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Abstract

Sparse Hessian matrices occur often in statistics, and their fast and accurate estimation
can improve efficiency of numerical optimization and sampling algorithms. By exploiting
the known sparsity pattern of a Hessian, methods in the sparseHessianFD package require
many fewer function or gradient evaluations than would be required if the Hessian were
treated as dense. The package implements established graph coloring and linear substitu-
tion algorithms that were previously unavailable to R users, and is most useful when other
numerical, symbolic or algorithmic methods are impractical, inefficient or unavailable.

Keywords: sparse Hessians, sparsity, computation of Hessians, graph coloring, finite differ-
ences, differentiation, complex step.

The Hessian matrix of a log likelihood function or log posterior density function plays an
important role in statistics. From a frequentist point of view, the inverse of the negative
Hessian is the asymptotic covariance of the sampling distribution of a maximum likelihood
estimator. In Bayesian analysis, when evaluated at the posterior mode, it is the covariance
of a Gaussian approximation to the posterior distribution. More broadly, many numerical
optimization algorithms require repeated computation, estimation or approximation of the
Hessian or its inverse; see Nocedal and Wright (2006).
The Hessian of an objective function withM variables hasM2 elements, of whichM(M+1)/2
are unique. Thus, the storage requirements of the Hessian, and computational cost of many
linear algebra operations on it, grow quadratically with the number of decision variables. For
applications with hundreds of thousands of variables, computing the Hessian even once might
not be practical under the given time, storage or processor constraints. Hierarchical models,
in which each additional heterogeneous unit is associated with its own subset of variables, are
particularly vulnerable to this curse of dimensionality
However, for many problems, the Hessian is sparse, meaning that the proportion of “struc-
tural” zeros (matrix elements that are always zero, regardless of the value at which the Hessian
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is evaluated) is high. Consider a log posterior density in a Bayesian hierarchical model. If the
outcomes across units are conditionally independent, the cross-partial derivatives of heteroge-
neous variables across units are zero. As the number of units increases, the size of the Hessian
still grows quadratically, but the number of non-zero elements grows only linearly; the Hessian
becomes increasingly sparse. The row and column indices of the non-zero elements comprise
the sparsity pattern of the Hessian, and are typically known in advance, before computing
the values of those elements. R (R Core Team 2017) packages such as trustOptim (Braun
2014), sparseMVN (Braun 2017b) and ipoptr (Wächter and Biegler 2006) have the capability
to accept Hessians in a compressed sparse format.
The sparseHessianFD package (Braun 2017a) is a tool for estimating sparse Hessians numer-
ically, using either finite differences or complex perturbations of gradients. The package is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=sparseHessianFD. Section 1.1 will cover the specifics, but the basic idea is as
follows. Consider a real-valued function f(x), its gradient ∇f(x), and its Hessian Hf(x), for
x ∈ RM . Define the derivative vector as the transpose of the gradient, and a vector of par-
tial derivatives, so Df(x) = ∇f(x)> = (D1, . . . ,DM ). (Throughout the paper, we will try to
reduce notational clutter by referring to the derivative and Hessian as D and H, respectively,
without the f(x) symbol). Let em be a vector of zeros, except with a 1 in themth element, and
let δ be a sufficiently small scalar constant. A “finite difference” linear approximation to the
mth column of the Hessian is Hm ≈ (∇f(x+ δem)−∇f(x)) /δ. Estimating a dense Hessian
in this way involves at least M + 1 calculations of the gradient: one for the gradient at x, and
one after perturbing each of the M elements of x, one at a time. Under certain conditions,
a more accurate approximation is the “complex step” method: Hm ≈ Im (∇f(x+ iδem)) /δ,
where i =

√
−1 and Im() returns the imaginary part of a complex number (Squire and Trapp

1998). Regardless of the approximation method used, if the Hessian is sparse, most of the
elements are constrained to zero. Depending on the sparsity pattern of the Hessian, those
constraints may let us recover the Hessian with fewer gradient evaluations by perturbing
multiple elements of x together. For some sparsity patterns, estimating a Hessian in this
way can be profoundly efficient. In fact, for the hierarchical models that we consider in this
paper, the number of gradient evaluations does not increase with the number of additional
heterogeneous units.
The package defines the ‘sparseHessianFD’ class, whose initializer requires the user to pro-
vide functions that compute an objective function, its gradient (as accurately as possible, to
machine precision), and the sparsity pattern of its Hessian matrix. The sparsity pattern (e.g.,
location of structural zeros) must be known in advance, and cannot vary across the domain
of the objective function. The only functions and methods of the class that the end user
should need to use are the initializer, methods that return the Hessian in a sparse compressed
format, and perhaps some utility functions that simplify the construction of the sparsity pat-
tern. The class also defines methods that partition the variables into groups that can be
perturbed together in a finite differencing step, and recovers the elements of the Hessian via
linear substitution. Those methods perform most of the work, but should be invisible to the
user.
As with any computing method or algorithm, there are boundaries around the space of appli-
cations for which package sparseHessianFD is the right tool for the job. In general, numerical
approximations are not “first choice” methods because the result is not exact, so package
sparseHessianFD should not be used when the application cannot tolerate any error, no mat-
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ter how small. Also, we admit that some users might balk at having to provide an exact
gradient, even though the Hessian will be estimated numerically.1 However, deriving a vec-
tor of first derivatives, and writing R functions to compute them, is a lot easier than doing
the same for a matrix of second derivatives, and more accurate than computing second-order
approximations from the objective function. Even when we have derived the Hessian symboli-
cally, in practice it may still be faster to estimate the Hessian using package sparseHessianFD
than coding it directly. These are the situations in which package sparseHessianFD adds the
most value to the statistician’s toolbox.
This article proceeds as follows. First, we present some background information about nu-
merical differentiation, and sparse matrices in R, in Section 1. In Section 2, we explain how
to use the package. Section 3 explains the underlying algorithms, and Section 4 demonstrates
the scalability of those algorithms.

1. Background
Before describing how to use the package, we present two short background notes. The first
note is an informal mathematical explanation of numerical estimation of the Hessian matrix,
with an illustration of how the number of gradient estimates can be reduced by exploiting
the sparsity pattern and symmetric structure. This note borrows heavily from, and uses the
notation in, Magnus and Neudecker (2007, Chapter 6). The second note is a summary of
some of the sparse matrix classes that are defined in the Matrix package (Bates and Maechler
2017), which are used extensively in package sparseHessianFD.

1.1. Numerical differentiation of sparse Hessians
The partial derivative of a real scalar-valued function f(x) with respect to xj (the jth com-
ponent of x ∈ RM ) is defined as

Djf(x) = lim
δ→0

f(x+ δej)− f(x)
δ

.

For a sufficiently small δ, this definition allows for a linear approximation to Djf(x). The
derivative of f(x) is the vector of all M partial derivatives:

Df(x) = (D1f(x), . . . ,DMf(x)) .

The gradient is defined as ∇f(x) = Df(x)>.
We define the second-order partial derivative as

D2
jk = lim

δ→0

Djf(x+ δek)− Djf(x)
δ

and the Hessian as

Hf(x) =


D2

11 D2
12 . . . D2

1M
D2

21 D2
22 . . . D2

2M
...

...
...

D2
M1 D2

M2 . . . D2
MM

 .
1It is possible that a gradient that is approximated using a complex step method would be precise enough

to be useful. A further investigation is beyond the scope of this paper.
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The Hessian is symmetric, so D2
ij = D2

ji.

Approximation using finite differences

To estimate the mth column of H using finite differences, we choose a sufficiently small δ, and
compute

Hmf(x) ≈ Df(x+ δem)− Df(x)
δ

.

For M = 2, our estimate of a general Hf(x) would be

Hf(x) ≈
(

D1f(x1 + δ, x2)− D1f(x1, x2) D1f(x1, x2 + δ)− D1f(x1, x2)
D2f(x1 + δ, x2)− D2f(x1, x2) D2f(x1, x2 + δ)− D2f(x1, x2)

)
/δ.

This estimate requires three evaluations of the gradient to get Df(x1, x2), Df(x1 + δ, x2), and
Df(x1, x2 + δ).
Now suppose that the Hessian is sparse, and that the off-diagonal elements are zero. That
means that:

D1f(x1, x2 + δ)− D1f(x1, x2) = 0, (1)
D2f(x1 + δ, x2)− D2f(x1, x2) = 0. (2)

If the identity in Equation 1 holds for x1, it must also hold for x1 + δ, and if Equation 2 holds
for x2, it must also hold for x2 + δ. Therefore,

Hf(x) ≈
(

D1f(x1 + δ, x2 + δ)− D1f(x1, x2) 0
0 D2f(x1 + δ, x2 + δ)− D2f(x1, x2)

)
/δ. (3)

Only two gradients, Df(x1, x2) and Df(x1 + δ, x2 + δ), are needed. Being able to reduce
the number of gradient evaluations from 3 to 2 depends on knowing that the cross-partial
derivatives are zero.

Approximation using complex steps

If f(x) is defined over a complex domain and is holomorphic, then we can approximate Df(x)
and Hf(x) at real values of x using the complex step method. This method comes from a
Taylor series expansion of f(x) in the imaginary direction of the complex plane (Squire and
Trapp 1998). After rearranging terms, and taking the imaginary parts of both sides,

f(x+ iδ) = f(x) + iδDf(x) +O(δ2),

Df(x) ≈ Im(f(x+ iδ))
δ

.

Estimating a first derivative using the complex step method does not require a differencing
operation, so there is no subtraction operation that might generate roundoff errors. Thus,
the approximation can be made arbitrarily precise as δ → 0 (Lai and Crassidis 2008). This
is not the case for second-order approximations of the Hessian (Abreu, Stich, and Morales
2013). However, when the gradient can be computed exactly, we can compute a first-order
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approximation to the Hessian by treating it as the Jacobian of a vector-valued function (Lai
and Crassidis 2008):

Hf(x) ≈
(

Im(D1f(x1 + iδ, x2)) Im(D1f(x1, x2 + iδ))
Im(D2f(x1 + iδ, x2)) Im(D2f(x1, x2 + iδ))

)
/δ.

If this matrix were dense, we would need two evaluations of the Df(x) to estimate it. If the
matrix were sparse, with the same sparsity pattern as the Hessian in Equation 3, and we
assume that structural zeros remain zero for all complex x ∈ CM , then we need only one
evaluation. Suppose we were to subtract Im(Df(x1, x2)) from each column of Hf(x). When
x is real, the imaginary part of the gradient is zero, so this operation has no effect on the
value of the Hessian. But the sparsity constraints ensure that the following identities hold for
all complex x:

Im(D1f(x1, x2 + iδ))− Im(D1f(x1, x2)) = 0, (4)
Im(D2f(x1 + iδ, x2))− Im(D2f(x1, x2)) = 0. (5)

As with the finite difference method, because Equation 4 holds for x1, it must also hold for
x1 + iδ, and because Equation 5 holds for x2, it must also hold for x2 + iδ. Thus,

Hf(x) ≈
(

Im(D1f(x1 + iδ, x2 + iδ)) 0
0 Im(D2f(x1 + iδ, x2 + iδ))

)
/δ

for real x. Only one evaluation of the gradient is required.

Perturbing groups of variables

Curtis, Powell, and Reid (1974) describe a method of estimating sparse Jacobian matrices
by perturbing groups of variables together. Powell and Toint (1979) extend this idea to the
general case of sparse Hessians. This method partitions the decision variables into C mutually
exclusive groups so that the number of gradient evaluations is reduced. Define G ∈ RM×C
where Gmc = δ if variable m belongs to group c, and zero otherwise. Define Gc ∈ RM as the
cth column of G.
Next, define Y ∈ RM×C such that each column is either a difference in gradients, or the
imaginary part of a complex-valued gradient, depending on the chosen method:

Yc =
{
∇f(x+Gc)−∇f(x) finite difference method,
Im(∇f(x+ iGc)) complex step method.

(6)

If C = M , then G is a diagonal matrix with δ in each diagonal element. The matrix equation
HG = Y represents the linear approximation Himδ ≈ yim, and we can solve for all elements
of H just by computing Y. But if C < M , there must be at least one Gc with δ in at least two
rows. The corresponding column Yc is computed by perturbing multiple variables at once,
so we cannot solve for any Him without further constraints.
These constraints come from the sparsity pattern and symmetry of the Hessian. Consider an
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example with the following values and sparsity pattern:

Hf(x) =


h11 0 h31 0 0
0 h22 0 h42 0
h31 0 h33 0 h53
0 h42 0 h44 0
0 0 h53 0 h55

 .

Suppose C = 2, and define group membership of the five variables through the following G
matrix:

G> =
(
δ δ 0 0 δ
0 0 δ δ 0

)
.

Variables 1, 2 and 5 are in group 1, while variables 3 and 4 are in group 2.
Next, compute the columns of Y using Equation 6. We now have the following system of
linear equations from HG = Y:

h11 = y11

h22 = y21

h31 + h53 = y31

h42 = y41

h55 = y51

h31 = y12

h42 = y22

h33 = y32

h44 = y42

h53 = y52

Note that this system is overdetermined. Both h31 = y12 and h53 = y52 can be determined
directly, but h31 + h53 = y31 may not necessarily hold, and h42 could be either y41 or y22.
Powell and Toint (1979) prove that it is sufficient to solve LG = Y instead via a substitution
method, where L is the lower triangular part of H. This has the effect of removing the
equations h42 = y22 and h31 = y12 from the system, but retaining h53 = y52. We can then
solve for h31 = y31 − y52. Thus, we have determined a 5× 5 Hessian with only three gradient
evaluations, in contrast with the six that would have been needed had H been treated as
dense.
The sparseHessianFD algorithms assign variables to groups before computing the values of
the Hessian. This is why the sparsity pattern needs to be provided in advance. If a non-zero
element is omitted from the sparsity pattern, the resulting estimate of the Hessian will be
incorrect. The only problems with erroneously including a zero element in the sparsity pattern
are a possible lack of efficiency (e.g., an increase in the number of gradient evaluations), and
that the estimated value might be close to, but not exactly, zero. The algorithms for assigning
decision variables to groups, and for extracting non-zero Hessian elements via substitution,
are described in Section 3.

1.2. Sparse matrices and the Matrix package

The sparseHessianFD package uses the sparse matrix classes that are defined in the Matrix
package (Bates and Maechler 2017). All of these classes are subclasses of ‘sparseMatrix’.
Only the row and column indices (or pointers to them), the non-zero values, and some meta-
data, are stored; unreferenced elements are assumed to be zero. Class names, summarized in
Table 1, depend on the data type, matrix structure, and storage format. Values in numeric
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Storage Layout Data type
numeric logical pattern

Triplet general ‘dgTMatrix’ ‘lgTMatrix’ ‘ngTMatrix’
triangular ‘dtTMatrix’ ‘ltTMatrix’ ‘ntTMatrix’
symmetric ‘dsTMatrix’ ‘lsTMatrix’ ‘nsTMatrix’

Row-compressed general ‘dgRMatrix’ ‘lgRMatrix’ ‘ngRMatrix’
triangular ‘dtRMatrix’ ‘ltRMatrix’ ‘ntRMatrix’
symmetric ‘dsRMatrix’ ‘lsRMatrix’ ‘nsRMatrix’

Column-compressed general ‘dgCMatrix’ ‘lgCMatrix’ ‘ngCMatrix’
triangular ‘dtCMatrix’ ‘ltCMatrix’ ‘ntCMatrix’
symmetric ‘dsCMatrix’ ‘lsCMatrix’ ‘nsCMatrix’

Table 1: Class names for sparse matrices, as defined in the Matrix package.

and logical matrices correspond to the R data types of the same names. Pattern matrices
contain row and column information for the non-zero elements, but no values. The storage
format refers to the internal ordering of the indices and values, and the layout defines a
matrix as symmetric (so duplicated values are stored only once), triangular, or general. The
levels of these three factors determine the prefix of letters in each class name. For example,
a triangular sparse matrix of numeric (double precision) data, stored in column-compressed
format, has the class ‘dtCMatrix’.
Package Matrix also defines some other classes of sparse and dense matrices that we will not
discuss here. The Matrix package uses the as() function to convert sparse matrices from one
format to another, and to convert a base R matrix to one of the Matrix classes.
The distinctions among sparse matrix classes is important because package sparseHessianFD’s
hessian() method returns a ‘dgCMatrix’, even though the Hessian is symmetric. Depending
on how the Hessian is used, it might be useful to coerce the Hessian into a ‘dsCMatrix’
object. Also, the utility functions in Table 2 expect or return certain classes of matrices,
so some degree of coercion of input and output might be necessary. Another useful Matrix
function is tril(), which extracts the lower triangle of a general or symmetric matrix.

2. Using the package
In this section, we demonstrate how to use the sparseHessianFD package, using a hierarchical
binary choice model as an example. Then, we discuss the sparsity pattern of the Hessian,
and estimate the Hessian values.

2.1. Example model: Hierarchical binary choice

Suppose we have a dataset ofN households, each with T opportunities to purchase a particular
product. Let yi be the number of times household i purchases the product, out of the
T purchase opportunities, and let pi be the probability of purchase. The heterogeneous
parameter pi is the same for all T opportunities, so yi is a binomial random variable.
Let βi ∈ Rk be a heterogeneous coefficient vector that is specific to household i, such that
βi = (βi1, . . . , βik). Similarly, zi ∈ Rk is a vector of household-specific covariates. Define each
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pi such that the log odds of pi is a linear function of βi and zi, but does not depend directly
on βj and zj for another household j 6= i:

pi = exp(z>i βi)
1 + exp(z>i βi)

, i = 1, . . . , N. (7)

The coefficient vectors βi are distributed across the population of households following a
multivariate normal distribution with mean µ ∈ Rk and covariance Σ ∈ Rk×k. Assume that
we know Σ, but not µ, so we place a multivariate normal prior on µ, with mean 0 and
covariance Ω ∈ Rk×k. Thus, the parameter vector x ∈ R(N+1)k consists of the Nk elements
in the N βi vectors, and the k elements in µ.
The log posterior density, ignoring any normalization constants, is

log π(β1:N , µ|Y,Z,Σ,Ω) =
N∑
i=1

(
pyi
i (1− pi)T−yi − 1

2 (βi − µ)>Σ−1 (βi − µ)
)
− 1

2µ
>Ω−1µ.

(8)

2.2. Sparsity patterns

Let x1 and x2 be two subsets of elements of x. Define D2
x1,x2 as the product set of cross-partial

derivatives between all elements in x1 and all elements in x2. From the log posterior density
in Equation 8, we can see that D2

βi,βi
6= 0 (one element of βi could be correlated with another

element of βi), and that, for all i, D2
βi,µ
6= 0 (because µ is the prior mean of each βi). However,

since the βi and βj are independently distributed, and the yi are conditionally independent,
the cross-partial derivatives D2

βi,βj
= 0 for all i 6= j. When N is much greater than k, there

will be many more zero cross-partial derivatives than non-zero. Each D2 is mapped to a
submatrix of H, most of which will be zero. The resulting Hessian of the log posterior density
will be sparse.
The sparsity pattern depends on the indexing function; that is, on how the variables are
ordered in x. One such ordering is to group all of the coefficients in the βi for each unit
together:

β11, . . . , β1k, β21, . . . , β2k, . . . , βN1, . . . , βNk, µ1, . . . , µk. (9)

In this case, the Hessian has a “block-arrow” structure. For example, if N = 5 and k = 2,
then there are 12 total variables, and the Hessian will have the pattern in Figure 1a.
Another possibility is to group coefficients for each covariate together:

β11, . . . , βN1, β12, . . . , βN2, . . . , β1k, . . . , βNk, µ1, . . . , µk. (10)

Now the Hessian has a “banded” sparsity pattern, as in Figure 1b.
In both cases, the number of non-zeros is the same. There are 144 elements in this symmetric
matrix, but only 64 are non-zero, and only 38 values are unique. Although the reduction in
RAM from using a sparse matrix structure for the Hessian may be modest, consider what
would happen if N = 1, 000 instead. In that case, there are 2, 002 variables in the problem,
and more than 4 million elements in the Hessian. However, only 12, 004 of those elements are
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[1,] | | . . . . . . . . | |
[2,] | | . . . . . . . . | |
[3,] . . | | . . . . . . | |
[4,] . . | | . . . . . . | |
[5,] . . . . | | . . . . | |
[6,] . . . . | | . . . . | |
[7,] . . . . . . | | . . | |
[8,] . . . . . . | | . . | |
[9,] . . . . . . . . | | | |

[10,] . . . . . . . . | | | |
[11,] | | | | | | | | | | | |
[12,] | | | | | | | | | | | |

(a) A “block-arrow” sparsity pattern.

[1,] | . . . . | . . . . | |
[2,] . | . . . . | . . . | |
[3,] . . | . . . . | . . | |
[4,] . . . | . . . . | . | |
[5,] . . . . | . . . . | | |
[6,] | . . . . | . . . . | |
[7,] . | . . . . | . . . | |
[8,] . . | . . . . | . . | |
[9,] . . . | . . . . | . | |

[10,] . . . . | . . . . | | |
[11,] | | | | | | | | | | | |
[12,] | | | | | | | | | | | |

(b) A “banded” sparsity pattern.

Figure 1: Two examples of sparsity patterns for a hierarchical model.

non-zero. If we work only with the lower triangle of the Hessian, then we need to work with
only 7, 003 values.
The sparsity pattern required by package sparseHessianFD consists of the row and column
indices of the non-zero elements in the lower triangle of the Hessian, and it is the responsibility
of the user to ensure that the pattern is correct. In practice, rather than trying to keep track
of the row and column indices directly, it might be easier to construct a pattern matrix first,
check visually that the matrix has the right pattern, and then extract the indices. The package
defines utility functions (Table 2) to convert between sparse matrices, and the vectors of row
and column indices required by the ‘sparseHessianFD’ initializer.
The Matrix.to.Coord() function extracts row and column indices from a sparse matrix. The
following code constructs a logical block diagonal matrix, converts it to a sparse matrix, and
prints the sparsity pattern of its lower triangle.

R> library("sparseHessianFD")
R> bd <- kronecker(diag(3), matrix(TRUE, 2, 2))
R> Mat <- as(bd, "nMatrix")
R> printSpMatrix(tril(Mat))

[1,] | . . . . .
[2,] | | . . . .
[3,] . . | . . .
[4,] . . | | . .
[5,] . . . . | .
[6,] . . . . | |

R> mc <- Matrix.to.Coord(tril(Mat))
R> mc
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Matrix.to.Coord() Returns a list of vectors containing row and column indices of
the non-zero elements of a matrix.

Matrix.to.Pointers() Returns indices and pointers from a sparse matrix.
Coord.to.Pointers() Converts a list of row and column indices (triplet format) to a

list of indices and pointers (compressed format).

Table 2: ‘sparseHessianFD’ matrix conversion functions.

$rows
[1] 1 2 2 3 4 4 5 6 6

$cols
[1] 1 1 2 3 3 4 5 5 6

To check that a proposed sparsity pattern represents the intended matrix visually, use the
Matrix sparseMatrix() constructor.

R> pattern <- sparseMatrix(i = mc$rows, j = mc$cols)
R> printSpMatrix(pattern)

[1,] | . . . . .
[2,] | | . . . .
[3,] . . | . . .
[4,] . . | | . .
[5,] . . . . | .
[6,] . . . . | |

If there is uncertainty about whether an element is a structural zero or not, one should err
on the side of it being non-zero, and include that element in the sparsity pattern. There
might be a loss of efficiency if the element really is a structural zero, but the result will still
be correct. All that would happen is that the numerical estimate for that element would be
zero (within machine precision). On the other hand, excluding a non-zero element from the
sparsity pattern will likely lead to an incorrect estimate of the Hessian.

2.3. The ‘sparseHessianFD’ class

The function sparseHessianFD() in package sparseHessianFD is an initializer that returns an
object of class ‘sparseHessianFD’. The initializer determines an appropriate permutation and
partitioning of the variables, and performs some additional validation tests. The arguments
to the initializer are described in Table 3.
To create a ‘sparseHessianFD’ object, just call sparseHessianFD(). Applying the default
values for the optional arguments, the usage syntax to create a ‘sparseHessianFD’ object is

obj <- sparseHessianFD(x, fn, gr, rows, cols, ...)



Journal of Statistical Software 11

Argument Description
x A numeric vector, with length M at which the object will be initialized and

tested.
fn, gr R functions that return the value of the objective function, and its gradient.

The first argument is the numeric variable vector. Other named arguments
can be passed to fn() and gr() as well (see the ... argument below).

rows, cols Sparsity pattern: integer vectors of the row and column indices of the non-
zero elements in the lower triangle of the Hessian.

delta The perturbation amount for finite differencing of the gradient
to compute the Hessian (the δ in Section 1.1). Defaults to
sqrt(.Machine$double.eps).

index1 If TRUE (the default), rows and cols use one-based indexing. If FALSE,
zero-based indexing is used.

complex If TRUE, the complex step method is used. If FALSE (the default), a simple
finite differencing of gradients is used.

... Additional arguments to be passed to fn() and gr().

Table 3: Arguments to the ‘sparseHessianFD’ initializer.

where ... represents all other arguments that are passed to fn and gr.
The fn(), gr() and hessian() methods respectively evaluate the function, gradient and
Hessian at a variable vector x. The fngr() method returns the function and gradient as a
list. The fngrhs() method includes the Hessian as well.

f <- obj$fn(x)
df <- obj$gr(x)
hess <- obj$hessian(x)
fngr <- obj$fngr(x)
fngrhs <- obj$fngrhs(x)

2.4. An example

Now we can estimate the Hessian for the log posterior density of the model from Section 2.1.
For demonstration purposes, package sparseHessianFD includes functions that compute the
value (binary.f()), the gradient (binary.grad()) and the Hessian (binary.hess()) of this
model. We will treat the result from binary.hess() as a “true” value against which we will
compare the numerical estimates.
To start, we load the data, set some dimension parameters, set prior values for Σ−1 and Ω−1,
and simulate a vector of variables at which to evaluate the function. The binary.f() and
binary.grad() functions take the data and priors as lists. The data("binary", package =
"sparseHessianFD") call adds the appropriate data list to the environment, but we need to
construct the prior list ourselves.

R> set.seed(123)
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R> data("binary", package = "sparseHessianFD")
R> str(binary)

List of 3
$ Y: int [1:50] 13 1 18 18 19 6 16 6 5 8 ...
$ X: num [1:4, 1:50] -0.07926 -0.23018 1.55871 0.00997 0.01828 ...
$ T: num 20

R> N <- length(binary[["Y"]])
R> k <- NROW(binary[["X"]])
R> T <- binary[["T"]]
R> nvars <- as.integer(N * k + k)
R> priors <- list(inv.Sigma = rWishart(1, k + 5, diag(k))[, , 1],
+ inv.Omega = diag(k))

This dataset represents the simulated choices for N = 50 customers over T = 20 purchase
opportunities, where the probability of purchase is influenced by k = 4 covariates.
The next code chunk evaluates the “true” value, gradient and Hessian. The order.row
argument tells the function whether the variables are ordered by household (TRUE) or by
covariate (FALSE). If order.row is TRUE, then the Hessian will have a banded pattern. If
order.row is FALSE, then the Hessian will have a block-arrow pattern.

R> P <- rnorm(nvars)
R> order.row <- FALSE
R> true.f <- binary.f(P, binary, priors, order.row = order.row)
R> true.grad <- binary.grad(P, binary, priors, order.row = order.row)
R> true.hess <- binary.hess(P, binary, priors, order.row = order.row)

The sparsity pattern of the Hessian is specified by two integer vectors: one for the row
and and one for the column indices of the non-zero elements of the lower triangle of the
Hessian. For this example, we happen to have a matrix with the same sparsity pattern of
the Hessian we are trying to compute, so we can use the Matrix.to.Coord() function to
extract the appropriate index vectors. In practice, it is more likely that we would need to
determine the row and column indices directly, through our knowledge of the structure of
the problem. For a hierarchical model, we can create a block-arrow pattern matrix using
either the Matrix::bdiag() or kronecker() functions to create a block diagonal matrix,
and concatenate dense rows and columns to the margins.

R> pattern <- Matrix.to.Coord(tril(true.hess))
R> str(pattern)

List of 2
$ rows: int [1:1310] 1 2 3 4 201 202 203 204 2 3 ...
$ cols: int [1:1310] 1 1 1 1 1 1 1 1 2 2 ...

Finally, we create an instance of a ‘sparseHessianFD’ object. Evaluations of the function
and gradient using the fn() and gr() methods will always give the same results as the true
values because they are computed using the same functions.
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R> obj <- sparseHessianFD(P, fn = binary.f, gr = binary.grad,
+ rows = pattern[["rows"]], cols = pattern[["cols"]],
+ data = binary, priors = priors, order.row = order.row)
R> f <- obj$fn(P)
R> identical(f, true.f)

[1] TRUE

R> gr <- obj$gr(P)
R> identical(gr, true.grad)

[1] TRUE

The default choice of method is complex = FALSE, so the evaluation of the Hessian is a finite
differenced approximation, so it is very close to, but not identical to, the true value, in terms
of mean relative difference.

R> hs <- obj$hessian(P)
R> mean(abs(hs - true.hess)) / mean(abs(hs))

[1] 2.3357e-09

If complex = TRUE in the initializer, the call to the hessian() method will apply the complex
step method. To use this method, the functions passed as fn and gr must both accept a
complex argument, and return a complex result, even though we are differentiating a real-
valued function. Although base R supports complex arguments for most basic mathematical
functions, many common functions (e.g., gamma(), log1p(), expm1(), and the probability
distribution functions) do not have complex implementations. Furthermore, the complex step
method is valid only if the function is holomorphic. The functions in package sparseHessianFD
do not check that this is the case for the function at hand. We convey the following warning
from the documentation of the numDeriv package (Gilbert and Varadhan 2016), which also
implements the complex step method: “avoid this method if you do not know that your
function is suitable. Your mistake may not be caught and the results will be spurious.”
Fortunately for demonstration purposes, the log posterior density in Equation 8 is holomor-
phic, so we can estimate its Hessian using the complex step method, and compute the mean
relative difference from the true Hessian.

R> obj2 <- sparseHessianFD(P, fn = binary.f, gr = binary.grad,
+ rows = pattern[["rows"]], cols = pattern[["cols"]], complex = TRUE,
+ data = binary, priors = priors, order.row = order.row)
R> hs2 <- obj2$hessian(P)
R> mean(abs(hs2 - true.hess)) / mean(abs(hs2))

[1] 7.9673e-17

In short, the complex step method can be more accurate than finite differencing, but it comes
with theoretical and implementation restrictions that may limit its universality.



14 sparseHessianFD: Estimating Sparse Hessian Matrices in R

3. Algorithms
In this section, we explain how package sparseHessianFD works. The algorithms are adapted
from Coleman, Garbow, and Moré (1985b), who provided Fortran implementations as Cole-
man, Garbow, and Moré (1985a). Earlier versions of package sparseHessianFD included
licensed copies of the Coleman et al. (1985a) code, on which the current version no longer
depends. Although newer partitioning algorithms have been proposed (e.g., Gebremedhin,
Manne, and Pothen 2005; Gebremedhin, Tarafdar, Pothen, and Walther 2009), mainly in
the context of automatic differentiation, we have chosen to implement established algorithms
that are known to work well, and are likely optimal for the hierarchical models that many
statisticians will encounter.

3.1. Partitioning the variables

Finding consistent, efficient partitions can be characterized as a vertex coloring problem
from graph theory (Coleman and Moré 1984). In this sense, each variable is a vertex in an
undirected graph, and an edge connects two vertices i and j if and only if Hijf(x) 6= 0. The
sparsity pattern of the Hessian is the adjacency matrix of the graph. By “color,” we mean
nothing more than group assignment; if a variable is in a group, then its vertex has the color
associated with that group. A “proper” coloring of a graph is one in which two vertices with
a common edge do not have the same color. Coleman and Moré (1984) define a “triangular
coloring” as a proper coloring with the additional condition that common neighbors of a vertex
do not have the same color. A triangular coloring is a special case of an “cyclic coloring,” in
which any cycle in the graph uses at least three colors (Gebremedhin, Tarafdar, Manne, and
Pothen 2007).
An “intersection set” contains characteristics that are common to two vertices, and an “inter-
section graph” connects vertices whose intersection set is not empty. In our context, the set
in question is the row indices of the non-zero elements in each column of L. In the intersection
graph, two vertices are connected if the corresponding columns in L have at least one non-zero
element in a common row.
Powell and Toint (1979) write that a partitioning is consistent with a substitution method if
and only if no columns of the of lower triangle of the Hessian that are in the same group have
a non-zero element in the same row. An equivalent statement is that no two adjacent vertices
in the intersection graph can have the same color. Thus, we can partition the variables by
creating a proper coloring of the intersection graph of L.
This intersection graph, and the number of colors needed to color it, are not invariant to
permutation of the rows and columns of H. Let π represent such a permutation, and let
Lπ be the lower triangle of πHπ>. Coleman and Moré (1984, Theorem 6.1) show that a
coloring is triangular if and only if it is also a proper coloring of the intersection graph of
Lπ. Furthermore, Coleman and Cai (1986) prove that a partitioning is consistent with a
substitution method if and only if it is an acyclic coloring of the graph of the sparsity pattern
of the Hessian. Therefore, finding an optimal partitioning of the variables involves finding an
optimal combination of a permutation π, and coloring algorithm for the intersection graph
of Lπ.
These ideas are illustrated in Figures 2 and 3. Figure 2a shows the sparsity pattern of the
lower triangle of a Hessian as an adjacency matrix, and Figure 2b is the associated graph with
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Figure 2: Unpermuted matrix.
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(a) Adjacency matrix.
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(b) Sparsity graph.
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(c) Intersection graph.

Figure 3: Permuted matrix.

a proper vertex coloring. Every column (and thus, every pair of columns) in Figure 2a has
a non-zero element in row 7, so there are no non-empty intersection sets across the columns.
All vertices are connected to each other in the intersection graph (Figure 2c), which requires
seven colors for a proper coloring. Estimating a sparse Hessian with this partitioning scheme
would be no more efficient than treating the Hessian as if it were dense.
Now suppose we were to rearrange H so that the last row and column were moved to the
front. In Figure 3a, all columns share at least one non-zero row with the column for variable
7, but variable groups {2, 4, 6} and {1, 3, 5} have empty intersection sets. The intersection
graph in Figure 3c has fewer edges than Figure 2c, and can be colored with only three colors.
The practical implication of all of this is that by permuting the rows and columns of the
Hessian, we may be able to reduce the number of colors needed for a cyclic coloring of the
graph of the sparsity pattern. Fewer colors means fewer partitions of the variables, and that
means fewer gradient evaluations to estimate the Hessian.
The ‘sparseHessianFD’ class finds a permutation, and partitions the variables, when it is
initialized. The problem of finding a cyclic coloring of the graph of the sparsity pattern is NP-
complete (Coleman and Cai 1986), so the partitioning may not be truly optimal. Fortunately,
we just need the partitioning to be reasonably good, to make the effort worth our while. A
plethora of vertex coloring heuristics have been proposed, and we make no claims that any of
the algorithms in package sparseHessianFD are even “best available” for all situations.
The first step is to permute the rows and columns of the Hessian. A reasonable choice is the
“smallest-last” ordering that sorts the rows and columns in decreasing order of the number
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Algorithm 1 Consistent partitioning of variables for a triangular substitution method.
Require: P [i], i = 1, . . . ,M : sets of column indices of non-zero elements in row i.
Require: F [i], i = 1, . . . ,M : sets of “forbidden” colors for vertex i (initially empty).
Require: U : set of used colors (initially empty).
Require: C[i], i = 1, . . . ,M : vector to store output of assigned colors (initially all zero).
k ← 0 {Largest color index used.}
Insert 0 in U .
for i = 1 to M do

if F [i] is empty (no forbidden colors) then
C[i]← 0

else
V ← U − F [i] {Used colors that are not forbidden.}
if V is empty then
k ← k + 1
Insert k into U .
C[i]← k

else
C[i]← min(V ) {Assign smallest existing non-forbidden color to i.}

end if
end if

end for
for j in P [i] do
Insert C[i] into F [j]. {Make i’s color forbidden to all of its uncolored neighbors.}

end for
return C

of elements (Coleman and Moré 1984, Theorem 6.2). To justify this permutation, suppose
non-zeros within a row are randomly distributed across columns. If the row is near the top of
the matrix, there is a higher probability that any non-zero element is in the upper triangle,
not in the lower. By putting sparser rows near the bottom, we do not change the number
of non-zeros in the lower triangle, but we should come close to minimizing the number of
non-zeros in each row. Thus, we would expect the number of columns with non-zero elements
in common rows to be smaller, and the intersection graph to be sparser (Gebremedhin et al.
2007).

The adjacency matrix of the intersection graph of the permuted matrix is the Boolean
crossproduct, L>π Lπ. Algorithm 1 is a “greedy” vertex coloring algorithm, in which vertices
are colored sequentially. The result is a cyclic coloring on the sparsity graph, which in turn
is a consistent partitioning of the variables.

3.2. Computing the Hessian by substitution

The cycling coloring of the sparsity graph defines the G matrix from Section 1.1. We then
estimate Y using Equation 6. Let Cm be the assigned color to variable m. The substitution
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Algorithm 2 Triangular substitution method.
Require: P [i], i = 1, . . . ,M : sets of column indices of non-zero elements in row i.
Require: C[i], i = 1, . . . ,M : vector of assigned colors.
Require: H, an M ×M Hessian (initialized to zero).
Require: B, a max(C)×M matrix (initialized to zero).
Require: Y, a matrix of finite differences.
Require: δ, the small constant used to estimate Y.

for i = M to 1 do
for All j in Pi do
z ← Y [i, C[j]]/δ −B[C[j], i]
B[C[i], j]← B[C[i], j] + z
H[i, j]← z
H[j, i]← H[i, j]

end for
end for

method is defined in Coleman and Moré (1984, Equation 6.1):

Hijf(x) = Yi,Cj/δ −
∑

l>i,l∈Cj

Hlif(x).

We implement the substitution method using Algorithm 2. This algorithm completes the
bottom row of the lower triangle, copies values to the corresponding column in the upper
triangle, and advances upwards.

3.3. Software libraries and R packages

The coloring and substitution algorithms use the Eigen numerical library (Guennebaud, Jacob
et al. 2010), and the Rcpp (Eddelbuettel and François 2011) and RcppEigen (Bates and
Eddelbuettel 2013) R packages. The testthat (Wickham 2011), scales (Wickham 2017) and
knitr (Xie 2017) packages were used for testing, and to prepare this article.

4. Speed and scalability
As far as we know, package numDeriv (Gilbert and Varadhan 2016) is the only other R package
that computes numerical approximations to derivatives. Like package sparseHessianFD it
includes functions to compute Hessians from user-supplied gradients (through the jacobian()
function), and implements both the finite differencing and complex step methods. Its most
important distinction from package sparseHessianFD is that it treats all Hessians as dense.
Thus, we will use package numDeriv as the baseline against which we can compare the
performance of package sparseHessianFD.
To prepare Table 4, we estimated Hessians of the log posterior density in Equation 8 with
different numbers of heterogeneous units (N) and within-unit parameters (k). The total
number of variables is M = (N + 1)k. Table 4 shows the mean and standard deviations
(across 500 replications) for the time (in milliseconds) to compute a Hessian using functions
for both the finite difference and complex step methods from each package. Times were
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Finite differencing Complex step
numDeriv sparseHessianFD numDeriv sparseHessianFD

N k M mean sd mean sd mean sd mean sd
15 2 32 12.7 0.9 2.4 0.1 13.2 0.7 2.0 0.1
15 5 80 32.2 0.9 5.0 0.5 36.1 10.1 5.2 0.8
50 2 102 51.3 9.8 3.0 0.4 54.5 1.0 2.7 0.6
15 8 128 53.6 0.9 7.8 0.6 62.5 16.7 8.2 0.8

100 2 202 131.7 16.9 3.7 0.3 147.6 24.1 3.4 0.5
50 5 255 144.0 27.1 6.6 0.6 162.8 29.2 6.7 0.7
50 8 408 256.2 43.5 12.5 12.9 291.1 39.0 11.7 0.7

100 5 505 495.7 129.5 9.8 3.1 559.8 125.9 11.8 10.4
100 8 808 850.0 171.4 20.9 20.4 999.2 217.5 23.6 17.3
500 2 1002 1953.4 321.7 10.8 3.7 2156.2 339.7 9.5 3.4
500 5 2505 5444.0 951.0 27.1 10.6 6159.3 1009.2 26.5 4.6
500 8 4008 9533.1 190.9 54.5 12.8 14059.4 3797.9 62.5 21.8

Table 4: Computation times (milliseconds) for computing Hessians using the numDeriv and
sparseHessianFD packages, and the finite difference and complex step methods, across 500
replications. Rows are ordered by the number of variables.

Measure Description
Function Estimating the objective function.
Gradient Estimating the gradient.
Hessian Computing the Hessian (not including initialization or partitioning time).
Partitioning Finding a consistent partitioning of the variables (the vertex coloring prob-

lem).
Initialization Total setup time (including the partitioning time).

Table 5: Summary of timing tests (see Figure 4).

generated on a compute node running Scientific Linux 6 (64-bit) with an 8-core Intel Xeon
X5560 processor (2.80 GHz) with 24 GB of RAM, and collected using the microbenchmark
package (Mersmann 2015). Code to replicate Table 4 is available as an online supplement
to this paper, and in the doc/ directory of the installed package. In Table 4 we see that
computation times using package sparseHessianFD and considerably shorter than those using
package numDeriv.
To help us understand just how scalable package sparseHessianFD is, we ran another set of
simulations, for the same hierarchical model, for different values of N and k. We then recorded
the run times for different steps in the sparse Hessian estimation, across 200 replications. The
steps are summarized in Table 5. The times were generated on an Apple Mac Pro with a
12-core Intel Xeon E5-2697 processor (2.7 GHz) with 64 GB of RAM.
In the plots in Figure 4, the number of heterogeneous units (N) is on the x-axis, and median
run time, in milliseconds, is on the y-axis. Each panel shows the relationship between N and
run time for a different step in the algorithm, and each curve in a panel represents a different
number of within-unit parameters (k).
Computation times for the function and gradient, as well as the setup and partitioning times
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Figure 4: Run times for sparse Hessian computation.

for the ‘sparseHessianFD’ object, grow linearly with the number of heterogenous units. The
time for the Hessian grows linearly as well, and that might be partially surprising. We saw
in Section 3.1 that adding additional heterogeneous units in a hierarchical model does not
increase the number of required gradient evaluations. So we might think that the time to
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compute a Hessian should not increase with N at all. The reason it does is that each gradient
evaluation takes longer. Nevertheless, we can conclude that the sparseHessianFD algorithms
are quite efficient and scalable for hierarchical models.
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