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Abstract

The different robust estimators for the standard errors of panel models used in applied
econometric practice can all be written and computed as combinations of the same simple
building blocks. A framework based on high-level wrapper functions for most common
usage and basic computational elements to be combined at will, coupling user-friendliness
with flexibility, is integrated in the plm package for panel data econometrics in R. Sta-
tistical motivation and computational approach are reviewed, and applied examples are
provided.
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1. Introduction
This paper is about computing estimators for the covariance matrix of parameters in a linear
panel model, of the kind commonly used in applied practice to produce “robust” standard
errors. Different estimators are usually preferred in one or the other branch of applied econo-
metrics, from large microeconometric panels (Arellano 1987) to moderately-sized panel time
series in macroeconomics (Driscoll and Kraay 1998) and large panels in finance (Petersen
2009; Cameron, Gelbach, and Miller 2011; Thompson 2011), up to pooled time series in po-
litical science (Beck and Katz 1995). Software implementations are in most cases to be found
in one or the other commercial package, often as user-programmed additional routines; or
sometimes GAUSS (Aptech Systems, Inc. 2006) or MATLAB (The MathWorks Inc. 2017) code
is available. My work aims at bringing them all together under the common umbrella of the
R environment (R Core Team 2017), once again the all-purpose statistical software.
From a software design viewpoint, I translate some results from the recent literature (Petersen
2009; Thompson 2011; Cameron et al. 2011) into a comprehensive computational framework,
in turn integrated into the plm package for panel data econometrics (Croissant and Millo
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2008). I describe a general expression for “clustering” estimators; then I review two-level
clustering as a combination of simple clustering estimators and the extension to persistent
effects by summation of lagged terms; lastly, I show how applying a weighting scheme to
lagged covariance terms yields Driscoll and Kraay (1998)’s spatial correlation consistent (SCC)
estimator (and, as a special case, that of Newey and West 1987).
From an application perspective, I extend the treatment of Petersen (2009) to double-clustering
estimators plus time-persistent shocks as in Thompson (2011): a structure which, based on
simulations in Petersen (2009), can be conjectured to successfully account for both individual
effects and persistent idiosyncratic shocks. My approach also allows easy extension to a com-
bination of effects which has not, to my knowledge, received attention in the literature yet:
double-clustering as in Cameron et al. (2011) plus time-decaying correlation as in Driscoll
and Kraay (1998). A practical example is given in Section 6.
One not-so-minor aim of this paper is to overcome sectoral barriers between different, if con-
tiguous, disciplines: it is striking, for example, how few citations Driscoll and Kraay (1998) on
the panel generalization of the Newey and West (1987) estimator gets in the finance literature,
especially in those papers that advocate what is essentially an unweighted version of their
SCC covariance. Also, Arellano (1987) and Froot (1989), in the different contexts of fixed
effects panels with serial correlation and of industry-clustered financial data, independently
developed what is computationally the same estimator (referred in the following as one-way
clustering) first described by Liang and Zeger (1986). Cross-referencing between the different
branches of statistical and econometric research is still uncommon in this subject, to the point
that raising awareness might be useful.1 From the point of view of political science, where
panel – or time-series cross-section (TSCS) – data are an important methodological field, the
functionality outlined here allows researchers to progress beyond the now-ubiquitous applica-
tion of panel-corrected standard errors (PCSE, Beck and Katz 1995) to pooled specifications,
along the lines of Wilson and Butler (2007): both comparing it with alternative strategies
and possibly combining it with individual effects, in order to tackle the all-important, and
often overlooked, issue of individual heterogeneity (Wilson and Butler 2007, Section 2.2).
In this sense, my work is meant to provide R users with a comprehensive set of modular
tools: lower level components, conceptually corresponding to the statistical “objects” involved
(see Zeileis 2006), and a higher-level set of “wrapper functions” corresponding to standard
covariance estimators as they would be used in statistical packages: White heteroskedasticity-
consistent, clustering, SCC and so on. Wrappers work by combining the same, few lower-level
components in multiple ways in the spirit of the Lego principle of Hothorn, Hornik, Van De
Wiel, and Zeileis (2006), with obvious benefits for both flexibility and code maintenance.
This toolset should enable users to follow the work of Petersen (2009); Cameron et al. (2011);
Thompson (2011) in detail, experimenting with settings and comparing estimates’ magnitudes
(see Petersen 2009) for specification and diagnostic purposes, at least as far as linear models
in two panel dimensions are concerned.
Clustered standard errors for non-panel models are another field of application. For some time,
there has been R code available for one- or two-way clustering in a linear model (see Arai
2009). This last has recently evolved into a package for multi-way clustering, multiwayvcov

1Also note that Fama and MacBeth (1973)’s covariance estimator popular in finance, actually first and
foremost an estimator for the averages of the coefficients, is known in the econometrics literature as the Mean
Group estimator of Pesaran and Smith (1995). See Ibragimov and Müller (2010) for a formal justification of
the Fama-MacBeth method.
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(Graham, Arai, and Hagströmer 2016); in turn, many of the features of the latter have been
incorporated into the sandwich package by Berger, Graham, and Zeileis (2017). The sandwich
package was the original, object-oriented implementation of sandwich estimators in R (Zeileis
2006) and provides the generic function vcovHC, panel methods for which are presented here.
Nevertheless, up to two clustering dimensions all this functionality is effectively encompassed
by that presented here, provided the data are treated like a faux panel specifying one or two
indices. Moreover, integration within the plm package means that the estimators presented
here can seamlessly interact with panel features like individual or time effects. By contrast,
extending clustering to more than two dimensions in a panel context does not fit into the
panel data infrastructure of package plm and is out of the scope of this paper.
When estimating regression models, R creates a model object which, besides estimation re-
sults, carries on a wealth of useful information, including the original data. Robust testing
in R is done retrieving the necessary elements from the model object, using them to calcu-
late a robust covariance matrix for coefficient estimates and then feeding the latter to the
actual test function, which can be a t-test for significance, a Wald restriction test and so on.
Therefore the approach to diagnostic testing is more flexible than with procedural languages,
where diagnostics usually come with standard output. In our case, for example, one can
obtain different estimates of the standard errors under various kinds of dependence without
re-estimating the model, and present them compactly.
When appropriate, I will highlight some features of R that make it easy and effective to com-
bine statistical objects; in particular, functions as arguments; modularity and components
reusing; function application over arrays of arbitrary dimension; and in general object orien-
tation, which ensures application of the right method with the appropriate defaults for the
object at hand through standard syntax.
The paper is organized into three main bodies. The next two sections (Sections 2 and 3)
review the statistical foundations of the methods and set the notation in terms of a few low-
level components according to the Lego principle. Section 4 on the computational framework,
arguably the heart of the paper, describes the statistical building blocks in terms of compu-
tational objects characterized by a few standard “switches”, and their combinations in terms
of user-friendly “wrapper” functions; then, in an object-oriented fashion, it discusses how
and when it is (statistically) appropriate to apply the resulting user-level methods to ‘plm’
objects estimated in different ways: by either (pooled) ordinary least squares (OLS), fixed
effects (FE), random effects (RE), or by first-differencing methods (FD). The remainder of
the paper (Sections 5 and 6) sets the new estimators in the context of the plm package and
provides some examples of application.
The functionality described here is available in package plm since version 1.5-1 and the pack-
age is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=plm.

2. Robust covariance estimators
In this section I briefly review the ideas behind robust covariance estimators of the sandwich
type, in order to provide a basis for the subsequent treatment of their panel extension. The
reader is referred to any econometrics textbook, e.g., Greene (2003) – on which this paragraph
is based – for a formal treatment.

https://CRAN.R-project.org/package=plm
https://CRAN.R-project.org/package=plm
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Consider a linear model y = Xβ + ε and the OLS estimator β̂OLS = (X>X)−1X>y. If one is
interested in making inference on β, then an estimate of VAR(β̂) is needed. If the error terms
ε are independent and identically distributed, then the covariance matrix takes the familiar
textbook form: VAR(β̂) = σ̂2(X>X)−1, where σ̂2 is an estimate of the error variance. This
case is synthetically dubbed spherical errors, and the relative formulation of V (β̂OLS) is often
referred to, somewhat inappropriately, as “OLS covariance”2.
Let us consider robust estimation in the context of the simple linear model outlined above.
The problem at hand is to estimate the covariance matrix of the OLS estimator relaxing the
assumptions of serial correlation and/or homoskedasticity without imposing any particular
structure to the errors’ variance or interdependence.
As the estimator of the OLS parameters’ covariance matrix is

V̂ = 1
n

(
X>X

n

)−1 ( 1
n
X>[σ2Ω]X

)(
X>X

n

)−1

in order to consistently estimate V it is not necessary to estimate all the n(n+ 1)/2 unknown
elements in the Ω matrix but only the K(K + 1)/2 ones in

1
n

n∑
i=1

n∑
j=1

σijxix>j ,

which may be called the meat of the sandwich, the two
(

X>X
n

)−1
being the bread. (From

now on, we will concentrate exclusively on the meat, and we will dispose of the 1/n terms
throughout.) All that is required are pointwise consistent estimates of the errors, which is
satisfied by consistency of the estimator for β (see Greene 2003). In the heteroskedasticity
case, correlation between different observations is ruled out and the meat reduces to

S0 = 1
n

n∑
i=1

σ2
i xix>i ,

where the n unknown σ2
i s can be substituted by e2

i (see White 1980). In the serial correlation
case, the natural estimation counterpart would be

1
n

n∑
i=1

n∑
j=1

eiejxix>j ,

but this structure proves too general to achieve convergence. Newey and West (1987) de-
vise a (heteroskedasticity and) autocorrelation consistent estimator that works based on the
assumption of correlation dying out as the distance between observations increases. The
Newey-West HAC estimator for the meat takes that of White and adds a sum of covariances
between the different residuals, smoothed out by a kernel function giving weights decreasing
with distance:

2The reason is that OLS is “best linear unbiased” (BLUE) under sphericity; yet this is confusing because
other covariance estimators can be more appropriate for β̂OLS under different conditions. Notice that Thomp-
son (2011) uses the same name referring to the case of heteroskedasticity but no dependence (here: White).
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S0 + 1
n

n∑
i=1

n∑
j=1

wletet−l

(
xtx>t−l + xt−lx>t

)

with wl the weight from the kernel smoother, e.g., the Bartlett kernel function: wl = 1− l
L+1

(for a discussion of alternative kernels see Zeileis 2006). The lag l is usually truncated well
below sample size: one popular rule of thumb is L = n1/4 (see Greene 2003; Driscoll and
Kraay 1998).
In the following I will consider the extensions of this framework for a panel data setting where,
thanks to added dimensionality, various combinations of the two above structures will turn
out to be able to accommodate very general types of dependence.

3. Clustering estimators in a panel setting
Let us now consider a panel (or longitudinal) setting where data are collected on two different
dimensions: to fix ideas, let us think of n entities (individuals, firms, countries, . . . ) which
we here label groups and index by i = 1, . . . , n sampled at T points in time. The two
dimensions are not fully symmetric as for the sake of practical relevance I have considered
one dimension (time) having a natural ordering and the other having none. This setting
is sufficiently general to describe the vast majority of applications; a symmetric extension
would nevertheless be straightforward. Different choices of dimensions are possible and have
been explored in the literature: e.g., Froot (1989), in the context of financial data, discusses
sampling from “independent” industries in order to increase sample size, clustering within
industry to account for dependence. Thus the two dimensions would be industry and a
generic counter: clustering would be done according to industry, while meaningless across the
“other” dimension. The model is then

yit = Xitβ + εit.

For now I consider again the familiar OLS estimator β̂OLS , which in this setting is referred
to as pooled OLS because it pools all observations together irrespective of their belonging to
a given group (but see Section 4.4 for an extension to three other common panel estimators).
Clustering estimators work by extending the “sandwich” principle to panel data. Besides
heteroskedasticity, the added dimensionality allows to obtain robustness against totally unre-
stricted timewise or cross-sectional correlation, provided this is along the “smaller” dimension.
In the case of “large-N” (wide) panels, the big cross-sectional dimension allows robustness
against serial correlation3; in “large-T” (long) panels, on the converse, robustness to cross-
sectional correlation can be attained drawing on the large number of time periods observed.
As a general rule, the estimator is asymptotic in the number of clusters: see Cameron et al.
(2011, Section 2).
Imposing cross-sectional (serial) independence in fact restricts all covariances between obser-
vations belonging to different individuals (time periods) to zero, yielding an error covariance

3This is the case of the seminal contribution by Arellano (1987).
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matrix with a block-diagonal structure: in the former case, V (ε) = In ⊗ Ωi, where

Ωi =



σ2
i1 σi1,i2 . . . . . . σi1,iT

σi2,i1 σ2
i2

...
... . . . ...
... σ2

iT−1 σiT−1,iT

σiT,i1 . . . . . . σiT,iT−1 σ2
iT


(1)

and the consistency relies on the cross-sectional dimension being “large enough” with re-
spect to the number of free covariance parameters in the diagonal blocks. The other case is
symmetric.

3.1. White-Arellano, or one-way clustering

White’s heteroskedasticity-consistent covariance matrix4 has been extended to clustered data
by Liang and Zeger (1986) and to econometric panel data by Arellano (1987), who applied
it in a fixed effects setting. Observations can be clustered by the cross-sectional (group)
index which is arguably the most popular use of this estimator, and is appropriate in large,
short panels because it is based on n-asymptotics; or by the time index, which is based
on T -asymptotics and therefore appropriate for long panels. In the first case, the covariance
estimator is robust against cross-sectional heteroskedasticity and also against serial correlation
of arbitrary form. In the second case, symmetrically, against timewise heteroskedasticity and
cross-sectional correlation. Arellano’s original estimator, an instance of the first case, has the
form:

VWhite-Arellano = (X>X)−1
n∑

i=1
X>i uiu

>
i Xi(X>X)−1. (2)

It is of course still feasible to rule out serial correlation and compute an estimator that is
robust to heteroskedasticity only, based on the following error structure:

Ωi =


σ2

i1 . . . . . . 0

0 σ2
i2

...
... . . . 0
0 . . . . . . σ2

iT

 (3)

in which case the original White estimator applies:

VWhite = (X>X)−1
n∑

i=1

T∑
t=1

u2
itxitx>it(X>X)−1. (4)

Some notation

Before discussing bidirectional extensions of this estimator, for the sake of clarity I will now
define the “meat” of the two versions of the Arellano estimator, henceforth VC., with respect to

4See White (1980, 1984).
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the clustering dimension: the original, group-clustered version, robust vs. heteroskedasticity
and serial dependence, will be

VCX =
n∑

i=1
X>i uiu

>
i Xi, (5)

while the time-clustered version, robust vs. heteroskedasticity and cross-sectional dependence,
will be:

VCT =
T∑

t=1
X>t utu

>
t Xt. (6)

The standard White estimator on pooled data, which is symmetric w.r.t. clustering,

VW =
T∑

t=1

n∑
i=1

u2
itxitx>it (7)

will be conveniently written as

VW =
n∑

i=1
X>i diag(u2

i )Xi =
T∑

t=1
X>t diag(u2

t )Xt, (8)

where diag(u2) is a matrix with squares of elements of u on the diagonal and zeros elsewhere,
so that all of these expressions share the common structure

VC· =
∑
·
X>· E(u)X· (9)

with E(u) an appropriate function of the residuals.
This symmetric representation will provide a good starting point for the extension to double
clustering.

3.2. Double clustering

Some recent research in finance (Petersen 2009; Cameron et al. 2011; Thompson 2011) advo-
cates double clustering, motivating it by the need to account for persistent shocks and at the
same time for cross-sectional or spatial correlation.
This estimator combining both individual and time clustering relies on a combination of the
asymptotics of each: the minimum number of clusters along the two dimensions must go to
infinity: see, again, Cameron et al. (2011, Section 2). Apart from this, any dependence struc-
ture is allowed within each group or within each time period, while cross-serial correlations
between observations belonging to different groups and time periods are ruled out.
The double-clustered estimator is easily calculated by summing up the group-clustering
and the time-clustering ones, then subtracting the standard White estimator (referred to
in Cameron et al. 2011 as time-group-clustering, in Thompson 2011 as white0 ) in order to
avoid double-counting the error variances along the diagonal:

VCXT = VCX + VCT − VW . (10)

In order to control for the effect of common shocks, Thompson (2011) proposes to add to
the sum of covariances one more term, related to the covariances between observations from
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any group at different points in time. Given a maximum lag L, this will be the sum over
l = 1, . . . , L of the following generic term:

VCT,l =
T∑

t=1
X>t utu

>
t−lXt−l (11)

representing the covariance between pairs of observations from any group distanced l periods
in time, summed with its transpose. As the correlation between observations belonging to
the same group at different points in time has already been captured by the group-clustering
term, to avoid double counting one must subtract the within-groups part:

VW,l =
T∑

t=1

n∑
i=1

[xituitu
>
i,t−lx

>
i,t−l] (12)

again summed with its transpose, for each l. The resulting estimator

VCXT,L = VCX + VCT − VW +
L∑

l=1
[VCT,l + V >CT,l]−

L∑
l=1

[VW,l + V >W,l] (13)

is robust to cross-sectional and timewise correlation inside, respectively, time periods and
groups and to the cross-serial correlation between observations belonging to different groups,
up to the Lth lag. It also resembles another well-known estimator from the econometric liter-
ature: the Newey-West nonparametric estimator, the difference being that instead of adding
a (possibly truncated) sum of unweighted lag terms, the latter downweighs the correlation
between “distant” terms through a kernel smoother function. Kernel-smoothed estimators
will be the subject of the next section.

3.3. Kernel-based smoothing

As cited above, in a time series context Newey and West (1987) proposed an estimator that
is robust to serial correlation as well as to heteroskedasticity. This estimator, based on
the hypothesis of the serial correlation dying out “quickly enough”, takes into account the
covariance between units by: weighting it through a kernel smoother function giving less
weight as they get more distant; and adding it to the standard White estimator.

Driscoll and Kraay’s “SCC”

Driscoll and Kraay (1998) adapted the Newey-West estimator to a panel time series context,
where not only serial correlation between residuals from the same individual in different time
periods is taken into account, but also cross-serial correlation between different individuals
in different times and, within the same period, cross-sectional correlation (see also Arellano
2003, p. 19).
The Driscoll and Kraay estimator, labeled SCC (as in “spatial correlation consistent”), is
defined as the time-clustering version of Arellano plus a sum of lagged covariance terms,
weighted by a distance-decreasing kernel function wl:

VSCC,L = VCT +
∑L

l=1wl[
∑T

t=1X
>
t utu

>
t−lXt−l +

∑T
t=1[X>t utu

>
t−lXt−l]>]

= VCT +
∑L

l=1wl[VCT,l + V >CT,l].
(14)
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The “scc” covariance estimator requires the data to be a mixing sequence, i.e., roughly speak-
ing, to have serial and cross-serial dependence dying out quickly enough with the T dimension,
which is therefore supposed to be fairly large: Driscoll and Kraay (1998), based on Monte
Carlo simulation, put the practical minimum at T > 20− 25; the n dimension is irrelevant in
this respect and is allowed to grow at any rate relative to T .

Panel Newey-West

By restricting the cross-sectional and cross-serial correlation to zero one gets a “pure” panel
version of the original Newey-West estimator, as discussed, e.g., in Petersen (2009):

VNW,L = VW +
∑L

l=1wl[
∑T

t=1
∑n

i=1[xituitu
>
i,t−lx>i,t−l] +

∑T
t=1[

∑n
i=1[xituitu

>
i,t−lx>i,t−l]>]

= VW +
∑L

l=1wl[VW,l + V >W,l].
(15)

As is apparent from Equation 14, if the maximum lag order is set to 0 (no serial or cross-serial
dependence is allowed) the SCC estimator reverts to the cross-section version (time-clustering)
of the Arellano estimator VCT . On the other hand, if the cross-serial terms are all unweighted
(i.e., if wl = 1∀l) then VSCC,L|w=1 = VCT,L.

3.4. Unconditional estimators

Unconditional covariance estimators are based on the assumption of no error correlation in
time (cross-section) and of an unrestricted but invariant correlation structure inside every
cross-section (time period). They are popular in contexts characterized by relatively small
samples, with prevalence of the time dimension.

Beck and Katz PCSE

Beck and Katz (1995), in the context of political science models with moderate time and
cross-sectional dimensions, introduced the so-called panel corrected standard errors (PCSE),
an estimator with good small-sample properties which, in the original time-clustering setting,
is robust against cross-sectional heteroskedasticity and correlation.
In this framework and with reference to Equation 9, the “pcse” covariance is defined in terms
of the Ei = E ∀i function of the residuals as:

E =
∑

n ênê
>
n

N
.

A sufficient, although not necessary condition for consistency of the “pcse” estimator (Beck
and Katz 1996) is that the covariance matrix of the errors in every group be the same:
Ω = Σ⊗ IT , with

Σ =



σ2
1 σ1,2 . . . . . . σ1,T

σ2,1 σ2
2

...
... . . . ...
... σ2

T−1 σT−1,T

σT,1 . . . . . . σT,T−1 σ2
T .


(16)
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A possible further restriction is to assume correlation away imposing that Σ be diagonal, thus
restricting the estimator to unconditional intragroup heteroskedasticity.

4. Computational framework
Generalizing the computational problem at hand and dividing it into modules is necessary
for writing software that be both full-featured and easy to read and to maintain. In this
section I show a generic formulation capable of generating all the estimators considered up
to now; in the following I will consider a small-sample correction module. These building
blocks will allow to construct a very general covariance estimating function whose usage in
various testing environments will then be discussed in the light of object-oriented econometric
computing.
Two defining features of R as a programming language are object-orientation and functional
nature. In this sense, according to the object-oriented nature of R, in the next paragraph I
will formulate a general computing module, the software counterpart of the statistical objects
VW , VCX , VCT , VW,l, VCX,l and VCT,l which are in turn the building blocks for any of the
estimators considered here. In turn, according to the functional nature of R, the computing
module will be formulated as a function of: a (panel-indexed) vector of errors; an integer lag
order; and lastly of a function to be applied to the error vector, taking the lag order as an
argument. The ability of R to treat functions as a data type will make the translation of this
formalization into software seamless.

4.1. A general, computing-oriented formulation

The most general formulation of the comprehensive estimator can be written as a kernel-
weighted version of Formula 3 in Thompson (2011):

VCXT,L|w = VCT +
L∑

l=1
wl[VCT,l + V >CT,l] + VCX − VW −

L∑
l=1

wl[VW,l + V >W,l]. (17)

In turn, all building blocks for Equation 17 can be generated by combining a clustering
dimension (n or t), a lag order l and a function of the errors f . Starting from the general
formulation:

Vg(t, l, f) =
T∑

t=1
X>t f(ut, ut−l)Xt−l (18)

inserting the outer product function and setting the lag to zero (so that f(ut, ut−l) = utu
>
t )

we get the time- (group-)clustering estimator

VCT = Vg(t, 0, f = utu
>
t ) (19)

and for the “White” terms on the diagonal, with the dot denoting indifferently n or t as
clustering dimension,

VW = Vg(·, 0, f = diag(u2
· )), (20)

while for the cross-serial terms

VCT,l = Vg(t, l, f = utu
>
t−l) (21)
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Label Notation
White heteroskedastic VW

Group clustering VCX

Time clustering VCT

Double clustering VCXT = VCX + VCT − VW

Time clustering + shocks VCT,L = VCT +
∑L

l=1[VCT,l + V >CT,l]
Panel Newey-West VNW,L = VW +

∑L
l=1wl[VW,l + V >W,l]

Driscoll and Kraay’s SCC VSCC,L = VCT +
∑L

l=1wl[VCT,l + V >CT,l]
Double-clustering + shocks VCXT,L = VCT +

∑L
l=1[VCT,l + V >CT,l] + VCX

−VW −
∑L

l=1[VW,l + V >W,l]
= VCT,L + VCX − VNW,L|w=1

Table 1: Covariance structures as combinations of the basic building blocks.

and for the purely autoregressive ones:

VW,l = Vg(t, l, f = diag(ut × ut−l)) (22)

(where × is the element-by-element product) so that by a (possibly weighted) combination
of the above we can get all relevant estimators: see Table 1.
As observed, the SCC estimator differs from the (one-way) time-shocks-robust version of
the double-clustering à la CGM only by the distance-decaying weighting of the covariances
between different periods, so that VCT,L = VSCC,L|w=1.
Obviously, as there is no natural univariate ordering between individuals, a full generalization
encompassing both the double-clustering and a two-way SCC estimator does not seem sensible.
For the same reason, while the software components allow fully symmetric operation, i.e., it
would be practically feasible to compute a group-clustering version of VSCC,L or VCX,L, this
is devoid of sense from a statistical viewpoint because the notion of a linear, unidimensional
spatial lag is generally meaningless5.

4.2. Unconditional estimation in the general framework
Unconditional estimators can also be computed from the general formulation by precalculat-
ing the unconditional error covariance E =

∑T

t=1 utu>
t

T and substituting it inside the generic
Equation 17 as a constant matrix:

VUT = Vg(t, 0, f = E). (23)

One noteworthy feature of R is the ability to treat functions as first-class objects (R Core
Team 2017), which means they are just another, although very special, data type and can be
fed to another function as argument. So a function might indifferently take as argument a
function or a precalculated matrix, which is the case here6.

5Spatial lags, where applicable, are defined in a completely different way based on two-dimensional proximity
matrices (see Anselin 1988). One very special case of linear spatial arrangement allowing for a simple definition
of lag is Chudik, Pesaran, and Tosetti (2011)’s circular world, where each observation has one neighbor to the
left and one to the right. Yet in that setting dependence would have to consider both directions, while serial
dependence only originates from the past.

6Another example of use of this powerful feature for passing a covariance matrix or the function calculating
it is in Zeileis (2006).
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4.3. Unbalanced panels

Unbalancedness is one of the major computational nuisances in panel data econometrics. In
the case at hand, the problem is to compute the generic formula in Equation 17 taking heed
that unbalanced samples will have incomplete groups (time periods) for some t (i). As the
ultimate goal of estimation of the meat is to average the k×k matrix productsX>t f(ut, ut−l)X
over time periods (or, symmetrically, groups), missing data will give rise to empty positions
in Xt and, correspondingly, in f(ut, ut−l).
Fortunately, R has two particularly useful features for treating data in a “generic” way, as
independent as possible from dimensions: list objects and the apply family of functions.
In general R makes it relatively easy to deal with unbalanced data through the use of structures
like lists, very flexible containers which can hold e.g., matrices of different dimensions and on
which operators (and, more generally, functions of any kind) can be applied. The apply family
has members for working member-by-member on lists (lapply), subgroup by subgroup on
ragged arrays (tapply) where (possibly heterogeneous) subgroups are defined by a grouping
variable, or dimension by dimension on arrays, which is the original use of apply. One notable
advantage of this operator is that it can work on arbitrary subsets of the array’s dimensions,
provided the function to be applied is compatible.7

If a function is applied that allows discarding of NA values, one can easily get consistent
averaging over multidimensional arrays: in this case, an average of t k × k bidimensional
matrices of uneven dimensions.
An example will clarify things. Let us take an array of three 3 × 3 matrices with a missing
value, and average over the third dimension. By default, missing values propagate throughout
operations:

R> a <- array(1, dim = c(3, 3, 3))
R> a[1, 1, 1] <- NA
R> apply(a, 1:2, mean)

[,1] [,2] [,3]
[1,] NA 1 1
[2,] 1 1 1
[3,] 1 1 1

but the default behavior can be overridden forcing discarding of NAs:

R> apply(a, 1:2, mean, na.rm = TRUE)

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1

7Notable examples of the usefulness of lists and ragged arrays for unbalanced panel data econometrics
are, respectively, one-by-one inversion of lists of submatrices in general GLS calculations and time- (group-)
demeaning of data based on grouping indices; both in package plm.
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In the latter case, the resulting 3×3 matrix will contain all averages computed on the correct
number of items (i.e., for the [1, 1] position, (1 + 1)/2).
Analogously, in our case it will be convenient to make use of standard tridimensional arrays
making a k×k×t matrix – basically a “pile” of X>t f(ut, ut−l)X terms – and then applying the
mean function over the third dimension, obtaining an appropriate calculation of Equation 17
as a result. In fact, for every value of t every product involving a missing element will produce
an NA in the relative k × k matrix; but then averaging over the T dimension will discard NAs
and apply the correct denominator.8

The same goes for the estimation of the unconditional covariance in Beck and Katz type
estimators. This feature, which has been unavailable for unbalanced panels for a while and
then has been twice mentioned in the literature as a potentially complicated computational
problem (Franzese 1996; Bailey and Katz 2011) is solved nicely and without effort in R by
applying (sic!) the above method, which acts as advocated by Franzese (1996), averaging
elements in the unconditional covariance matrix on the correct number of observations9.

4.4. Application to FE, RE and FD models: The demeaning framework

From a software viewpoint, the methods provided here can be transparently applied either
to pooled OLS or to any other model represented by a ‘plm’ object. As usual, what is
computationally feasible is not necessarily sound from a statistical viewpoint.
The application of the above estimators to pooled data is always warranted, subject to the
relevant assumptions mentioned before. In some, but not all cases, these can also be applied
to random or fixed effects panel models, or models estimated on first-differenced data. The
general idea is to use both the covariates and residuals from the transformed (partially or
totally demeaned, first differenced) model used in estimation.
In all of these cases the estimator is computed as OLS on transformed data, e.g., in the fixed
effects case β̂F E = (X̃>X̃)−1X̃>ỹ with ỹit = yit − yi. and x̃jit = xjit − xji. for each xj in
X; while in the random effects case this time-demeaning is partial and ỹit = yit − θyi. with
0 < θ < 1. Sandwich estimators can then be computed by applying the usual formula to
the transformed data and residuals ũ = ỹ − X̃β̂: see Arellano (1987) and Wooldridge (2002,
Section 10.59) for the fixed effects case, Wooldridge (2002, Chapter 10) in general.
In the following I discuss when it is appropriate to apply clustering estimators to the residuals
of demeaned or first-differenced models.

Fixed effects

The fixed effects estimator requires particular caution. In fact, under the hypothesis of
spherical errors in the original model, the time-demeaning of data induces a serial correlation
COR(uit, ui,t−1) = −1/(T − 1) in the demeaned residuals (see Wooldridge 2002, p. 275).
The White-Arellano estimator has originally been devised for this case. By way of symmetry,
it can be used for time-clustered data with time fixed effects. The combination of group-

8Of course the most delicate programming issue becomes correct handling of the positions of incomplete ut

subvectors and Xt submatrices in the relevant tth “layer” of the tridimensional array.
9This estimation method, based on all available covariances between two given observations, corresponds

to the pairwise option in the pcse function and package (Bailey and Katz 2011); it must be noted, though,
that the default option there (casewise) is to use a balanced subset of the data.
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clustering with time fixed effects and the reverse seems inappropriate because of the serial
(cross-sectional) correlation induced by the time- (cross-sectional-) demeaning.
By analogy, the Newey-West type estimators can be safely applied to models with individual
fixed effects (for an application, see Golden and Picci 2008), while the time and two-way cases
require caution.

Random effects

In the random effects case, as Wooldridge (2002) notes, the quasi-time demeaning procedure
removes the random effects reducing the model on transformed data to a pooled regression,
thus preserving the properties of the White-type estimators.
By extension of this line of reasoning, all above estimators seem to be applicable to the
demeaned data of a random effects model, provided the transformed errors meet the relevant
assumptions.

First-differences

First-differencing, like fixed effects estimation, removes time-invariant effects. Roughly speak-
ing, the choice between the two rests on the properties of the error term: if it is assumed
to be well-behaved in the original data, then FE is the most efficient estimator and is to be
preferred; if on the contrary the original errors are believed to behave as a random walk,
then first-differencing the data will yield stationary and uncorrelated errors, and is therefore
advisable (see Wooldridge 2002, p. 281). Given this, FD estimation is nothing else than OLS
on differenced data, and the usual clustering formula applies (see Wooldridge 2002, p. 282).
As in the RE case, the statistical properties of the various covariance estimators will depend
on whether the transformed errors meet the relevant assumptions.
From the viewpoint of software implementation, the application to fixed or random effects and
to first-difference models is greatly simplified by the availability in plm of a comprehensive
data transformation infrastructure, allowing to easily extract the original data from the model
object and apply the relevant transformation (see Croissant and Millo 2008).

4.5. Small-sample corrections

Two kinds of small-sample corrections are implemented: corrections for a small number of
observations, derived from the work of MacKinnon and White (1985) and summarized in
Zeileis (2006), and corrections for a small number of clusters, described in Cameron et al.
(2011, p. 8).
All work by multiplying each residual by the square root of the appropriate correction factor√
c, so that the various squares and cross-products of residuals are correctly multiplied by

c while the correction can work at vector level, separating the small-sample-correction mod-
ule from the other logical steps of computation. The cluster-level correction in turn works
at single-clustering level, according to the relevant numerosity parameters, as suggested in
Cameron et al. (2011): therefore small-sample cluster-level corrections for different clustering
dimensions are seamlessly combined.
In all these cases c > 0, and c→ 1 as the total number of observations or, in the latter case,
the number of clusters diverge.
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5. R implementation
In this section I will first put the covariance estimators in the context of the plm package
for panel data econometrics and provide a minimal background on robust restriction testing
through interoperability between testing functions and covariance estimators. Then I will
describe how the new approach detailed in this paper has been implemented, substituting the
existing procedures in the simpler cases while extending functionality to the more complex
ones. Lastly I will provide some applied examples to illustrate usage.

5.1. plm and generic sandwich estimators

Robust covariance estimators à la White or à la Newey and West for different kinds of re-
gression models are available in package sandwich (Zeileis and Lumley 2017) under form of
appropriate methods for the generic functions vcovHC and vcovHAC (Zeileis 2004, 2006). These
are designed for data sampled along one dimension, therefore they cannot generally be used
for panel data; yet they provide a uniform and flexible software approach which has become
standard in the R environment. The procedures described in this paper have therefore been
designed to be syntactically compliant with them.
plm (Croissant and Millo 2008) is an R package for panel data econometrics in which an S3
method for ‘plm’ objects for the generic function vcovHC has long been available, allowing to
apply sandwich estimators to panel models in a way that is natural for users of the sandwich
package. In fact, despite the different structure “under the hood”, the user will, e.g., specify
a robust covariance for the diagnostics table of a panel model in the same way she would for
a linear or a generalized linear model, the object-orientation features of R taking care that
the right statistical procedure be applied to the model object at hand. What will change,
though, are the defaults: the vcovHC method for ‘lm’ objects defaults to the original White
estimator, while the vcovHC method for ‘plm’ objects to clustering by groups, both the most
obvious choices for the object at hand.
As an example, Munnell (1990) specifies a Cobb-Douglas production function that relates the
gross social product (gsp) of a given US state to the input of public capital (pcap), private
capital (pc), labor (emp) and state unemployment rate (unemp) added to capture business
cycle effects. Considering this model, whose dataset is a built-in example in plm,

R> library("plm")
R> data("Produc", package = "plm")
R> fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp

and the function coeftest from package lmtest (Zeileis and Hothorn 2002) which produces
a compact coefficients table allowing for a flexible choice of the covariance matrix, I calculate
the “robust” diagnostic table for two statistically equivalent models: OLS by lm

R> lmmod <- lm(fm, Produc)
R> library("lmtest")
R> library("sandwich")
R> coeftest(lmmod, vcov = vcovHC)

t test of coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6433023 0.0716070 22.9489 < 2.2e-16 ***
log(pcap) 0.1550070 0.0186973 8.2903 4.668e-16 ***
log(pc) 0.3091902 0.0126283 24.4839 < 2.2e-16 ***
log(emp) 0.5939349 0.0197887 30.0139 < 2.2e-16 ***
unemp -0.0067330 0.0013501 -4.9872 7.497e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and pooled OLS by plm

R> plmmod <- plm(fm, Produc, model = "pooling")
R> coeftest(plmmod, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6433023 0.2441821 6.7298 3.211e-11 ***
log(pcap) 0.1550070 0.0601195 2.5783 0.01010 *
log(pc) 0.3091902 0.0462297 6.6881 4.209e-11 ***
log(emp) 0.5939349 0.0686061 8.6572 < 2.2e-16 ***
unemp -0.0067330 0.0030904 -2.1787 0.02964 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As can be seen, the estimated SEs will turn out different as the types of the model objects
to be tested are different, unless one overrides the defaults: here specifying the method as
"white1" and the small sample correction as "HC3" will replicate the lm results:

R> coeftest(plmmod,
+ vcov = function(x) vcovHC(x, method = "white1", type = "HC3"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6433023 0.0716070 22.9489 < 2.2e-16 ***
log(pcap) 0.1550070 0.0186973 8.2903 4.668e-16 ***
log(pc) 0.3091902 0.0126283 24.4839 < 2.2e-16 ***
log(emp) 0.5939349 0.0197887 30.0139 < 2.2e-16 ***
unemp -0.0067330 0.0013501 -4.9872 7.497e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As observed, these features have long been present in plm, but limited to one-way clustering
(see Croissant and Millo 2008, Section 6.7); one-way SCC and the unconditional Beck and
Katz (BK) estimator have also been added at a later stage, each one with its own infrastruc-
ture. With the exception of BK, this functionality has now been replaced by a combination of
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a general parameter covariance estimator as in Equation 17 and specific wrappers, replicating
its different particularizations for the most common forms of usage.

5.2. The new modular framework

In this section I show how to use the basic “building block”: the general estimator in Equa-
tion 17. This is unlikely to be much used in practice but it is left available at user level both
for educational use and to possibly allow combinations not implemented in the higher-level
wrappers. Then I show what is probably going to be the preferred option for practicing
econometricians, that is the higher-level wrappers combining different particularizations of
the general estimator to obtain one- or two-way clustering or kernel-weighted estimators à la
White, Arellano, CGM, NW or DK. Lastly I show how to easily define custom combinations
of the above to estimate more complicated covariance structures.
The general parameter covariance estimator has been implemented in R in a function vcovG
which is the software counterpart to Equation 18 and can be used for calculating VW,l, VCT,l

or VCX,l. This is visible at the user level and can be used as such, leaving the default lag
at 0, to calculate VW , VCT or VCX . According to the formalization in Equation 18, besides
a ‘plm’ object and a small-sample correction, it takes as arguments a clustering dimension
(cluster), a function of the errors corresponding to E(u) in Equation 9 (inner) and a lag or-
der. The inner argument accepts either one of two strings "cluster" or "white", specifying
respectively E(u) = uu> and E(u) = diag(u>u), or a user-supplied function.
Next, I calculate the Arellano estimator VCX by specifying "group" as the clustering dimen-
sion, "cluster" as the inner function and 0 as the lag order:

R> vcovG(plmmod, cluster = "group", inner = "cluster", l = 0)

(Intercept) log(pcap) log(pc) log(emp)
(Intercept) 0.0596248904 -9.637916e-03 -0.0068911857 0.0148866870
log(pcap) -0.0096379163 3.614354e-03 -0.0002956929 -0.0031157168
log(pc) -0.0068911857 -2.956929e-04 0.0021371841 -0.0017597732
log(emp) 0.0148866870 -3.115717e-03 -0.0017597732 0.0047067982
unemp 0.0003700792 -8.058266e-05 -0.0000586966 0.0001366349

unemp
(Intercept) 3.700792e-04
log(pcap) -8.058266e-05
log(pc) -5.869660e-05
log(emp) 1.366349e-04
unemp 9.550671e-06
attr(,"cluster")
[1] "group"

For the convenience of the user, a wrapper function vcovHC is provided which reproduces the
syntax and results of the stand-alone version already available in plm, thus ensuring both
retrocompatibility with plm and naming consistency with the sandwich package. Thus, the
following statement reproduces the same output as above (suppressed) in a more intuitive
way:
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R> vcovHC(plmmod)

Higher-level functions are needed, and provided, in order to produce the double-clustering and
kernel-smoothing estimators by (possibly weighted) sums of the former terms. The general
tool in this respect, in turn based on vcovG, is vcovSCC, which computes weighted sums of V.,l

according to a weighting function which is by default the Bartlett kernel. Again, this function
is available at user level and the default values will yield the Driscoll and Kraay estimator,
VSCC,L:

R> vcovSCC(plmmod)

(Intercept) log(pcap) log(pc) log(emp)
(Intercept) 0.0226046609 -5.514511e-03 -6.334497e-04 5.759358e-03
log(pcap) -0.0055145106 1.367029e-03 1.319429e-04 -1.402905e-03
log(pc) -0.0006334497 1.319429e-04 5.843328e-05 -1.862888e-04
log(emp) 0.0057593584 -1.402905e-03 -1.862888e-04 1.497875e-03
unemp -0.0003377024 8.428261e-05 3.257782e-06 -8.034358e-05

unemp
(Intercept) -3.377024e-04
log(pcap) 8.428261e-05
log(pc) 3.257782e-06
log(emp) -8.034358e-05
unemp 6.445790e-06
attr(,"cluster")
[1] "time"

No weighting (equivalent to passing the constant 1 as the weighting function: wj = 1) will
produce the building blocks for double-clustering, according to Equation 13, so that VCXT

could be easily obtained defining it at user level as:10

R> myvcovDC <- function(x, ...) {
+ Vcx <- vcovHC(x, cluster = "group", method = "arellano", ...)
+ Vct <- vcovHC(x, cluster = "time", method = "arellano", ...)
+ Vw <- vcovHC(x, method = "white1", ...)
+ return(Vcx + Vct - Vw)
+ }
R> myvcovDC(plmmod)

(Intercept) log(pcap) log(pc) log(emp)
(Intercept) 0.0635274416 -1.087953e-02 -0.0067108330 0.0159466020
log(pcap) -0.0108795286 3.809110e-03 -0.0002102193 -0.0033786244
log(pc) -0.0067108330 -2.102193e-04 0.0020211433 -0.0017355810
log(emp) 0.0159466020 -3.378624e-03 -0.0017355810 0.0049283961

10Notice the use of the prefix “my” to indicate that this function has been defined by the user in this session,
as opposed to built-in functions. This is done only for the sake of clarity, as R leaves complete naming freedom
to the user; yet adhering to naming conventions of some sort is advisable in order to avoid inadvertently
replacing built-in functions.
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unemp 0.0002236813 -4.386756e-05 -0.0000544364 0.0000986291
unemp

(Intercept) 2.236813e-04
log(pcap) -4.386756e-05
log(pc) -5.443640e-05
log(emp) 9.862910e-05
unemp 1.108906e-05
attr(,"cluster")
[1] "group"

Again, convenience wrappers are provided to make usage more intuitive: vcovNW computes
the panel Newey-West estimator VNW,L (output omitted); vcovDC the double-clustering one
VCXT , which is constructed not unlike myvcovDC from the example above, and gives exactly
the same output (suppressed):

R> vcovDC(plmmod)

More complicated structures allowing for two-way clustering and error persistence in the sense
of Thompson (2011) are easily obtained by combination, the same way as illustrated above,
following the lines of Section 4.1. Below the case of double-clustering plus four periods of
persistent (unweighted) shocks à la Thompson (2011) (notice that the weighting function wj
has been defined as the constant 1 but must still be a function of two arguments):

R> myvcovDCS <- function(x, maxlag = NULL, ...) {
+ w1 <- function(j, maxlag) 1
+ VsccL.1 <- vcovSCC(x, maxlag = maxlag, wj = w1, ...)
+ Vcx <- vcovHC(x, cluster = "group", method = "arellano", ...)
+ VnwL.1 <- vcovSCC(x, maxlag = maxlag, inner = "white", wj = w1, ...)
+ return(VsccL.1 + Vcx - VnwL.1)
+ }
R> myvcovDCS(plmmod, maxlag = 4)

(Intercept) log(pcap) log(pc) log(emp)
(Intercept) 0.0766973526 -0.0160969792 -4.713237e-03 0.0191602519
log(pcap) -0.0160969792 0.0043713347 2.332514e-04 -0.0042963693
log(pc) -0.0047132370 0.0002332514 1.066283e-03 -0.0012435555
log(emp) 0.0191602519 -0.0042963693 -1.243556e-03 0.0052481667
unemp -0.0006069241 0.0001587212 -9.439635e-06 -0.0001351121

unemp
(Intercept) -6.069241e-04
log(pcap) 1.587212e-04
log(pc) -9.439635e-06
log(emp) -1.351121e-04
unemp 1.403075e-05
attr(,"cluster")
[1] "time"
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6. Applied examples
In the following applied examples, I will present the complete array of standard error estimates
for each estimator in Table 1. A complete array of methods is presented for the sake of
illustration; nevertheless one must keep in mind that the sample size and the number of
clusters in either cross-section or time might prove inadequate for some estimators, as reported
in the reference papers (see in particular Thompson 2011). The examples below must therefore
be seen as examples of computational feasibility, not of statistical soundness of each method.
In fact, even limiting to those methods that are not at odds with the given sample size, the
strategy of computing standard errors in all potentially sensible ways and taking the most
conservative ones does indeed reduce type I error but at the same time decreases the power
of the significance test.11

Another purpose of this section is to illustrate some ways to efficiently perform such mul-
tiple comparisons through some features of R. Looping on a vector of functions is a useful
consequence of R treating functions as a data type. For the sake of clarity, let us predefine
some functions for calculating the different covariance estimators in Section 4.1 according to
the names reported there and with the appropriate parameters (leaving the maximum lag
calculation at its default value of L = T

1
4 ):

R> Vw <- function(x) vcovHC(x, method = "white1")
R> Vcx <- function(x) vcovHC(x, cluster = "group", method = "arellano")
R> Vct <- function(x) vcovHC(x, cluster = "time", method = "arellano")
R> Vcxt <- function(x) Vcx(x) + Vct(x) - Vw(x)
R> Vct.L <- function(x) vcovSCC(x, wj = function(j, maxlag) 1)
R> Vnw.L <- function(x) vcovNW(x)
R> Vscc.L <- function(x) vcovSCC(x)
R> Vcxt.L <- function(x)
+ Vct.L(x) + Vcx(x) - vcovNW(x, wj = function(j, maxlag) 1)

then build up a vector of functions on which to loop:

R> vcovs <- c(vcov, Vw, Vcx, Vct, Vcxt, Vct.L, Vnw.L, Vscc.L, Vcxt.L)
R> names(vcovs) <- c("OLS", "Vw", "Vcx", "Vct", "Vcxt", "Vct.L", "Vnw.L",
+ "Vscc.L", "Vcxt.L")

in order to calculate a comprehensive table of p values from robust estimators:

R> cfrtab <- matrix(nrow = length(coef(plmmod)), ncol = 1 + length(vcovs))
R> dimnames(cfrtab) <- list(names(coef(plmmod)), c("Coefficient",
+ paste("s.e.", names(vcovs))))
R> cfrtab[, 1] <- coef(plmmod)
R> for (i in 1:length(vcovs)) {
+ cfrtab[, 1 + i] <- coeftest(plmmod, vcov = vcovs[[i]])[, 2]
+ }
R> print(t(round(cfrtab, 4)))

11We are grateful to an anonymous reviewer for this observation.
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(Intercept) log(pcap) log(pc) log(emp) unemp
Coefficient 1.6433 0.1550 0.3092 0.5939 -0.0067
s.e. OLS 0.0576 0.0172 0.0103 0.0137 0.0014
s.e. Vw 0.0708 0.0185 0.0125 0.0195 0.0013
s.e. Vcx 0.2442 0.0601 0.0462 0.0686 0.0031
s.e. Vct 0.0944 0.0232 0.0063 0.0246 0.0018
s.e. Vcxt 0.2520 0.0617 0.0450 0.0702 0.0033
s.e. Vct.L 0.1875 0.0461 0.0079 0.0480 0.0031
s.e. Vnw.L 0.1144 0.0299 0.0206 0.0316 0.0020
s.e. Vscc.L 0.1503 0.0370 0.0076 0.0387 0.0025
s.e. Vcxt.L 0.2722 0.0657 0.0389 0.0736 0.0036

6.1. PPP regression

This example applies the new combination Vcxt.L, which as observed is undocumented in
the literature, in the appropriate context of a “long” panel. Its main purpose is to show how
to apply the methodology discussed in the paper to linear hypothesis testing.
Coakley, Fuertes, and Smith (2006) present a purchasing power parity (PPP) regression on
quarterly data 1973Q1 to 1998Q4 for 17 developed countries, so that N = 17 and T = 104
which is fairly typical of a “long” panel.12 The estimated model is

∆sit = α+ β(∆p−∆p∗)it + νit,

where sit is the relative exchange rate against USD and (∆p−∆p∗)it is the inflation differential
between the country and the US.

R> data("Parity", package = "plm")
R> fm <- ls ~ ld
R> pppmod <- plm(fm, data = Parity, effect = "twoways")

The hypothesis of interest is β = 1, therefore instead of significance diagnostics we report the
corresponding robust Wald test from linearHypothesis in package car (Fox and Weisberg
2011):

R> library("car")
R> linearHypothesis(pppmod, "ld = 1", vcov = Vcxt.L)

Linear hypothesis test

Hypothesis:
ld = 1

Model 1: restricted model
Model 2: ls ~ ld

12The first of three examples in the original SCC paper (Driscoll and Kraay 1998) is also a purchasing power
parity regression, on annual data 1973–1993 for a sample of 107 countries.



22 Robust Standard Error Estimators for Panel Models

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 1648
2 1647 1 2.2942 0.1299

6.2. Petersen’s artificial data

The last example draws on a well-known simulated dataset, replicating the original results.
To complement his paper, Petersen (2009) produced a simple artificial dataset, which has
become an informal benchmark for practitioners. The data can be retrieved from http:
//www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt; a
copy is provided in the accompanying materials to this article. He provides the following
estimates of standard errors: classical, White heteroskedastic, clustered by firm or year,
double-clustered by firm and year; and coefficients and standard errors estimated according
to the Fama-MacBeth procedure. In the following, I replicate his results in R with plm.

R> petersen <- read.table(file = "test_data.txt")
R> colnames(petersen) <- c("firmid", "year", "x", "y")
R> ptrmod <- plm(y ~ x, data = petersen, index = c("firmid", "year"),
+ model = "pooling")
R> vcovs <- c(vcov, Vw, Vcx, Vct, Vcxt)
R> names(vcovs) <- c("OLS", "Vw", "Vcx", "Vct", "Vcxt")
R> cfrtab <- matrix(nrow = length(coef(ptrmod)), ncol = 1 + length(vcovs))
R> dimnames(cfrtab) <- list(names(coef(ptrmod)), c("Coefficient",
+ paste("s.e.", names(vcovs))))
R> cfrtab[, 1] <- coef(ptrmod)
R> for(i in 1:length(vcovs)) {
+ cfrtab[, 1 + i] <- coeftest(ptrmod, vcov = vcovs[[i]])[, 2]
+ }
R> print(t(round(cfrtab, 4)))

(Intercept) x
Coefficient 0.0297 1.0348
s.e. OLS 0.0284 0.0286
s.e. Vw 0.0284 0.0284
s.e. Vcx 0.0669 0.0505
s.e. Vct 0.0222 0.0317
s.e. Vcxt 0.0646 0.0525

One should notice a small difference w.r.t. the results of Petersen: in fact, to replicate them
exactly one shall specify to use the same small sample correction Stata (StataCorp. 2015)
uses by default: e.g., in the double-clustering case,

R> coeftest(ptrmod, vcov = function(x) vcovDC(x, type = "sss"))[, 2]

http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
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(Intercept) x
0.06506392 0.05355802

which yields the same results as double-clustering in Petersen’s example.13

7. Conclusions
I have reviewed the different robust estimators for the standard errors of panel models used in
applied econometric practice, representing them as combinations of atomic building blocks,
which can be thought of as the computational counterparts of statistical objects. In turn,
these have been defined, according to the functional orientation of R, as variations of the same
general element obtained by choosing a clustering dimension (group or time), a lag order and
a function of the residuals (either the element-by-element or the outer product).
While it is feasible to combine these constituents ad hoc at user level, the standard estimators
used in applied practice (White, Arellano, Newey-West, Driscoll and Kraay SCC, double
clustering) are provided under form of predefined combinations (“wrapper” functions) for the
sake of user-friendliness. Nevertheless, the user enjoys the freedom to combine elements at
will, possibly experimenting with non-standard solutions.
The software framework described is integrated in the R package plm, so that composite
covariance methods can be applied to objects representing panel models of different kinds
(FE, RE, FD and, obviously, OLS). The estimate of the parameters’ covariance thus obtained
can in turn be plugged into diagnostic testing functions, producing either significance tables
or hypothesis tests. A function is a regular object type in R, hence compact comparisons of
standard errors from different (statistical) methods can be produced simply by looping on
covariance types, as shown in the examples.
An extension to multiple clustering dimensions as in Cameron et al. (2011) is ill-suited to
bidimensional econometric panels, and hence out of the scope of this paper; it has recently
been implemented in package multiwayvcov for linear models (Graham et al. 2016), and can
foreseeably be adapted to panel settings by combining the latter with demeaning functionality
in plm (i.e., treating the transformed data as a classical linear model, see Section 4.4) in ways
that look fairly straightforward but are out of the scope of the present work.
Lastly, one caveat applies. This paper is concerned with design-efficient computing of a quite
general class of estimators. Generality will mean that many different estimators can be fitted
to the data obtaining numerical estimates. Advances in computing power have made most
of these computationally very cheap, hence a conservative “fit-them-all” strategy is feasible
(although conservativeness will come at the expense of test power: see the observations at
the beginning of Section 6). It must nevertheless be borne in mind that computability does
not by any means guarantee statistical soundness, and that the hypotheses under which a
covariance estimator is consistent and has desirable properties in finite samples are usually a
subset of those under which it is actually computable.

13Petersen also reports Fama-MacBeth estimates. As observed in Section 1, these are nothing else but
a mean groups estimator where means are taken over time instead of, as is customary in panel time series
econometrics, over individual observations. Therefore this last part of Petersen’s results can be replicated
by swapping indices in the plm function pmg, as in the following statement: coeftest(pmg(y ˜ x, data =
petersen, index = c("year", "firmid"))).
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