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Abstract

Longitudinal studies commonly arise in various fields such as psychology, social sci-
ence, economics and medical research, etc. It is of great importance to understand the
dynamics in the mean function, covariance and/or correlation matrices of repeated mea-
surements. However, high-dimensionality (HD) and positive-definiteness (PD) constraints
are two major stumbling blocks in modeling of covariance and correlation matrices. It
is evident that Cholesky-type decomposition based methods are effective in dealing with
HD and PD problems, but those methods were not implemented in statistical software
yet, causing a difficulty for practitioners to use. In this paper, we first introduce recently
developed Cholesky decomposition based methods for joint modeling of mean and covari-
ance structures, namely modified Cholesky decomposition (MCD), alternative Cholesky
decomposition (ACD) and hyperspherical parameterization of Cholesky factor (HPC). We
then introduce our newly developed R package jmcm which is currently able to handle
longitudinal data that follows a Gaussian distribution using the MCD, ACD and HPC
methods. The use of package jmcm is illustrated and a comparison of those methods is
made through the analysis of two real datasets.

Keywords: Cholesky decomposition, covariance matrix estimator, longitudinal data, joint
mean-covariance models.

1. Introduction

A longitudinal study usually involves repeated observations of the same variables over a
long period of time and is often used in psychology, sociology and medical research. The
covariance matrix plays a prominent role in analyzing data from longitudinal studies since
the components of collected measurements within the same subject are not independent. A
good covariance modeling approach improves statistical inference of the mean of interest and
the covariance structure itself may be of scientific interest in some circumstances (Diggle and
Verbyla 1998).
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However, modeling of covariance structure is challenging because the estimated covariance
matrices in general should be positive definite and there are many parameters in covariance
matrices. To overcome these two obstacles, Pourahmadi (1999) advocated a data-driven joint
mean-covariance modeling method based on a modified Cholesky decomposition (MCD) of
the marginal within-subject covariance matrix. The decomposition leads to a reparameteri-
zation where entries can be interpreted in terms of innovation variances and autoregressive
coefficients. See Pan and Mackenzie (2003) for a related discussion. Another Cholesky-type
decomposition (ACD) proposed by Chen and Dunson (2003) can be understood as modeling
certain innovation variances and moving average parameters, and the method is compared
with MCD in detail by Pourahmadi (2007). These two Cholesky-type approaches demonstrate
parsimonious and effective strategies, but their corresponding variance functions cannot be
directly interpreted as those of the repeated observations. Therefore additional efforts are
needed for interpreting the variance and covariance functions. More recently, Zhang, Leng,
and Tang (2015) considered a regression approach based on the standard Cholesky decomposi-
tion of the correlation matrix and the hyperspherical parameterization (HPC) of its Cholesky
factor, where parameters are directly interpretable with respect to variance and correlation.
A brief review of these approaches is presented in the following sections. Note this paper is
not an exhaustive survey, and many other covariance structure modeling methods are also
commonly used in the literature, see Fan, Liao, and Liu (2016) for a more general overview
on the estimation of large covariance and precision matrices.

Software for analyzing longitudinal data using some conventional approaches has been imple-
mented in the R environment for statistical computing and graphics (R Core Team 2017) for
many years. For instance, several packages provide functions for determining maximum like-
lihood estimates of the parameters in a linear mixed-effect model (LMM) that incorporates
both fixed effects and random effects in the linear predictor, such as the lme function in pack-
age nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2017) and the lmer function
in package lme4 (Bates, Mächler, Bolker, and Walker 2015). Similar commercial statistical
programs are also available for LMM such as PROC MIXED in SAS (SAS Institute Inc. 2013),
MIXED in SPSS (SPSS Inc. 2015) and fitlme in MATLAB (The MathWorks Inc. 2015). The
method of generalized estimating equation (GEE; Liang and Zeger 1986) is widely used as it
focuses on models for the mean of the correlated observations without fully specifying the joint
distribution of the responses. Several implementations of GEE are available through packages
gee (Carey, Lumley, and Ripley 2015) and geepack (Halekoh, Højsgaard, and Yan 2006). The
Gaussian copula model provides a flexible general framework for marginal regression analy-
sis of continuous, discrete and categorical responses, and is available through package gcmr
(Masarotto and Varin 2012, 2017). However all of these procedures are based on specific model
assumptions like existence of an expectation or homogeneous variances and are not intuitive
for a joint mean-covariance modeling framework. In this paper we focus on the joint mean-
covariance modeling for both balanced and unbalanced longitudinal data, and we present a
user friendly R package jmcm (Pan and Pan 2017) which is freely available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=jmcm and
that can be used to handle such joint models. For efficiency, the core part of package jmcm
is implemented in compiled C++ code using Rcpp (Eddelbuettel and François 2011; Eddel-
buettel 2013) and RcppArmadillo (Eddelbuettel and Sanderson 2014) for numerical linear
algebra. All the implemented R functions are well documented with some examples. The
main objective of this paper is to introduce the joint mean-covariance modeling approaches

https://CRAN.R-project.org/package=jmcm
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in package jmcm to a wide audience of statisticians and practitioners who need to analyze
longitudinal data.
The rest of the paper is organized as follows. In Section 2 we present the joint mean-covariance
modeling methods, and discuss different choices for modeling strategies of covariance structure
mentioned above. Furthermore, we consider the maximum likelihood estimations for each type
of the models, with particular emphasize on numerical optimization techniques. Section 3
provides a detailed overview on the implementation of the methods introduced in Section 2
using the package jmcm and gives a brief illustration of the computational tools and Section 4
concludes the paper with further discussions.

2. Joint mean-covariance modeling framework

2.1. Joint mean-covariance models

Denote longitudinal measurements by yi = (yi1, yi2, . . . , yimi)> (i = 1, 2, . . . , n) that are col-
lected from n subjects and measured at time points ti = (ti1, ti2, . . . , timi)>. Here we assume
the number of measurements mi and time ti are subject specific, so that unbalanced longitu-
dinal datasets with observations taken at irregular time points can be modeled.
The basic linear model used in the joint mean-covariance modeling frame work of longitudinal
data analysis can be described by the distribution of a vector-valued random response variable
yi, which is assumed to be multivariate normal,

yi ∼ Nmi(µi,Σi),

where µi = (µi1, µi2, . . . , µimi)> is an mi × 1 vector and Σi is an mi × mi within-subject
covariance matrix. The mean µi of yi is usually modeled by a linear regression,

µi = Xiβ, (1)

where Xi denotes an mi× (p+1) model matrix with an intercept on the first column followed
by covariates of the ith subject, β is a (p+ 1)× 1 regression coefficient vector. The subject-
specific within-subject covariance matrix, Σi, may be modeled similarly based on different
decomposition approaches, and will be discussed in detail in the following sections.
Estimates of the joint mean-covariance model parameters θ, including θ1 = β in the mean
model and other unspecified parameters θ2 in the covariance matrices, can be obtained by
maximum likelihood (ML) estimation. In particular, a maximum likelihood estimator (MLE)
of the unknown parameter vector is defined as any solution θ̂n of:

θ̂n = argmin
θ∈Θ
{−2l(θ)} , (2)

where
−2l(θ) =

n∑
i=1

log |Σi|+
n∑
i=1

(yi − µi(θ1))>Σ−1
i (θ2)(yi − µi(θ1)) (3)

is minus twice the log-likelihood function without the constant term. Note that this is the form
of the log-likelihood function that is implemented by default in the package, though the value
of the full log-likelihood including the constant term can be easily obtained by setting a specific
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option before model fitting. After obtaining the score functions U(θ) = (U(θ1)>, U(θ2)>)>
based on f(θ) = −2l(θ) by direct calculations, we then estimate θ via the iterative quasi-
Newton method (BFGS) that solves the score equations. More specifically, we apply the
following quasi-Newton algorithm.

1. Select an initial value θ(0) = ((θ(0)
1 )>, (θ(0)

2 )>)>. Set the superscript k = 0 for the
iteration number. A convenient initial value for θ(0)

1 = β(0) is its ordinary least-squares
estimate, β(0) = (

∑n
i=1X

>
i Xi)−1(

∑n
i=1X

>
i yi) while the initial value for θ(0)

2 is set to
form a diagonal covariance matrix, and will be discussed in detail respectively with the
choice of covariance structure models later.

2. Initialize score function U (0) = U(θ(0)) and the inverse Hessian H(0) as identity matrix.

3. Update the search direction (Newton step) and compute the step size λ̃ by performing
an approximate line minimization:

p(k) = −H(k)U (k), λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)). (4)

4. Update θ as
θ(k+1) = θ(k) + λ̃p(k) (5)

and then the new gradient
U (k+1) = U(θ(k+1)). (6)

5. Compute the difference θ(k+1) − θ(k) and U (k+1) −U (k) and update the inverse Hessian
with the BFGS updating formula

Hi+1 = Hi + (θ(k+1) − θ(k))(θ(k+1) − θ(k))>

(θ(k+1) − θ(k))>(U (k+1) − U (k))

− [H(k)(U (k+1) − U (k))][H(k)(U (k+1) − U (k))]>

(U (k+1) − U (k))>H(k)(U (k+1) − U (k))
+ (U (k+1) − U (k))>H(k)(U (k+1) − U (k))uu>, (7)

where u is defined as the following vector

u ≡ (θ(k+1) − θ(k))
(θ(k+1) − θ(k))>(U (k+1) − U (k))

− H(k)(U (k+1) − U (k))
(U (k+1) − U (k))>H(k)(U (k+1) − U (k))

. (8)

6. Set k = k + 1 and repeat Steps 3 to 5 until a pre-specified criterion is met.

See Press, Teukolsky, Vetterling, and Flannery (2007) for a more detailed discussion of the
BFGS optimization algorithm with line-search and its implementations. Note that currently
only the BFGS algorithm is implemented in the package since it proves to be one of the
best quasi-Newton methods for solving smooth unconstrained optimization problems and
works very well in our problem. Other quasi-Newton algorithms will also be implemented
as alternatives in the future. In practice, we find that estimation of the parameters θ of the
joint mean-covariance model can be further improved by solving for the parameters one by
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one with the other parameters fixed in the optimization, and this will be discussed in more
detail in the following sections.

2.2. Modified Cholesky decomposition (MCD)

The two major obstacles in modeling covariance matrices are high-dimensionality (HD) and
positive-definiteness (PD). The HD problem can be largely reduced by introducing the regres-
sion techniques and the PD constraint can be potentially removed by employing the Cholesky
decomposition in covariance structure modeling (Pourahmadi 2013). The standard Cholesky
decomposition of an mi ×mi positive definite covariance matrix is of the following form

Σi = CiC
>
i , (9)

where Ci = (cijk) is a lower triangular matrix with positive diagonal elements and its entries
are difficult to interpret (Pinheiro and Bates 1996). We will find that the task of statistical
interpretation can be much easier by reducing Ci to a unit lower triangular matrix by post-
or pre-multiplying with the inverse of Di = diag(ci11, ci22, . . . , cimimi).

Defining modified Cholesky decomposition (MCD)
The first case, post-multiplying Ci by the inverse of Di, leads to the modified Cholesky
decomposition (MCD) and keeps Di inside (Zhang and Leng 2012),

Σi = (CiD−1
i )(DiDi)(D−1

i C>i ) = LiD
2
iL
>
i , (10)

or in another more commonly used form (Pourahmadi 1999),

TiΣiT
>
i = D2

i , (11)

where Ti = L−1
i and Li = CiD

−1
i can be considered as a standardized version of Ci, dividing

each column by its corresponding diagonal entry (Maadooliat, Pourahmadi, and Huang 2013).
The below-diagonal entries of Ti are the negatives of the so-called generalized autoregressive
parameters (GARPs), φijk, in

yij = µij +
j−1∑
k=1

φijk(yik − µik) + εij , (12)

the AR model for the actual measurements on subject i. The diagonal entries of D2
i are the

innovation variance σ2
ij = VAR(εij), see Pourahmadi (1999) for the details. It is helpful to

invert Equation 12 by using yi1 = εi1 and repeating substitution for yit in terms of εit to
obtain

yij − µij = εij +
j−1∑
k=1

φ̃ijkεik (j = 2, . . . ,mi), (13)

where the matrix form reveals Li = (φ̃ijk) so that its entries on the jth row can be inter-
preted as regression parameters when yij is regressed on the present and past innovations
εij , εi(j−1), . . . , εi1. Then we can prove

COV(yis, yit) =
min(s,t)∑
k=1

φ̃iskφ̃itkσ
2
ik (14)
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by setting φ̃ijj = 1 and φ̃ijk = 0 for j < k and 1 ≤ s, t ≤ mi. Thus, the correlation coefficient
between yis and yit depends on both the φ̃ijk’s and the σ2

ij ’s.

Maximum likelihood estimation of MCD

Using the idea of linear models and employing covariates as in Pan and Mackenzie (2003),
the unconstrained parameters ζij ≡ log σ2

ij and φijk are modeled as

ζij = z>ijλ, φijk = w>ijkγ, (15)

where zij and wijk are (d+1)×1 and (q+1)×1 vectors of covariates, λ = (λ0, λ1, . . . , λd)> and
γ = (γ0, γ1, . . . , γq)> are unknown parameters for the innovation variances and autoregressive
coefficients, respectively.
Under the model in (15), minus twice the log-likelihood function, except for a constant, is
given by

−2l =
n∑
i=1

log |T−1
i D2

i T
−>
i |+

n∑
i=1

r>i T
>
i D

−2
i Tiri, (16)

where rij = yij − x>ijβ is the jth element of ri = yi −Xiβ, the vector of residuals for the ith
subject.
The maximum likelihood estimating equations for β, λ and γ become

U1(β) =
n∑
i=1

X>i Σ−1
i (yi −Xiβ),

U2(λ) = 1
2

n∑
i=1

Z>i (D−2
i ei − 1mi),

U3(γ) =
n∑
i=1

G>i D
−2
i (ri −Giγ),

(17)

where the matrix Gi, of order mi × (q + 1), has typical row g>ij =
∑j−1
k=1 rikw

>
ijk. Also, Zi =

(z>i1, z>i2, . . . , z>imi
)>, ei = (ei1, ei2, . . . , eimi)> with eij = (rij − r̂ij)2 and r̂ij =

∑j−1
k=1 φijkrik,

are the mi × (d + 1) matrix of covariates and the mi × 1 vector of squared fitted residuals
respectively, and 1mi is the mi × 1 vector of 1’s.
The initial guess β(0) can be set by employing a simple linear regression:

R> lm.obj <- lm.fit(X, Y)
R> bta0 <- coef(lm.obj)

After extracting the residuals from the linear model, the starting value λ(0) is obtained by
fitting the linear regression model in (15) while γ(0) is simply assumed to be a vector of 0’s
so that Ti is constructed as an identity matrix:

R> res <- resid(lm.obj)
R> lmd0 <- coef(lm.fit(Z, log(res^2)))
R> gma0 <- rep(0, lgma)
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We then estimate θ by minimizing expression in (16) via the iterative quasi-Newton algorithm,
as explained in Section 2.1, after substitution of U(θ) by (−2U1(β)>,−2U2(λ)>,−2U3(γ)>)>.
Since the solutions satisfy Equation 17 and the parameters β, λ, γ are asymptotically inde-
pendent (Ye and Pan 2006), the three parameters can also be sequentially solved one by one
with the other parameters kept fixed. More specifically, we apply the following algorithm.

1. Initialize the parameters as θ(0) = ((β(0))>, (λ(0))>, (γ(0))>)>. Set k = 0.

2. Compute Σi by using λ(k) and γ(k). Update β as

β =
(

n∑
i=1

X>i Σ−1
i Xi

)−1 n∑
i=1

X>i Σ−1
i yi.

3. Given β = β(k+1) and γ = γ(k), update λ via the iterative quasi-Newton algorithm after
substitution of f(θ) = −2l(θ) by f(λ) and U(θ) by −2U2(λ) since there is no explicit
form for the solution of λ.

4. Given β = β(k+1) and λ = λ(k+1), update γ as

γ =
(

n∑
i=1

G>i D
−2
i Gi

)−1 n∑
i=1

G>i D
−2
i ri.

5. Update the search direction as

p(k) = θ(k+1) − θ(k).

Compute step size λ̃ by performing an approximate line minimization

λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)).

6. Update θ(k+1) again as
θ(k+1) = θ(k) + λ̃p(k).

7. Set k = k + 1 and repeat Steps 2 to 6 until a pre-specified criterion is met.

2.3. Alternative Cholesky decomposition (ACD)

Defining alternative Cholesky decomposition (ACD)

The second case, pre-multiplying Ci by the inverse of Di, leads to alternative Cholesky de-
composition (ACD; Chen and Dunson 2003) and keeps Di outside,

Σi = Di(D−1
i Ci)(C>i D−1

i )Di = DiL̃iL̃
>
i Di,

where L̃i = D−1
i Ci is obtained from a slightly different standardized Ci, dividing each row by

its corresponding diagonal entry (Maadooliat et al. 2013).
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For statistical interpretation of the below-diagonal entries of L̃i, it is clear that D−1
i (yi −

µi) has L̃iL̃>i as the standard Cholesky decomposition of its covariance matrix and εi =
(DiL̃i)−1(yi − µi), its vector of innovations, has COV(εi) = Imi . Thus, with L̃i = (φ̃ijk) and
Di = (σij), we can obtain the variable order, MA representation for the standardized residual
from D−1

i (yi − µi) = L̃iεi as

(yij − µij)/σij = εij +
j−1∑
k=1

φ̃ijkεik. (18)

Then we can prove

COV(yis, yit) = σisσit

min(s,t)∑
k=1

φ̃itkφ̃isk (19)

for any 1 ≤ s, t ≤ mi, so that the correlation coefficient between yis and yit given by

CORR(yis, yit) =
∑min(s,t)
k=1 φ̃itkφ̃isk√

(
∑s
k=1 φ̃

2
isk

∑t
k=1 φ̃

2
itk)

(20)

is determined solely by φ̃ijk’s.

Maximum likelihood estimation of ACD

Following the similar approach in Pan and Mackenzie (2003), the log-innovation variance
ζij = log σ2

ij and moving average parameters φ̃ijk in ACD are modeled as

ζij = z>ijλ, φ̃ijk = v>ijkγ, (21)

where zij and vijk are (d+ 1)× 1 and (q + 1)× 1 vectors of covariates, λ = (λ0, λ1, . . . , λd)>
and γ = (γ0, γ1, . . . , γq)> are unknown parameters for the innovation variances and moving
average regression coefficients, respectively.
Under the model in (21), minus twice the log-likelihood function, except for a constant, is
given by

−2l =
n∑
i=1

log |DiL̃iL̃
>
i Di|+

n∑
i=1

r>i D
−1
i L̃−>i L̃−1

i D−1
i ri, (22)

where rij = yij − x>ijβ is the jth element of ri = yi −Xiβ, the vector of residuals for the ith
subject.
The score functions can be obtained and simplified as

U1(β) =
n∑
i=1

X>i Σ−1
i (yi −Xiβ),

U2(λ) = 1
2

n∑
i=1

Z>i (hi − 1mi),

U3(γ) =
n∑
i=1

(ε>i ⊗ Imi)
∂L̃>i
∂γ

L̃−>i εi,

(23)
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where Zi = (z>i1, z>i2, . . . , z>imi
)>, hi = diag(L̃−>i L̃−1

i D−1
i rir

>
i D
−1
i ), εi = (εi1, . . . , εimi)> =

L̃−1
i D−1

i ri, thus εi1, . . . , εimi are independent standard normal random variables, and Imi is
an mi ×mi identity matrix.
Since the covariance structures of MCD and ACD are quite close, the initial guess of param-
eters β(0), λ(0) and γ(0) in ACD can be obtained using the same approach as described for
determining the initial parameter setting of MCD:

R> lm.obj <- lm.fit(X, Y)
R> bta0 <- coef(lm.obj)
R> res <- resid(lm.obj)
R> lmd0 <- coef(lm.fit(Z, log(res^2)))
R> gma0 <- rep(0, lgma)

We then estimate θ by minimizing expression in (22) via the iterative quasi-Newton algorithm,
as explained in Section 2.1, after substitution of U(θ) by (−2U1(β)>,−2U2(λ)>,−2U3(γ)>)>.
Since the solutions satisfy Equation 23 and the parameters λ and γ are not asymptotically
orthogonal (Maadooliat et al. 2013), the three parameters can be split into two groups, θ1 = β
and θ2 = (λ>, γ>)> and can be sequentially solved one by one with the other parameters kept
fixed. More specifically, we apply the following algorithm.

1. Initialize the parameters as θ(0) = ((θ(0)
1 )>, (θ(0)

2 )>)> = ((β(0))>, (λ(0))>, (γ(0))>)>. Set
k = 0.

2. Compute Σi by using λ(k) and γ(k). Update θ1 = β as

β =
(

n∑
i=1

X>i Σ−1
i Xi

)−1 n∑
i=1

X>i Σ−1
i yi.

3. Given β = β(k+1), update θ2 via the iterative quasi-Newton algorithm after substitution
of f(θ) = −2l(θ) by f(θ2) and U(θ) by (−2U2(λ)>,−2U3(γ)>)>.

4. Update the search direction as

p(k) = θ(k+1) − θ(k).

Compute the step size λ̃ by performing an approximate line minimization

λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)).

5. Update θ(k+1) again as
θ(k+1) = θ(k) + λ̃p(k).

6. Set k = k + 1 and repeat Steps 2 to 5 until a pre-specified criterion is met.
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2.4. Hyperspherical parameterization of the Cholesky factor (HPC)
Even though modified Cholesky decomposition (MCD; Pourahmadi 1999) and alternative
Cholesky decomposition (ACD; Chen and Dunson 2003) provide parsimonious unconstrained
and statistically interpretable parameterizations of a covariance matrix, the innovation vari-
ance is not the same as the marginal variances of the repeated measurements within the same
subject.

Defining the hyperspherical parameterization of the Cholesky factor (HPC)
It is well known that the variance-correlation decomposition has the form

Σi = HiRiHi, (24)

where Hi = diag(σi1, σi2, . . . , σimi) with σij being the standard deviation of the jth mea-
surement for subject i and Ri = (ρijk)mi

j,k=1 is the correlation matrix of yi with ρijk =
CORR(yij , yik) being the correlation between the jth and kth observations of the ith sub-
ject. By using this decomposition, one can directly model the variances and correlations of
observations separately.
Not surprisingly, the development of a regression method to model the correlation struc-
ture proves to be difficult. Specifically, a correlation matrix must be positive semi-definite
and symmetric with 1’s as the main diagonal entries and values between −1 and 1 as the
off-diagonal entries. The new challenge is mitigated by employing the standard Cholesky
decomposition on the correlation matrix Ri,

Ri = BiB
>
i (25)

and parameterizing its Cholesky factor Bi via hyperspherical co-ordinates (HPC; Zhang et al.
2015),

Bi =


1 0 0 . . . 0
ci21 si21 0 . . . 0
ci31 ci32si31 si32si31 . . . 0
...

...
... . . . ...

cimi1 cimi2simi1 cimi3simi2simi1 . . .
∏mi−1
l=1 simil

 ,

where cijk = cos(θijk) and sijk = sin(θijk).
Equivalently, the non-zeros entries in the lower triangular matrix Bi = (bijk) are given as
bi11 = 1, bij1 = cij1 = cos(θij1) for j = 1, 2, . . . ,mi and

bijk =


cos(θijk)

k−1∏
l=1

sin(θijl), 2 ≤ k < j ≤ mi,

k−1∏
l=1

sin(θijl), k = j, j = 2, . . . ,mi,

where θijk are some angles in [0, π) (Rapisarda, Brigo, and Mercurio 2007).

Maximum likelihood estimation of HPC
The correlation matrix Ri is guaranteed to be positive semi-definite since it is constructed
by its corresponding standard Cholesky factor Bi and the angle parameters in Bi are uncon-
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strained except that θijk ∈ [0, π). We are free to model the log-variances and angles through
regression by using some covariates

log σ2
ij = z>ijλ, θijk = g>ijkγ. (26)

As for the range of θijk, our experience from data analysis and simulation studies indicates all
the estimated θijks fall in the range [0, π). Transformation such as the inverse tangent trans-
formation can be applied to ensure that θijk definitely falls in [0, π), and can be implemented
in a future version. Under the model in (26), minus twice the log-likelihood function, except
for a constant, is given by

−2l =
n∑
i=1

log |HiBiB
>
i Hi|+

n∑
i=1

r′iH
−1
i B−>i B−1

i H−1
i ri, (27)

where rij = yij − x>ijβ is the jth element of ri = yi −Xiβ, the vector of residuals for the ith
subject.
The score functions can be obtained and simplified as

U1(β) =
n∑
i=1

X>i Σ−1
i (yi −Xiβ),

U2(λ) = 1
2

n∑
i=1

Z>i (hi − 1mi),

U3(γ) =
n∑
i=1

(ε>i ⊗ Imi)
∂B>i
∂γ

B>−1
i εi −

mi∑
j=1

∂ logBijj
∂γ

 ,
(28)

where Zi = (z>i1, z>i2, . . . , z>imi
)>, hi = diag(B−>i B−1

i H−1
i rir

>
i H

−1
i ), εi = (εi1, . . . , εimi)> =

B−1
i H−1

i ri, thus εi1, . . . , εimi are independent standard normal random variables, and Imi is
an mi ×mi identity matrix.
The initial guess β(0) can be set by employing a simple linear regression:

R> lm.obj <- lm.fit(X, Y)
R> bta0 <- coef(lm.obj)

After extracting residuals from the linear model, the starting value λ(0) is obtained by fitting
the linear regression model in (26) while γ(0) is simply assumed to be a vector whose first
element is 1

2π and followed by 0’s so that Bi is constructed as an identity matrix:

R> res <- resid(lm.obj)
R> lmd0 <- coef(lm.fit(Z, log(res^2)))
R> gma0 <- c(pi / 2, rep(0, lgma - 1))

We then estimate θ by minimizing the expression in (27) via the iterative quasi-Newton
algorithm, as explained in Section 2.1, after substitution of U(θ) by (−2U1(β)>,−2U2(λ)>,
−2U3(γ)>)>.
Since the solutions satisfy Equation 28 and the parameters λ and γ are not asymptotically
independent (Zhang et al. 2015), the three parameters can be split into two groups, θ1 = β
and θ2 = (λ>, γ>)> and can be sequentially solved one by one with the other parameters kept
fixed. More specifically, we apply the following algorithm.
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1. Initialize the parameters as θ(0) = ((θ(0)
1 )>, (θ(0)

2 )>)> = ((β(0))>, (λ(0))>, (γ(0))>)>. Set
k = 0.

2. Compute Σi by using λ(k) and γ(k). Update θ1 = β as

β =
(

n∑
i=1

X>i Σ−1
i Xi

)−1 n∑
i=1

X>i Σ−1
i yi.

3. Given β = β(k+1), update θ2 via the iterative quasi-Newton algorithm after substitution
of f(θ) = −2l(θ) by f(θ2) and U(θ) by (−2U2(λ)>,−2U3(γ)>)>.

4. Update the search direction as

p(k) = θ(k+1) − θ(k).

Compute the step size λ̃ by performing an approximate line minimization

λ̃ = arg min
0<λ̃≤1

f(θ(k) + λ̃p(k)).

5. Update θ(k+1) again as
θ(k+1) = θ(k) + λ̃p(k).

6. Set k = k + 1 and repeat Steps 2 to 5 until a pre-specified criterion is met.

2.5. Comparison of MCD, ACD and HPC

For modeling the covariance and correlation structure, the three discussed Cholesky-type
decomposition-based approaches have been demonstrated to be effective in the sense that the
estimated covariance and correlation are guaranteed positive (semi-)definite, and the number
of parameters is considerably reduced through regression techniques.
It is clear that MCD and ACD have a closer relationship since they are constructed in a similar
way through standardization of the Cholesky factor Ci, and the resulting unconstrained pa-
rameters have a nice statistical interpretation in terms of innovation variance, autoregressive
and moving average parameters respectively. The main drawbacks of these two approaches
are the potential need for a natural order (e.g., time series), which makes it difficult to find a
reasonable statistical interpretation and may result in a different estimation of the covariance
and correlation matrix with each single ordering. A recent application of the Cholesky-based
approach for estimating the covariance matrix of multiple stocks within a portfolio and a
more detailed discussion of the ordering problem can be found in Dellaportas and Pourah-
madi (2012) and Pedeli, Fokianos, and Pourahmadi (2015). Additional effort and extra care
are needed in practice for interpreting their corresponding variance and correlation functions.
Moreover, owing to the decomposition, the resulting correlation function of MCD depends
on both the innovation variance and autoregressive parameters, indicating that MCD is not
robust against the misspecification of the innovation variance when the correlation is the main
interest (Maadooliat et al. 2013). We also need to note that MCD is the most computation-
ally efficient approach among the three approaches due to the fact that its Fisher information
matrix is block diagonal (Ye and Pan 2006).
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The parameterization of HPC is very attractive because the resulting parameters are uncon-
strained and directly interpretable with respect to the variances and correlations. The angles
in the Cholesky factor of the correlation matrix have a geometric connection with correlations.
However, modeling covariance and correlation using HPC can be computationally expensive
since the problem of estimating the Cholesky factor is transformed into the problem that
actually first estimates a matrix consisting of angles. For details see Zhang et al. (2015).

3. Examples of use

3.1. Analysis of a balanced longitudinal dataset

In this section, we provide our first example that illustrates how to apply joint mean-covariance
models in analyzing a balanced longitudinal data by using jmcm. Kenward (1987) analyzed
an experiment in which cattle were assigned randomly to two treatment groups A and B, and
their weights were recorded. Thirty animals received treatment A and another thirty received
treatment B. The animals were weighted n = 11 times over a 133-day period; the first 10
measurements on each animal were made at two-week intervals and the final measurement
was made one week later. Since no observation was missing, it is considered to be a balanced
longitudinal dataset. The data is loaded simply using the data() instruction:

R> library("jmcm")
R> data("cattle", package = "jmcm")
R> head(cattle)

id day group weight
1 1 0 A 233
2 1 14 A 224
3 1 28 A 245
4 1 42 A 258
5 1 56 A 271
6 1 70 A 287

We present in Figure 1 the subject-specific longitudinal profiles of the cattle data using the
following code:

R> library("lattice")
R> xyplot(weight ~ day | group, group = id, data = cattle, xlab = "days",
+ ylab = "weight", col = 1, type = "l")

and observe that in both groups the variability of the weights seems to increase over time
with a severe weight loss on the final measurement in group B.
Following Pourahmadi (1999), Pan and Mackenzie (2003), Pan and MacKenzie (2006), Pan
and MacKenzie (2007) and Zhang et al. (2015), we re-analyzed group A data by using a
saturated mean model with the common measurement time rescaled to t = 1, 2, . . . , 10, 10.5.
The Bayesian information criterion (BIC), which is closely related to the Akaike information
criterion (AIC) and introduces a larger penalty term for the number of parameters in the
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Figure 1: Subject-specific weight against time for groups A and B.

model than the AIC aiming to solve the problem of over-fitting, is used as the criterion to
select the optimal model

BIC(p, d, q) = −2l̂max/n+ (p+ d+ q + 3) log(n)/n, (29)

where p, d and q are respectively the orders of three polynomials and l̂max is the value
of the maximum log-likelihood function for the given order. By default, the value of the
likelihood does not include the constant term as defined in Equation 3 but it can be switched
to the full likelihood containing the constant term easily by explicitly specifying control =
jmcmControl(ignore.const.term = FALSE) in the jmcm function.
The basic use of jmcm is to indicate the model formula, data, choice of poly(p, d, q) and
the covariance structure model. For example, a joint mean-covariance model based on the
modified Cholesky decomposition (MCD) is estimated using:

R> cattleA <- subset(cattle, group == "A")
R> fit1 <- jmcm(weight | id | I(day / 14 + 1) ~ 1 | 1, data = cattleA,
+ triple = c(8, 3, 4), cov.method = "mcd")
R> fit1

Joint mean-covariance model based on MCD ['jmcmMod']
Formula: weight | id | I(day/14 + 1) ~ 1 | 1
Poly: c(8, 3, 4)
Data: cattleA

logLik: -771.0007
BIC: 53.4408

Mean Parameters:
[1] 1.832e+02 1.244e+02 -1.403e+02 7.881e+01 -2.362e+01 4.071e+00
[7] -4.052e-01 2.162e-02 -4.787e-04
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Innovation Variance Parameters:
[1] 5.366409 -0.878890 0.132427 -0.006371
Autoregressive Parameters:
[1] 0.297055 0.619888 -0.396189 0.069150 -0.003696

The R package Formula of Zeileis and Croissant (2010) is used to extract information from a
two-sided linear formula object which is used to describe both longitudinal data and covari-
ates of the model, with the response, subject id and observation time point on the left of a “~”
operator separated by vertical bars (“|”) and covariates for the mean model and innovation
variance, also separated by a “|” operator, on the right. Here both covariates for mean model
and innovation variance are marked as 1, and only time is used to construct design matrices.
Optimal model selection involves identifying the best integer triple poly(p, d, q), specified by
option triple, representing the degrees of three polynomial functions for the mean struc-
ture, log innovation variance and autoregressive coefficients respectively. To make the model
fitting comparable with the results reported in the literature, in this paper we focus on the
fitting using polynomials in time. The use of other covariates is also possible and will be
demonstrated later. By default, the jmcm function uses the profile likelihood (i.e., estimating
parameters one by one with other parameters fixed in each iteration) for having a better esti-
mating result. Alternatively, the non-profile method can be applied by specifying control =
jmcmControl(profile = FALSE). When the estimation of the model has finished, an object
of the S4 class ‘jmcmMod’ is returned by the function and it automatically displays the basic
information by calling the corresponding print method. The getJMCM function can be used to
extract various objects (e.g., estimation of mean vector and covariance matrix) from a fitted
joint mean-covariance model. In this example, the global optimal triple poly(8, 3, 4) reported
in Pan and Mackenzie (2003) is modeled and produced a better result with l̂max = −771.0007
and BIC = 53.4408.
Since it is a balanced longitudinal dataset, we produced the sample regressograms and fitted
curves for the cattle data using the following function:

R> regressogram(fit1, time = 1:11)

By examining the log innovation variance versus time in Figure 2, it is clear that the curvature
pattern is well captured by the fitted polynomial function curve. Figure 2 also indicates a
good fit for autoregressive coefficients by examining the autoregressive coefficient versus time
lag between measurements and the fitted curve.
The same triple poly(8, 3, 4), representing the degrees of three polynomial functions for the
mean structure, the log innovation variance and moving average coefficients respectively, is
used in joint mean-covariance model fitting based on ACD for the cattle data. The covariance
structure option should be specified as cov.method = "acd". By comparing this to the
maximized log-likelihood and the BIC value for MCD modeling, we clearly see that the ACD
method produces a larger log-likelihood l̂max = −747.6994 and a smaller BIC value of 51.8873.

R> fit2 <- jmcm(weight | id | I(day / 14 + 1) ~ 1 | 1, data = cattleA,
+ triple = c(8, 3, 4), cov.method = "acd")
R> fit2

Joint mean-covariance model based on ACD ['jmcmMod']
Formula: weight | id | I(day/14 + 1) ~ 1 | 1
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Figure 2: Group A analysis of Kenward’s cattle data. Sample regressograms and MCD model
fits based on the triple poly(8, 3, 4) for log innovation variances (left) and autoregressive
coefficients (right).

Poly: c(8, 3, 4)
Data: cattleA

logLik: -747.6994
BIC: 51.8873

Mean Parameters:
[1] 1.784e+02 1.360e+02 -1.511e+02 8.400e+01 -2.503e+01 4.299e+00
[7] -4.267e-01 2.272e-02 -5.020e-04
Innovation Variance Parameters:
[1] 4.959622 -0.625990 0.084538 -0.003963
Moving Average Parameters:
[1] 0.5216849 0.4795778 -0.1049448 0.0105871 -0.0003623

Regressograms for ACD can be produced by the same command:

R> regressogram(fit2, time = 1:11)

By examining the log innovation variance versus time (left) and the moving average coefficient
versus time lag (right) in Figure 3, a similar conclusion can be drawn that the proposed
polynomial model captures well the trend in the sample regressogram.
When the joint mean-covariance model approach based on HPC is applied to the cattle data,
the covariance structure option should be specified as cov.method = "hpc". The same two-
sided linear formula object is used to describe both longitudinal data and covariates of the
model, but on the right of the “~” operator, the covariates for the mean model and variance
are specified on the right side of the operator instead of the mean model and innovation
variance in MCD and ACD. The integer triple poly(p, d, q) is specified by option triple,
representing the degrees of three polynomial functions for the mean structure, log variance
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Figure 3: Group A analysis of Kenward’s cattle data. Sample regressograms and ACD model
fits based on the triple poly(8, 3, 4) for log innovation variances (left) and moving average
coefficients (right).

and angles respectively. More specifically, the optimal triple poly(8, 2, 2) of the HPC model
fitting reported in Zhang et al. (2015) can be reproduced using the following command:

R> fit3 <- jmcm(weight | id | I(day / 14 + 1) ~ 1 | 1, data = cattleA,
+ triple = c(8, 2, 2), cov.method = "hpc")
R> fit3

Joint mean-covariance model based on HPC ['jmcmMod']
Formula: weight | id | I(day/14 + 1) ~ 1 | 1
Poly: c(8, 2, 2)
Data: cattleA

logLik: -746.9001
BIC: 51.4939

Mean Parameters:
[1] 1.781e+02 1.373e+02 -1.528e+02 8.500e+01 -2.535e+01 4.359e+00
[7] -4.330e-01 2.307e-02 -5.101e-04
Variance Parameters:
[1] 4.0263 0.3148 -0.0113
Angle Parameters:
[1] 0.729414 0.092111 -0.004424

A slightly better result with l̂max = −746.9001 and BIC = 51.4939 is produced compared to
the reported l̂max = −755.00 and BIC = 52.03. Similarly, model fitting can be checked by
plotting the two regressograms using:

R> regressogram(fit3, time = 1:11)
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Figure 4: Group A analysis of Kenward’s cattle data. Sample regressograms and HPC model
fits based on the triple poly(8, 2, 2) for log variances (left) and angles (right).

We need to note that there is no general form for calculating angles. The corresponding
angles φijk of the empirical correlation matrix are calculated iteratively using expression:

θijk = arccos(bijk/
k−1∏
l=1

sin(arccos(θijl))), 1 ≤ k < j ≤ mi, (30)

where
∏0

1 is taken as 1. By examining the log variance versus time (left) and angle versus time
lag (right) in Figure 4, it is clear that the curvature patterns on the two sample regressograms
are well captured by the two fitted models, indicating a good model fit.
The comparisons between MCD-, ACD- and HPC-based joint mean-covariance models on
the cattle data are made in Table 1 with different choices of triple and execution time (in
seconds) is measured for each fitted model. We find that the HPC-based model performs
best in most cases with larger log-likelihood and smaller BIC values than compared to the
MCD- and ACD-based models at the cost of a much longer execution time. From Table 1, we
also find that MCD and ACD will produce quite close results in term of likelihood and BIC
values while the MCD-based model is the most time efficient among the three approaches.
Our tests were conducted under Windows 10 (64-bit version) on ThinkPad T410 equipped
with an Intel(R) Core(TM) i5 M 480@2.67GHz with 4.00GB of RAM.

3.2. Analysis of an unbalanced longitudinal dataset
In this section, we apply the proposed joint mean-covariance modeling approach to an un-
balanced CD4+ cell dataset analyzed by Ye and Pan (2006) and Zhang et al. (2015). The
dataset comprises a total of 2376 CD4+ cell counts of 369 HIV-infected men covering a period
of approximately eight and half years. The number of measurements mi for each individual
vary from 1 to 12 and the times are not equally spaced. The CD4+ cell data are highly
unbalanced and included in the package.

R> data("aids", package = "jmcm")
R> head(aids)
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Figure 5: Scatter plot of CD4+ cell counts against time, with the first six individual profiles
superimposed.

time cd4 age packs drugs sex cesd id
1 -0.741958 548 6.57 0 0 5 8 10002
2 -0.246407 893 6.57 0 1 5 2 10002
3 0.243669 657 6.57 0 1 5 -1 10002
4 -2.729637 464 6.95 0 1 5 4 10005
5 -2.250513 845 6.95 0 1 5 -4 10005
6 -0.221766 752 6.95 0 1 5 -5 10005

We present in Figure 5 the scatter plot of CD4+ cell counts against time, with the first six
individual profiles superimposed:

R> library("lattice")
R> xyplot(sqrt(cd4) ~ time, data = aids, panel = function(x, y, ...) {
+ panel.xyplot(x, y, ...)
+ panel.lines(x[aids$id == 10002], y[aids$id == 10002], col = 2, lwd = 2)
+ panel.lines(x[aids$id == 10005], y[aids$id == 10005], col = 3, lwd = 2)
+ panel.lines(x[aids$id == 10029], y[aids$id == 10029], col = 4, lwd = 2)
+ panel.lines(x[aids$id == 10039], y[aids$id == 10039], col = 5, lwd = 2)
+ panel.lines(x[aids$id == 10048], y[aids$id == 10048], col = 6, lwd = 2)
+ panel.lines(x[aids$id == 10052], y[aids$id == 10052], col = 7, lwd = 2)
+ }, xlab = "Time", ylab = "CD4 cell numbers", col = 1)

and observe that the data is highly unbalanced with unclear profile patterns for each individ-
ual.
As in Zhang et al. (2015), square roots of the CD4+ cell counts are used to make the response
variable closer to the normal distribution. The optimal triplet poly(8, 1, 3) of the MCD
method reported in Zhang et al. (2015) is fitted using the following command:

R> fit4 <- jmcm(I(sqrt(cd4)) | id | time ~ 1 | 1, data = aids,
+ triple = c(8, 1, 3), cov.method = "mcd")
R> fit4
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Joint mean-covariance model based on MCD ['jmcmMod']
Formula: I(sqrt(cd4)) | id | time ~ 1 | 1
Poly: c(8, 1, 3)
Data: aids

logLik: -4979.193
BIC: 27.2278

Mean Parameters:
[1] 29.217447 -4.100596 -1.279396 1.073685 0.195578 -0.166439
[7] -0.001842 0.009407 -0.001020
Innovation Variance Parameters:
[1] 3.2646 -0.0886
Autoregressive Parameters:
[1] 0.67990 -0.57684 0.17741 -0.01815

Here the CD4+ data is again re-analyzed with MCD-based joint mean-covariance model
using time as the main covariates and a value of l̂max = −4979.193 and a smaller BIC value
of 27.2278 are obtained. Note that the jmcm function does allow adding other covariates in
the mean model and innovation variance model. For instance, the linear formula part of the
jmcm function in this example can be replaced by I(sqrt(cd4)) | id | time ~ age | age
+ packs, which in turn generates the new vectors of covariates for the mean and innovation
variance with the following form

xij = (1, tij , t2ij , . . . , t
p
ij , age)>,

zij = (1, tij , t2ij , . . . , tdij , age, packs)>.

The joint mean-covariance model based on ACD and HPC approaches can also be fitted with
other covariates in a similar way, and currently the fitted models can be compared with other
model fittings using the log-likelihood and BIC values.
Since CD4+ cell data are unbalanced, the sample covariance matrix cannot be obtained and
using instruction regressogram() with the model fitting result will simply lead to an error
message. Instead we produced the fitted curves and the 95% confidence intervals based on
bootstrapping using the following function:

R> bootcurve(fit4, nboot = 1000)

where the number of bootstrap replications can be specified by option nboot and there are
1000 bootstrap samples in this example. Figure 6 shows the fitted curve of the mean, log in-
novation variance, autoregressive coefficient and their corresponding 95% confidence intervals.
From Figure 6, we also observe the monotone-decreasing relationship of the fitted log inno-
vation variance with the time, and a curvature pattern of the fitted autoregressive coefficient
with the time lag.
The same triple poly(8, 1, 3) is used in joint mean-covariance model fitting based on ACD
for the aids data, and we clearly see that the ACD method produces a larger likelihood
l̂max = −4927.492 and a smaller BIC value of 26.9476.
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Figure 6: CD4+ cell data. MCD model fits based on the triple poly(8, 1, 3). Fitted
curves of the mean against time (top), the log innovation variance against time (left) and the
autoregressive coefficient against lag (right): - - - - - -, 95% confidence intervals.

R> fit5 <- jmcm(I(sqrt(cd4)) | id | time ~ 1 | 1, data = aids,
+ triple = c(8, 1, 3), cov.method = "acd")
R> fit5

Joint mean-covariance model based on ACD ['jmcmMod']
Formula: I(sqrt(cd4)) | id | time ~ 1 | 1
Poly: c(8, 1, 3)
Data: aids

logLik: -4927.492
BIC: 26.9476

Mean Parameters:
[1] 29.0395978 -4.0577291 -1.0767686 0.9747427 0.1479554 -0.1416514
[7] -0.0002373 0.0076762 -0.0008416
Innovation Variance Parameters:
[1] 3.2441 -0.1163
Moving Average Parameters:
[1] 0.580633 -0.151159 0.056772 -0.006433
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Figure 7: CD4+ cell data. ACD model fits based on the triple poly(8, 1, 3). Fitted curves of
the mean against time (top), the log innovation variance against time (left) and the moving
average coefficient against lag (right): - - - - - -, 95% confidence intervals.

Fitted curves for ACD can be produced by the same command:

R> bootcurve(fit5, nboot = 1000)

From Figure 7, again we observe the monotone-decreasing relationship of the fitted log inno-
vation variance with the time, and a curvature pattern of the fitted moving average coefficient
with the time lag.
When the optimal triplet poly(8, 1, 1) of the HPC approach reported in Zhang et al. (2015)
is fitted, the optimal BIC value turns out to be 26.7268, and l̂max = −4892.68, producing the
best model among the three proposed covariance and correlation structure modeling methods.

R> fit6 <- jmcm(I(sqrt(cd4)) | id | time ~ 1 | 1, data = aids,
+ triple = c(8, 1, 1), cov.method = "hpc")
R> fit6

Joint mean-covariance model based on HPC ['jmcmMod']
Formula: I(sqrt(cd4)) | id | time ~ 1 | 1
Poly: c(8, 1, 1)
Data: aids
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Figure 8: CD4+ cell data. HPC model fits based on the triple poly(8, 1, 1). Fitted curves
of the mean against time (top), the log variance against time (left) and the angle against lag
(right): - - - - - -, 95% confidence intervals.

logLik: -4892.68
BIC: 26.7268

Mean Parameters:
[1] 29.0352214 -4.1553878 -0.9452119 0.9969254 0.1066325 -0.1394301
[7] 0.0026802 0.0072015 -0.0008294
Variance Parameters:
[1] 3.64089 0.03252
Angle Parameters:
[1] 1.06980 0.05357

Similarly, model fitting can be checked by plotting the fitted curves using:

R> bootcurve(fit6, nboot = 1000)

and from Figure 8, we observe the monotone-increasing relationship of the fitted log variance
with the time, and the fitted angles with the time lag.
We also compared the MCD-, ACD- and HPC-based joint mean-covariance models on the
CD4+ cell data in Table 2. We find that the HPC-based model proves to be a better fitting
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model in most cases with a larger log-likelihood values and smaller BIC values compared
to the MCD- and ACD-based models at the cost of a much longer execution time. The
ACD-based model slightly outperforms the MCD approach, and the MCD-based model again
provides the most time-efficient model fitting.

4. Conclusion
In this article, we illustrated the capabilities of package jmcm for the joint mean-covariance
modeling of both balanced and unbalanced longitudinal data using three popular covariance
and correlation structure modeling approaches. In particular, we provide: functions for esti-
mation of MCD-, ACD- and HPC-based joint mean-covariance models, devices for displaying
regressograms and fitted model curves. By using these models, the estimated covariance
and correlation are guaranteed to be positive (semi-)definite and the estimation of a high-
dimensional covariance and correlation matrix is reduced to solving a series of regression prob-
lems. The likelihood-based estimation procedure permits extensions such as regularization-
based model selection, so that the package can be compared with other likelihood-based R
packages.
However, the package is currently limited to handle longitudinal data with a multivariate
Gaussian distribution. It is worthwhile to develop methods further that are robust with non-
normally distributed data by introducing the Cholesky-based covariance structure modeling
methods to the GEE model and/or the Gaussian copula model. We plan to update the
package jmcm on a regular basis with new statistical procedures available for the joint mean-
covariance modeling approach.
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