
The GRAN repository system and reproducibility tools

Gabriel Becker

November 6, 2017

Contents

1 Introduction 2

2 Creating GRAN repositories 2

3 The repository build process 4

4 Tools for managing repository stability 4

1



2

1 Introduction

GRAN is an open source set of tools for testing and deploying R packages as package repositories for both general deploy-
ment and result reproduction. It is based on the switchr framework, and allows users to deploy package man-

ifests as validated repositories.It is centered around the R repository mechanism for pacakge dis-

tribution. GRAN provides three major areas of functionality:

1. The ability to create one or more R repositories by pulling and testing packages from diverse

locations (scm, local directory), in a manner conducive to continuous integration

2. Tools for recreating specific environments based on sessionInfos, and for creating lightweight

virtual repositories which serve the exact package versions specified in the sessoinInfo

3. Tools for assessing the potential impact of upgrading a package, to assist administrators in

keeping systems up-to-date while protecting reproducibility and comparability of results in

long-running core applications.

2 Creating GRAN repositories

GRAN repositories are based on package manifests (PkgManifest or SeedingManifest objects from the

switchr framework)

Given a manifest, initial construction and rebuilding of individual GRAN repositories (referred to

as subrepositories because GRAN supports a form of branched deployment) is performed via the mak-

eRepo function. For example:

> testpkgs = list.files(system.file("testpkgs", package = "GRANBase"), full.names = TRUE)

> man = PkgManifest(name = basename(testpkgs),

+ url = testpkgs, type = "local")

> repdir = file.path(tempdir(), "repos")

> if(!file.exists(repdir))

+ dir.create(repdir)

> repo = makeRepo(man, repo_name= "stable", basedir = repdir,

+ destination = repdir,

+ cores = 1L, install_test = FALSE, check_test = FALSE)

NOTE: In the above code, we disabled the installation and R CMD check-related tests due to not play-

ing well with the CRAN build system. In most cases, these should be TRUE in order to create a val-

idated package repository. Also note that in the output below, the willfail package appears in the

repository. This would not be the case if the check test was turned on, as it is engineered as a

test case to fail check.

> available.packages(repo, type="source")

Package Version Priority Depends

GRANBase "GRANBase" "1.6.4.1" NA "R (>= 3.1.0), switchr (>= 0.9.28), methods"

GRANstable "GRANstable" "0.9.93" NA "GRANBase, switchr"

deptest "deptest" "1.0" NA "toypkg"

switchr "switchr" "0.12.4.1" NA "methods"

toyp "toyp" "1.0" NA NA

toypkg "toypkg" "1.0" NA NA

willfail "willfail" "1.0" NA NA

Imports

GRANBase "tools, utils, htmlTable, dplyr, sendmailR, covr, RCurl,\njsonlite, stringi, hexSticker, stats"

GRANstable NA

deptest NA

switchr "tools, RJSONIO, RCurl"



3

toyp NA

toypkg NA

willfail NA

LinkingTo Suggests Enhances License License_is_FOSS

GRANBase NA "parallel, BiocStyle, RUnit" NA "Artistic-2.0" NA

GRANstable NA "BiocStyle" NA "Artistic-2.0" NA

deptest NA NA NA "Artistic-2.0" NA

switchr NA "BiocInstaller," NA "Artistic-2.0" NA

toyp NA NA NA "Artistic-2.0" NA

toypkg NA NA NA "Artistic-2.0" NA

willfail NA NA NA "Artistic-2.0" NA

License_restricts_use OS_type Archs MD5sum

GRANBase NA NA NA "485ea20fad44367b240bec6bd9a5df8b"

GRANstable NA NA NA "1e674bab1f554d240a132804a605c6e6"

deptest NA NA NA "8623ba8623c11002123eda4ee4f2e90b"

switchr NA NA NA "de1e80cb54c62766251ebdb034105a4b"

toyp NA NA NA "68c6086eabb00870aabe74b62e60343e"

toypkg NA NA NA "9870f7c899ef6d58a6b50a462112d5dd"

willfail NA NA NA "63d1e44f2372f10fbc1278484a792172"

NeedsCompilation File

GRANBase "no" NA

GRANstable "no" NA

deptest "no" NA

switchr "no" NA

toyp "no" NA

toypkg "no" NA

willfail "no" NA

Repository

GRANBase "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

GRANstable "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

deptest "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

switchr "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

toyp "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

toypkg "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

willfail "file:///var/folders/79/l_n_5qr152d2d9d9xs0591lh0000gn/T/RtmpyKrinK/repos/stable/src/contrib"

Note that the repository contains the package GRANstable. This was generated automatically, and

exports a defaultGRAN function which the switchr package will use when the package is loaded to en-

corporate our package into the set of default repositories.

We refer readers to the documentation for that function regarding the customization options.

GRAN represents (sub)repositories as GRANRepository objects. These objects contain all the infor-

mation required to build and deploy the repository.

Once a GRAN repository is created, its GRANRepository object is saved within the created directory

structure as the repo.R file. This allows future builds to be invoked by the simpler syntax of pass-

ing a GRANRepository object or path to a created repository to makeRepo directly:

> repo = makeRepo(file.path(repdir, "stable"), cores=1L)

The makeRepo function also accepts a build_pkgs argument, which will cause only the specified pack-

ages (and their reverse dependencies) to be rebuilt, regardless of changes in version number.

> repo2 = makeRepo(repo, build_pkgs=basename(testpkgs)[1],

+ cores = 1L)



4

3 The repository build process

GRAN performs the following steps when creating or updating a repository. At the end of each step,

the packages’ statuses are updated to reflect the results of that step.

1. Up-to-date copies of package sources are obtained for each package being built, including up-

dating previously checked out versions

2. Packages whose versions have changed since their last successful build, or who are reverse de-

pendencies of such a package, are built without vignettes into a temporary repository via R

CMD build.

3. Packages which successfully built, along with their GRAN , CRAN, and Bioconductor-based de-

pendencies, are installed into a temporary library location.

4. Packages which successfully installed are built again, with vignettes, into a staging direc-

tory.

5. Remaining packages are tested via R CMD CHECK, and their statuses are updated accordingly

6. Packages which meet the requirements set for the repository (CHECK warnings and notes can be

all owed, or not) are deployed into the final destination repository

7. The GRAN manifest is updated to reflect the build results

8. An HTML build report is generated from the updated manifest

9. The manifest and GRANRepository object are saved

10. The GRANRepsitory object is returned

4 Tools for managing repository stability

GRAN also provides tools to navigate the tension between stability and using the most up-to-date

version of packages to have the latest bug fixes available.

The identifyRisk function identifies which currently installed packages can be updated, and deter-

mines the packages that could possibly be affected by updating the package. In particular, the func-

tion allows the user to identify a vector of important packages and assesses the risks to each of

them (by default, it takes that to be the full set of installed packages).

Risk here has a dual meaning. On the one hand updating a package which an important package de-

pends on incurs the risk of changing the important package’s behavior, potentially changing results

in a critical application. On the other hand, not updating a such a package may leave important

bugfixes un-applied, drawing the results generated when using the important package into question.

buildRiskReport builds an HTML report which lists information about each package with an update avail-

able in an easy to digest table. It also provides a list of specific risks to each important pack-

age (packages with no risks identified are currently omitted).



5

Figure 1: An update risk report


	1 Introduction
	2 Creating GRAN repositories
	3 The repository build process
	4 Tools for managing repository stability

