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Abstract

In causal inference, interference occurs when the treatment of one subject affects the
outcome of other subjects. Interference can distort research conclusions about causal
effects when not accounted for properly. In the absence of interference, inverse prob-
ability weighted (IPW) estimators are commonly used to estimate causal effects from
observational data. Recently, IPW estimators have been extended to handle interference.
Tchetgen Tchetgen and VanderWeele (2012) proposed IPW methods to estimate direct
and indirect (or spillover) effects that allow for interference between individuals within
groups. In this paper, we present inferference, an R package that computes these IPW
causal effect estimates when interference may be present within groups. We illustrate use
of the package with examples from political science and infectious disease.
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1. Introduction
Interference occurs when the treatment (or exposure) of one subject affects the outcome of
other subjects (Cox 1958). Without accounting for interference, measuring only a treatment’s
direct effect may be misleading. For example, a vaccine’s direct effect on an individual in a
group with a large proportion of vaccinated individuals can be small. However, the protective,
indirect effect from other group members’ vaccinations may be large. In this case the vaccine
may be judged to be ineffective based on the direct effect despite possibly having great public
health utility due to the indirect effect (Clemens, Shin, and Ali 2011). Other areas where
interference may be present include criminology (e.g., Sampson 2010; Verbitsky-Savitz and
Raudenbush 2012), developmental psychology (e.g., Duncan, Boisjoly, Kremer, Levy, and
Eccles 2005; Foster 2010), econometrics (e.g., Sobel 2006; Manski 2013), education (e.g.,
Hong and Raudenbush 2006; VanderWeele, Hong, Jones, and Brown 2013), imaging (e.g.,
Luo, Small, shan R. Li, and Rosenbaum 2012), political science (e.g., Sinclair, McConnell,
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and Green 2012; Bowers, Fredrickson, and Panagopoulos 2013), social media and network
analysis (e.g., VanderWeele and An 2013; Toulis and Kao 2013; Eckles, Karrer, and Ugander
2017; Kramer, Guillory, and Hancock 2014), sociology (e.g., Aronow and Samii 2017), and
spatial analyses (e.g., Zigler, Dominici, and Wang 2012; Graham, McCoy, and Stephens 2013).
Inverse probability weighted (IPW) methods are often used to estimate causal effects when
interference is absent (Rosenbaum 1987; Robins, Hernan, and Brumback 2000; Lunceford
and Davidian 2004; Cole and Hernan 2008). Recent developments have extended IPW esti-
mators to estimate causal effects when interference may be present in either randomized or
observational studies. Tchetgen Tchetgen and VanderWeele (2012) proposed estimators for
observational studies assuming partial interference (Sobel 2006), i.e., individuals can be par-
titioned into groups where there may be interference between individuals in the same group
but not between individuals in different groups. Partial interference could be reasonable, for
example, in study of bovine disease where physical separation of herds precludes pathogen
transmission between herds. On the other hand, if birds or farm workers could spread the
pathogen between herds, then partial interference may be questionable. The Tchetgen Tchet-
gen and VanderWeele (2012) IPW estimators require a model for the group-level propensity
score (i.e., the probability of a group’s observed treatment allocation). The large sample
properties of these estimators were derived by Perez-Heydrich, Hudgens, Halloran, Clemens,
Ali, and Emch (2014).
To date, software for analysis of causal effects in the presence of interference is limited.
Without interference, the R (R Core Team 2017) package ipw provides tools to compute
IPW estimators (Van der Wal and Geskus 2011). Existing interference-related R pack-
ages, including interferenceCI (Rigdon 2015) and blockTools (Moore 2016), were designed
for analysis of randomized experiments. In this paper, we present the R package inferference
(Saul 2017) which computes the Tchetgen Tchetgen and VanderWeele (2012) IPW estima-
tors and the large sample variance estimators developed by Perez-Heydrich et al. (2014).
Package inferference is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=inferference.
The outline for the remainder of this paper is as follows. The next section provides back-
ground on interference and an overview of the mathematical concepts and notation. Section 3
describes the package’s main features. Sections 4 and 5 demonstrate the software with ex-
amples from public health and political science. The example in Section 5 shows advanced
features of the package. We discuss computational issues with IPW estimators when groups
have large numbers of individuals in Section 6. We conclude with a brief discussion and future
directions in Section 7.

2. Preliminaries

2.1. A brief history of interference

Much of causal inference assumes that the exposure of one individual does not affect the
outcomes of other individuals, i.e., there is no interference between individuals. Rubin (1980)
bundled no interference with the assumption that treatments for all units are comparable
(no hidden forms of treatment) into the “stable unit treatment value assumption” (SUTVA).
Despite sporadic efforts, the research community gave little attention to this assumption until
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the early 2000s. One approach to relaxing the no interference assumption is to assume partial
interference. Under this assumption, space, time, and/or social network groupings preclude
interference between individuals in different groups, but interference may occur within a
group.
Sobel (2006), Hudgens and Halloran (2008), and Tchetgen Tchetgen and VanderWeele (2012)
developed methods based on the assumption of partial interference to estimate causal effects
in the presence of interference. When an experimenter randomizes units – by design – at
the group and individual levels, Hudgens and Halloran (2008) defined estimators that, under
certain assumptions, are unbiased for a treatment’s direct and indirect (or spillover) effects.
Observational studies complicate estimation of interference effects. Tchetgen Tchetgen and
VanderWeele (2012) proposed IPW estimators of causal effects based on group-level propen-
sity scores for non-randomized treatment allocation. They showed these estimators to be
unbiased when the propensity score is known. Perez-Heydrich et al. (2014) derived the large
sample properties of these estimators when the propensity scores are unknown but correctly
modeled. They applied these results to draw inference about the direct and indirect effects
of cholera vaccination in Matlab, Bangladesh.

2.2. Basic partial interference setup
Consider N individuals partitioned into m groups, each with ni individuals for i = 1, . . . ,m.
The triplet (Yij , Aij ,Xij) represents the observed outcome, treatment, and baseline covariate
vector, respectively, for individual j in group i. We let capitalized letters denote random
variables, and lowercase letters (e.g., (yij , aij ,xij)) denote observed or realized values. Let
Xi and Ai be the matrix of baseline covariates and vector of treatment allocations for mem-
bers of group i. Let Ai,−j = (Ai1, . . . , Aij−1, Aij+1, . . . , Aini) represent a group’s treatment
allocation excluding the jth subject. Let Yij(aij ,ai,−j) = Yij(ai) be the potential outcome
for individual j in group i if, possibly contrary to fact, group i received ai. By causal con-
sistency, Yij = Yij(Ai) (Pearl 2010). Let Yi be the vector of potential outcomes for group i.
By assuming no interference between groups, an individual’s potential outcome may depend
only on the treatment allocation of its group. The set A(ni) contains all of group i’s possible
treatment vectors. With a binary treatment, Aij ∈ {a1, a2}, this set has 2ni elements.

Estimands
Without interference, researchers often estimate an average treatment effect, which contrasts
the average outcome for two treatment allocations: the entire population treated versus
the entire population untreated. With interference, causal estimands may be defined in
terms of the continuum of treatment allocation strategies between those extremes. In in-
ferference, we consider Bernoulli-type allocation strategies proposed by Tchetgen Tchetgen
and VanderWeele (2012), where individuals independently receive treatment with proba-
bility α. For this allocation strategy, the probability of a group’s treatment vector is de-
noted as πi(Ai;α) = ∏ni

j=1 α
Aij (1 − α)1−Aij and, excluding the jth subject, πi(Ai,−j ;α) =∏ni

k=1,k 6=j α
Aik(1− α)1−Aik . The analyst may compute the estimators described below over a

range of α’s to explore hypothetical underlying treatment allocations. In their analysis of a
cholera vaccine study, Perez-Heydrich et al. (2014) examined strategies between α = 0.3 and
α = 0.6 because 75% of the groups had observed vaccine coverages in that range.
Define an individual’s average potential outcome when assigned treatment a under strategy
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α by
Y ij(a;α) =

∑
ai,−j∈A(ni−1)

Yij(a,ai,−j)πi(ai,−j ;α).

In words, Y ij(a;α) is a weighted average of individual j’s potential outcomes under possible
treatment vectors of the other ni − 1 subjects in group i weighted by the probability of each
treatment vector. Similarly, define the marginal individual average potential outcome by

Y ij(α) =
∑

ai∈A(ni)
Yij(ai)πi(ai;α).

Here, the weighted average of individual j’s potential outcomes is across all group treatment
vectors in A(ni).
A simple mean of individual average potential outcomes within a cluster defines group average
potential outcomes. Then group-level estimands are averaged to make population-level esti-
mands. For example, Y (a;α) = ∑m

i=1{
∑ni

j=1 Y ij(a;α)/ni}/m is the population-level average
outcome when individuals receive treatment a and their group adopts allocation strategy α.
Likewise, Y (α) = ∑m

i=1{
∑ni

j=1 Y ij(α)/ni}/m is the population-level average outcome when
groups adopt allocation strategy α.
Contrasts of the population average potential outcomes define causal effects. Hudgens and
Halloran (2008) describe four causal effects: direct, indirect, total, and overall (see also Tch-
etgen Tchetgen and VanderWeele 2012). The direct (or unit-level treatment) effect compares
average potential outcomes within a single allocation strategy:

DE(α) = Y (a1;α)− Y (a2;α).

An indirect effect compares a treatment’s average potential outcomes under different alloca-
tion strategies:

IE(α, α′) = Y (a1;α)− Y (a1;α′).
For a binary treatment, there are two indirect effects for a fixed (α, α′) pair: one for a1 and
one for a2. If interference is not present, then the indirect effect equals zero. The total effect
accounts for both the direct and indirect effects:

TE(α, α′) = Y (a1;α)− Y (a2;α′).

The overall effect contrasts the marginal average potential outcomes for two allocation strate-
gies:

OE(α, α′) = Y (α)− Y (α′).
See Hudgens and Halloran (2008) and Tchetgen Tchetgen and VanderWeele (2012) for further
discussion of these causal estimands.

2.3. IPW estimation

Tchetgen Tchetgen and VanderWeele (2012) proposed IPW estimators of the causal esti-
mands defined above assuming partial interference. Their estimator weights an individual’s
outcome by the inverse of the group-level propensity score, P(Ai|Xi), the probability of a
group’s treatment allocation given the covariates of the group’s individuals. Tchetgen Tchet-
gen and VanderWeele (2012) showed the IPW estimators to be unbiased when the group-level
propensities are known, under the following assumptions:
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1. Conditional independence: P(Ai = ai|Xi,Yi) = P(Ai = ai|Xi).
2. Positivity: P(Ai = ai|Xi) > 0 ∀ai ∈ A(ni).

The true propensity scores are not generally known in observational studies and must be
estimated. Tchetgen Tchetgen and VanderWeele (2012) suggested estimating P(Ai|Xi) using
a generalized mixed effects model. We denote these models as fAi|Xi

(Ai|Xi; θx, θs), where θx

represents fixed effects parameters and θs a group random effect parameter. Model parameters
may be estimated by maximum likelihood methods, which we denote θ̂ = (θ̂x, θ̂s). For a
binary treatment, a model for the group’s propensity score might be:

fAi|Xi
(Ai|Xi; θx, θs) =

∫ ni∏
j=1

hij(bi; θx)Aij{1− hij(bi; θx)}1−Aijfb(bi; θs)dbi, (1)

where hij(bi; θx) = P(Aij = 1|Xij , bi,θx) = logit−1(Xijθx + bi) and fb(·; θs) is the density
of a normal random variable with mean 0 and variance θs. This is the default group-level
propensity score model in inferference; the examples below show how the user can modify
the default group propensity score model. Validity of inferences drawn using the methods
described below requires correct specification of the group propensity score model. Therefore,
it is important in practice to conduct diagnostics to assess the fit of the model employed. For
example, if (1) is assumed, then the Tchetgen Tchetgen and Coull (2006) diagnostic test can
be used to assess whether the random effects are normally distributed.
The IPW estimator for the group-level average potential outcomes is a straightforward weighted
sum,

Ŷ ipw
i (a, α) =

∑ni
j=1 πi(Ai,−j ;α)I(Aij = a)Yij

nifAi|Xi
(Ai|Xi; θ̂)

, (2)

as is the estimator for group-level marginal potential outcomes,

Ŷ ipw
i (α) =

∑ni
j=1 πi(Ai;α)Yij

nifAi|Xi
(Ai|Xi; θ̂)

. (3)

From (2) and (3), one constructs population-level average potential outcome and marginal
population-level average potential outcome estimators by Ŷ ipw(a;α) = ∑m

i=1 Ŷ
ipw

i (a;α)/m
and Ŷ ipw(α) = ∑m

i=1 Ŷ
ipw

i (α)/m. Estimators for direct, indirect, total, and overall effects
simply contrast population-level estimators,

D̂E(α) = Ŷ ipw(a1;α)− Ŷ ipw(a2;α)
ÎE(α, α′) = Ŷ ipw(a1;α)− Ŷ ipw(a1;α′)

T̂E(α, α′) = Ŷ ipw(a1;α)− Ŷ ipw(a2;α′)
ÔE(α, α′) = Ŷ ipw(α)− Ŷ ipw(α′).

IPW variance estimation

Perez-Heydrich et al. (2014) derived asymptotic distributions of the IPW estimators using
standard estimating equation theory. Briefly, the IPW estimators above are consistent and
asymptotically normal as the number of groups m tends to infinity. When the group-level
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propensity scores are known (as in the case of simulation or randomized studies), a large
sample estimator of the variance of D̂E(α) is

1
m2

m∑
i=1

{
D̂E i(α)− D̂E(α)

}2
.

Results for ÎE , T̂E , and ÔE are analogous. As explained below, when variance_estimation
= "naive" in the interference function, this formula is used to compute standard errors
and Wald-type confidence intervals.
When the propensity scores are unknown and instead estimated using a parametric model,
computing variance estimators is more complicated and involves derivatives of the group
propensity with respect to each parameter and derivatives of the propensity model’s log-
likelihood. The supplementary materials in Perez-Heydrich et al. (2014) contain the math-
ematical details, and this method is available with the variance_estimation = "robust"
option. The "robust" option computes consistent variance estimates which account for the
estimation of the weights, whereas the "naive" option computes variance estimates described
in the preceeding paragraph which ignore estimation of the weights and are conservative (i.e.,
tend to be too large).

3. Using inferference

3.1. User’s guide

To start, install the package from CRAN using install.packages("inferference"). The
list below details the arguments for interference, the primary function in inferference.
Special attention should be given to the propensity_integrand and formula arguments.

• formula: formula used to define the causal model. formula has a minimum of 4 parts,
separated by | and ~ in a specific structure: outcome | exposure ~ covariates |
group. The order matters, and the pipes (|) split the data frame into corresponding
pieces (Zeileis and Croissant 2010). The exposure ~ covariates piece is passed as
a single formula to the chosen model_method (defined below) used to estimate or fix
propensity parameters.

– The following includes a random effect for the group: outcome | exposure ~
covariates + (1 | group) | group. In this instance, the group variable ap-
pears twice.

– If the study design includes a “participation” variable (as in both examples below),
this is easily added to the formula: outcome | exposure | participation ~
covariates | group.

• propensity_integrand: a function, which may be created by the user, used to com-
pute the IP weights. This defaults to the function logit_integrand(), which calcu-
lates the product of inverse logits for individuals in a group: ∏ni

j=1{rhij(bi)}Aij{1 −
rhij(bi)}1−Aijfb(bi; θs), where hij(bi) = logit−1(Xijθx + bi), bi is a group-level ran-
dom effect, fb(·) is a N(0, θs) density, and r is a known constant. In an observational
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study typically r = 1. The examples below include individual randomized experi-
ments in which case r denotes the randomization probability among trial participants.
logit_integrand() is the integrand of (1) where hij(bi) is scaled by a constant r term.
If no random effect is included in the formula, logit_integrand() ignores the random
effect. IP weights are computed by numerically integrating propensity_integrand over
the random effect distribution using stats::integrate() to which arguments may be
passed via ... (see below). The default logit_integrand() also takes the following
argument that can be passed via the ... argument in interference():

– randomization: a scalar. This is the r in the formula just above. It defaults to
1 in the case that a participation vector is not included. The vaccine study
example in Section 4 demonstrates use of this argument.

• loglihood_integrand: a function, which may be created by the user, that defines the
log-likelihood of the propensity score model. This should generally be the same function
as propensity_integrand, which is the default.

• allocations: a vector of values in [0, 1]. These are the α’s defined in Section 2.2.
Increasing the number of elements of the allocation vector increases computation time;
however, a larger number of allocations will make plotted effect estimates smoother. A
minimum of two allocations is required.

• data: the analysis data frame. This must include all the variables defined in the
formula.

• model_method: the method used to estimate or set the propensity model parameters.
Must be one of "glm", "glmer", or "oracle". For a fixed effects only model use "glm",
or to include random effects use lme4’s "glmer" (Bates, Mächler, Bolker, and Walker
2015). logit_integrand only supports a single random effect for the grouping variable,
corresponding to bi. When the propensity parameters are known (as in simulations) or
if estimating parameters for the propensity model outside of interference, use the
"oracle" option. See model_options for details on how to pass the oracle parameters.
Defaults to "glmer".

• model_options: a list of options passed to the function in model_method. Defaults
to list(family = binomial(link = "logit")). When model_method = "oracle",
the list must have two elements, fixed.effects and random.effects. If the model
does not include random effects, set random.effects = NULL.

• causal_estimation_method: currently only supports and defaults to "ipw".
• causal_estmation_options: a list with a single item variance_estimation, which is

either "naive" or "robust". See Section 2.3 for details. Defaults to "robust".
• conf.level: level for confidence intervals. Defaults to 0.95.
• rescale.factor: a scalar multiplication factor by which to rescale outcomes and effects.

Defaults to 1.
• integrate_allocation: indicator of whether the integrand function uses the allocation

parameter. Defaults to TRUE.
• runSilent: If FALSE, prints status of computations. Defaults to TRUE.
• ...: used to pass additional arguments to internal functions such as numDeriv::grad()

or stats::integrate(). Arguments can also be passed to the propensity_integrand
and loglihood_integrand functions.
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3.2. The ‘interference’ object

An interference() call results in an S3 object of class ‘interference’ which contains:

• estimates: a data frame of causal effect estimates;
• models$propensity_model: the object returned by glm or glmer;
• summary: a list of objects summarizing the causal model such as the number of groups,

number of allocations, and the formula used in the interference call;
• weights: (# of groups) × (# of allocations) matrix of group-level weights:

wi,k = πi(Ai;αk)
fAi|Xi

(Ai|Xi; θ̂)
.

If variance_estimation = "robust", then the object also includes:

• weightd: (# of groups) × (# of allocations) × (# of parameters) array of weights
computed using derivatives of the propensity function with respect to each parameter;

• scores: (# of groups) × (# of parameters) matrix of derivatives of the log-likelihood.

3.3. Utility functions

The package includes tools to extract effect estimates of interest from the S3 object. The func-
tions direct_effect, indirect_effect (or ie), total_effect (or te), and overall_effect
(or oe) select appropriate records from the estimates data frame in the ‘interference’ ob-
ject. Section 4 shows an example.

4. Example: Vaccine study
This section illustrates the use of inferference with an example drawn from vaccine research.
The package includes a single dataset based on the same set of parameters used in the simu-
lation study by Perez-Heydrich et al. (2014). The vaccinesim dataset consists of 3000 units
in 250 groups and contains two covariates (X1 = age in decades and X2 = distance to river),
a vaccination indicator (A), a participation indicator (B), a binary outcome (Y) indicating
cholera infection (1 yes, 0 no), and the unit’s group.

R> library("inferference")
R> head(vaccinesim)

Y X1 X2 A B group
1 1 5.3607405 1.715527 0 0 1
2 0 0.1964597 1.730802 0 1 1
3 0 0.4846243 1.769546 1 1 1
4 0 0.8012977 1.715527 0 1 1
5 0 2.1426629 1.772158 1 1 1
6 0 1.2861017 1.715527 0 1 1

Like the original study (Ali et al. 2005) that inspired the simulation, individuals were ran-
domized to vaccine with a known probability of 2/3, but subjects could opt to not participate
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in the trial. In essence, there are both experimental and observational aspects to the data.
The interference function handles this design when logit_integrand’s randomization
argument is used and a participation variable is included in the formula.

R> example1 <- interference(formula =
+ Y | A | B ~ X1 + X2 + (1 | group) | group,
+ allocations = c(0.3, 0.45, 0.6), data = vaccinesim,
+ randomization = 2/3, method = "simple")

The only arguments required for interference to run are formula, allocations, and data.
When using the "robust" method (the default) to compute the variance, the internal work-
ings call numDeriv::grad (Gilbert and Varadhan 2016) and stats::integrate frequently.
The option method = "simple" greatly speeds up the numDeriv::grad function. For more
accurate derivatives, leave out this option. See ?numDeriv::grad for more options.
The print.interference function provides an overview of the causal effect estimates, es-
timated standard errors, and Wald-type confidence intervals. In the output, alpha1 and
alpha2 refer to α and α′, while trt1 and trt2 refer to a1 and a2, respectively.

R> example1

--------------------------------------------------------------------------
Model Summary

--------------------------------------------------------------------------
Formula: Y | A | B ~ X1 + X2 + (1 | group) | group
Number of groups: 250
3 allocations were used from 0.3 (min) to 0.6 (max)
--------------------------------------------------------------------------

Causal Effect Summary
Confidence level: 0.95
Variance method: robust

--------------------------------------------------------------------------

Direct Effects
alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

0.30 0 0.30 1 0.1605 0.02474 0.11202 0.2090
0.60 0 0.60 1 0.1086 0.01857 0.07219 0.1450
0.45 0 0.45 1 0.1339 0.01778 0.09904 0.1687

Indirect Effects
alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

0.30 0 0.60 0 0.15907 0.02617 0.10777 0.2104
0.30 0 0.45 0 0.08657 0.01732 0.05263 0.1205
0.45 0 0.60 0 0.07250 0.01408 0.04490 0.1001

Total Effects
alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

0.30 0 0.60 1 0.2677 0.02435 0.2199 0.3154
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0.30 0 0.45 1 0.2205 0.02469 0.1721 0.2688
0.45 0 0.60 1 0.1811 0.01841 0.1450 0.2172

Overall Effects
alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

0.30 NA 0.60 NA 0.17607 0.019247 0.13835 0.2138
0.30 NA 0.45 NA 0.09867 0.014207 0.07083 0.1265
0.45 NA 0.60 NA 0.07740 0.008981 0.05980 0.0950

--------------------------------------------------------------------------

The utility functions return selected effect estimates.

R> direct_effect(example1, 0.3)

alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high
1 0.3 0 0.3 1 0.1605036 0.02473782 0.1120184 0.2089888

R> ie(example1, 0.3)

alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high
1 0.3 0 0.30 0 0.00000000 0.00000000 0.00000000 0.0000000
2 0.3 0 0.45 0 0.08656992 0.01731878 0.05262574 0.1205141
3 0.3 0 0.60 0 0.15906887 0.02617398 0.10776882 0.2103689

4.1. Plotting effect estimates

Plots of effect estimates over a range of α levels may be helpful in summarizing results. Perez-
Heydrich et al. (2014) present several such graphical displays. Here we demonstrate how to
generate similar plots of effect estimates using inferference.
First, we estimate the effects over a dense sequence of allocations so that lines will be smooth.

R> example2 <- interference(
+ formula = Y | A | B ~ X1 + X2 + (1 | group) | group,
+ allocations = seq(0.2, 0.8, by = 0.01), data = vaccinesim,
+ randomization = 2/3, method = "simple")

In Figure 1, we present the direct and indirect effect estimates over this range of allocations.
For direct effects, a simple scatterplot showing the point-wise confidence intervals suffices.
One approach with indirect effects fixes α and plots estimates over a range of α′, whereas a
contour plot displays all pairwise (α, α′) comparisons over a range of allocation strategies.

R> deff <- direct_effect(example2)
R> x <- deff$alpha1
R> y <- as.numeric(deff$estimate)
R> u <- as.numeric(deff$conf.high)
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Figure 1: Plots of the estimates from example2. The top plot shows the direct effect estimates.
The bottom two plots demonstrate different ways of viewing the indirect effect estimates. The
shaded regions show the point-wise 95% confidence intervals.

R> l <- as.numeric(deff$conf.low)
R> plot(c(min(x), max(x)), c(-0.15, 0.25), type = "n", bty = "l",
+ xlab = expression(alpha), ylab = "" )
R> title(ylab = expression(widehat(DE) * "(" * alpha * ")"), line = 2)
R> polygon(c(x, rev(x)), c(u, rev(l)), col = "skyblue", border = NA)
R> lines(x, y, cex = 2)
R> ieff.4 <- ie(example2, allocation1 = 0.4)
R> x <- ieff.4$alpha2
R> y <- as.numeric(ieff.4$estimate)
R> u <- as.numeric(ieff.4$conf.high)
R> l <- as.numeric(ieff.4$conf.low)
R> plot(c(min(x), max(x)), c(-0.15, 0.25), type = "n", bty = "l",
+ xlab = expression(alpha * "'"), ylab = "")
R> title(ylab =
+ expression(widehat(IE) * "(" * 0.4 * "," * alpha * "'" * ")"),
+ line = 2)
R> polygon(c(x, rev(x)), c(u, rev(l)), col = "skyblue", border = NA)
R> lines(x, y, cex = 2)
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Figure 2: A histogram of group-level weights, wi,k, for αk = 0.5.

R> ieff <- subset(example2[["estimates"]], effect == "indirect")
R> x <- sort(unique(ieff$alpha1))
R> y <- sort(unique(ieff$alpha2))
R> z <- xtabs(estimate ~ alpha1 + alpha2, data = ieff)
R> contour(x, y, z, xlab = expression(alpha),
+ ylab = expression(alpha * "'"), bty = "l")

4.2. Diagnostics

IPW estimators are known to be unstable if the weights range greatly. The package includes a
basic utility to check the performance of the group-level weights, wi,k, for multiple allocations.
The function diagnose_weights plots histograms of weights for chosen allocation levels. If
the allocations argument is left NULL, the function plots histograms for five allocation
levels used in the interference call. Figure 2 shows the resulting histogram for a single
allocation. The analyst should examine groups with extreme weights, which may unduly
influence population-level estimates.

R> diagnose_weights(example2, allocations = 0.5, breaks = 30)

5. Example: Voting experiment
The preceding example used the default logit_integrand function to define the group-level
propensities. The following example demonstrates how to customize the propensity score
function.
Nickerson (2008) reported an experiment on voter behavior to examine peer-to-peer indi-
rect effects on voting participation. The experiment randomized households with only two
registered voters in Denver and Minneapolis to receive one of three assignments: voting
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encouragement, recycling encouragement, or nothing. Canvassers knocked on doors of house-
holds randomized to the voting or recycling groups a week before the 2002 primary. If a
registered voter answered the door, the canvassers delivered a scripted message about voting
(treatment) or recycling (control). The researchers used voter turnout records to determine
if each member of the household then voted in the election. Nickerson was interested in
the potential spillover effect of the voting encouragement to the untreated individual via the
treated individual. From analysis of the observed data, he concluded there was a “secondary
effect” where the household members not contacted by the canvassers voted more often in the
treatment groups compared to the control groups.
The dataset voters contains information for 3861 households, 2549 in Denver and 1312
in Minneapolis, including covariates such as age, gender, previous voting history, and party
affiliation. Our estimand of interest involves average voting outcomes when households receive
voting encouragement compared to when households receive the recycling message, hence we
exclude households not contacted by canvassers. We also exclude the single household where
a canvasser appears to have contacted both registered voters.

R> voters <- within(voters, {
+ treated <- (treatment == 1 & reached == 1) * 1
+ c_age <- (age - mean(age)) / 10
+ })
R> reach_cnt <- tapply(voters$reached, voters$family, sum)
R> voters <- voters[!(voters$family %in% names(reach_cnt[reach_cnt > 1])), ]
R> voters <- voters[voters$hsecontact == 1, ]

5.1. Household-level propensity

Unlike the vaccine study example, in this data set randomization occurred at the group level
but individual level treatment was not randomized. With only two subjects, Ai = (Ai1, Ai2) is
the treatment allocation for group i and Xi = (Xi1,Xi2) is the matrix of individuals’ covariate
matrices for group i. Let Bi = (Bi1, Bi2) be indicators of being reached by a canvasser in group
i. Since we only consider households where someone answered the door, Bi ∈ {(1, 0), (0, 1)}
and P(Bi1 = 1|Xi) + P(Bi2 = 1|Xi) = 1. Let hij = P(Bij = 1|Xi; θx) = logit−1(Xiθx).
Let Gi ∈ {0, 1} be the indicator that group i is randomized to treatment (1) or control
(0). By design, P(Gi = 1) = 0.5. Since P(Ai1|Xi; θx) = 1 − P(Ai2|Xi; θx), P(Ai|Xi; θx)
can arbitrarily be defined in terms of either household member. By convention we use the
first subject (subject one) of each group found in the dataset. Among treated groups, the
probability of subject one being treated is the probability that a canvasser reached subject
one. That is, P(Ai1|Gi = 1,Xi; θx) = hAi1

i1 (1 − hi1)1−Ai1 . Thus, the group-level propensity
can be expressed:

P(Ai|Xi; θx) = P(Ai|Gi = 1,Xi; θx)P(Gi = 1) + P(Ai|Gi = 0,Xi; θx)P(Gi = 0)
= 0.5{P(Ai|Gi = 1,Xi; θx) + P(Ai|Gi = 0,Xi; θx)}

=


0.5 if Ai1 = 0, Ai2 = 0 and Gi = 0,
0.5hAi1

i1 (1− hi1)1−Ai1 if (Ai1 = 0, Ai2 = 1 or Ai1 = 1, Ai2 = 0) and Gi = 1,
0 otherwise.
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Thus, hi1 is sufficient to determine the group-level propensity. If we know whether or not the
first subject was reached by a canvasser, then we know if the second was. Therefore, we can
estimate parameters for hi1 with a dataset that includes only subject one from each group.
To do this, we must estimate the parameters outside of inferference and use model_method =
"oracle". We include centered age (in decades) in the propensity model for demonstration
purposes.

R> voters1 <- do.call(rbind, by(voters, voters[, "family"],
+ function(x) x[1, ]))
R> coef.voters <- coef(glm(reached ~ c_age, data = voters1,
+ family = binomial(link = "logit")))

5.2. Coding the propensity function

Custom propensity_integrand and loglihood_integrand functions must have at least one
argument:

• b: the first argument is the variable for which the integrate function computes the
integral. As in this example, the function can be written so that the integral evaluates
to 1 and has no effect.

For example, the following function will fix the group-level propensity to 0.5 for all groups
when variance_estimation = "naive":

R> fixed_propensity <- function(b) return(0.5 * dnorm(b))

For more realistic models, additional arguments may be passed to the custom function:

• X: the covariate matrix (determined by the formula) for the ith group;
• A: the vector of treatment indicators for the ith group;
• parameters: vector of estimated parameters from the model_method;
• allocation: the allocation level for which the propensity is currently being estimated;
• ...: other arguments can be passed via the ellipsis in interference.

Now we have the pieces to write the propensity function for the voting example.

R> household_propensity <- function(b, X, A, parameters,
+ group.randomization = 0.5) {
+ if (!is.matrix(X)) {
+ X <- as.matrix(X)
+ }
+ if (sum(A) == 0) {
+ pr <- group.randomization
+ } else {
+ X.1 <- X[1, ]
+ A.1 <- A[1]
+ h <- plogis(X.1 %*% parameters)
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+ pr <- group.randomization * dbinom(A.1, 1, h)
+ }
+ out <- pr * dnorm(b)
+ out
+ }

5.3. Evidence of a peer influence effect

The influence of the door opener on the non-door opener’s voting behavior corresponds to an
indirect effect. Though the Bernoulli-type parametrization of the estimands allows us to look
at a range of allocations, ÎE(0.5, 0) makes the sensible comparison between a world where
individuals receive a voting message with probability 0.5 to a world where individuals have
zero probability of receiving the voting message.

R> example3 <- interference(formula =
+ voted02p | treated | reached ~ c_age | family,
+ propensity_integrand = "household_propensity", data = voters,
+ model_method = "oracle",
+ model_options = list(fixed.effects = coef.voters, random.effects = NULL),
+ allocations = c(0, 0.5), integrate_allocation = FALSE,
+ causal_estimation_options = list(variance_estimation = "robust"),
+ conf.level = 0.9)
R> ie(example3, 0.5, 0)[, c("estimate", "conf.low", "conf.high")]

estimate conf.low conf.high
1 0.03151501 0.002290586 0.06073944

The point estimate suggests an individual receiving the voting encouragement increases the
voting likelihood of the other household member by 3.2%. The 90% confidence interval
excludes zero, indicating a significant indirect effect corroborating the analysis in Nickerson
(2008).
For comparison, suppose that a flip of a fair coin determined which registered voter opened
the door. We exclude age as a covariate and instead set hi1 = 0.5. Here we assume to know
the propensity score, so we use variance_estimation = "naive".

R> example4 <- interference(formula =
+ voted02p | treated | reached ~ 1 | family,
+ propensity_integrand = "household_propensity", data = voters,
+ model_method = "oracle",
+ model_options = list(fixed.effects = 0, random.effects = NULL),
+ allocations = c(0, 0.5), integrate_allocation = FALSE,
+ causal_estimation_options = list(variance_estimation = "naive"),
+ conf.level = 0.9)
R> ie(example4, 0.5, 0)[, c("estimate", "conf.low", "conf.high")]

estimate conf.low conf.high
1 0.03144654 0.002209019 0.06068406
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Examining the group-level weights may help diagnose coding errors in the propensity score
function. In the case of a fixed probability as in example4, the propensity weights are easily
computed by hand. For example, for α = 0.5,

wi = π(Ai; 0.5)
fAi|Xi

(Ai|Xi; θx = 0) =
{0.52

.5 = 0.5 if Gi = 0
0.52

.52 = 1 if Gi = 1
,

which we can confirm that the software computed this.

R> G <- tapply(voters[1:12, "treated"], voters[1:12, "family"], sum)
R> W <- head(example4[["weights"]])[, 2]
R> cbind(G, W)

G W
2 1 1.0
4 0 0.5
5 0 0.5
6 0 0.5
9 1 1.0
10 0 0.5

6. Computational issues with IPW estimators
We show in this section how computation of the group-level weights may affect estimation as
the number of individuals in groups grows. To illustrate, consider the IPW estimator of the
overall effect, which weights individual outcomes in group i with:

w1i = π(Ai;α)
fAi|Xi

(Ai|Xi; θ̂x)
=

∏ni
j=1 α

Aij (1− α)1−Aij∫ ∏ni
j=1 h

Aij

ij (1− hij)1−Aijfb(bi; θ̂s)dbi

or equivalently,

w2i =


∫ ni∏

j=1

(
hij

α

)Aij
(1− hij

1− α

)1−Aij

fb(bi; θ̂s)dbi


−1

or,

w3i =


∫

exp

 ni∑
j=1

{
Aij log

(
hij

α

)
+ (1−Aij) log

(1− hij

1− α

)} fb(bi; θ̂s)dbi


−1

.

While mathematically equivalent, these weights may be computationally dissimilar. In the
case of w1i, the product term within the integral entails multiplying probabilities and thus
will tend to 0 as ni increases, causing the denominator of w1i to get arbitrarily large. In
contrast, the product term in w2i entails multiplying values which may be less than or greater
than 1 and thus tends to be less susceptible to numerical instability. Summing log(hij/α)
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or log(1 − hij)/(1 − α)) and then exponentiating the result may provide greater numerical
stability. Internally, inferference uses w3i.
When group sizes are small, the differences between these weights tend to be infinitesimal,
but as group sizes grow the differences become important. To be specific, consider the code
below comparing w1i, w2i, and w3i for increasing group sizes where α = 0.5, all units are
treated, there is no random effect, and hij is fixed at 0.5.

R> compare_weights <- function(n, alpha = 0.5, h = 0.5) {
+ pi <- rep(alpha, n)
+ PrA <- rep(h, n)
+ c(w1 = prod(pi) / prod(PrA), w2 = 1 / prod(PrA / pi),
+ w3 = 1 / exp(sum(log(PrA / pi))))
+ }
R> n <- c(50, 100, 500, 1074, 1075, 10000)
R> cbind(n, t(sapply(n, FUN = compare_weights)))

n w1 w2 w3
[1,] 50 1 1 1
[2,] 100 1 1 1
[3,] 500 1 1 1
[4,] 1074 1 1 1
[5,] 1075 NaN 1 1
[6,] 10000 NaN 1 1

For group sizes up to 1074 there is no difference, but when n reaches 1075, w1i returns NaN
while w2i and w3i correctly return 1.
Perez-Heydrich et al. (2014) used w1i to calculate weights, but 15 groups in their analysis
had over 1000 subjects. These groups had missing values for weights for all the values of
α considered and were excluded from computing the average IPW estimate. Rather than
computing the average IPW across 700 groups, they inadvertently took the average across
685 groups. Correcting the estimates by using w2i or w3i did not alter the conclusions in this
case, but analysts should be aware of this issue when dealing with large groups.

7. Discussion
The R package inferference computes inverse probability weighted estimators of causal effects
in the presence of interference. The package currently supports the IPW methods of Tchetgen
Tchetgen and VanderWeele (2012) and Perez-Heydrich et al. (2014). These methods require
a model for the group-level propensity scores. The package provides useful defaults for the
propensity models but allows for non-standard models.
Development and application of statistical methods for inferring causal effects in the presence
of interference is an active area of research. Future versions of inferference may incorporate
other estimation methods, such as doubly robust methods and stratification. Also, additional
methods for estimating variances and effect bounds may be incorporated into the software.
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