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Abstract

The non-parametric maximum likelihood estimator and semi-parametric regression
models are fundamental estimators for interval censored data, along with standard fully-
parametric regression models. The R package icenReg is introduced which contains fast,
reliable algorithms for fitting these models. In addition, the package contains functions
for imputation of the censored response variables and diagnostics of both regression effects
and baseline distribution.
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1. Introduction

In the setting of survival analysis, interval censored data occurs when an event time is known
only up to an interval. Two common forms of interval censored data are current status data
(Hoel and Walburg Jr 1972) and mixed case censoring (Schick and Yu 2000). Current status
data occurs when each subject is observed at a single time and all that is recorded is whether
the event of interest has occurred or not. This results in all subjects being either left or right
censored. A classic current status dataset includes mice that are sacrificed at random times
and inspected for lung tumors. If tumors were detected, the mice were recorded to be left
censored at time of sacrifice. If no tumors were found, they were recorded as right censored.
The more general type of interval censoring, called mixed case censoring, can include left
censored, right censored, uncensored and observations that are censored but neither right nor
left censored. The last type of censoring can occur if a subject is regularly inspected and
all that is known is that the event of interest occurred between inspections. A classic mixed
case interval censored dataset includes semi-regular dentist visits by children, with the event
of interest being emergence of permanent teeth (Vanobbergen, Lesaffre, and Declerck 2000).
By selecting the last visit without permanent teeth and the first with permanent teeth, the
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researchers know the event time up to an interval. The standard assumption is that this
observation time is independent of the event of interest, although the observation time may
be random or fixed by design.
Standard parametric models can be used and are fairly straight forward to implement using
standard algorithms. Implementations of general location-scale transformed models (the most
well known being the accelerated failure time model) for interval censored data can be found in
the R package (R Core Team 2017) survival (Therneau 2017; Therneau and Grambsch 2000),
fit with the survreg function. In addition, the R package flexsurv (Jackson 2016; Jackson,
Sharples, and Thompson 2010) can be used to fit accelerated failure time, proportional hazards
and proportional odds models. These models must be used with some caution in regards to
interval censored data; they are heavily influenced by the choice of parametric model, for
which the model inspection can be extremely difficult.
Because of this, non-parametric models are often preferred, if at least for diagnostics. For
univariate data, the non-parametric maximum likelihood estimator (NPMLE; Turnbull 1976)
is often preferred, a generalization of the Kaplan Meier curves (Kaplan and Meier 1958) for
interval censored data. This is also referred to as the Turnbull estimator in the literature.
This can be fit by the function EMICM in the package Icens (Gentleman and Vandal 2011;
Wellner and Zhan 1997). Alternatively, this can be fit by the function computeMLE in the
package MLEcens (Maathuis 2013; Groeneboom, Jongbloed, and Wellner 2008). In terms
of statistical properties the NPMLE is notoriously inefficient; for current status data, the
convergence rate has been shown to be n1/3 (Groeneboom and Wellner 1992) instead of the
more standard n1/2, while for mixed case interval censored data, the convergence rate has been
conjectured to be n1/2 − n1/3 (Groeneboom 1996; Huang 1999), depending on the severity of
the censoring.
For non-parametric comparison of different strata, a log-rank test can be used (Fay 1999).
This is complicated by the fact that the NPMLE is characterized by a large number of
parameters, many of which may be on the boundary. Alternatively, permutation tests may
be used to compare separate groups. R implementations of both these tests can be found in
the R package interval (Fay and Shaw 2010) and called by the function ictest. A generalized
log-rank test can be found in the R package glrt (Zhao, Zhao, Sun, and Kim 2008; Zhao and
Sun 2015).
For semi-parametric regression modeling of interval censored data, a Cox proportional hazards
model (Cox 1972) can be used. Separating the estimation of the regression parameters from
the estimation of the baseline parameters is not as simple as in the right censored case. One
proposed method is to use the likelihood over the sum of all possible rankings in the dataset
(Satten 1996). An MCEM approach can also be used (Goggins, Finkelstein, Schoenfeld, and
Zaslavksy 1998). Both these methods are very computationally intensive.
The model can also be kept semi-parametric by using the NPMLE as the baseline survival
distribution rather than separating the baseline and regression parameters (Finkelstein 1986).
Even though the rate of convergence can be as low as n1/3 for survival estimates based on
the NPMLE, it has been shown that the regression coefficients converge at the standard n1/2

rate and are asymptotically normal (Huang 1995), allowing for efficient comparisons with
the semi-parametric proportional hazards model. Inference on the regression parameters can
be done using bootstrap standard errors (Efron 1979). A semi-parametric proportional odds
model can also be used (Rossini and Tsiatis 1996; Rabinowitz, Betensky, and Tsiatis 2000).
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In this manuscript, these models will be referred to as the semi-parametric Turnbull (SPT)
models.
It has been shown that the SPT model can be fit with an ICM algorithm (Argaon and
Eberly 1992; Pan 1999; Huang and Wellner 1997). This algorithm has been implemented in
R in the package intcox (Henschel and Mansmann 2013). Caution must be used with this
package, as it was found that the default tolerance is set too slack, often converging far from
the MLE (shown later in the manuscript). In addition, it has been shown that while the
ICM algorithm can preform well for purely interval censored data, it behaves very poorly in
regards to required number of iterations when the data also contains a mixture of censored
and uncensored response variables (Anderson-Bergman 2016).
To the best of this author’s knowledge, there is no R package available for fitting an SPT
proportional odds model for interval censored data as defined in this manuscript, other than
the package being presented.
Outside the SPT model, there exist several R packages that can be used for alternative
semi-parametric models. The package coxinterval (Boruvka and Cook 2015b) implements
a Cox-Aalen model (Boruvka and Cook 2015a). The ICsurv (McMahan and Wang 2014)
package provides semi-parametric models that use splines for the baseline distribution (Wang,
McMahan, Hudgens, and Qureshi 2016), as does the flexsurv package. For these methods,
knot selection is still an open question. The MIICD (Delord 2017) package provides inference
through a multiple imputation approach (Delord and Génin 2016).
Outside of the R environment, there are a few options for interval censored regression models.
In Stata (StataCorp. 2015), the intreg routine fits a parametric AFT model (Cameron and
Trivedi 2010) that allows for interval censored data. In SAS (SAS Institute Inc. 2013), the
LIFEREG procedure fits parametric AFT models as well (SAS Institute Inc 2013) and the
ICPHREG procedure fits a semi-parametric model with a spline-based estimate of the baseline
distribution.
In icenReg, fast, reliable implementations of the fundamental tools for interval censored data
are provided, intended for analysis of real data in R. This includes fitting the NPMLE through
the function ic_np (“interval censored non-parametric”), the SPT proportional odds and
hazards model through ic_sp (“interval censored semi-parametric”) and the fully parametric
accelerated failure time, proportional odds and proportional hazards model with a variety
of choices for baseline distribution through ic_par (“interval censored parametric”). The
functions diag_baseline and diag_covar are provided for visual diagnostics for parametric
assumptions and covariate effects which rely on either the SPT or non-parametric models.
The function imputeCens can be used to impute random samples of the interval censored
data, conditional on the fitted model.
In Section 2, the different models fit by icenReg are described, along with a brief description of
the algorithm used. The algorithms are tested on simulated data against competing packages,
when available. In Section 3, the diagnostic tools for model fitting are presented. In Section 4,
the imputation method used by icenReg is presented. In Section 5, the various tools of icenReg
are applied to a real dataset. In Section 6, future plans for the package are discussed.

2. Models
Some notation and the formal definition of the generating process for interval censoring is
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established first. For subject i, let ti represent the true event time of interest. The value ti is
generally not known exactly, but rather to be contained within an “observation interval”, for
which the left and right side are denoted by li and ri. This allows for left censoring (li = 0),
right censoring (ri = ∞), uncensored observations (li = ri) and other interval censoring
(0 < li < ri <∞). Whether these intervals are open, closed or partially open does not affect
estimation for fully parametric models, but can have an effect on the non-parametric and
SPT models (Ng 2002). In icenReg, the default behavior is to treat intervals is left-open,
right-closed (i.e., (li, ri]) as recommended by Ng (2002), but this can be controlled by the
argument B in ic_np and ic_sp. Regardless of the choice of B, if li = ri, the observation is
treated as though it were uncensored, even though this would technically be undefined unless
the interval were closed on both sides.
The generating process assumed for the censored intervals is the mixed censoring case, as
defined in Schick and Yu (2000). To rephrase this definition, let K be a vector of random
positive integers and let C be a random set of inspection times such that

C = {Ci,j : i = 1, . . . , n, j = 0, . . . ,Ki + 1 with Ci,0 = 0, Ci,Ki+1 =∞, Ci,j < Ci,j+1}.

For each subject i, the interval such that ti ∈ (Ci,j , Ci,j+1] is observed and so li = Ci,j , ri =
Ci,j+1. By allowing Ki =∞, all the intervals for subject i can be arbitrarily small, allowing
for uncensored observations. Current status data is the special case where Ki = 1 for all i.
An important assumption is that (K,C) are independent of ti, i.e., the event time does not
affect the inspection mechanism.

2.1. Non-parametric maximum likelihood estimator

For the NPMLE, the log-likelihood is defined as
n∑
i=1

log(S(li−)− S(ri))

such that S is a non-increasing function that maps R → [0, 1]. More precisely, this is the
log-likelihood with closed observation intervals; the likelihood with open or partially open
intervals is of the same form but requires “clipping” the open ends of the interval for censored
observations (i.e., replacing li− with li and ri with ri− if li < ri). The NPMLE is any proper
survival function S that maximizes the log-likelihood function. It has been shown that the
NPMLE only assigns positive probability mass to disjoint Turnbull intervals (Turnbull 1976),
but how the probability mass is distributed within a Turnbull interval does not affect the
likelihood. As shown in Figure 1, this means the NPMLE is not necessarily unique, but
rather can be defined as any function that lies between a upper and lower step function.
Computation of the NPMLE is a high dimensional constrained optimization problem, as the
number of Turnbull intervals, k, can grow linearly with n. An established algorithm for fitting
the NPMLE is the EMICM algorithm (Wellner and Zhan 1997). Original implementations of
this algorithm calculated each iteration in O(nk) time. Later algorithms considered optimiza-
tion over an active set of parameters (Groeneboom et al. 2008; Wang 2008), where the active
set is defined as the parameters with positive probability mass. This reduced computation of
each iteration to O(nka), where ka is the size of the active set. In the case of heavily censored
data, this was a massive improvement, but with lightly censored data, ka is often close to k
and in such cases these algorithms were significantly slower than the EMICM algorithm.
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Figure 1: Sample NPMLE. Any proper survival curve between the two step functions will be
an NPMLE.

In icenReg, an efficient implementation of the EMICM algorithm is used. By taking advantage
of the linear form of the data, each iteration can be calculated in O(n) time, rather than O(nk)
(Anderson-Bergman 2017). This provides a massive speed up compared with both the original
EMICM and the active set algorithms.
The performance of ic_np was compared against the EMICM algorithm in Icens (called by
EMICM) and the support reduction algorithm in MLEcens (called by computeMLE). Data was
simulated using icenReg’s simIC_weib function as such:

R> simdata <- simIC_weib(n = 100, b1 = 0, b2 = 0)

This simulates a dataset with 100 observations. The arguments b1 and b2 define the regression
effects; by setting them to 0, this simulates data from a Weibull(2, 2) distribution. Further
description of the simulation methods can be found in ?simIC_weib. Sample sizes of n = 102,
103, 104, 105 and 106 were considered. Each scenario was tested 100 times. For each algorithm,
the average time in seconds and average relative error were reported, where average relative
error was defined as the difference in log-likelihood compared with the maximum likelihood
achieved across all fits.
The results can be seen in Table 1. All three algorithms consistently achieved a tolerable
amount of error. With regards to speed, ic_np dominates the competing algorithms, except
in the n = 100 case where it is virtually tied with MLEcens::computeMLE.
All simulations were run on a 2015 Macbook Air with a 2.2 GHz i7 processor.

2.2. Semi-parametric models
In the case of the SPT proportional hazards model, the log-likelihood can be written as

n∑
i=1

log
(
So(li−)eXiβ − So(ri)e

Xiβ
)
,

where So is the baseline survival function, the row vector Xi contains individual’s covariates
without an intercept and the column vector β is a vector of coefficients. Like the definition
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Mean time Mean relative error
n = 100
icenReg::ic_np 0.001 6.93e-13
Icens::EMICM 0.106 6.39e-15
MLEcens::computeMLE 0.001 6.27e-10
n = 1,000
icenReg::ic_np 0.003 3.55e-12
Icens::EMICM 8.319 4.38e-13
MLEcens::computeMLE 0.079 2.63e-09
n = 10,000
icenReg::ic_np 0.024 0.00
MLEcens::computeMLE 12.95 7.00e-09
n = 100,000
icenReg::ic_np 0.316 0.00
n = 1,000,000
icenReg::ic_np 6.228 0.00

Table 1: Comparing results from icenReg, Icens and MLEcens when computing the NPMLE.
Mean time is in seconds. Mean relative error is the mean difference in log-likelihood compared
with the highest log-likelihood across all fits. Data was simulated using icenReg’s simIC_weib
function.

for the NPMLE in Section 2.1, this the definition of the log-likelihood with closed observation
intervals. Similarly, the log-likelihood function in the proportional odds model can be written
as

n∑
i=1

log
(

So(li−)eXiβ
So(li−)eXiβ − So(li−) + 1 −

So(ri)eXiβ
So(ri)eXiβ − So(ri) + 1

)
.

Unfortunately, there is no established method for fitting an AFT model with the NPMLE
as the baseline distribution. While the necessary baseline parameters for the proportional
hazards and proportional odds model can be found using the same methods as with the
NPMLE (Anderson-Bergman 2016), this cannot be generalized to the AFT model, as the
log-likelihood cannot be fully characterized by evaluation of So at a finite number of points
(which can be done with the proportional hazards and odds models).
Traditional methods for computing the SPT model includes using an ICM algorithm to update
the baseline parameters and conditional Newton-Raphson on the regression parameters (Pan
1999; Huang and Wellner 1997). While it was found that this algorithm works well with
heavily censored data, it behaves very poorly with lightly censored data (Anderson-Bergman
2016). This is very similar to the results for the NPMLE; the ICM algorithm behaves very
poorly with lightly censored data, so it is paired with the EM algorithm which behaves well
in that case resulting in the EMICM algorithm. In icenReg, a novel algorithm is used which
augments the ICM algorithm with a constrained gradient ascent step, similar to augmenting
the ICM with the EM algorithm in the NPMLE case. Each iteration of the algorithm now
includes three steps: a conditional Newton-Raphson that updates the regression parameters,
an ICM step that updates the baseline parameters on the log cumulative hazard scale and
a constrained gradient ascent step that updates the baseline parameters on the probability
mass scale. In the ICM step, a pool-adjacent violators algorithm (Van Eeden 1958) is used to
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Mean time Mean relative error
n = 100
icenReg::ic_sp 0.007 0.00
intcox (default) 0.21 2.23e-01
intcox (strict) 8.57 2.12e-06
n = 500
icenReg::ic_sp 0.027 0.00
intcox (default) 0.55 2.00e+00
intcox (strict) 41.5 2.96e-05
n = 1,000
icenReg::ic_sp 0.099 0.00
intcox (default) 2.21 4.85e+00
intcox (strict) 233 8.15e-05
n = 5,000
icenReg::ic_sp 0.549 0.00

Table 2: Comparing results from icenReg and intcox on simulated data. intcox (default)
refers to the function intcox::intcox with default settings, intcox (strict) refers to the
same function with epsilon = 10e-10. Mean time is in seconds. Mean relative error is the
mean difference in log-likelihood compared with the highest log-likelihood across all fits. Data
was simulated using icenReg’s simIC_weib function.

optimize the baseline hazard function while still respecting the monotonic constraint of the
cumulative hazard. The algorithm is described in more detail in Anderson-Bergman (2016).
To demonstrate that the algorithm finds the correct solution, results were compared with
intcox’s intcox function on simulated data. The review begins with a more detailed exami-
nation of a single dataset. A simulated dataset with 500 interval censored observations from
a proportional hazards model was creating using the simIC_weib function with the default
settings, except for setting the sample size to 500. This implies the simulated true event times
came from a proportional hazards model with a baseline Weibull distribution with shape and
scale parameters equal to 2 and regression coefficients 0.5 and −0.5.
Using icenReg’s ic_sp function, the algorithm converged in 11 iterations (0.023 seconds) to
the solution with final log-likelihood = −347.7107 and regression parameters β̂1 = 0.743, β̂2 =
−0.550. Using the default settings the intcox algorithm converged in 42 iterations (0.325 sec-
onds), but the final log-likelihood was −349.0489 with regression parameters β̂1 = 0.719, β̂2 =
−0.525. Further investigation showed this was due to slack default convergence criteria used
by intcox (difference in log-likelihood less than 10−4). The intcox algorithm was rerun with
stricter criteria (difference in log-likelihood less than 10−10, same as ic_sp), and converged
in 3,384 iterations (25.27 seconds) with log-likelihood −347.7107 and regression parameters
β̂1 = 0.743, β̂2 = −0.550.
To test the reliability and speed of the algorithm, the above procedure was repeated 100
times for n = 100, 500, 1,000 and 5,000 (although the intcox algorithm was excluded from
the n = 5, 000 case due to speed). The computation time and relative error was recorded.
Results are presented in Table 2.
The results show that ic_sp consistently found the highest log-likelihood. Given a strict
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enough tolerance, it would appear that intcox always converged to the same solution. This
provided assurance that the ic_sp algorithm was finding the correct solution. In addition,
the new algorithm appears to be around 1,000 times faster than intcox given the same level
of tolerance. It should be noted that these simulations are that of heavily censored data, for
which the standard ICM algorithm (without the constrained gradient ascent step) does well;
for lightly censored data, the intcox algorithm does significantly worse. For a more thorough
review of performance, see Anderson-Bergman (2016).
This author is not aware of any packages that fit an SPT proportional odds model which
could be used to compare the results with. Because of this, it is instead demonstrated that
the algorithm produces estimates that behave as expected. To investigate, 1,000 proportional
odds datasets were simulated using simIC_weib for n = 500 and n = 2, 000 and examined the
mean and variance of the estimated regression coefficients. The true regression coefficients
were β1 = 0.5, β2 = −0.5. A single dataset with n = 500 can be simulated according to the
following code:

R> simdata <- simIC_weib(n = 500, model = "po")

Based on 400 samples the following estimates are obtained: for n = 500, E[β̂1] = 0.535,
E[β̂2] = −0.528 and VAR[β̂1] = 0.030, VAR[β̂2] = 0.009. For n = 2, 000, E[β̂1] = 0.503,
E[β̂2] = −0.501 and VAR[β̂1] = 0.007, VAR[β̂2] = 0.002. Thus, the estimates appear somewhat
upwardly biased but consistent with variance ∝ n−1. This is consistent with results from
similar simulations on the proportional hazards STP model (Pan 1999).

2.3. Fully parametric models
When parametric models are considered, the log-likelihood function must treat uncensored
observations in a distinct manner. Because of the continuous nature of the baseline distribu-
tions considered, the distinction between open and closed intervals is no longer necessary.
In the case of the proportional hazards model, the log-likelihood can be written as

n1∑
i=1

log
(
eXiβfo(ti|α)S(ti|α)eXiβ−1)+

n1+n2∑
i=n1+1

log
(
So(li|α)eXiβ − So(ri|α)eXiβ

)
,

where α contains the parameters associated with the baseline distribution, the column vector
β contains the regression parameters, the row Xi contains subject i’s covariates, fo and So are
the baseline density and survival functions, with the first n1 subjects being the uncensored
subjects, and the remaining n2 subjects are interval censored.
For the proportional odds model, the log-likelihood function can be written as

n1∑
i=1

log
(

fo(ti|α)eXiβ
(So(ti|α)eXiβ − So(ti|α) + 1)2

)

+
n1+n2∑
i=n1+1

log
(

So(li|α)eXiβ
So(li|α)eXiβ − So(li|α) + 1 −

So(ri|α)eXiβ
So(ri|α)eXiβ − So(ri|α) + 1

)
.

For the accelerated failure time model, the log-likelihood function can be written as
n1∑
i=1

log
(
fo(tie−Xiβ|α)e−Xiβ

)
+

n1+n2∑
i=n1+1

log
(
So(lie−Xiβ|α)− So(rie−Xiβ|α)

)
.



Journal of Statistical Software 9

Mean time Mean relative error
n = 10,000
icenReg::ic_par(..., model = "aft") 0.387 1.07e-11
icenReg::ic_par(..., model = "ph") 0.336 8.82e-12
survival::survreg 0.055 2.66e-11
n = 100,000
icenReg::ic_par(..., model = "aft") 4.840 1.93e-10
icenReg::ic_par(..., model = "ph") 4.150 2.84e-10
survival::survreg 0.598 1.53e-09

Table 3: Comparing fully-parametric results from icenReg and survival on simulated data.
Mean time is in seconds.

In all the parametric families considered, the parameter space α is transformed such that it
is defined on Rk, where k is the number of parameters of the parametric family. For example,
for the exponential family, log(rate) is used instead of rate.
To maximize this likelihood function, a two step algorithm is used. A simple conditional
Newton-Raphson step is used to update the regression parameters, as the function will be
concave under standard regression conditions (non-singular design matrix). The log-likelihood
function is not necessarily concave as a function of the baseline parameters, and it was occa-
sionally found to be non-locally concave for poor starting choices of α. To handle this, the
algorithm would first check if the Hessian was negative definite. If so, a conditional Newton-
Raphson step was used. If not, a gradient ascent step was used until the log-likelihood function
is locally concave.
To compare this algorithm with an established implementation, icenReg’s ic_par was com-
pared with the results of survival’s survreg function. The default model from survreg is a
Weibull AFT model. This can be directly compared to two ic_par models: the Weibull AFT
model and the Weibull proportional hazards. This is because for the Weibull distribution,
the AFT and proportional hazards models are identical up to a linear transformation of vari-
ables (see Appendix A for derivation). As such, both models must have the same maximum
likelihood. Datasets of n = 10,000 and 100,000 were simulated using simIC_weib, with 100
simulated datasets for each scenario. Mean time and relative error for each algorithm is pre-
sented in Table 3. All three algorithms were sufficiently precise, having mean relative error
on the order of 1.0e-10 to 1.0e-9. In addition, the maximum absolute difference in regression
parameters across all models (after rescaling the proportional hazards model to be on the
same scale as the AFT parameters) was less than 1.29e-07 across all simulations. A speed
advantage was held by survreg, being on average 6–8 times faster on the simulated data than
either model fit with ic_par.
Even though survreg holds a speed advantage, ic_par has many model choices not available
with survreg. As such, a proportional hazards or proportional odds model may be preferred
if they fit the data better. In addition, the ic_par objects interact more seamlessly with the
other tools provided by icenReg, so a user may choose to use ic_par with model = "aft",
despite the loss to speed, in order to use the other utilities provided by icenReg.
Currently, six parametric families are supported: exponential, gamma, Weibull, log-normal,
log-logistic and generalized gamma (Stacy 1962). It is worth noting that for several of these
distributions, the parametric family is not preserved given the link function. For example,
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having proportional hazards to a log-normal distribution does not imply log-normality. In
these cases only the baseline distribution will actually belong to the given parametric family.
As such, it is very important to note that ic_par centers the covariates before fitting the
model for numeric stability; the baseline distribution refers to subjects with mean covariate
values, rather than 0. Some users may find it displeasing that the link does not preserve the
parametric family. However, standard probability functions (i.e., pdf, cdf, inverse cdf) are
easily computed despite this. The package includes a function getFitEsts that allows easy
extraction of the estimated cdf or inverse cdf from a fitted model.
The software is written in an object-oriented manner such that it requires minimal effort to
add new parametric distributions; all that is needed is a C++ implementation of both the
pdf and cdf function. From there, optimization is handled generically.

3. Diagnostic tools
When fitting parametric regression models, the researcher makes an assumption about the
effect of the covariates and the baseline parametric model. When fitting an SPT model,
the second assumption is dropped, but the covariate assumption is still required for valid
inference. In either case, it is important to assess the validity of the assumptions. With
interval censored data, this can be fairly difficult. The icenReg package includes easy to use
routines for examining both sets of assumptions using the SPT model. Unfortunately, these
methods only apply to proportional odds and hazards models, as there are no methods to fit
the SPT AFT model.
To examine the parametric baseline assumption, diag_baseline fits and plots the baseline
survival distribution of a variety of parametric choices. It also plots the SPT estimated
baseline distribution. This can help an investigator assess if there appears to be a systematic
deviation from the assumed baseline distribution.
To examine the functional form of the covariates, diag_covar uses the fact that for both
models, there is a transformation of the survival function such that differences in covariate
effects will result in constant differences. For the proportional hazards model, note that

log(− log(S(t|X,β))) = log(− log(So(t)e
Xβ )) = Xβ + log(− log(So(t))).

Likewise, for the proportional hazards model, note that

log
(

S(t|X,β)
1− S(t|X,β)

)
= log


(

So(t)eXβ
So(t)eXβ−So(t)+1

)
(

So(t)eXβ
So(t)eXβ−So(t)+1

)
− 1

 =

log


(

So(t)eXβ
So(t)eXβ−So(t)+1

)
(

So(t)−1
So(t)eXβ−So(t)+1

)
 = Xβ + log

(
So(t)

So(t)− 1

)
.

To investigate whether the functional form is appropriate for a given covariate, diag_covar
first stratifies the dataset on different levels of that covariate. It then fits an SPT model
for each strata and plots the given transformation of the baseline survival functions. If the
functional form of the covariate is correct, the difference between the two strata’s transformed
baselines should be approximately constant. To help visualize the difference, the average of
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all the strata is subtracted off of each strata by default. By subtracting off the average
of all the curves, each curve should be a flat line (with stochastic noise) under the correct
regression model. When the regression model is incorrect, often the different curves will
converge together or cross. Users also have the option to examine the transformed survival
curves without the mean subtracted (may be necessary if there is little overlap between strata)
and the raw baseline survival function estimates.
Because there is no established method for calculating the AFT SPT model, neither of these
methods can be applied to the AFT model. The author is currently working on alternative
diagnostic tools for the AFT model.

4. Imputation
In some cases, the analyst may wish to impute the missing data (i.e., exact event time).
For example, this could be a step in a multiple imputation analysis (Rubin 1987). This
functionality is provided in imputeCens.
Three imputation strategies are allowed by imputeCens. The simplest is median imputation
(imputeType = "median"), in which event times are imputed with the median value, con-
ditional on being inside the given observational intervals and the parameter values at the
MLE. The next strategy (imputeType = "fixedParSample") takes a random draw of the
event time, conditional on being within the given observation interval and the parameter
values at the MLE. Finally, the last strategy (imputeType = "fullSample") takes a random
sample of the parameters. Then, conditional on those parameter values, it takes a random
sample of the event times, conditional on being within the observational interval and the
randomly drawn parameter values. How the parameters are sampled depends on the model.
For the fully parametric model, the asymptotic normality of the estimators motivates tak-
ing a random draw from a multivariate normal with mean and covariance provided by the
point estimates and negative inverse Hessian matrix. However, this method cannot readily be
applied to the NPMLE and SPT models, as the baseline parameters do not follow an asymp-
totically normal distribution. As such, for the SPT model the "fullSample" option fixes the
baseline parameters and takes a random sample of the bootstrapped regression coefficients
before sampling the conditional event times. For the NPMLE, "fullSample" is equivalent
to "fixedParSample".
In addition, the analyst must keep in mind that the NPMLE and SPT model only apply
probability mass onto Turnbull intervals. Because of this, on most fits there will be several
“gaps” [aj , bj)1 on [0,∞) for which the SPT model estimates P(T ∈ (aj , bj)|X) = 0 for all
values of the covariates X. In fact, consider ro = min{ri : ri ≥ lj , j ∈ 1, . . . , n}. There
will be 0 probability mass assigned to (ro,∞), as by definition ro will be the right side of
the maximum Turnbull interval. Likewise, if lo = max{li : li ≤ lj , j ∈ 1, . . . , n}, then zero
probability mass is assigned to [0, lo). These gaps can create several complications; first,
they can significantly shrink the range of the imputed values, especially if ro is relatively
small (this can happen if a large percentage of the data is right censored). Secondly, it can
create a problem if a user attempts to impute a response for which the observation interval

1Whether this interval is open, closed or partially open will depend the choice of B for the initial data.
In this case, it is assumed that the default choice of B = c(0, 1) is used, as discussed in the beginning of
Section 2.
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Function name Basic description
Modeling functions
ic_np Non-parametric
ic_sp Semi-parametric
ic_par Fully-parametric
Graphical diagnostic tools
diag_baseline Compares parametric baselines
diag_covar Compares regression effects
Utilities
imputeCens Imputes censored data
getFitEsts Gets p, q values from fit
getSCurves Gets ic_np, ic_sp baseline curve
simIC_weib Simulates censored data
Standard methods
plot, lines, summary, predict, vcov

Table 4: Functions provided in icenReg.

is completely contained within one of the gaps. Note that this cannot happen with data that
was used to fit the SPT model, as each observation must contain at least one Turnbull interval
with positive probability mass to have a finite log-likelihood, but it could happen if a user
attempted to impute data for an observation interval that was not used to fit the model.
Given these complications, it is advised that the analyst uses the most appropriate parametric
model for imputation unless doing so leads to clear bias in imputation.

5. Using icenReg
Table 4 provides a very quick summary of the public functions provided in icenReg. To help
illustrate the use of the package, a sample analysis is presented.
Thee IR_diabetes dataset (Borch-Johnsens, Andersen, and Decker 1985) from icenReg is
used, which was initially imported from glrt (Zhao and Sun 2015). In this dataset, 731
patients (454 males and 277 females) are followed, with time from onset of diabetes to onset
of diabetic nerphronpathy being the response time of interest. For many of the patients (595),
the event time was known exactly but for others (136) the exact time was known only up to
an interval due to limited follow up. The dataset contains three variables: left, right and
gender. The variables left and right represent the observational interval. In this example,
the effect of gender will be examined.

R> data("IR_diabetes", package = "icenReg")
R> head(IR_diabetes)

left right gender
1 24 27 male
2 22 22 female
3 37 39 male
4 20 20 male
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Figure 2: NPMLE for each group.

5 1 16 male
6 8 20 female

First, the NPMLE is fit to each group. The syntax for this is very similar to fitting the Kaplan
Meier curves with survival::survfit, but the response must either be a ‘Surv’ object with
type = "interval2" or of the form cbind(l, r), where l, r are the left and right side of
the observation interval for each subject. This syntax is also used for ic_sp and ic_par.

R> npmleFit <- ic_np(cbind(left, right) ~ gender, data = IR_diabetes)

Plots of the NPMLE for each group can be created using the plot function. This can be seen
in Figure 2.

R> plot(npmleFit, main = "NPMLE by gender", col = c("blue", "orange"))

While the two NPMLE fits give a full picture of comparing the two groups, an investigator
may want to use a regression model to more succinctly describe the difference between the
two groups. One can begin with visually assessing which regression model appears more
appropriate.

R> diag_covar(cbind(left, right) ~ gender, data = IR_diabetes,
+ model = "ph", col = c("blue", "orange"))
R> diag_covar(cbind(left, right) ~ gender, data = IR_diabetes,
+ model = "po", col = c("blue", "orange"))
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Figure 3: Checking the appropriateness of regression effects. If the regression effect is correct,
lines should be approximately parallel. Left plot checks the proportional hazards, right plot
checks proportional odds.

Examining Figure 3, some deviation from the regression assumptions can be seen; the trans-
formed difference between the groups is greater early on but becomes less as time goes on.
However, for the proportional odds model, the deviation is less and acceptable for inference.
Because of this, it was chosen to model the data with a proportional odds effect of gender.
Given that the bootstrap is required for estimating the standard errors, it is simple to use
multiple cores to speed up computation. For parallel computing of bootstrap samples, icen-
Reg works seamlessly with R’s doParallel package (Revolution Analytics and Weston 2015),
although it is left to the user to set up the cluster (as to not interfere with other processes that
may be running). This is demonstrated below. The fitting of the model and an additional
1,000 bootstrap samples took just under 30 seconds utilizing 2 cores.

R> library("doParallel")
R> myClust <- makeCluster(2)
R> registerDoParallel(myClust)
R> sp_fit <- ic_sp(cbind(left, right) ~ gender, model = "po",
+ data = IR_diabetes, bs_samples = 1000, useMCores = TRUE)
R> stopCluster(myClust)

The summary function can be used to review the results.

R> summary(sp_fit)

Model: Proportional Odds
Baseline: semi-parametric
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Figure 4: Plotted survival curves based on the SPT proportional odds model.

Call: ic_sp(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "po", bs_samples = 1000, useMCores = TRUE)

Estimate Exp(Est) Std.Error z-value p
gendermale 0.4013 1.494 0.1407 2.851 0.004355

final llk = -1962.4
Iterations = 25
Bootstrap Samples = 1000

From the summary, it can be seen that there is a statistically significant difference in the odds
of not having experienced diabetic nerphronpathy at a given time after diabetes between men
and women in the study. It is estimated that the odds of survival at any given time will be
1.49 times higher for men than for women (95% CI = [1.13, 1.97], p = 0.0044) under the
assumption of proportional odds.
Using the plot method, the user can plot estimated survival curves between the two groups.
This is done by including a new dataset with the covariates for each survival curve to be
plotted. If no newdata argument is included, the baseline group is plotted. The plotted
curves can be found in Figure 4.

R> newdata <- data.frame(gender = c("female", "male"))
R> rownames(newdata) <- c("Female", "Male")
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Figure 5: Examining parametric baseline fits.

R> plot(sp_fit, newdata, main = "Semi-parametric Fits by Gender",
+ col = c("blue", "orange"))

In some cases, a parametric model may be preferred. For example, even though bootstrapping
can be used for inference on the regression parameters, it cannot be used for inference on the
baseline survival distribution (and thus the conditional survival probabilities as well). If a
parametric model is chosen, it is important to check that the chosen baseline distribution
is appropriate. Using diag_baseline with a proportional odds model, the user can view
how the different parametric models compare with the SPT fit. If the argument dist is
left blank, default behavior is to plot all available parametric distributions against the SPT
model. This is plotted in Figure 5. It was decided that the log-logistic distribution was the
most appropriate, given that there appears no systematic deviation from the SPT fit.

R> diag_baseline(sp_fit, lgdLocation = "topright")
R> diag_baseline(sp_fit, dist = "loglogistic", lgdLocation = "topright")

The proportional odds model with a log-logistic baseline distribution can be fit using ic_par.

R> par_fit <- ic_par(cbind(left, right) ~ gender, data = IR_diabetes,
+ model = "po", dist = "loglogistic")
R> summary(par_fit)

Model: Proportional Odds
Baseline: loglogistic
Call: ic_par(formula = cbind(left, right) ~ gender, data = IR_diabetes,

model = "po", dist = "loglogistic")
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Estimate Exp(Est) Std.Error z-value p
log_alpha 2.7730 16.000 0.01372 202.100 0.000000
log_beta 1.5820 4.865 0.03299 47.960 0.000000
gendermale 0.3852 1.470 0.13840 2.784 0.005367

final llk = -2003.695
Iterations = 4

The results from the parametric fit closely agree with the SPT model; a statistically significant
difference was found in the proportional odds of survival for males compared with females.
The odds of survival were estimated to be 1.47 times higher for males than females at all
times (95% CI = [1.12, 1.93], p = 0.0054).
The function getFitEsts can be used to get estimated event time or probabilities from a
fitted model. For example, a user could use the following code to extract the median event
time for males and the survival probability at t = 10 for females.

R> maleCovs <- data.frame(gender = c("male"))
R> femaleCovs <- data.frame(gender = c("female"))
R> getFitEsts(par_fit, newdata = maleCovs, p = 0.5)

[1] 16.48959

R> getFitEsts(par_fit, newdata = femaleCovs, q = 10)

[1] 0.114272

Finally, if the user wanted to impute the censored data to be passed to another model, this
could be done quite easily with imputeCens. This returns a matrix of imputed values, where
rows correspond with subjects and columns correspond with different imputations. Note that
for subjects that are uncensored, the imputed values will be constant.

R> imputedValues <- imputeCens(par_fit, imputeType = "fullSample")
R> head(imputedValues)

[,1] [,2] [,3] [,4] [,5]
1 26.780119 24.24360 24.54442 24.94047 26.35085
2 22.000000 22.00000 22.00000 22.00000 22.00000
3 38.252021 38.69072 37.23123 37.99873 37.97788
4 20.000000 20.00000 20.00000 20.00000 20.00000
5 13.688913 13.61983 15.87549 9.09512 13.86311
6 9.451714 14.79789 12.56202 16.85265 13.34679

6. Discussion
The author’s vision for the icenReg package is to provide analysts with a reliable, organized
set of tools for the analysis of interval censored data. As such, implementing established
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methods over novel methods is preferred, although there is interest in fast new algorithms,
as implemented for the non-parametric and SPT model.
With this general guideline, there are several improvements to the package planned in the
near future. At this time, there is work on developing diagnostic tools for the AFT model.
In addition, there are plans for including residuals, such as those found in Farrington (2000).
Time varying coefficients, as found in Sparling, Younes, and Lachin (2006) would be another
useful addition.
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A. Appendix
In Section 2.2, it was mentioned that the Weibull proportional hazards is equivalent to the
Weibull AFT model, up to a change of variables. To demonstrate this, first consider the
Weibull AFT survival function:

S(t|X,β) = So(te−X>β) = e−(te−X>β/γ)λ .

The Weibull proportional hazards survival function can be written as

S(t|X,β) = So(t)e
X>β = (e−(t/γ)λ)eX

>β = e−(teX>βλ/γ)λ .

Note that for any Weibull AFT survival function, an equivalent Weibull proportional hazard
function exists by transforming βph = −λβAFT, where βph are the regression parameters used
by the proportional hazard model and βAFT is the regression parameters used by the AFT
model.
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