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Abstract

In spite of the interest in and appeal of convolution-based approaches for nonsta-
tionary spatial modeling, off-the-shelf software for model fitting does not as of yet exist.
Convolution-based models are highly flexible yet notoriously difficult to fit, even with rel-
atively small data sets. The general lack of pre-packaged options for model fitting makes
it difficult to compare new methodology in nonstationary modeling with other existing
methods, and as a result most new models are simply compared to stationary models.
Using a convolution-based approach, we present a new nonstationary covariance func-
tion for spatial Gaussian process models that allows for efficient computing in two ways:
first, by representing the spatially-varying parameters via a discrete mixture or “mix-
ture component” model, and second, by estimating the mixture component parameters
through a local likelihood approach. In order to make computations for a convolution-
based nonstationary spatial model readily available, this paper also presents and describes
the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set
and a real data application involving annual precipitation to demonstrate the capabilities
of the package.

Keywords: spatial statistics, nonstationary modeling, local likelihood estimation, precipita-
tion, R.

1. Introduction

The Gaussian process is an extremely popular modeling approach in modern-day spatial and
environmental statistics, due largely to the fact that the model is completely characterized
by first- and second-order properties, and the second-order properties are straightforward
to specify through widely used classes of valid covariance functions. A broad literature on
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covariance function modeling exists, but traditional approaches are mostly based on assump-
tions of isotropy or stationarity, in which the covariance between the spatial process at two
locations is a function of only the separation distance or separation vector, respectively. This
modeling assumption is made mostly for convenience, and is rarely a realistic assumption in
practice. As a result, a wide variety of nonstationary covariance function models for Gaus-
sian process models have been developed (e.g., Sampson and Guttorp 1992; Higdon 1998;
Damian, Sampson, and Guttorp 2001; Fuentes 2001; Schmidt and O’Hagan 2003; Paciorek
and Schervish 2006; Calder 2008; Schmidt, Guttorp, and O’Hagan 2011; Reich, Eidsvik,
Guindani, Nail, and Schmidt 2011; and Vianna Neto, Schmidt, and Guttorp 2014), in which
the spatial dependence structure is allowed to vary over the spatial region of interest. How-
ever, while these nonstationary approaches more appropriately model the covariance in the
spatial process, most are also highly complex and require intricate model-fitting algorithms,
making it very difficult to replicate their results in a general setting. Therefore, when new
nonstationary methods are developed, their performance is usually compared to stationary
models, for which robust software is available. While software exists for several of these
nonstationary approaches (see below), there are currently no pre-packaged options for fitting
convolution-based nonstationary models.
To address this need, we present a simplified version of the nonstationary spatial Gaus-
sian process model introduced by Paciorek and Schervish (2006) in which the locally-varying
geometric anisotropies are modeled using a “mixture component” approach, similar to the
discrete mixture kernel convolution approach in Higdon (1998) but allowing the underly-
ing correlation structure to be specified by the modeler. The model is extended to allow
other properties to vary over space as well, such as the process variance, nugget effect, and
smoothness. An additional degree of efficiency is gained by using local likelihood techniques
to estimate the spatially-varying features of the spatial process; then, the locally estimated
features are smoothed over space, similar in nature to the approach of Fuentes (2002).
This paper also presents and describes the convoSPAT package (Risser 2017) for R (R Core
Team 2017) for conducting a full analysis of point-referenced spatial data using a convolution-
based nonstationary spatial Gaussian process model. The primary contribution of the pack-
age is to provide accessible model-fitting tools for spatial data of this type, as software for
convolution-based nonstationary modeling does not currently exist. Furthermore, the meth-
ods used by the package are computationally efficient even when the size of the data is
relatively large (on the order of n = 1000). The package is able to handle both a single real-
ization of the spatial process observed at a finite set of locations, as well as independent and
identically distributed replicates of the spatial process observed at a common set of locations.
Finally, the paper demonstrates how the package can be used, and provides analyses of both
simulated and real data sets.
As noted, there are several other (albeit non convolution-based) methods for nonstationary
spatial modeling that are available in software, namely the basis function approach in the
fields package (Nychka, Furrer, and Sain 2017) and the Gaussian Markov random field ap-
proach in the INLA package (Lindgren, Rue, and Lindstrom 2011; Ingebrigtsen, Lindgren,
and Steinsland 2014; Fuglstad, Lindgren, Simpson, and Rue 2015; Lindgren and Rue 2015),
both available for R. However, as these methods arise from significantly different modeling
approaches, the convoSPAT package represents a novel contribution to the set of available
software for nonstationary spatial modeling. Software comparison across these various pack-
ages is beyond the scope of this paper and will be reserved for future work.
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The paper is organized as follows. Section 2 introduces a convolution-based approach for
nonstationary spatial statistical modeling, and Section 3 describes a full model for observed
data and the mixture component parameterization. Section 4 outlines a computationally
efficient approach to inference for the model introduced in Section 3; Sections 5, 6, and 7
outline usage of the convoSPAT package and present two applications. Section 8 concludes
the paper.

2. A convolution-based nonstationary covariance function
Process convolutions or moving average models are popular constructive methods for speci-
fying a nonstationary process model. In general, a spatial stochastic process Y (·) on G ⊂ Rd
can be defined by the kernel convolution

Y (s) =
∫
Rd
Ks(u)dW (u), (1)

whereW (·) is a d-dimensional stochastic process andKs(·) is a (possibly parametric) spatially-
varying kernel function centered at s ∈ G. Higdon (2002) summarizes the extremely flexible
class of spatial process models defined by Equation 1: see, for example, Barry and Ver Hoef
(1996), Ver Hoef, Cressie, and Barry (2004), Ickstadt and Wolpert (1998), Higdon (1998),
Ver Hoef et al. (2004), and Hoef and Barry (1998).
The kernel convolution in Equation 1 defines a mean-zero nonstationary spatial Gaussian
process (GP) if W (·) is chosen to be d-dimensional Brownian motion. A benefit of using
Equation 1 is that in this case the kernel functions completely specify the second-order prop-
erties of the GP through the covariance function

COV(Y (s), Y (s′)) = E
[
Y (s)Y (s′)

]
=
∫
G
Ks(u)Ks′(u)du, (2)

where s, s′ ∈ G. The popularity of this approach is due largely to the fact that it is much
easier to specify kernel functions than a covariance function directly, since the kernel functions
only require

∫
Rd Ks(u)du < ∞ and

∫
Rd K2

s (u)du < ∞, while a covariance function must
be even and nonnegative definite (Bochner 1959; Adler 1981). A famous result (Thiebaux
1976; Thiebaux and Pedder 1987) uses a parametric class of Gaussian kernel functions in
Equation 2 to give a closed-form covariance function; this result was later extended (Paciorek
2003; Paciorek and Schervish 2006; Stein 2005) to show that

CNS(s, s′;θ) = σ(s)σ(s′) |Σ(s)|1/4 |Σ(s′)|1/4∣∣∣Σ(s)+Σ(s′)
2

∣∣∣1/2 g

(√
Q(s, s′)

)
, (3)

is a valid, nonstationary, parametric covariance function on Rd, d ≥ 1, when g(·) is chosen to
be a valid correlation function on Rd, d ≥ 1. Note that Equation 3 no longer requires kernel
functions to be specified. In Equation 3, θ is a generic parameter vector, σ(·) represents
a spatially-varying standard deviation, Σ(·) is a d × d matrix that represents the spatially-
varying local anisotropy (controlling both the range and direction of dependence), and

Q(s, s′) = (s− s′)>
(Σ(s) + Σ(s′)

2

)−1
(s− s′) (4)
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is a Mahalanobis distance. Furthermore, choosing g(·) to be the Matérn correlation function
also allows for the introduction of κ(·), a spatially-varying smoothness parameter (Stein 2005;
in this case, the Matérn correlation function in Equation 3 has smoothness [κ(s) + κ(s′)]/2).
While using Equation 3 no longer requires the notion of kernel convolution, we refer to Σ(·)
as the kernel matrix, since it was originally defined as the covariance matrix of a Gaussian
kernel function (Thiebaux 1976; Thiebaux and Pedder 1987). The covariance function in
Equation 3 is extremely flexible, and has been used in various forms throughout the literature,
e.g., Paciorek and Schervish (2006), Anderes and Stein (2011), Kleiber and Nychka (2012),
Katzfuss (2013), and Risser and Calder (2015).

3. A nonstationary spatial Gaussian process model
The covariance function in Equation 3 can be used to define a nonstationary spatial Gaussian
process model using the following framework. Let {Z(s), s ∈ G} be a spatial field defined on
G ⊂ Rd, where

Z(s) = x(s)>β + Y (s) + ε(s). (5)

In Equation 5, the mean of the spatial field is E[Z(s)] = x(s)>β, where x(s) is a p-vector
of covariates for location s and β ∈ Rp are unknown regression coefficients. Y (·) repre-
sents a spatially-dependent, mean-zero Gaussian process with covariance function CNS from
Equation 3, while ε(·) represents measurement error and, given τ2(·), is conditionally inde-
pendent N (0, τ2(s)). (Note: N (a, b) denotes the univariate Gaussian distribution with mean
a and variance b.) The spatially-referenced random components, ε(·) and Y (·), are assumed
to be mutually independent. Finally, define θ to be a vector of all the variance-covariance
parameters from the Gaussian process Y (·) and error process ε(·).
Now, suppose we have observations which are a partial realization of Z(·), taken at a fixed,
finite set of n spatial locations {si}ni=1 ∈ G, giving the random (observed) vector Z =
(Z(s1), . . . , Z(sn)). The model in Equation 5 implies that Z has a multivariate Gaussian
distribution, conditional on the unobserved latent process Y = (Y (s1), . . . , Y (sn)) and all
other model parameters:

Z|Y,β,θ ∼ Nn
(
Xβ + Y,D(θ)

)
, (6)

where the ith row of X is x(si) and D(θ) is a diagonal matrix with (i, i) element τ2(si). (Note:
Nq(a,B) denotes the q-variate Gaussian distribution with mean vector a and covariance B.)
Integrating out the process Y from Equation 6, we can obtain the marginal likelihood of the
observed data Z given all parameters, which is

Z|β,θ ∼ Nn
(
Xβ,D(θ) + Ω(θ)

)
, (7)

where Ω(θ) has elements Ωij(θ) = CNS(si, sj ;θ). For a particular application, the practi-
tioner can specify the underlying correlation structure (through g(·)) as well as determine
which of {Σ(·), σ(·), τ2(·)} (or κ(·), if the Matérn is used) should be fixed or allowed to
vary spatially. However, some care should be taken in choosing which quantities should be
spatially-varying: for example, Anderes and Stein (2011) note that allowing both Σ(·) and
κ(·) to vary over space leads to issues with identifiability.
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3.1. Discrete mixture representation

One way to reduce the computational demands of fitting a Gaussian process-based spatial
model with parametric covariance function given by Equation 3 is by characterizing the non-
stationary behavior of a spatial process through the discretized basis kernel approach of
Higdon (1998). Higdon (1998) estimated the Gaussian kernel function for a generic location
to be a weighted average of “basis” kernel functions, estimated locally over the spatial region
of interest. However, since the use of Gaussian kernel functions results in undesirable smooth-
ness properties (see, e.g., Paciorek and Schervish 2006), we instead use a related “mixture
component” approach, in which the parametric quantities for an arbitrary spatial location are
defined as a mixture of spatially-varying parameter values associated with a fixed set of com-
ponent locations. Specifically, in this new approach, we define mixture component locations
{bk : k = 1, . . . ,K} with corresponding parameters {(Σk, σ

2
k, τ

2
k , κk) : k = 1, . . . ,K} (which

are the kernel matrix, variance, nugget variance, and smoothness, respectively). Then, for
φ ∈ {Σ, σ2, τ2, κ}, the parameter set for an arbitrary location s ∈ G is calculated as

φ(s) =
K∑
k=1

wk(s)φk, (8)

where

wk(s) ∝ exp
{
−‖s− bk‖2

2λw

}
(9)

such that
∑K
k=1wk(s) = 1. For example, the kernel matrix for s ∈ G is Σ(s) =

∑K
k=1wk(s)Σk.

In Equation 9, λw acts as a tuning parameter, ensuring that the rate of decay in the weighting
function is appropriate for both the data set and scale of the spatial domain. Using this
approach, the number of parameters is now linear in K, the number of mixture component
locations, instead of n, the sample size. Furthermore, this specification still enables the
modeler to choose which parameters should be spatially-varying: the kernel matrices, the
process variance, the nugget variance, and the smoothness.

3.2. Prediction

Define Z∗ = (Z(s∗1), . . . , Z(s∗m)) to be a vector of the process values at all prediction locations
of interest. The Gaussian process model in Equation 5 implies that[

Z
Z∗

∣∣∣∣∣ β, θ
]
∼ Nn+m

([
Xβ
X∗β

]
,

[
D(θ) + Ω(θ) ΩZZ∗(θ)

ΩZ∗Z(θ) D∗(θ) + Ω∗(θ)

])
,

where COV(Z∗) = D∗(θ) + Ω∗(θ) and COV(Z,Z∗) = ΩZZ∗(θ). By the properties of the
multivariate Gaussian distribution,

Z∗|Z = z,β, θ ∼ Nm(µZ∗|z,ΣZ∗|z), (10)

where
µZ∗|z = X∗β + ΩZ∗Z(θ)[D(θ) + Ω(θ)]−1(z−Xβ), (11)

and
ΣZ∗|z = [D∗(θ) + Ω∗(θ)]−ΩZ∗Z(θ)[D(θ) + Ω(θ)]−1ΩZZ∗(θ). (12)
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Using plug-in estimates β̂ and θ̂ (see Section 4), the predictor for Z∗ is then µ̂Z∗|z with
corresponding prediction errors as the square root of the diagonal elements of Σ̂Z∗|z.

Out-of-sample evaluation criteria

Three cross-validation evaluation criteria can be used to assess the fit of the nonstationary
spatial model given in Equation 5. First, the mean squared prediction error

MSPE = 1
m

m∑
j=1

(z∗j − ẑ∗j )2, (13)

where z∗j is the jth held-out observed (or “validation”) value and ẑ∗j is the corresponding
predictor (from Equation 11). The MSPE is a point-wise measure of model fit, and smaller
MSPE indicates better predictions.
Second, to assess the prediction error relative to the standard error of each prediction, we use
the so-called prediction mean squared deviation ratio

pMSDR = 1
m

m∑
j=1

(z∗j − ẑ∗j )2

σ̂2
j

, (14)

where z∗j and ẑ∗j are defined as above and σ̂j is the prediction error corresponding to ẑ∗j (from
Equation 12).
Finally, the continuous rank probability score will be used (a proper scoring rule; see Gneiting
and Raftery 2007). For the jth prediction, this is defined as

CRPSj ≡ CRPS(Fj , z∗j ) = −
∫ ∞
−∞

(
Fj(x)− 1{x ≥ z∗j }

)2
dx, (15)

where Fj(·) is the cumulative distribution function (CDF) for the predictive distribution of
z∗j given the training data and 1{·} is the indicator function. In this case, given that the
predictive CDF is Gaussian (conditional on parameters; see Equation 10), a computational
shortcut can be used for calculating Equation 15: when F is Gaussian with mean µ and
variance σ2,

CRPS
(
F, z∗j

)
= σ

[
1√
π
− 2 · φ

(
z∗j − µ
σ

)
−
z∗j − µ
σ

(
2 · Φ

(
z∗j − µ
σ

)
− 1

)]
,

where φ and Φ denote the probability density and cumulative distribution functions, respec-
tively, of a standard Gaussian random variable. The reported metric will be the average over
all validation locations, ĈRPS = m−1∑m

j=1 ĈRPSj . CRPS measures the fit of the predictive
density; larger CRPS (i.e., smaller negative values) indicates better model fit.

4. Computationally efficient inference
As discussed in Section 1, fast and efficient inference for a nonstationary process convolution
model has yet to be made readily available for general use. In spite of its popularity, the use of
Equation 3 always requires some kind of constraints and has suffered from a lack of widespread
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use due to the complexity of the requisite model fitting and limited pre-packaged options.
Focusing on the spatially-varying local anisotropy matrices Σ(·), the covariance function in
Equation 3 requires a kernel matrix at every observation and prediction location of interest.
Paciorek and Schervish (2006) accomplish this by modeling Σ(·) as (stationary) stochastic
process, assigning Gaussian process priors to the elements of the spectral decomposition of
Σ(·); alternatively, Katzfuss (2013) uses a basis function representation of Σ(·). Both of these
models are highly parameterized and require intricate Markov chain Monte Carlo methods
for model fitting.
The approach we propose provides efficiency in two ways: first, from the model itself, which
uses a discrete mixture representation (see Section 3.1), and second, by fitting the mixture
components of the model locally, using the idea of local likelihood estimation (Tibshirani and
Hastie 1987).

4.1. Local likelihood estimation

Using the discrete mixture representation of Equation 8, a “full likelihood” approach to pa-
rameter estimation could be taken, in either a Bayesian or maximum likelihood framework,
although the optimization in a maximum likelihood approach could become intractable for ei-
ther moderately large K or large n. However, since the primary goal of this new methodology
is computational speed, a further degree of efficiency can be gained by using local likelihood
estimation (LLE; Tibshirani and Hastie 1987).
Before discussing the local likelihood approach, we outline a restricted maximum likelihood
(REML) approach for separating estimation of the mean parameters β from the covariance
parameters θ (see Patterson and Thompson 1971, Patterson and Thompson 1975, and Ki-
tanidis 1983). The full log-likelihood for β and θ in Equation 5 is

LF (β, θ; Z) = −1
2 log |Ω + D| − 1

2(Z−Xβ)>(Ω + D)−1(Z−Xβ), (16)

where we have abbreviated D ≡ D(θ) and Ω ≡ Ω(θ); a standard maximum likelihood
approach would set out to maximize LF (β, θ; Z) directly. REML, on the other hand, uses
a (log-)likelihood based on n − p linearly independent linear combinations of the data that
have an expected value of zero for all possible β and θ. Regardless of which set of linearly
independent combinations is chosen, the “restricted” log-likelihood, which depends only on
θ, is

LR(θ; Z) = −1
2 log |Ω + D| − 1

2 log |X>(Ω + D)−1X| − 1
2Z>PZ, (17)

where
P = (Ω + D)−1 − (Ω + D)−1X

(
X>(Ω + D)−1X

)−1X>(Ω + D)−1. (18)

The REML estimate of θ is obtained by maximizing LR(θ; Z), and the estimate of β is the
generalized least squares estimate

β̂ =
(
X>(Ω̂ + D̂)−1X

)−1X>(Ω̂ + D̂)−1Z, (19)

which is obtained by plugging in θ̂ to calculate Ω̂ and D̂. These parameter estimates can
then be plugged into µ̂Z∗|z and Σ̂Z∗|z to obtain predictions and prediction standard errors.
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In the LLE approach, instead of maximizing Equation 17 directly we will set out to maximize
LRk (θNk

; ZNk
), where Nk ≡ Nk(r) is the set of locations in the neighborhood for each mixture

component location bk that depends on the radius r, such that

Nk =
{
si ∈ {s1, . . . , sn} : {‖si − bk‖ ≤ r}

}
and

ZNk
=
{
Z(s) : s ∈ Nk

}
.

Correspondingly, θNk
= (Σk, σ

2
k, τ

2
k , κk). The radius r defines the “span” (Tibshirani and

Hastie 1987) or window size for each mixture component. The restricted log-likelihood for
neighborhood Nk will be based on a stationary version of the spatial model in Equation 5,
namely

Z̃(s) = x(s)>β̃ + Ỹ (s) + ε̃(s), (20)

where Ỹ (·) is a stationary, mean-zero spatial process with covariance function

CS(s− s′) = σ2g
(
‖Σ−1/2(s− s′)‖

)
, (21)

the ε̃(·) are independent and identically distributed as N (0, τ2), conditional on τ2, and again
Ỹ (·) and ε̃(·) are independent. Again, in a REML framework, only the variance and covariance
parameters {Σk, σ

2
k, τ

2
k , κk} need to be estimated for each k = 1, . . . ,K. No estimates will

be obtained for the local mean coefficient vector β̃, as all of the mean parameters will be
estimated globally.
One final note regarding the estimation of the kernel matrices: the kernel matrix for mixture
component location k will be obtained by estimating the parameters of its spectral decompo-
sition, namely λ1, λ2, and η, where

Σ =
[

cos(η) − sin(η)
sin(η) cos(η)

] [
λ1 0
0 λ2

] [
cos(η) sin(η)
− sin(η) cos(η)

]
(22)

(in the case that we have fixed d = 2). Here, λ1 and λ2 are eigenvalues and represent squared
ranges (such that λ1 > 0 and λ2 > 0) and η represents an angle of rotation, constrained to
lie between 0 and π/2 for identifiability purposes (Katzfuss 2013).
The full model in Equation 5 can be fit after plugging REML estimates {Σ̂k, σ̂

2
k, τ̂

2
k , κ̂k : k =

1, . . . ,K} into the covariance function in Equation 3 using the discrete basis representation
in Equation 8 to calculate the likelihood for the observed data. Variance quantities that
are not specified to be spatially-varying can then be estimated again using REML with the
spatially-varying components considered fixed. For example, if for a particular model only
Σ(·) is allowed to vary spatially and the smoothness is fixed, it remains to estimate the overall
nugget τ2 and variance σ2. The restricted Gaussian log-likelihood for these parameters is then

LR(σ2, τ2; Z,R) = −1
2 log

∣∣∣σ2R + τ2In
∣∣∣− 1

2 log |X>(σ2R + τ2In)−1X| − 1
2Z>PZ,

where R is the correlation matrix, i.e., the matrix calculated using Equation 3 without the
σ(·) terms, and P is defined as in Equation 18. Once all of the covariance parameters have
been estimated, the estimate of β can be calculated as in Equation 19.
Using this model requires both the number and placement of mixture component locations
{bk : k = 1, . . . ,K}, selecting which of the spatial dependence parameters should be fixed
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or allowed to vary spatially, the tuning parameter for the weighting function λw, and the
fitting radius r. Parameter estimates for this model are likely to be sensitive to the choice of
K and the placement of mixture component locations. Furthermore, Tibshirani and Hastie
(1987) discuss the importance of choosing r, which specifies the “span size,” suggesting that
the model should be fit using a range of r values, and to use a global criterion such as the
maximized overall likelihood, cross-validation, or Akaike’s information criterion to choose
the final model. This strategy could either be implemented on a trial-and-error basis or in
an automated scheme. Of course, regardless of the number and locations of the mixture
component centroids, the radius r should be chosen such that a large enough number of data
points are used to estimate a local stationary model.
While different in both motivation and nature, the model outlined above is related to the
local likelihood method described in Anderes and Stein (2011), which ties together locally
stationary models to estimate a globally nonstationary model. The model in Anderes and
Stein (2011) involves optimizing a sum of weighted increments of local log-likelihoods, where
the weights are estimated smoothly using a smoothing kernel. Alternatively, our approach
estimates spatially-varying parameters locally using only a subset of the data, then fixing
the global parameters according to Equation 8. Both of these approaches avoid the lack-of-
smoothness issues innate to other similar segmentation approaches, such as Fuentes (2001) or
the ad hoc nonstationary kriging approach in Paciorek and Schervish (2006), which Anderes
and Stein (2011) call “hard thresholding” local likelihood estimates. Like Anderes and Stein
(2011), our approach avoids the problem of non-smooth local parameter estimates implicit to
hard thresholding methods by using the mixture component representation.
We conclude this overview of our methodology with a note regarding the computational
demands of fitting this model. Recall that Gaussian log-likelihood calculations such as Equa-
tion 16 typically involve inverting and calculating the determinant of n×n matrices, requiring
O(n3) calculations (in this case, for each iteration of the optimization procedure). The local
likelihood approach involves inverting a collection of K nk × nk matrices, where nk is the
number of observations in the neighborhood of mixture component k, so that the model re-
quires more like O(Kn3) calculations, where n = K−1∑

k nk is the average local sample size.
This represents a significant reduction in both the required memory and CPU time, as long
as n � n. However, note that since the local models are fit independently of each other, if
parallelization is utilized (see Section 8) then the computational time could be further reduced
to O(n3).

5. Using the convoSPAT package for R
The convoSPAT package is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=convoSPAT, and can be installed and loaded as
usual:

R> install.packages("convoSPAT")
R> library("convoSPAT")

All of the data sets in Sections 6 and 7 are included in the package. The convoSPAT package
uses functionality from the R packages ellipse (Murdoch and Chow 2013), fields (Nychka
et al. 2017), geoR (Ribeiro Jr. and Diggle 2016), MASS (Venables and Ripley 2002), plotrix

https://CRAN.R-project.org/package=convoSPAT
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(Lemon 2006), sp (Bivand, Pebesma, and Gómez-Rubio 2013; Pebesma and Bivand 2005),
and StatMatch (D’Orazio 2017).
Two notes should be made before discussing the functionality of the package. First, while
the methods described in Sections 2, 3, and 4 are valid for spatial coordinates in a general
d-dimensional Euclidean space, the following implementation only allows for two-dimensional
coordinates, with d = 2. Second, on a more technical note, the package is implemented using
S3 classes in R, and therefore contains package-specific predict and plot functionality.

5.1. Nonstationary model fitting

The primary components of the convoSPAT package are the NSconvo_fit function and the
predict method for ‘NSconvo’ objects which fit the nonstationary model discussed in Sec-
tion 3 and provide predictions, respectively. The NSconvo_fit function takes the following
arguments (with defaults as given):

NSconvo_fit(geodata = NULL, sp.SPDF = NULL, coords = geodata$coords,
data = geodata$data, cov.model = "exponential", mean.model = data ~ 1,
mc.locations = NULL, N.mc = NULL, mc.kernels = NULL, fit.radius,
lambda.w = NULL, ns.nugget = FALSE, ns.variance = FALSE,
local.pars.LB = NULL, local.pars.UB = NULL, global.pars.LB = NULL,
global.pars.UB = NULL, local.ini.pars = NULL, global.ini.pars = NULL)

The spatial coordinates and response variable of interest may be input in several different
ways: first, the function accepts a ‘geodata’ object from the geoR package (Ribeiro Jr. and
Diggle 2016), using the geodata input argument; second, a ‘SpatialPointsDataFrame’ object
from the sp package (Bivand et al. 2013; Pebesma and Bivand 2005), using the sp.SPDF input
argument; finally, the coordinates and data may be entered directly using the coords and
data input arguments. As a result, the package is able to handle a variety of geographic
coordinate reference systems; note, however, that distances between points are calculated
using a Mahalanobis distance (see Equation 4).
Two other required inputs are the number of mixture component locations (N.mc) and the
fit.radius (previously denoted r). The user may specify a covariance model from the
geoR (Ribeiro Jr. and Diggle 2016) options "cauchy", "matern", "circular", "cubic",
"gaussian", "exponential", "spherical", or "wave", as well as a mean model through
the usual formula notation (a constant mean is the default). For most applications (and
as an alternative to specifying N.mc), the user will want to specify the mixture component
locations directly: the default is to create an evenly spaced grid over the spatial domain of
interest, which may not be appropriate if the spatial domain is non-rectangular. The tuning
parameter for the weighting function λw is defined by lambda.w. The default for λw is fixed
to be the square of one-half of the minimum distance between mixture component locations,
or (0.5 min{‖bk−bk′‖})2 (in order to ensure a default scaling appropriate for the resolution of
the mixture component grid), but may also be specified by the user. The user may also specify
if either the nugget variance or process variance is to be spatially-varying by setting either
ns.nugget = TRUE or ns.variance = TRUE (or both). If the mixture component kernels
themselves are pre-specified (e.g., based on expert opinion), these may also be passed into
the function, which will greatly reduce computational time.
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Note that if the data and coordinates are not specified as a ‘geodata’ object, the data argu-
ment for this function can accommodate replicates. This might be of interest for applications
similar to the ones in Sampson and Guttorp (1992), in which the replicates represent repeated
observations over time that have been temporally detrended. In this case, the model will as-
sume a constant spatial dependence structure over replicates (time) as well as the same mean
function over replicates (that is, the locations must be constant across replicates; furthermore,
the regression coefficients will be constant across replicates).
The optimization method used within optim for this package is "L-BFGS-B", which allows for
the specification of upper and lower bounds for each parameter with respect to the optimiza-
tion search. The upper and lower bounds may be passed to the function via local.pars.LB,
local.pars.UB, global.pars.LB, and global.pars.UB. The local limits require vectors of
length five, with bounds for the local parameters λ1, λ2, τ

2, σ2, and κ, while the global limits
require vectors of length three, with bounds for the global parameters τ2, σ2, and κ. Default
values for these limits are as follows: for both the global and local parameter estimation, the
lower bounds for λ1, λ2, σ

2, τ2, and κ are fixed at 1e-5; the upper bound for the smoothness
κ will be fixed to 30. The upper bounds for the variance and kernel parameters, on the other
hand, will be specific to the application: for the nugget variance (τ2) and process variance
(σ2), the upper bound will be 4σ̂2

OLS (where σ̂2
OLS is the error variance estimate from a stan-

dard ordinary least squares procedure); the upper bound for λ1 and λ2 will be one-fourth of
the maximum interpoint distance between observation locations in the data set. The bounds
for η are fixed at 0 and π/2.
Given that many calls to optim are made within NSconvo_fit, the function prints a message
to notify the user if optim returns any errors. In test runs of the package, the most common
warning (non-fatal) message encountered is "ABNORMAL_TERMINATION_IN_LINSRCH", which
seems to have no negative impact on the results of the optimization.
The final options in the NSconvo_fit function involve local.ini.pars and global.ini.pars,
which specify the initial values used for the local and global calls of optim, respectively. As
with the limits, local.ini.pars is a vector of length five, with initial values for the local pa-
rameters λ1, λ2, τ

2, σ2, and κ, while global.ini.pars is a vector of length three, with initial
values for the global parameters τ2, σ2, and κ. The default for these inputs are as follows:
λ1,init = λ2,init = c/10, where c is the maximum interpoint distance between observation
locations, τ2

init = 0.1σ̂2
OLS, σ2

init = 0.9σ̂2
OLS, and κinit = 1.

When the NSconvo_fit function is called, the status of the model fitting will be printed on
the screen. As the function fits the locally stationary models for each mixture component
location, the function will print the mixture component and number of observations that are
currently being used for estimation. After the local models have been fit for each mixture
component location, a printed message will notify the user that the variance parameters are
being estimated globally (if applicable).
A function which may be helpful before running NSconvo_fit is the mc_N function, which
returns the number of observations which will be used to fit each local model for a particular
set of mixture component locations and fit radius. This function may be helpful when selecting
the fit radius, as the user may want to know how many data points will be used to fit the
local model for a number of different fit radii. The inputs to the function are

mc_N(coords, mc.locations, fit.radius)
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where coords are the observation locations for the full data set, mc.locations are the mixture
component locations, and fit.radius is the fitting radius. This function is also automatically
run inside the NSconvo_fit function, printing a warning message if any of the local sample
sizes are less than 5. In this case, the user should refine the mixture component grid or expand
the fit radius.
After the model fitting has completed, NSconvo_fit returns a ‘NSconvo’ object which has
its own summary method associated to quickly summarize the fitted model. Among other
elements, a ‘NSconvo’ object includes:

mc.kernels, which contains the estimated kernel matrices for the mixture component loca-
tions,

mc.locations, which contains the mixture component locations,

MLEs.save, which includes a data frame of the locally-estimated stationary model parameters
for each mixture component location,

kernel.ellipses, which includes the estimated kernel ellipse for each location in coords,

beta.GLS, the generalized least squares estimate of β,

beta.cov, the estimated covariance matrix of β̂,

tausq.est, the estimate of the nugget variance – either a constant (if estimated globally) or
a vector with the estimated nugget variance for each location in coords,

sigmasq.est, the estimate of the process variance – either a constant (if estimated globally)
or a vector with the estimated process variance for each location in coords,

kappa.MLE, the global estimate of the smoothness (for "cauchy" or "matern"),

Cov.mat and Cov.mat.inv, the estimated covariance matrix for the data and its inverse (re-
spectively), and

Xmat, the design matrix for the mean model.

The ‘NSconvo’ object also has a predict method, which calculates predictions µ̂Z∗|z and
prediction standard errors Σ̂Z∗|z. The predict method takes the following arguments:

predict(object, pred.coords, pred.covariates = NULL, ...)

The object is the output of NSconvo_fit, pred.coords is a matrix of the prediction loca-
tions of interest, pred.covariates is a matrix of covariates for the prediction locations (the
intercept is added automatically), and ... allows other options to be passed to the default R
predict methods. Calculating the predictions when the dimension of pred.coords is large
is computationally expensive, and a progress meter prints while the machine is working. The
output from the predict method for ‘NSconvo’ objects includes:

pred.means, which contains the kriging predictor for each prediction location, and

pred.SDs, which contains the corresponding prediction standard error.
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5.2. Anisotropic model fitting

For the sake of comparison, the functions Aniso_fit and a predict method for the ‘Aniso’
objects returned by Aniso_fit are also provided, which fit the stationary (anisotropic) model
with the covariance function given by Equation 21 to the full dataset. Note: The following
functions have been coded from scratch and represent reimplementations of methodology that
already exists in other packages, such as geoR (Ribeiro Jr. and Diggle 2016). In spite of be-
ing reimplementations, the functions are provided for convenience, as their syntax matches
NSconvo_fit and can be quickly implemented in tandem with NSconvo_fit. However, also
note that the version provided here has not been optimized nearly to the extent of the ver-
sion in geoR, and therefore Aniso_fit will take significantly longer than a corresponding
implementation of, say, likfit in geoR.
The Aniso_fit function takes the following arguments (with defaults as given):

Aniso_fit(geodata = NULL, sp.SPDF = NULL, coords = geodata$coords,
data = geodata$data, cov.model = "exponential", mean.model = data ~ 1,
local.pars.LB = NULL, local.pars.UB = NULL, local.ini.pars = NULL)

The inputs to this function are identical to the corresponding inputs to the nonstationary
model fitting function, and the output is an ‘Aniso’ object. Among other elements, an
‘Aniso’ object includes:

MLEs.save, which includes a data frame of the locally-estimated stationary model parameters
for each mixture component location,

beta.GLS, the generalized least squares estimate of β,

beta.cov, the estimated covariance matrix of β̂,

aniso.pars, the global estimate of the anisotropy parameters λ1, λ2, and η, which define
the anisotropy matrix in Equation 22,

aniso.mat, which gives the global estimate of Σ from Equation 22 in matrix form,

tausq.est, the global estimate of the nugget variance,

sigmasq.est, the global estimate of the process variance,

kappa.MLE, the global estimate of the smoothness (for "cauchy" or "matern"), and

Cov.mat and Cov.mat.inv, the estimated covariance matrix for the data and its inverse (re-
spectively).

Once the anisotropic model has been fit and the output stored, the fitted model object can be
passed to the predict method for ‘Aniso’ objects, which (similar to the nonstationary predict
function) calculates predictions µ̂Z∗|z and prediction standard errors Σ̂Z∗|z. The arguments
are again identical to the nonstationary predict function:

predict(object, pred.coords, pred.covariates = NULL, ...)
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The object is the output of Aniso_fit, pred.coords is a matrix of the prediction locations
of interest, and pred.covariates is a matrix of covariates for the prediction locations (the
intercept is added automatically). Similar to the nonstationary predict function, the output
from the predict method for ‘Aniso’ objects includes:

pred.means, which contains the kriging predictor for each prediction location, and

pred.SDs, which contains the corresponding prediction standard error.

5.3. Evaluation criteria and plotting functions

This package includes a function to quickly calculate the evaluation criteria described in
Section 3.2, as well as functions to visualize various components of the nonstationary model.
First, the evaluate_CV function calculates the MSPE, from Equation 13, the pMSDR, from
Equation 14, and the CRPS, from Equation 15. The function inputs are simply

evaluate_CV(holdout.data, pred.mean, pred.SDs)

where holdout.data is the held-out validation data and pred.mean and pred.SDs are the
output from one of the fit functions. Note that the user must perform the subsetting of the
data. The output of evaluate_CV is simply the MSPE, pMSDR, and CRPS, averaged over
all hold-out locations.
Next, plotting functions are provided to help visualize the output of either the stationary or
nonstationary model. The first is the plot method for ‘NSconvo’ objects:

plot(x, plot.ellipses = TRUE, fit.radius = NULL, aniso.mat = NULL,
true.mc = NULL, ref.loc = NULL, all.pred.locs = NULL, grid = TRUE,
true.col = 1, aniso.col = 4, ns.col = 2, plot.mc.locs = TRUE, ...)

which plots either the estimated anisotropy ellipses (plot.ellipses = TRUE) or the estimated
correlation (plot.ellipses = FALSE). The x is a ‘NSconvo’ object; additional options can
be added to a plot of the estimated anisotropy ellipses by specifying the fit.radius that was
used to fit the model, the ellipse for the stationary model aniso.mat estimated in Aniso_fit,
and the true mixture component ellipses (if known). To plot the estimated correlation, a
reference location (ref.loc) must be specified, as well as all of the prediction locations of
interest (all.pred.locs) and whether or not the predictions lie on a rectangular grid. The
other options correspond to color values for the true mixture component ellipses (true.col),
the anisotropy ellipse (aniso.col), and the estimated mixture component ellipses (ns.col);
plot.mc.locs indicates whether or not the mixture component locations should be plotted.
Note that the plotted ellipse is the 0.5 probability ellipse for a bivariate Gaussian random
variable with covariance equal to the kernel matrix.
Similarly, the plot method for ‘Aniso’ objects is provided to plot the estimated correlations
from the stationary model:

plot(x, ref.loc = NULL, all.pred.locs = NULL, grid = TRUE, ...)
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The inputs are identical to the plot method for ‘NSconvo’ objects, except that x must have
class ‘Aniso’.

5.4. Other functions
Two additional functions are also provided to simulate data from the nonstationary model
discussed in Section 3, and are used to create the simulated data set in Section 6. The first
is f_mc_kernels, which calculates the true mixture component kernel matrices through a
generalized linear model for each component of the kernel matrices’ spectral decomposition
as given in Equation 22. The function, with default settings, is

f_mc_kernels(y.min = 0, y.max = 5, x.min = 0, x.max = 5, N.mc = 3^2,
lam1.coef = c(-1.3, 0.5, -0.6), lam2.coef = c(-1.4, -0.1, 0.2),
logit.eta.coef = c(0, -0.15, 0.15))

The inputs y.min, y.max, x.min, and x.max define a rectangular spatial domain, N.mc is the
number of mixture component locations, and lam1.coef, lam2.coef, and logit.eta.coef
define regression coefficients for the spatially-varying parameters λ1, λ2, and η. For example,
taking lam1.coef ≡ βλ1 = (βλ1

0 , βλ1
1 , βλ1

2 )>, the first eigenvector for an arbitrary location
s = (s1, s2) is

λ1(s) = exp{βλ1
0 + βλ1

1 s1 + βλ1
2 s2}.

The other eigenvalue is calculated similarly. The angle of rotation, on the other hand, is
calculated through the scaled inverse logit transformation

η(s) = π

2 · logit
−1(βη0 + βη1s1 + βη2s2

)
,

where logit.eta.coef ≡ βη = (βη0 , β
η
1 , β

η
2 )>. The default coefficients are those used to

generate the simulated data set in Section 6, and were obtained by trial and error. The
output of this function includes

mc.locations, which contains the mixture component locations, and

mc.kernels, which contains the mixture component kernels for each mixture component
location.

The true mixture component kernel matrices generated in f_mc_kernels can be used to
simulate a data set using the function

NSconvo_sim(grid = TRUE, y.min = 0, y.max = 5, x.min = 0, x.max = 5,
N.obs = 20^2, sim.locations = NULL, mc.kernels.obj = NULL,
mc.kernels = NULL, mc.locations = NULL, tausq = 0.1, sigmasq = 1,
beta.coefs = 4, kappa = NULL, covariates = rep(1, N.obs),
cov.model = "exponential")

In this function, grid is a logical input specifying if the simulated data should lie on a
grid (TRUE) or not (FALSE), y.min, y.max, x.min, and x.max define the rectangular spatial
domain, N.obs specifies the number of observed locations, mc.kernels.obj is an object from
f_mc_kernels, tausq, sigmasq, beta.coefs, and kappa specify the true parameter values,
covariates specifies the design matrix for the mean function, and cov.model specifies the
covariance model. The output of this function is
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sim.locations, which contains the simulated data locations,

mc.locations, which contains the mixture component locations,

mc.kernels, which contains the mixture component kernels for each mixture component
location,

kernel.ellipses, which contains the kernel matrices for each simulated data location,

Cov.mat, which contains the true covariance matrix of the simulated data, and

sim.data, which contains the simulated data.

6. Example 1: Simulated data
As a simple illustration, the nonstationary model will be fit to an artificial data set simulated
from the model. The data lie on a 25 × 25 grid (so that n = 252 = 625), and there are
K = 9 mixture component locations with corresponding mixture component ellipses as given
in Figure 1. Only the kernel matrices are allowed to vary spatially, an exponential correlation
structure is used, and the mean structure contains the main effects of both coordinates. The
true parameter values are τ2 = 0.1, σ2 = 1, β0 = 4, β1 = −0.5 (x-coordinate coefficient),
β2 = 0.5 (y-coordinate coefficient), and λw = 2. A total of m = 60 of the simulated data
points are used as a validation sample. Figure 1 also provides the simulated data along with
the validation locations.
The simdata object includes sim.locations, the simulated data locations; mc.locations,
the mixture component locations; mc.kernels, the true mixture component kernel matrices;
sim.data, the simulated data; and holdout.index, a vector of the 60 randomly sampled
validation location indices. Note that there are actually ten independent and identically
distributed replicates of the data contained in the ten columns of sim.data; in what follows
the first column of data will be used.
Figure 1 can be created with

R> plot(simdata$mc.locations, pch = "+", asp = 1.25, xlab = "",
+ ylab = "", xlim = c(-0.5, 5.5), cex = 2, col = "#4575b4", main = " ")
R> points(simdata$sim.locations[-simdata$holdout.index, ], col = "#d73027",
+ pch = "+")
R> points(simdata$sim.locations[simdata$holdout.index, ], col = "#5aae61")
R> for (i in 1:nrow(simdata$mc.locations)) {
+ lines(ellipse(simdata$mc.kernels[, , i],
+ centre = simdata$mc.locations[i, ], level = 0.5))
+ }
R> ggplot(data.frame(simdata = simdata$sim.data[, 1],
+ xcoord = simdata$sim.locations[, 1],
+ ycoord = simdata$sim.locations[, 2]),
+ aes(x = xcoord, y = ycoord, color = simdata)) +
+ coord_fixed(ratio = 1.25) + geom_point(size = 2.5) +
+ xlab("") + ylab("") +
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Figure 1: Left: True mixture component ellipses with observation locations (red) and valida-
tion locations (green). Right: Simulated data.

+ scale_color_gradientn(colours = brewer.pal(11, "RdYlBu"),
+ name = "Simulated \nData") +
+ theme(panel.background = element_rect(fill = "white"),
+ panel.border = element_rect(colour = "black", fill = NA),
+ panel.grid = element_blank(), legend.key.height = unit(2, "cm"),
+ legend.title = element_text(size = 16),
+ legend.text = element_text(size = 15))

Note: This code requires the R packages ggplot2 (Wickham 2009), RColorBrewer (Neuwirth
2014), and ellipse (Murdoch and Chow 2013).

6.1. Selection of fixed components in the model

In order to fit the nonstationary model, the user must specify three components: (1) the
number and placement of mixture component locations, (2) the fitting radius r, and (3) the
tuning parameter λw. For this simulated data set, the true number and placement of the
mixture component locations as well as the tuning parameter are known, and these true
values will be used. However, even for the simulated data, an optimal fit radius is not known.
When the tuning parameter is unknown the package provides a default value, but this may
or may not be the optimal choice.
Given that the nonstationary model can be fit relatively quickly for given values of r, a
recommended strategy is to fit the model many times for a variety of different values (same
for the mixture component grid and λw, when these are unknown) and choose the final
values based on which combination yields the “best” results. Of course, there is a trade-off
between choices of the mixture component grid and fit radius: for a particular grid, the radius
should be chosen such that a reasonable number of data points are used to fit each locally
stationary model. It is here that the mc_N function may be helpful, because the user can
quickly determine how many locations fall within the fitting radius of each grid point. For
example, using the simulated data, one obtains:
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R> mc_N(coords = simdata$sim.locations[-simdata$holdout.index, ],
+ mc.locations = simdata$mc.locations, fit.radius = 2)

[1] 164 212 165 209 269 212 153 204 157

That is, using the true mixture component grid and a fit radius of r = 2, the local models
will be fit using anywhere from 153 to 269 data points.
For the simulated data in this application, the “best” fit was chosen based on the quality of
the anisotropy parameter estimates relative to the true values; in other cases not involving
simulated data, “best” might be defined in terms of the cross-validation criteria (see, e.g.,
Section 7). The values used for these three components in the final fit (Section 6.2) were the
true mixture component grid (with K = 9 evenly spaced locations over the domain), a fit
radius of r = 2.3 units, and the true tuning parameter value of λw = 2.

6.2. Final model fitting
Using the final choices of the fixed model components, the nonstationary model can be fit to
the non-hold-out data (and results summarized) by

R> NSfit.model <- NSconvo_fit(
+ coords = simdata$sim.locations[-simdata$holdout.index, ],
+ data = simdata$sim.data[-simdata$holdout.index, 1],
+ cov.model = "exponential", fit.radius = 2.3, lambda.w = 2,
+ mc.locations = simdata$mc.locations,
+ mean.model = simdata$sim.data[-simdata$holdout.index, 1]
+ ~ simdata$sim.locations[-simdata$holdout.index, 1]
+ + simdata$sim.locations[-simdata$holdout.index, 2])
R> summary(NSfit.model)

Similarly, the anisotropic model can be fit to the non-hold-out data (and results summarized)
by

R> anisofit.model <- Aniso_fit(
+ coords = simdata$sim.locations[-simdata$holdout.index, ],
+ data = simdata$sim.data[-simdata$holdout.index, 1],
+ cov.model = "exponential",
+ mean.model = simdata$sim.data[-simdata$holdout.index, 1]
+ ~ simdata$sim.locations[-simdata$holdout.index, 1]
+ + simdata$sim.locations[-simdata$holdout.index, 2])
R> summary(anisofit.model)

Predictions for the validation locations under each model can be calculated by

R> pred.NS <- predict(NSfit.model,
+ pred.coords = simdata$sim.locations[simdata$holdout.index, ],
+ pred.covariates = simdata$sim.locations[simdata$holdout.index, ])
R> pred.S <- predict(anisofit.model,
+ pred.coords = simdata$sim.locations[simdata$holdout.index, ],
+ pred.covariates = simdata$sim.locations[simdata$holdout.index, ])
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True value Stationary model Nonstationary model
β0 (intercept) 4 4.039 3.905
β1 (x-coordinate) −0.5 −0.695 −0.678
β2 (y-coordinate) 0.5 0.741 0.770
τ2 (nugget) 0.1 0.086 0.107
σ2 (variance) 1 1.038 0.958
CRPS – −0.424 −0.415
MSPE – 0.546 0.524

Table 1: Parameter estimates from the simulated data, comparing the stationary and non-
stationary models.

(Note: Here, using predict implies that the methods for the ‘NSconvo’ and ‘Aniso’ objects
are used; similar syntax will be used throughout) after which the evaluation criteria can be
calculated by

R> evaluate_CV(holdout.data = simdata$sim.data[simdata$holdout.index],
+ pred.mean = pred.NS$pred.means, pred.SDs = pred.NS$pred.SDs)
R> evaluate_CV(holdout.data = simdata$sim.data[simdata$holdout.index],
+ pred.mean = pred.S$pred.means, pred.SDs = pred.S$pred.SDs)

A summary of the parameter estimates and cross-validation results (MSPE and CRPS only)
from each fitted model is provided in Table 1.
Calculating predictions on a finer resolution can be done as follows:

R> grid.x <- seq(from = 0, to = 5, by = 0.05)
R> grid.y <- seq(from = 0, to = 5, by = 0.05)
R> grid.locations <- expand.grid(grid.x, grid.y)
R> pred.locs <- matrix(c(grid.locations[, 1], grid.locations[, 2]),
+ ncol = 2, byrow = FALSE)
R> pred.NS.all <- predict(NSfit.model, pred.coords = pred.locs,
+ pred.covariates = pred.locs)
R> pred.S.all <- predict(anisofit.model, pred.coords = pred.locs,
+ pred.covariates = pred.locs)

Interpolated maps for the nonstationary model can be created with ggplot2 (Wickham 2009):

R> ggplot(data.frame(preds = pred.NS.all$pred.means,
+ xcoord = pred.locs[, 1], ycoord = pred.locs[, 2]),
+ aes(x = xcoord, y = ycoord, color = preds)) +
+ coord_fixed(ratio = 1.25) + geom_point(size = 2.5) +
+ scale_color_gradientn(colours = brewer.pal(11, "RdYlBu"),
+ name = "", limits = c(-1.15, 8.7)) +
+ theme(panel.background = element_rect(fill = "white"),
+ panel.border = element_rect(colour = "black", fill = NA),
+ panel.grid = element_blank())
R> ggplot(data.frame(preds = pred.NS.all$pred.SDs,
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Figure 2: Predictions and prediction errors from the stationary model given in plots (a) and
(b) and the nonstationary model given in plots (c) and (d).

+ xcoord = pred.locs[, 1], ycoord = pred.locs[, 2]),
+ aes(x = xcoord, y = ycoord, color = preds)) +
+ coord_fixed(ratio = 1.25) + geom_point(size = 2.5) +
+ scale_color_gradientn(colours = brewer.pal(11, "RdYlBu"),
+ name = "", limits = c(0.38, 0.78)) +
+ theme(panel.background = element_rect(fill = "white"),
+ panel.border = element_rect(colour = "black", fill = NA),
+ panel.grid = element_blank())

(similarly for the stationary predictions and standard errors); these plots are provided in Fig-
ure 2. To visualize the locally-estimated anisotropy, the mixture component kernel matrices
can be plotted along with the stationary anisotropy ellipse using
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Figure 3: True mixture component ellipses (solid black) with fit radius (dashed gray), non-
stationary ellipses (solid red), and the stationary ellipse (dashed blue).

R> plot(NSfit.model, fit.radius = 2.3, xlab = "", ylab = "",
+ aniso.mat = anisofit.model$aniso.mat, asp = 1.25,
+ true.mc = simdata$mc.kernels, true.col = 1, aniso.col = 4,
+ ns.col = 2, xlim = c(-1, 6), ylim = c(-1, 6))

(Note: As with predict, plot call the method for ‘NSconvo’ objects; similar syntax will
be used throughout.) This plot is shown in Figure 3; since the true anisotropy ellipses are
known, these are also plotted. Note that the estimated nonstationary ellipses (solid red)
compare quite favorably with the true ellipses (black); furthermore, the stationary ellipse
(dashed blue) appears to be approximately an “average” of the spatially-varying ellipses.
As an additional visualization of the estimated nonstationarity, estimated correlation plots
for a particular reference point can be obtained by

R> plot(NSfit.model, plot.ellipses = FALSE, asp = 1.25,
+ ref.loc = c(1.5, 3.5), all.pred.locs = pred.locs,
+ col = diverge_hsv(100))
R> plot(anisofit.model, asp = 1.25, ref.loc = c(1.5, 3.5),
+ all.pred.locs = pred.locs, col = diverge_hsv(100))
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Figure 4: Estimated correlations for a reference point, showing the nonstationary (left) and
stationary (middle) models, as well as the true correlation (right).

and are given in Figure 4 for the nonstationary and stationary models, as well as the true
correlation for comparison. Note that the stationary model estimates an elliptical correla-
tion pattern, while the nonstationary model captures the non-elliptical nature of the true
correlation pattern.
Finally, note that the nonstationary model outperforms the stationary model in terms of both
CRPS and MSPE (see Table 1).

6.3. Computational considerations

Selection of the size and placement of the mixture component grid and the fit radius have a
major impact on the computational time. As a demonstration of this relationship, consider
the computational times for a variety of choices for the mixture component grid and fit radius,
summarized in Figure 5. Three mixture component grids were chosen: “coarse” (with K = 4),
“true” (with K = 9), and “fine” (with K = 16). For each of these grids, the nonstationary
model (with spatially-varying nugget and variance) was fit using fit radii ranging between
r = 0.5 and r = 3. As a reference point, the average number of data points used to fit
the locally stationary models increases linearly from around 20 for r = 0.5 to 350 for r = 3
(consistent across the different mixture component grids).
The linear trends on the log scale in Figure 5 are expected, as calculations for Gaussian
process models are known to increase with the square of the sample size. The (approximately)
vertical shifts present in moving from coarse to true to fine are also expected, as the finer
grids represent fitting more local models with (approximately) the same local sample sizes.
For comparison, the time required to fit the stationary model using Aniso_fit is also shown
on Figure 5 as a solid black line. However, as mentioned in Section 5.2, if the user is interested
in fitting a stationary model to a spatial data set, a much better choice is likfit in geoR
(Ribeiro Jr. and Diggle 2016). The corresponding stationary (anisotropic) model in geoR
can be fit by

R> geoR.fit <- likfit(data = simdata$sim.data[-simdata$holdout.index, 1],
+ coords = simdata$sim.locations[-simdata$holdout.index, ],
+ cov.model = "exponential", ini.cov.pars = c(1, 1), trend = "1st",
+ fix.psiA = FALSE, fix.psiR = FALSE, lik.method = "REML")
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Figure 5: Computational time (in seconds) for fitting the nonstationary model to the sim-
ulated data (of size n = 565) across three different mixture component grids (of size
K = 4, 9, 16, respectively) and a range of fit radii. The solid and dashed black lines rep-
resent the computational time needed to fit the stationary model using, respectively, the
convoSPAT and geoR packages. Computational times given are for a Dual Quad Core Xeon
2.66GHz machine with 32GB RAM.

The computational time for likfit is also shown on Figure 5 as a dashed black line.

7. Example 2: Annual precipitation
The nonstationary model proposed in Sections 3 and 4 is also applied to a moderately large,
real data set, consisting of the total annual precipitation in the western United States for 1997.
The data is available online from the National Center for Atmospheric Research (http://
www.image.ucar.edu/GSP/Data/US.monthly.met) as part of a larger data set that includes
measurements for the entire United States. For the purposes of this analysis, a subset of the
data that includes the western United States was chosen (see Figure 6) because precipitation is
smoother and more densely observed over the central and eastern United States. This subset
is included as USprecip97 in the package and consists of 1270 observations. For illustration
purposes, we work with non-projected longitude and latitude, but note that due to the size
of the study area this may be inappropriate.

7.1. Spatial model summaries

A total of five spatial models were fit to this dataset, the details of which are summarized in
Table 2: the stationary model and four nonstationary models. All models were assigned the
same mean structure, which included the main effects of longitude and latitude as well as an
intercept. Additionally, all models were assigned the same underlying correlation structure,
chosen to be exponential (i.e., the Matérn class with fixed κ = 0.5). Twenty percent of the
observations (m = 254) were held out as a validation data set in order to evaluate each model,
leaving n = 1016 observations as a training data set. The stationary model was fit using the
Aniso_fit function and the nonstationary models were fit using the NSconvo_fit function;

http://www.image.ucar.edu/GSP/Data/US.monthly.met
http://www.image.ucar.edu/GSP/Data/US.monthly.met
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Figure 6: Annual precipitation data for 1997, in log mm.

Label Covariance model details
Stationary Anisotropic, constant nugget and variance
NS1 SV anisotropy, constant nugget and variance
NS2 SV anisotropy and variance, constant nugget
NS3 SV anisotropy and nugget, constant variance
NS4 SV anisotropy, variance, and nugget

Table 2: A brief summary of the different models fit to the precipitation data. Note: “SV”
indicates “spatially-varying.”

the four nonstationary models represent all combinations of the ns.nugget and ns.variance
options.
In addition to selecting which of the nugget variance and/or process variance should be
spatially-varying, recall that using this model requires specifying (1) a mixture component
grid, (2) the tuning parameter for the weight function, and (3) the fitting radius r. For each
of the nonstationary models, the model was actually fit multiple times using two different
mixture component grids (“coarse”, with K = 15, and “fine”, with K = 22), four different
values of the tuning parameter (λw = 1.00, 2.67, 4.33, 6.00), and six different fit radii (for the
coarse grid, r = 2.5, 3.2, 3.9, 4.6, 5.3, 6.0; for the fine grid, r = 2.75, 3.20, 3.65, 4.10, 4.55, 5.00).
Of the 2 × 4 × 6 = 48 total models fit for each of the four nonstationary models, the best
model was selected based on maximizing the CRPS criteria (for the test data using the log
precipitation); the best models are summarized in Table 3. For each model, the coarse grid
with a fit radius of r = 3.9 performed best, and the largest tuning parameter was preferred
for all but model NS1 (however, the CRPS for NS1 with λw = 6 was −0.13785, which is only
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Model Grid size λw r CRPS MSPE Comp. time
Stationary – – – −0.1424 0.0666 85.94 min

NS1 15 (coarse grid) 4.33 3.9 −0.1376 0.0615 17.02 min
NS2 15 (coarse grid) 6.0 3.9 −0.1390 0.0623 16.31 min
NS3 15 (coarse grid) 6.0 3.9 −0.1383 0.0625 16.55 min
NS4 15 (coarse grid) 6.0 3.9 −0.1390 0.0629 9.49 min

Table 3: Model details and evaluation for the best model of each type fit to the precipitation
data, selected based on maximizing CRPS. The computational time given is for a Dual Quad
Core Xeon 2.66GHz machine with 32GB RAM.

Parameter Stationary NS1 NS2 NS3 NS4
β0 (int.) −5.315 −3.136 −1.694 −3.221 −1.723

β1 (x-coord) −0.067 −0.041 −0.034 −0.042 −0.034
β2 (y-coord) 0.034 0.052 0.037 0.051 0.037

λ1 2.772 SV SV SV SV
λ2 6.385 SV SV SV SV
η 0.336 SV SV SV SV
τ2 0.011 0.005 0.013 SV SV
σ2 0.379 0.294 SV 0.277 SV

Table 4: Parameter estimates for the five best spatial models fit to the precipitation data
set, indicating which parameters are spatially-varying (SV). Recall that with an exponential
correlation structure, the smoothness κ is fixed to be 0.5 for all models.

slightly smaller than the CRPS for λw = 4.33, which was −0.13760). Table 3 also provides
the computational run time for each model. Parameter estimates for each of the best models
are summarized in Table 4.
While the gains are modest, all of the nonstationary models outperform the stationary model
in terms of both MSPE and CRPS; the best model in terms of both MSPE and CRPS is NS1.
The interpolated prediction maps and corresponding standard errors for the stationary model
and NS1 are given in Figure 7. Note that the nonstationary model estimates the prediction
errors much more flexibly, with larger errors in the far southwest (southern California, south-
ern Nevada, and western Arizona) and smaller errors in the northern portion of the domain.
The stationary model prediction errors are much more homogeneous, being highly dependent
on the proximity of neighboring observations.

7.2. Visualizations of nonstationarity

Graphical summaries can be made to visualize the spatially-varying parameter estimates
not explicitly provided in Table 4. The fully nonstationary model NS4 will be used for the
following visualizations, as all of its variance/covariance parameters are spatially-varying.
First, consider the locally-estimated anisotropy ellipses for each of the mixture component
locations, shown by the solid red ellipses in Figure 8. This plot also contains the correspond-
ing ellipse from the stationary model (dashed blue), which is constant over space, and the
neighborhood size (dotted gray) defined by the fit radius r. It is quite clear that precipitation
in the western United States displays nonstationary behavior with respect to the anisotropy
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Figure 7: Predictions and prediction standard errors for the stationary model given in plots
(a) and (b) and the nonstationary model NS1 given in plots (c) and (d).

ellipses, as the local estimates are highly variable across the spatial domain.
Next, consider the estimates of the spatially-varying nugget variance (τ2) and process variance
(σ2) over the spatial region for NS4, shown in Figure 9. The nugget variance is highly variable
across the spatial domain, which may reflect variability in the monitoring devices. The process
variance is largest along the coastal United States, which is intuitive based on its proximity
to the ocean and highly variable topography. In general, areas with larger process variance
correspond to smaller nugget variance, although this is not true everywhere (e.g., central
Montana).
Finally, estimated correlation plots for three reference points are given in Figure 10. This plot
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Figure 8: Estimated mixture component ellipses for the nonstationary model (red), the
stationary (anisotropic) model (blue), and the estimation region (dashed black).

Figure 9: Plots of the estimated spatially-varying process variance σ2 (right) and nugget
variance τ2 (left) for model NS4.
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Figure 10: Correlation plots for three reference points, comparing the stationary model S
(top) and nonstationary model NS4 (bottom).

nicely illustrates the fact that the nonstationary model allows the spatial dependence structure
to change over space, while the stationary model estimates a constant correlation structure.
In addition to allowing the orientation of the anisotropy ellipses to change over space (as seen
in Figure 8), the nonstationary model allows for non-elliptical correlation patterns.

8. Discussion
In this paper, we have presented a nonstationary spatial Gaussian process model that is highly
flexible yet amenable to computationally efficient inference, as shown through its implemen-
tation in the new convoSPAT package for R. In fact, for a moderately large real data set,
fitting the nonstationary model is significantly faster than fitting the stationary model (at
least using Aniso_fit; see Table 3). The model also allows for visualization of the estimated
nonstationarity, for both the spatially-varying variance parameters and correlation structure.
The trade-off for the computational tractability of this model is that uncertainty in the
locally-estimated parameters is not accounted for in global estimation and, more seriously,
this uncertainty is not quantified in the parameter estimation. Furthermore, the model is
not completely pre-packaged, in that the user must specify the mixture component grid, fit
radius, and tuning parameter, and the resulting parameter estimates and predictions may
be sensitive to these choices. Since uncertainty in parameter estimates is not provided, it is
difficult to determine if a nonstationary model is needed or if a stationary model would be
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sufficient. However, the primary goal of this model is to provide a “quick and dirty” way to fit
a nonstationary Gaussian process model to spatial data, allowing new nonstationary methods
to be compared with another model that is also nonstationary, instead of simply a stationary
model. And, since the model can be fit very quickly, a practitioner can fit the model for
many choices of the mixture component grid, fit radius, and tuning parameter (similar to the
strategy in Section 7.1) and use the provided evaluation criteria (or other criteria) to choose
a final model.
Finally, while this model provides a fast approach for modeling nonstationary spatial Gaus-
sian processes, note that the same model could gain an additional degree of computational
efficiency by parallelizing the LLE component of the model. Currently, the local parameters
are estimated sequentially; however, the optimization for each mixture component location
does not depend on the optimization for the other mixture component locations. Thus, a more
efficient algorithm might estimate all of these components simultaneously, greatly reducing
the overall computation time even further. A future version of convoSPAT will explore this
possibility.
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