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Abstract

The current statistical procedures implemented in statistical software packages for
pooling of diagnostic test accuracy data include HSROC regression (Rutter and Gatsonis
2001) and the bivariate random-effects meta-analysis model (BRMA; Reitsma et al. 2005;
Arends et al. 2008; Chu and Cole 2006; Riley et al. 2007b). However, these models do not
report the overall mean but rather the mean for a central study with random-effect equal
to zero and have difficulties estimating the correlation between sensitivity and specificity
when the number of studies in the meta-analysis is small and/or when the between-study
variance is relatively large (Riley et al. 2007a).

This tutorial on advanced statistical methods for meta-analysis of diagnostic accu-
racy studies discusses and demonstrates Bayesian modeling using the R package Copu-
laDTA (Nyaga 2017) to fit different models to obtain the meta-analytic parameter esti-
mates. The focus is on the joint modeling of sensitivity and specificity using a copula
based bivariate beta distribution. Essentially, we extend the work of Nikoloulopoulos
(2015) by: (i) presenting the Bayesian approach which offers the flexibility and ability
to perform complex statistical modeling even with small data sets and (ii) including co-
variate information, and (iii) providing an easy to use code. The statistical methods are
illustrated by re-analyzing data of two published meta-analyses.

Modeling sensitivity and specificity using the bivariate beta distribution provides
marginal as well as study-specific parameter estimates as opposed to using the bivariate
normal distribution (e.g., in BRMA) which only yields study-specific parameter estimates.
Moreover, copula based models offer greater flexibility in modeling different correlation
structures in contrast to the normal distribution which allows for only one correlation
structure.
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1. Introduction
In a systematic review of diagnostic test accuracy, the statistical analysis section aims at
estimating the average (across studies) sensitivity and specificity of a test and the variability
thereof, among other measures. There tends to be a negative correlation between sensitiv-
ity and specificity, which postulates the need for correlated data models. The analysis is
statistically challenging because the user (i) deals with two summary statistics, (ii) has to
account for correlation between sensitivity and specificity, (iii) has to account for heterogene-
ity in sensitivity and specificity across the studies and (iv) should be allowed to incorporate
covariates.
Currently, the HSROC regression (Rutter and Gatsonis 2001) or the bivariate random-effects
meta-analysis model (BRMA; Reitsma et al. 2005; Arends et al. 2008; Chu and Cole 2006)
is recommended for pooling of diagnostic test accuracy data. These models fit a bivariate
normal distribution which allows for only one correlation structure to the logit transformed
sensitivity and specificity. The resulting distribution has no closed form and therefore the
mean sensitivity and specificity is only estimated after numerical integration or other approx-
imation methods.
When the number of studies in the meta-analysis is small and/or when the data are sparse
(very low counts or even zero cells), maximum likelihood estimation of hierarchical models
such as the BRMA and HSROC model encounter computational difficulties (non-convergence)
or may give no or unreliable estimates for the between-study correlation (Takwoingi et al.
2017). When the correlation is close to the boundary of its parameter space, the between-
study variance estimates from the BRMA are upwardly biased as they compensate for the
range restriction on the correlation parameter (Riley et al. 2007a). According to Riley et al.
(2007b) this occurs because the maximum likelihood estimator truncates the between-study
covariance matrix on the boundary of its parameter space, and this often occurs when the
within-study variation is relatively large or the number of studies is small.
For sensitivity and specificity and sample proportions in general, the mean and variance both
depend on the underlying probability. Therefore, any factor affecting the probability will
change the mean and the variance. This implies that models where the predictors affect the
mean but assume a constant variance will generally not be adequate. Both the BRMA and
HSROC assume that the transformed sensitivity and specificity is approximately normal with
constant variance.
Joint modeling of study specific sensitivity and specificity using a known or copula based
bivariate beta distribution overcomes the above mentioned difficulties. Since both sensitivity
and specificity take values in the interval space (0, 1), it is a more natural choice to use a beta
distribution to describe their distribution across studies, without the need for any transforma-
tion. The beta distribution is conjugate to the binomial distribution and therefore it is easy
to integrate out the random-effects analytically giving rise to the beta-binomial marginal dis-
tributions. Moreover no further integration is needed to obtain the meta-analytically pooled
sensitivity and specificity. Previously, Cong et al. (2007) fitted separate beta-binomial models
to the number of true positives and the number of false positives. While the model ignores
correlation between sensitivity and specificity, Cong et al. (2007) reported that the model
estimates are comparable to those from the SROC model (Moses et al. 1993), the predecessor
of the HSROC model.
According to Riley (2009), ignoring the correlation would have negligible influence on the
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meta-analysis results when the within-study variability is large relative to the between-study
variability. It is generally known that full parametric specification of a (hierarchical) model,
including the specification of an (existing) correlation structure, increases the efficiency of
the estimation of the parameters, resulting in smaller standard errors. The use of copula
based mixed models within the frequentist framework for meta-analysis of diagnostic test
accuracy was recently introduced by Nikoloulopoulos (2015) who evaluated the joint density
numerically.
This tutorial presents and demonstrates hierarchical mixed models for meta-analysis of di-
agnostic accuracy studies. In the first level of the hierarchy, given sensitivity and specificity
for each study, two binomial distributions are used to describe the variation in the number
of true positives and true negatives among the diseased and healthy individuals, respectively.
In the second level, we model the unobserved sensitivities and specificities using a bivariate
distribution. While hierarchical models are used, the focus of meta-analysis is on the pooled
average across studies and rarely on a given study estimate.
The methods are demonstrated using datasets from two previously published meta-analyses:
a) on diagnostic accuracy of telomerase in urine as a tumor marker for the diagnosis of
primary bladder cancer from Glas et al. (2003) previously used by Riley et al. (2007b) and
Nikoloulopoulos (2015) since it is a problematic dataset that has convergence issues caused
by the correlation parameter being estimated to be −1 and has no covariates and b) on
the comparison of the sensitivity and specificity of human papillomavirus testing (using the
HC2 assay) versus repeat cytology to triage women with minor cytological cervical lesions to
detect underlying cervical precancer from Arbyn et al. (2013). The second dataset is used to
demonstrate meta-regression with one covariate which can be naturally extended to include
several covariates.
The layout of this tutorial is as follows: Section 2 introduces the concept of copula theory and
different bivariate distributions for sensitivity and specificity. The software implementation
and model selection in a Bayesian framework are discussed in Section 3. The two aforemen-
tioned datasets are introduced in Section 4. Application of software, code examples and the
results of the models fitted to the data are presented in Sections 5 and 6. The complete
code is available with this article at the Journal of Statistical Software web site alongside this
article. A brief discussion is found in Section 7 and a conclusion in Section 8.

2. Statistical methods for meta-analysis

2.1. Definition of the copula function
A bivariate copula function describes the dependence structure between two random variables.
Two random variables X1 and X2 are joined by a copula function C if their joint cumulative
distribution function can be written as

F (x1, x2) = C(F1(x1), F2(x2)), −∞ ≤ x1, x2 ≤ +∞, (1)

where F1 and F2 denote the univariate cumulative distribution functions of X1 and X2 re-
spectively.
According to the theorem of Sklar (1959), there exists for every bivariate (multivariate in
extension) distribution a copula representation C which is unique for continuous random
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variables. If the joint cumulative distribution function and the two marginals are known,
then the copula function can be written as

C(u, v) = F (F−1
1 (u), F−1

2 (v)), 0 ≤ u, v ≤ 1. (2)

A 2-dimensional copula is in fact simply a 2-dimensional cumulative distribution function
restricted to the unit square with standard uniform marginals. A comprehensive overview of
copulas and their mathematical properties can be found in Nelsen (2006). To obtain the joint
probability density, the joint cumulative distribution in Equation 1 is differentiated to yield

f(x1, x2) = f1(x1) f2(x2) c(F1(x1), F2(x2)), (3)

where f1 and f2 denote the marginal density functions and c the copula density function
corresponding to the copula cumulative distribution function C. Therefore from Equation 3,
a bivariate probability density can be expressed using the marginal densities and the copula
density, given that the copula function is absolutely continuous and twice differentiable.
When the functional form of the marginal and the joint densities are known, the copula
density can be derived as follows

c(F1(x1), F2(x2)) = f(x1, x2)
f1(x1) f2(x2) . (4)

While our interest does not lie in finding the copula function, Equations 3 and 4 serve to
show how one can move from the copula function to the bivariate density or vice-versa, given
that the marginal densities are known. The decompositions allow for constructions of other
and possible better models for the variables than would be possible if we limited ourselves to
only existing standard bivariate distributions.
We finish this section by mentioning an important implication when Sklar’s theorem is ex-
tended to a meta-regression setting with covariates. According to Patton (2006), it is im-
portant that the conditioning variable remains the same for both marginal distributions and
the copula, as otherwise the joint distribution might not be properly defined. This implies
that covariate information should be introduced in both the marginals and the association
parameters of the model.

2.2. The hierarchical model

Since there are two sources of heterogeneity in the data, the within- and between-study
variability, the parameters involved in a meta-analysis of diagnostic accuracy studies vary at
two levels. For each study i, i = 1, . . . , n, let Yi = (Yi1, Yi2) denote the true positives
and true negatives, Ni = (Ni1, Ni2) the diseased and healthy individuals respectively, and
πi = (πi1, πi2) represent the “unobserved” sensitivity and specificity respectively.
Given study-specific sensitivity and specificity, two separate binomial distributions describe
the distribution of true positives and true negatives among the diseased and the healthy
individuals as follows

Yij | πij ∼ bin(πij , Nij), i = 1, . . . n, j = 1, 2. (5)

Equation 5 forms the higher level of the hierarchy and models the within-study variability.
The second level of the hierarchy aims to model the between-study variability of sensitivity
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and specificity while accounting for the inherent negative correlation thereof, with a bivariate
distribution as follows(

g(πi1)
g(πi2)

)
∼ f(g(πi1), g(πi2)) = f(g(πi1)) f(g(πi2)) c(F1(g(πi1)), F2(g(πi2))), (6)

where g(·) denotes a transformation that is used to map the (0, 1) range to the whole real line.
While it is critical to ensure that the studies included in the meta-analysis satisfy the specified
entry criterion, there are study specific characteristics like different test thresholds and other
unobserved differences that give rise to the second source of variability, the between-study
variability. It is indeed the difference in the test thresholds between the studies that gives rise
to the correlation between sensitivity and specificity. Including study level covariates allows
us to model part of the between-study variability. The covariate information can and should
(Patton 2006) be used to model the mean as well as the correlation between sensitivity and
specificity.
In the next section we give more details on different bivariate distributions f(g(πi1), g(πi2))
constructed using the logit or identity link function g(·), different marginal densities and/or
different copula densities c. We discuss their implications and demonstrate their application
in meta-analysis of diagnostic accuracy studies. An overview of suitable parametric fami-
lies of copulas for mixed models for diagnostic test accuracy studies was recently given by
Nikoloulopoulos (2015). In the following section, a short description of well-known copulas
implemented in the package is given. Here, we consider five copula functions which can be
plugged in Equation 3 to model negative correlation.

Bivariate Gaussian copula

Given the density and the distribution function of the univariate and bivariate standard
normal distribution with correlation parameter ρ ∈ (−1, 1), the bivariate Gaussian copula
function and density are expressed (Meyer 2013) as

C(u, v, ρ) = Φ2(Φ−1(u), Φ−1(v), ρ),

c(u, v, ρ) = 1√
1 − ρ2 exp

(2 ρ Φ−1(u) Φ−1(v)− ρ2 (Φ−1(u)2 + Φ−1(v)2)
2 (1− ρ2)

)
. (7)

The logit transformation is often used in binary logistic regression to relate the probability of
“success” (coded as 1, failure as 0) of the binary response variable with the linear predictor
model that theoretically can take values over the whole real line. In diagnostic test accuracy
studies, the “unobserved” sensitivities and specificities can range from 0 to 1 whereas their
logits = log âĄą( πij

1 − πij
) can take any real value allowing to use the normal distribution as

follows
logit(πij) ∼ N(µj , σj) ⇔ logit(πij) = µj + εij , (8)

where, µj is a vector of the mean sensitivity and specificity for a study with zero random
effects, and εi is a vector of random effects associated with study i. Now u is the normal
distribution function of logit(πi1) with parameters µ1 and σ1, v is the normal distribution
function of logit(πi2) with parameters µ2 and σ2, Φ2 is the distribution function of a bivariate
standard normal distribution with correlation parameter ρ ∈ (−1, 1) and Φ−1 is the quantile
of the standard normal distribution. In terms of ρ, Kendall’s tau is expressed as ( 2

π )arcsin(ρ).
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With simple algebra the copula density in Equation 7 with normal marginal distributions
simplifies to

c(u, v, ρ) = 1√
1− ρ2

exp
( 1

2 (1 − ρ2)

(2 ρ (x− µ1) (y − µ2)
σ1 σ2

− ρ2
((x − µ1)2

σ2
1

+ (y − µ2)2

σ2
2

)))
. (9)

The product of the copula density in Equation 9, the normal marginal of logit(πi1) and
logit(πi2) in Equation 8 form a bivariate normal distribution which characterize the model by
Reitsma et al. (2005), Arends et al. (2008), Chu and Cole (2006), and Riley et al. (2007a),
the so-called bivariate random-effects meta-analysis (BRMA) model, recommended as the
appropriate method for meta-analysis of diagnostic accuracy studies. Study level covariate
information explaining heterogeneity is introduced through the parameters of the marginal
and the copula as follows

µj = XjB>j . (10)

Xj is a n × p matrix containing the covariate values for the mean sensitivity (j = 1) and
specificity (j = 2). For simplicity, assume that X1 = X2 = X. B>j is a p × 1 vector of
regression parameters, and p is the number of parameters. By inverting the logit functions in
Equation 8, we obtain

πij = logit−1(µj + εij). (11)

Therefore, the meta-analytic sensitivity and specificity obtained by averaging over the random
study effect, is given by, for j = 1, 2

E(πj) = E(logit−1(µj + εij)) =
∫ ∞
−∞

logit−1(µj + εij)f(εij , σj) dεij , (12)

assuming that σ2
1 > 0 and σ2

2 > 0. The integration in Equation 12 has no analytical so-
lution and therefore needs to be numerically approximated. Using simulations methods in
the Bayesian framework, the meta-analytic estimates can be easily computed as well as the
standard deviations and the credible intervals for E(πj) with minimum effort.
In the frequentist framework, it is more convenient however to use numerical averaging by
sampling a large number M of random-effects ε̂ij from the fitted distribution and to estimate
the meta-analytic sensitivity and specificity by (Molenberghs and Verbeke 2005), for j = 1, 2

Ê(πj) = 1
M

M∑
i = 1

logit−1(µ̂j + ε̂ij). (13)

However, inference is not straightforward in the frequentist framework since the standard
errors are not available. When εij = 0, then

E(πj | εij = 0) = logit−1(µj). (14)

Inference for E(πj | εij = 0), as expressed in Equation 14, can be done in both Bayesian
and frequentist framework. The equation represents the mean sensitivity and specificity for a
“central" study with εij = 0. Researchers often seem to confuse E(πj | εij = 0) with E(πj)
but due to the non-linear logit transformations, they are clearly not the same parameter.



Journal of Statistical Software – Code Snippets 7

With the identity link function, no transformation on study-specific sensitivity and specificity
is performed. A natural choice for u and v would be beta distribution functions with pa-
rameters (α1, β1) and (α2, β2) respectively. Since πij ∼ beta(αj , βj), the meta-analytic
sensitivity and specificity are analytically solved as follows

E(πj) = αj
αj + βj

. (15)

After reparameterizing the beta distributions using the mean (µj = αj
αj + βj

) and certainty
(ψj = αj + βj) or dispersion (ϕj = 1

1 + αj + βj
) parameters different link functions intro-

duce covariate information to the mean, certainty/dispersion and association (ρ) parameters.
A typical model parameterization is

µj = logit−1(XB>j ),
ψj = g(WC>j ),
αj = µj ◦ ψj ,
βj = (1 − µj) ◦ ψj ,

ρ = tanh(ZD>j ) =
exp(2× ZD>j ) − 1

exp âĄą(2× ZD>j ) + 1
. (16)

X, W and Z are n × p matrices containing the covariate values for the mean, dispersion
and correlation which we will assume contain similar information and denote all by X for
simplicity purpose, p is the number of parameters, B>j , V>j and D>j are p × 1 vectors of
regression parameters relating covariates to the mean, variance and correlation respectively.
g(·) is the log link mapping XC>j to the positive real number line and ◦ is the Hadamard
product.

Frank copula
This flexible copula in the so-called family of Archimedean copulas was introduced by Frank
(1979). The functional form of the copula and the density which is plugged in Equation 3 is
given by:

C(F (πi1), F (πi2), θ) = − 1
θ

log
[
1 + (e−θ F (πi1) − 1)(e−θ F (πi2) − 1)

e−θ − 1

]
,

c(F (πi1), F (πi2), θ) = θ (1− e−θ) e−θ (F (πi1) + F (πi2))

[1− e−θ − (1− e−θ F (πi1)) (1− e−θ F (πi2))]2
. (17)

Since θ ∈ R, both positive and negative correlation can be modeled, making this one of the
more comprehensive copulas. When θ is 0, sensitivity and specificity are independent. For
θ > 0, sensitivity and specificity exhibit positive quadrant dependence and negative quadrant
dependence when θ < 0. The Spearman correlation ρs and Kendall’s tau τk can be expressed
in terms of θ as

ρs = 1− 12 D2(−θ) − D1(−θ)
θ

,

τk = 1 + 4 D1(θ) − 1
θ

, (18)
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where Dj(δ) is the Debye function defined as

Dj(δ) = j

δj

∫ δ

θ

tj

exp(t) − 1 dt, j = 1, 2. (19)

Covariate information is introduced in a similar manner as Equation 16. The identity link is
used for the association parameter θ.

Farlie-Gumbel-Morgenstern copula (FGM)
This popular copula studied by Farlie (1960), Gumbel (1960) and Morgenstern (1956) is
defined as

C(F (πi1), F (πi2), θ) = F (πi1) F (πi2)[1 + θ (1− F (πi1)) (1 − F (πi2))],
c(F (πi1), F (πi2), θ) = [1 + θ (2 F (πi1) − 1) (2 F (πi2) − 1)]. (20)

Because θ ∈ (−1, 1), the Spearman correlation and Kendall’s tau are expressed in terms of θ as
θ/3 and 2θ/9 respectively, making this copula only appropriate for data with weak dependence
since |ρs| ≤ 1/3. In a similar manner as in Equation 16 the logit link, log/identity link and
Fisher’s z transformation can be used to introduce covariate information in modeling the
mean, dispersion and association parameter.

Clayton copula
The Clayton copula function and density by Clayton (1978) is defined as

C(F (πi1), F (πi2), θ) = [F (πi1)−θ + F (πi2)−θ − 1]
−1
θ ,

c(F (πi1), F (πi2), θ) = (1 + θ) F (πi1)−(1 + θ) F (πi2)−(1+θ)

[F (πi1)−θ + F (πi2)−θ − 1]
−(2 θ + 1)

θ . (21)

Since θ ∈ (0, ∞), the Clayton copula typically models positive dependence; Kendall’s tau
equals θ/(θ + 2). However, the copula function can be rotated by 90◦ or 270◦ to model
negative dependence. The distribution and density functions following such rotations are
given by

C90(F (πi1), F (πi2), θ) = F (πi2) − C(1 − F (πi1), F (πi2), θ),
c90(F (πi1), F (πi2), θ) = (1 + θ)(1 − F (πi1))−(1 + θ) F (πi2)−(1 + θ)

[(1− F (πi1))−θ + F (πi2)−θ − 1]
−(2 θ + 1)

θ , (22)

and

C270(F (πi1), F (πi2), θ) = F (πi1)− C(F (πi1), 1 − F (πi2), θ),
c270(F (πi1), F (πi2), θ) = (1 + θ) F (πi1)−(1 + θ) (1 − F (πi2))−(1 + θ)

[F (πi1)−θ + (1 − F (πi2))−θ − 1]
−(2 θ + 1)

θ . (23)

The logit, log/identity and log/identity links can be used to introduce covariate information
in modeling the mean (µj), certainty (ψj)/dispersion (ϕj) and association (θ) parameters
respectively in the same way as in Equation 16.
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Of course other copula functions that allow for negative association can be chosen. It is also
an option to use known bivariate beta distributions. However, it is not always straightfor-
ward and analytically attractive to derive the corresponding copula function for all bivariate
distributions. The use of existing bivariate beta distributions in meta-analysis of diagnostic
accuracy studies has been limited because these densities model positive association (e.g.,
Libby and Novick 1982, Olkin and Liu 2003), or both positive and negative association but
over a restricted range (e.g., Sarmanov 1966).

3. Software development and model diagnostics

3.1. The CopulaDTA package

The CopulaDTA package is an R (R Core Team 2017) package for modeling diagnostic test
accuracy data using copula based bivariate beta-binomial distribution and providing estimates
for the marginal mean sensitivity and specificity. It is an extension of rstan (Stan Development
Team 2017), the R interface to Stan (Carpenter et al. 2017) for diagnostic test accuracy data.
Stan is a probabilistic programming language which has implemented Hamilton Monte Carlo
(HMC) and uses No-U-Turn sampler (NUTS) (Hoffman and Gelman 2014). The package
facilitates easy application of complex models and their visualization within the Bayesian
framework.
JAGS (Just Another Gibbs Sampler; Plummer 2003) is an alternative extensible general pur-
pose sampling engine to Stan. Extending JAGS requires knowledge of C++ to assemble a
dynamic link library (DLL) module or a shared library. From experience, configuring and
building the module is a daunting and tedious task especially in the Windows operation sys-
tem. The above short-comings coupled with the fact that Stan uses a more efficient and
robust sampler than Gibbs sampling or Metropolis-Hasting, and its effectiveness in conver-
gence from diffuse random initial values made us prefer the Stan MCMC sampling engine
(Carpenter et al. 2017).
The CopulaDTA package is available via the Comprehensive R Archive Network (CRAN)
at http://CRAN.R-project.org/package=CopulaDTA. With a working internet connection,
the CopulaDTA package is installed and loaded in R with the following commands

R> install.packages("CopulaDTA", dependencies = TRUE)
R> library("CopulaDTA")

The CopulaDTA package provide functions to fit bivariate beta-binomial distributions con-
structed as a product of two beta marginal distributions and copula densities discussed in
Section 2. The package also provides forest plots for a model with categorical covariates
or with intercept only. Given the chosen copula function, a beta-binomial distribution is
assembled up by the cdtamodel function which returns a ‘cdtamodel’ object. The main
function fit takes the ‘cdtamodel’ object and fits the model to the given dataset and returns
a ‘cdtafit’ object for which print, summary and plot methods are provided.

3.2. Model diagnostics

To assess convergence, mixing and stationarity of the chains, it is necessary to check the

http://CRAN.R-project.org/package=CopulaDTA
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potential scale reduction factor R̂, the effective sample size (ESS), the MCMC error and
trace plots of the parameters. When all the chains reach the target posterior distribution,
the estimated posterior variance is expected to be close to the within chain variance such
that the ratio of the two, R̂ is close to 1 indicating that the chains are stable, properly mixed
and likely to have reached the target distribution. A large R̂ indicates poor mixing and
that more iterations are needed. The effective sample size indicates how much information
one actually has about a certain parameter. When the samples are autocorrelated, less
information from the posterior distribution of our parameters is expected than would be if
the samples were independent. ESS close to the total post-warm-up iterations is an indication
of less autocorrelation and good mixing of the chains. Simulations with higher ESS have lower
standard errors and more stable estimates. Since the posterior distribution is simulated there
is a chance that the approximation is off by some amount; the Monte Carlo (MCMC) error.
MCMC error close to 0 indicates that one is likely to have reached the target distribution.

3.3. Model comparison and selection

Watanabe-Akaike information criterion (WAIC; Watanabe 2010), a recent model comparison
tool to measure the predictive accuracy of the fitted models in the Bayesian framework, will be
used to compare the models. WAIC can be viewed as an improvement of the Deviance infor-
mation criterion (DIC) which, though popular, is known to be have some problems (Plummer
2008). WAIC is a fully Bayesian tool, closely approximates Bayesian cross-validation, is in-
variant to reparameterization and can be used for simple as well as hierarchical and mixture
models.

4. Datasets

4.1. Telomerase data

Glas et al. (2003) systematically reviewed the sensitivity and specificity of cytology and other
markers including telomerase for primary diagnosis of bladder cancer. They fitted a bivariate
normal distribution to the logit transformed sensitivity and specificity values across the studies
allowing for heterogeneity between the studies. From the included 10 studies, they reported
that telomerase had a sensitivity and specificity of 0.75 [0.71, 0.79] and 0.86 [0.71, 0.94]
respectively. They concluded that telomerase was not sensitive enough to be recommended
for daily use. This dataset is available within the package and the following commands

R> data("telomerase", package = "CopulaDTA")
R> telomerase

load the data into the R environment and generate the following output

ID TP TN FN FP
1 1 25 25 8 1
2 2 17 11 4 3
3 3 88 31 16 16
4 4 16 80 10 3
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5 5 40 137 17 1
6 6 38 24 9 6
7 7 23 12 19 0
8 8 27 18 6 2
9 9 14 29 3 3
10 10 37 7 7 22

ID is the study identifier, DIS is the number of diseased, TP is the number of true positives,
NonDis is the number of healthy and TN is the number of true negatives.

4.2. ASCUS triage data

Arbyn et al. (2012) and Arbyn et al. (2013) performed a meta-analysis and Cochrane review
on the accuracy of human papillomavirus testing and repeat cytology to triage of women
with an equivocal Pap smear to diagnose cervical precancer. They fitted the BRMA model
in SAS (SAS Institute Inc. 2013) using MetaDAS (Takwoingi and Deeks 2010) on 10 studies
where both tests were used. They reported absolute sensitivity of 0.91 [0.86, 0.94] and 0.72
[0.63, 0.79] for HC2 and repeat cytology respectively. The specificity was 0.61 [0.54, 0.68] and
0.68 [0.60, 0.76] for HC2 and repeat cytology respectively. This data is used to demonstrate
how the intercept-only model is extended in a meta-regression setting. This dataset is also
available within the package and the following commands

R> data("ascus", package = "CopulaDTA")
R> ascus

load the data into the R environment and generate the following output

Test StudyID TP FP TN FN
1 RepC Andersson 2005 6 14 28 4
2 RepC Bergeron 2000 8 28 71 4
3 RepC Del Mistro 2010 20 191 483 7
4 RepC Kulasingam 2002 20 74 170 6
5 RepC Lytwyn 2000 4 20 26 2
6 RepC Manos 1999 48 324 570 15
7 RepC Monsonego 2008 10 18 168 15
8 RepC Morin 2001 14 126 214 5
9 RepC Silverloo 2009 24 43 105 10
10 RepC Solomon 2001 227 1132 914 40
11 HC2 Andersson 2005 6 17 25 4
12 HC2 Bergeron 2000 10 38 61 2
13 HC2 Del Mistro 2010 27 154 566 2
14 HC2 Kulasingam 2002 23 115 129 3
15 HC2 Lytwyn 2000 4 19 33 1
16 HC2 Manos 1999 58 326 582 7
17 HC2 Monsonego 2008 22 110 72 2
18 HC2 Morin 2001 17 88 253 2
19 HC2 Silverloo 2009 34 65 81 2
20 HC2 Solomon 2001 256 1050 984 11
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Test is an explanatory variable showing the type of triage test, StudyID is the study identifier,
TP is the number of true positives, FP is the number of false positives, TN is the number of
true negatives, FN is the number of false negatives.

5. The intercept-only model
The CopulaDTA package has five different correlation structures that result in five differ-
ent bivariate beta-binomial distributions to fit to the data. The correlation structure is
specified by indicating copula = "gauss" or "fgm" or "c90" or "c270" or "frank" in the
fitcopula function. The Gaussian copula bivariate beta-binomial distribution is fitted to
the telomerase data with the following code

R> gauss.1 <- cdtamodel("gauss")
R> fitgauss.1 <- fit(gauss.1, data = telomerase, SID = "ID", iter = 28000,
+ warmup = 1000, thin = 30, seed = 3)

By default, chains = 3 and cores = 3 and need not be specified unless other values are
desired. From the code above, 28000 samples are drawn from each of the 3 chains, the first
1000 samples are discarded and thereafter every 30th draw kept such that each chain has 900
post-warm-up draws making a total of 2700 post-warm-up draws. The seed value, seed = 3,
specifies a random number generator to allow reproducibility of the results and cores = 3
allows for parallel-processing of the chains by using 3 cores, one core for each chain. There
were no initial values specified and in that case, the program randomly generates random
values satisfying the parameter constraints. The trace plots in the top-left panel of Figure 1
produced with the code below show satisfactory mixing of the chains and convergence.

R> traceplot(fitgauss.1)

Next, obtain the model summary estimates as follows

R> print(fitgauss.1, digits = 2)

Posterior marginal mean and median sensitivity and specificity
with 95% credible intervals

Parameter Mean Lower Median Upper n_eff Rhat
MUse[1] Sensitivity 0.7538 0.69094 0.7485 0.814 237 1.0
MUsp[1] Specificity 0.7965 0.65343 0.7982 0.911 67 1.0
ktau[1] Correlation -0.8502 -0.98314 -0.9115 -0.407 25 1.1
Varse[1] Var(Sens) 0.0065 0.00072 0.0062 0.019 1350 1.0
Varsp[1] Var(Spec) 0.0504 0.01346 0.0470 0.110 52 1.0

Model characteristics

Copula function: gauss, sampling algorithm: NUTS(diag_e)
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Figure 1: Trace plots of the posterior mean sensitivity and specificity for the telomerase
data as estimated by the Gaussian, Clayton 90◦ (C90) and 270◦ (C270), Farlie-Gumbel-
Morgenstern (FGM) and Frank copula based bivariate beta and bivariate normal (BRMA)
distributions.

Formula(1): MUse ~ 1
Formula(2): MUsp ~ 1
Formula(3): Omega ~ 1
3 chain(s)each with iter=28000; warm-up=1000; thin=30.
post-warmup draws per chain=900;total post-warmup draws=2700.

Predictive accuracy of the model

Log point-wise predictive density (LPPD): -37.93
Effective number of parameters: 5.95
Watanabe-Akaike information Criterion (WAIC): 87.75

From the output above, n_eff and Rhat both confirm proper mixing of the chains with little
autocorrelation. The meta-analytic sensitivity MUse[1] and specificity MUsp[1] is 0.75 [0.69,
0.81] and 0.80 [0.65, 0.91] respectively. The Kendall’s tau correlation between sensitivity
and specificity is estimated to be −0.85 [−0.98,−0.41]. The between-study variability in
sensitivity and specificity is 0.01 [0.00, 0.02] and 0.05 [0.01, 0.11] respectively.
The command below produces the forest plot in Figure 2.

R> plot(fitgauss.1, graph = 3, title.3 = "" )

As observed in Figure 2, the posterior study-specific sensitivity and specificity are less extreme
and variable than the “observed” study-specific sensitivity and specificity. In other words,
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Figure 2: Plot of the study-specific sensitivity and specificity (magenta points) and their
corresponding 95% exact confidence intervals (thick gray lines), superimposed with the pos-
terior estimates (blue stars) and their corresponding 95% credible intervals (think black
lines). Posterior estimates from the Gaussian copula based bivariate beta distribution for
the telomerase data.

there is “shrinkage” towards the overall mean sensitivity and specificity as studies borrow
strength from each other in the following manner: the posterior study-specific estimates
depend on the global estimate and thus also on all other studies.
The mean sensitivity and specificity as estimated by the other four copula based bivariate
beta distributions are in Table 1 and graphically shown in Figure 3. Though not presented
here, the full code of the other four fitted copula based bivariate beta distributions is in
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the replication code. Figure 1 shows satisfactory chain mixing with little autocorrelation
apart from the “Clayton270” model. The Clayton copula is known to be unstable when the
correlation parameter is close to the boundaries (−1 or 0) and this could be the reason why
sampling from the posterior distribution was difficult.
For comparison purpose, the current recommended model; the BRMA, which uses normal
marginals is also fitted to the data though it is not part of the CopulaDTA package. The
model is first expressed in Stan modeling language in the code below and is stored within the
R environment as character string named BRMA1.

R> BRMA1 <- "
+ data {
+ int<lower = 0> Ns;
+ int<lower = 0> tp[Ns];
+ int<lower = 0> dis[Ns];
+ int<lower = 0> tn[Ns];
+ int<lower = 0> nondis[Ns];
+ }
+ parameters {
+ real etarho;
+ vector[2] mul;
+ vector<lower = 0>[2] sigma;
+ vector[2] logitp[Ns];
+ vector[2] logitphat[Ns];
+ }
+ transformed parameters {
+ vector[Ns] p[2];
+ vector[Ns] phat[2];
+ vector[2] MU;
+ vector[2] mu;
+ real rho;
+ real ktau;
+ matrix[2, 2] Sigma;
+ rho = tanh(etarho);
+ ktau = (2 / pi()) * asin(rho);
+ for (a in 1:2) {
+ for (b in 1:Ns) {
+ p[a][b] = inv_logit(logitp[b][a]);
+ phat[a][b] = inv_logit(logitphat[b][a]);
+ }
+ mu[a] = inv_logit(mul[a]);
+ }
+ MU[1] = mean(phat[1]);
+ MU[2] = mean(phat[2]);
+ Sigma[1, 1] = sigma[1]^2;
+ Sigma[1, 2] = sigma[1] * sigma[2] * rho;
+ Sigma[2, 1] = sigma[1] * sigma[2] * rho;
+ Sigma[2, 2] = sigma[2]^2;
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+ }
+ model {
+ etarho ~ normal(0, 10);
+ mul ~ normal(0, 10);
+ sigma ~ cauchy(0, 2.5);
+ for (i in 1:Ns) {
+ logitp[i] ~ multi_normal(mul, Sigma);
+ logitphat[i] ~ multi_normal(mul, Sigma);
+ }
+ tp ~ binomial(dis, p[1]);
+ tn ~ binomial(nondis, p[2]);
+ }
+ generated quantities {
+ vector[2*Ns] loglik;
+ for (i in 1:Ns) {
+ loglik[i] = binomial_lpmf(tp[i] | dis[i], p[1][i]);
+ }
+ for (i in (Ns+1):(2*Ns)) {
+ loglik[i] = binomial_lpmf(tn[i-Ns] | nondis[i-Ns], p[2][i-Ns]);
+ }
+ }"

Next, prepare the data by creating as list as follows

R> datalist <- list(tp = telomerase$TP, dis = telomerase$TP + telomerase$FN,
+ tn = telomerase$TN, nondis = telomerase$TN + telomerase$FP, Ns = 10)

In the data block the dimensions and names of variables in the dataset are specified, here
Ns indicates the number of studies in the dataset. The parameters block introduces the
unknown parameters to be estimated. These are etarho, a scalar representing the Fisher’s
transformed form of the association parameter ρ; mul, a 2 × 1 vector representing the mean
of sensitivity and specificity on the logit scale for a central study where the random-effect is
zero; sigma, a 2 × 1 vector representing the between-study standard deviation of sensitivity
and specificity on the logit scale; logitp, a Ns ×2 array of study-specific sensitivity in the
first column and specificity in the second column on logit scale, and logitphat, a Ns ×2 array
of predicted sensitivity in the first column and predicted specificity in the second column on
logit scale.
The parameters are further transformed in the transformed parameters block. Here, p is a
2× Ns array of sensitivity in the first column and specificity in the second column after inverse
logit transformation of logitp, and phat is a 2× Ns array of predicted sensitivity in the first
column and predicted specificity in the second column after inverse logit transformation of
logitphat to be used in computing the meta-analytic sensitivity and specificity. mu is a
2 × 1 vector representing the mean of sensitivity and specificity for a certain study with a
random effect equal to 0, MU is a 2 × 1 vector containing the meta-analytic sensitivity and
specificity; Sigma, a 2 × 2 matrix representing the variance-covariance matrix of sensitivity
and specificity on the logit scale, rho and ktau are scalars representing the Pearson’s and
Kendall’s tau correlation respectively. The prior distributions for all parameters and the
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data likelihood are defined in the model block. Finally, in the generated quantities block,
loglik is a (2Ns)× 1 vector of the log likelihood needed to compute the WAIC.
Next, call the function stan from the rstan package to translate the code into C++, compile
the code and draw samples from the posterior distribution as follows

R> brma.1 <- stan(model_code = BRMA1, data = datalist, chains = 3,
+ iter = 5000, warmup = 1000, thin = 10, seed = 3, cores = 3)

The parameter estimates are extracted and the chain convergence and autocorrelation exam-
ined further with the following code

R> print(brma.1, pars = c("MU", "mu", "rho"), digits = 2,
+ prob = c(0.025, 0.975))

The above lines of code print the following output

Inference for Stan model: 6ecef28f7aded3dde67c4048dc0a6b2a.
3 chains, each with iter=5000; warmup=1000; thin=10;
post-warmup draws per chain=400, total post-warmup draws=1200.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
MU[1] 0.75 0.00 0.05 0.63 0.75 0.83 610 1.00
MU[2] 0.79 0.00 0.11 0.52 0.80 0.96 779 1.00
mu[1] 0.76 0.00 0.04 0.69 0.77 0.84 584 1.01
mu[2] 0.90 0.00 0.08 0.69 0.92 0.98 808 1.00
rho -0.96 0.01 0.12 -1.00 -1.00 -0.64 393 1.00

Samples were drawn using NUTS(diag_e) at Mon Oct 16 02:02:18 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

The meta-analytic sensitivity (MU[1]) and specificity (MU[2]) and 95% credible intervals are
0.75 [0.63, 0.83] and 0.79 [0.52, 0.96] respectively. This differs from what the authors published
(0.75 [0.71, 0.79] and 0.86 [0.71, 0.94]) in two ways. The authors fitted the standard bivariate
normal distribution to the logit transformed sensitivity and specificity values across the studies
allowing for heterogeneity between the studies as expressed in Equation 6 and disregarded the
higher level of the hierarchical model expressed in Equation 5. Because of this the authors
had to use a continuity correction of 0.5 since the seventh study had “observed” specificity
equal to 1, a problem not encountered in the hierarchical model. Secondly the authors do not
report the meta-analytic values but rather report the mean sensitivity (mu[1]) and specificity
(mu[2]) for a particular, hypothetical study with random-effect equal to zero, which in our
case is 0.76 [0.69, 0.84] and 0.90 [0.69, 0.98] respectively and is comparable to what the
authors reported. This discrepancy between MU and mu will indeed increase with increase in
the between-study variability. Here, MU[1] and mu[1] are similar because the between-study
variability in sensitivity in the logit scale (Sigma[1, 1]) is small (0.36 [0.06, 1.29]). MU[2] is
substantially smaller than mu[2] as a result of the substantial between-study heterogeneity
in specificity in the logit scale Sigma[2, 2] = 5.93 [1.59, 17.04].
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Model Parameter Mean Lower Median Upper neff R̂ WAIC

Gaussian

Sensitivity 0.75 0.69 0.75 0.81 237.43 1.01

87.75
Specificity 0.80 0.65 0.80 0.91 67.03 1.04
Correlation −0.85 −0.98 −0.91 −0.41 25.22 1.06
Var(Sens) 0.01 0.00 0.01 0.02 1350.39 1.00
Var(Spec) 0.05 0.01 0.05 0.11 52.01 1.04

C90

Sensitivity 0.74 0.69 0.74 0.81 11.74 1.33

114.92
Specificity 0.81 0.64 0.84 0.90 28.57 1.11
Correlation −0.47 −0.98 −0.62 0.00 7.56 1.71
Var(Sens) 0.01 0.00 0.01 0.02 11.35 1.18
Var(Spec) 0.04 0.02 0.04 0.11 30.96 1.09

C270

Sensitivity 0.78 0.71 0.79 0.83 6.25 1.42

101.06
Specificity 0.81 0.68 0.80 0.89 22.13 1.10
Correlation −0.33 −0.98 0.00 0.00 2.73 1.76
Var(Sens) 0.00 0.00 0.00 0.02 3.62 1.32
Var(Spec) 0.03 0.02 0.02 0.09 4.71 1.27

FGM

Sensitivity 0.76 0.68 0.76 0.82 2559.33 1.00

95.91
Specificity 0.80 0.64 0.81 0.91 2700.00 1.00
Correlation −0.19 −0.22 −0.22 0.22 2586.52 1.00
Var(Sens) 0.01 0.00 0.00 0.02 2612.21 1.00
Var(Spec) 0.04 0.01 0.04 0.11 2700.00 1.00

Frank

Sensitivity 0.76 0.68 0.76 0.81 2700.00 1.00

90.47
Specificity 0.81 0.67 0.82 0.91 2696.39 1.00
Correlation −0.71 −0.85 −0.69 1.00 2700.00 NaN
Var(Sens) 0.01 0.00 0.01 0.02 2537.78 1.00
Var(Spec) 0.04 0.01 0.04 0.10 2700.00 1.00

BRMA

Sensitivity 0.75 0.63 0.75 0.83 610.49 1.00

87.56
Specificity 0.79 0.52 0.80 0.96 779.13 1.00
Correlation −0.88 −1.00 −0.94 −0.44 188.21 1.02
Var(lSens) 0.36 0.06 0.26 1.29 75.47 1.03
Var(lSpec) 5.93 1.59 4.77 17.04 1047.82 1.00

Table 1: The posterior mean, median, 95% credible interval, effective sample size (neff) and
potential scale reduction factor R̂ for the marginal means, between-study variability and
Kendall’s tau parameters as estimated by the Gaussian, Clayton 90◦ (C90) and 270◦ (C270),
Farlie-Gumbel-Morgenstern (FGM) and Frank copula based bivariate beta and bivariate nor-
mal (BRMA) distributions for the telomerase data.

5.1. Model comparison

Table 1 shows that the correlation as estimated by the BRMA model and the Gaussian copula
bivariate beta are closer to −1 and equivalent compared to the estimates from the Frank, 90◦-
and 270◦-Clayton copula. The correlation estimate is lowest for the FGM copula bivariate
beta model. This is due to the constraints on the association parameter in the FGM copula
such that |τk| ≤ 2/9.
In Figure 3, the marginal mean sensitivity and specificity from the five bivariate beta distribu-
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Figure 3: Plot of the posterior meta-analytic sensitivity (upper) and specificity (lower) and
the corresponding 95% credible intervals) as estimated by the Gaussian, Clayton 90◦ (C90)
and 270◦ (C270), Farlie-Gumbel-Morgenstern (FGM) and Frank copula based bivariate beta
and bivariate normal (BRMA) distributions for the telomerase data.

tions are comparable with subtle differences in the 95% credible intervals despite differences
in the correlation structure.
Glas et al. (2003) and Riley et al. (2007a) estimated the Pearson’s correlation parameter in the
BRMA model ρ as −1 within the frequentist framework. When there are only a few number of
studies in the meta-analysis or when there is sparse data, the maximum likelihood estimation
of the BRMA model often fails to converge or often estimates the Pearson’s correlation as
±1 (Riley et al. 2007b). Without convergence difficulties, the estimated Pearson’s correlation
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Figure 4: Trace plots of the posterior mean sensitivities and specificities for the ascus data as
estimated by the Gaussian, Clayton 90◦ (C90) and 270◦ (C270), Farlie-Gumbel-Morgenstern
(FGM) and Frank copula based bivariate beta and bivariate normal (BRMA) distributions.

from the BRMA model fitted within the Bayesian framework was −0.96 [−1.00,−0.64]. In
general, Bayesian methods handle cases of small sample sizes better since the posterior is
better behaved than the likelihood when suitable priors are defined.
Essentially, all six models are equivalent in the first level of hierarchy and differ in specifying
the prior distributions for the “study-specific” sensitivity and specificity. As thus, the models
should have the same number of parameters in which case it makes sense then to compare the
log predictive densities. Upon inspection, the log predictive densities from the five copula-
based models are practically equivalent (min = −38.83, max = −37.82) but the effective
number of parameters differed a bit (max = 5.95, max = 18.63). The BRMA had 6 effective
parameters but a lower log predictive density of −43.8. Despite the lower predictive density,
the last column of Table 1 indicates that the BRMA fitted the data best based on the WAIC.

6. Meta-regression
The ascus dataset has Test as a covariate. The covariate is used as it is of interest to study
its effect on the joint distribution of sensitivity and specificity (including the correlation). The
following code fits the FGM copula based bivariate beta-binomial distribution to the data.

R> fgm.2 <- cdtamodel(copula = "fgm",
+ modelargs = list(formula.se = StudyID ~ Test + 0))
R> fitfgm.2 <- fit(fgm.2, data = ascus, SID = "StudyID", iter = 19000,
+ warmup = 1000, thin = 20, seed = 3)

Figure 4 shows the trace plots for all six models fitted to the ascus data where all parameters,
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Model Test Parameter Mean Lower Median Upper neff R̂ WAIC

Gaussian HC2 Correlation −0.55 −0.97 −0.73 0.70 123.17 1.02 235.43Repc Correlation −0.87 −0.99 −0.92 −0.53 59.05 1.04

C90 HC2 Correlation −0.04 −0.58 0.00 0.00 56.03 1.04 230.86Repc Correlation −0.83 −0.98 −0.95 −0.51 2.20 1.87

C270 HC2 Correlation −0.02 −0.39 0.00 0.00 40.29 1.06 245.58Repc Correlation −0.79 −0.98 −0.88 −0.45 1.83 2.32

FGM HC2 Correlation −0.06 −0.22 −0.22 0.22 37.80 1.08 246.63Repc Correlation −0.20 −0.22 −0.22 0.12 2671.83 1.00

Frank HC2 Correlation −0.49 −0.83 −0.45 1.00 2700.00 NaN 238.56Repc Correlation −0.74 −0.86 −0.73 1.00 2700.00 NaN
BRMA Both Correlation −0.84 −0.99 −0.89 −0.42 45.67 1.06 233.15

Table 2: The posterior mean, median, 95% credible intervals, effective sample size, potential
scale reduction factor of the correlation parameter(s) as estimated by the Gaussian, Clay-
ton 90◦ (C90) and 270◦ (C270), Farlie-Gumbel-Morgenstern (FGM) and Frank copula based
bivariate beta and bivariate normal (BRMA) distributions for the ascus dataset.

including the correlation parameter (except for BRMA) are modeled as a function of the
covariate. There is proper chain mixing and convergence except for the case of the Clayton
copula based bivariate beta. From the posterior relative sensitivity and specificity plotted in
Figure 5, all the models that converged generally agree that repeat cytology was less sensitive
than HC2 without significant loss in specificity.
The neff values in Table 2 indicate substantial autocorrelation in sampling the correlation
parameters except for the Gaussian, FGM and Frank models. From the copula based bivariate
beta distributions, it is apparent that the correlation between sensitivity and specificity in
HC2 and repeat cytology is different.
The Clayton 90◦ model has the lowest WAIC even though sampling from the posterior distri-
bution was difficult as seen in the trace plots in Figure 4 and the neff and R̂ values in Table 2.
The difficulty in sampling from the posterior could be signaling over-parameterization of the
correlation structure. It would thus be interesting to re-fit the models using only one cor-
relation parameter and compare the models. WAIC is known to fail in certain settings and
this examples shows that it is crucial to check the adequacy of the fit and plausibility of the
model and not blindly rely on an information criterion to select the best fit to the data.

7. Discussion
Copula-based models offer great flexibility and ease but their use is not without caution.
While the copulas used in this paper are attractive as they are mathematically tractable,
Mikosch (2006) and Genest and Rémillard (2006) noted that it might be difficult to estimate
copulas from data. Furthermore, the concepts behind copula models is slightly more complex
and therefore require statistical expertise to understand and program them as they are not
yet available as standard procedures/programs in statistical software.
In this paper, several advanced statistical models for meta-analysis of diagnostic accuracy
studies were briefly discussed. The use of the R package CopulaDTA based on the flexible
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Figure 5: Pooled relative sensitivity (on top) and relative specificity (bottom) of repeat
cytology (posterior mean and 95% credible intervals) compared to HPV testing with HC2 to
detect cervical precancer in women with an atypical Pap smear estimated.

Stan interface was demonstrated and shows how complex models can be implemented in a
convenient way.
In most practical situations, the marginal mean structure is of primary interest and the corre-
lation structure is treated as nuisance making the choice of copula less critical. Nonetheless,
an appropriate correlation structure is critical in the interpretation of the random variation
in the data as well as obtaining valid model-based inference for the mean structure.
When the model for the mean is correct but the true distribution is misspecified, the estimates
of the model parameters will be consistent but the standard errors will be incorrect (Agresti
2003). Nonetheless, the bivariate beta distribution has the advantage to allow direct joint
modeling of sensitivity and specificity, without the need of any transformation, and conse-
quently providing estimates with the appropriate meta-analytic interpretation but with the
disadvantage of being more computationally intensive for some of the copula functions.
Leeflang et al. (2013) showed that the sensitivity and specificity often vary with disease
prevalence. The models presented above can easily be extended and implemented to jointly
model prevalence, sensitivity and specificity using tri-variate copulas.
There were some differences between the models in estimating the meta-analytic sensitivity
and specificity and the correlation. Therefore, further research is necessary to investigate the
effect of certain parameters, such as the number of studies, sample sizes and misspecification
of the joint distribution on the meta-analytic estimates.

8. Conclusion
The proposed Bayesian joint model using copulas to construct bivariate beta distributions,
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provides estimates with both the appropriate marginal as well as conditional interpretation,
as opposed to the typical BRMA model which estimates sensitivity and specificity for specific
studies with a particular value for the random-effects. Furthermore, the models do not have
estimation difficulties with small sample sizes or large between-study variance because: (i)
the between-study variances are not constant but depend on the underlying means and (ii)
Bayesian methods are less influenced by small samples sizes.
The fitted models generally agree that the mean specificity was slightly lower than what Glas
et al. (2003) reported and based on this we conclude that telomerase was not sensitive and
specific enough to be recommended for daily use.
In the ASCUS triage data, conclusion based on the fitted models is in line with what the
authors conclude: that HC2 was considerably more sensitive but slightly and non-significantly
less specific than repeat cytology to triage women with an equivocal Pap smear to diagnose
cervical precancer.
While the BRMA model had the lowest WAIC for both datasets, we still recommend modeling
of sensitivity and specificity using bivariate beta distributions as they easily and directly
provide meta-analytic estimates.
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