.6101 0.5528 0.6656
5 0.4796 0.4181 0.5409

typic color mean 2.5% 97.5%
0 0 0.7414 0.7049 0.7762
0 1 0.6367 0.5942 0.6764
1 0 0.5618 0.517 0.6059
1 1 0.5309 0.4856 0.5738
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typic blurfac mean 2.5% 97.5%
0 1 0.821 0.7737 0.8593
0 2 0.7727 0.7116 0.8213
0 3 0.6905 0.6291 0.7469
0 4 0.6437 0.5777 0.7047
0 5 0.4739 0.4036 0.5452
1 1 0.6414 0.5757 0.7017
1 2 0.4679 0.3944 0.5439
1 3 0.5577 0.4919 0.6225
1 4 0.5755 0.5095 0.6389
1 5 0.4853 0.4136 0.5554

color blurfac mean 2.5% 97.5%
0 1 0.7397 0.6687 0.8002
1 1 0.7427 0.6693 0.8044
0 2 0.6938 0.6062 0.7691
1 2 0.5689 0.4783 0.657
0 3 0.6437 0.5616 0.7161
1 3 0.6089 0.5273 0.6845
0 4 0.6493 0.5674 0.7217
1 4 0.5694 0.4852 0.6491
0 5 0.5459 0.4594 0.6289
1 5 0.4141 0.3319 0.502

typic color blurfac mean 2.5% 97.5%
0 0 1 0.8114 0.7414 0.8678
0 1 1 0.8302 0.7624 0.8793
0 0 2 0.835 0.7587 0.8893
0 1 2 0.6955 0.6008 0.7766
0 0 3 0.7208 0.6342 0.7913
0 1 3 0.6584 0.5682 0.7387
0 0 4 0.7206 0.6333 0.7929
0 1 4 0.5585 0.4631 0.6526
0 0 5 0.5718 0.4754 0.6612
0 1 5 0.378 0.2852 0.4804
1 0 1 0.6525 0.5611 0.7313
1 1 1 0.6301 0.5357 0.7166
1 0 2 0.5037 0.3973 0.6069
1 1 2 0.4326 0.3351 0.5386
1 0 3 0.5584 0.4619 0.6499
1 1 3 0.557 0.4647 0.6443
1 0 4 0.5708 0.4749 0.6607
1 1 4 0.5802 0.4853 0.6681
1 0 5 0.5197 0.4195 0.6171
1 1 5 0.4511 0.354 0.5524
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We first inspect the tables of sums of squares and effect sizes. In these tables, the columns
denote between-subjects factors and the rows denote the within-subjects factors. The values
in the table present the sum-of-squares and effect sizes of the effects of these factors. Again,
the accuracy of ad identification is affected by blur, and to a lesser extent by color. From
the tables of p values, ad typicality (the value corresponding to the row name ‘typic’ and
column name ‘(Intercept)’) and the degree of blur (the value corresponding to the row name
‘(Intercept)’ and column name ‘blurfac’) are again highly significant. There is also support
for the main effect of color. The three-factor interaction (blurfac × color × typic) is also
significant, which again shows that color protects the identification of typical ads against blur
(Wedel and Pieters 2015). The conclusions from the table of estimates are similar to those
from the results of the previous model, but this table for nonlinear effects of blur allows us
to inspect the effects of each level of bur, and the interactive effects with color and typicality.
Through the tables of predictions for all factors and their interactions, we can inspect these
effects in more detail. We can see that typical color ads (typic = 0, color = 0) are always
more accurately identified than atypical color ads (typic = 1, color = 0). Typical grayscale
ads (typic = 0, color = 1, blur = 1, . . . ,5), however, are only more accurately identified than
atypical grayscale ads (typic = 1, color = 1, blur = 1, . . . ,5) when there is no blur, or a low
level of blur (Wedel and Pieters 2015).

5. Discussion
This paper has introduced a general framework for Bayesian analysis of variance, and an
accompanying R package BANOVA. This package can be used to analyze experimental data
with a wide variety of hierarchical Bayesian models. The response variable can be normal,
student’s t, binomial, multinomial or Poisson. The between-subjects model follows a tra-
ditional ANOVA or ANCOVA structure that allows the estimation of sums of squares and
effect sizes of experimental factors and their interactions. These are easy to interpret for the
applied researcher because of their similarity with standard ANOVA output. In the social
and behavioral sciences there is an abundance of research that lends itself to the application
of BANOVA analyses, which are in most cases considerably more appropriate than classical
ANOVA. We hope that the availability of user-friendly software in the form of the BANOVA
package will stimulate the analysis of these studies under more reasonable assumptions on
the distribution of the data and its hierarchical structure. If the data was obtained from a
between subject design and the dependent variable is approximately normal, the results of
BANOVA will be very similar to those of ANOVA.
There are a number of other R packages that can be used to fit hierarchical Bayes models,
including BACC (Geweke 1999), bayesm (Rossi 2017) and MCMCpack (Martin, Quinn, and
Park 2011) as well as the WinBUGS, OpenBUGS and JAGS software. However, all these
either require the user to be familiar with Bayesian statistical modeling and/or the BUGS
programming language, while some are not suitable for ANOVA of experimental data. The
motivation for the development of the BANOVA package is to overcome these limitations
and to offer user-friendly routines for the applied researcher. The ease of use was illustrated
in three applications : (1) models can be run by only a single function call, (2) only a small
number of settings are required to run each model, (3) outputs are included in summary
tables, such as the table of effect sizes, table of p values and tables of means, which are easy
to interpret for the applied researcher.
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The package utilizes the JAGS software, which offers many advantages from a modeling
perspective, while in addition the JAGS code is produced as a by-product of the analysis and
available for the applied researcher to inspect and modify. Another function (BANOVA.run) is
available in the package that generates and runs Stan code. However, a disadvantage of this
choice is that this decreases the computation efficiency. Future developments could focus on
reprogramming the MCMC code in languages such as C++ or Java. In addition, the package
can be extended with other models, for example using different distributions of the dependent
variable.
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