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Abstract

We present the R npregfast package via some applications involved with the study
of living organisms. The package implements nonparametric estimation procedures in
regression models with or without factor-by-curve interactions. The main feature of the
package is its ability to perform inference regarding these models. Namely, the implemen-
tation of different procedures to test features of the estimated regression curves: on the
one hand, the comparisons between curves which may vary across groups defined by levels
of a categorical variable or factor; on the other hand, the comparisons of some critical
points of the curve (e.g., maxima, minima or inflection points), studying for this purpose
the derivatives of the curve.
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1. Introduction
Regression analysis plays a fundamental role in statistics. The purpose of this technique is
to evaluate the influence of some explanatory variables on the mean of the response. In the
case of nonparametric regression, the dependence between the response and the covariates
is modeled without specifying in advance the function that links them. Development and
implementation of different methods for estimation and inference regarding these models is
the central focus of this work.
Nonparametric methods are now widely recognized as useful tools in regression analysis.
However, they are much more computationally demanding than their parametric counterparts.
In view of the high cost entailed we used Fortran (Gehrke 1995) as the programming language.
To facilitate the use in practice of the methodologies proposed, a user-friendly R (R Core Team
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2017) package is implemented containing the Fortran code.
A range of methods can be found in the npregfast package (Sestelo, Villanueva, and Roca-
Pardiñas 2017) including estimation of the conditional mean and the derivatives with/without
factor-by-curve interactions, bandwidth selection and computational acceleration. In addi-
tion, several procedures to test different features of the estimated regression curves have also
been included. These developments have been applied to a couple of real data situations in a
life science context.
The effect of a continuous covariate on the response may vary across groups defined by levels
of a categorical variable. This means that the continuous covariate can behave in a different
way in the absence/presence of a factor, producing the corresponding factor-by-curve effect.
Following this, there exist many practical situations that call for comparisons of regression
curves and their derivatives which may vary across groups defined by different experimental
conditions. Thus, the interest might be focused on drawing inferences about some critical
points of the curve (e.g., maxima, minima or inflection points), studying for this purpose the
derivatives of the curve. In marine biology, for example, the growth of commercial species col-
lected in different zones could be analyzed and compared with each other taking into account
the environmental conditions prevailing in such areas. The location would be considered as
the factor, and the length-weight relationship could be studied including the factor-by-curve
interaction. Similarly, the first derivative of the regression curve could be calculated, thereby
enabling the different stages of growth to be defined as the species increases in size. Further-
more, calculation of this derivative could have a direct application in the management of this
species, possibly in estimating a size of capture (Sestelo and Roca-Pardiñas 2011; Bidegain,
Sestelo, Roca-Pardiñas, and Juanes 2013; Bidegain, Guinda, Sestelo, Roca-Pardiñas, Puente,
and Juanes 2015).
This paper describes the R based npregfast package which is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=npregfast/). The
package allows to estimate the regression curves and their derivatives, to compare them
between levels (in the case of including a categorical variable), and even to compare their
critical points. The main estimation procedure is based on local polynomial kernel smoothers
(Wand and Jones 1995; Fan and Gijbels 1996). It is also possible, however, to estimate
the models using a classical parametric model – the allometric model – one of the most
frequently used models in fishery management. In addition, the package implements the
following two tests: (i) a global test for the equality of M regression curves; and, (ii) a local
test to draw inferences about critical points linked to the derivative curves. Inference with
this package (confidence intervals and tests) is based on bootstrap resampling methods (Efron
1979; Wu 1986; Liu 1988; Efron and Tibshirani 1993; Härdle and Mammen 1993; Mammen
1993; Kauermann and Opsomer 2003). Accordingly, binning acceleration techniques are also
implemented to ensure that the package is computationally efficient (Fan and Marron 1994).
There are a number of contributed packages available for R, for example on CRAN, which
are devoted to nonparametric estimation procedures. Particularly, a brief review of software
developments for carrying out kernel-based regression could start with the ksmooth function
of the stats package, which allows to obtain estimates using the Nadaraya-Watson estimator.
However, to study kernel-based nonparametric estimators in depth, the KernSmooth pack-
age (Wand 2015) affords more possibilities for R users. Using its main function, locpoly,
a probability density function, a regression function or their derivatives can be estimated
using local polynomials. Another option might be the use of the kerdiest package (del Río
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and Estévez-Pérez 2012), which has been designed for computing kernel estimators of the
distribution function, or the lokern package (Herrmann and Maechler 2016), which features
kernel regression smoothing with adaptive local or global plug-in bandwidth selection. In
a specific context, such as item response theory or graduating mortality rates, these kernel
smoothers could be applied by means of the packages KernSmoothIRT (Mazza, Punzo, and
McGuire 2014) or DBKGrad (Mazza and Punzo 2014), respectively. Finally, in a multivariate
framework, the np package (Hayfield and Racine 2008; Racine and Hayfield 2017) provides a
variety of nonparametric (and semiparametric) kernel methods that seamlessly handle a mix
of continuous, unordered and ordered factor data types often encountered in applied settings.
With respect to testing procedures, it is worth noting that a vast literature exists about the
comparison of regression functions. Relevant papers about this topic are Hall and Hart (1990);
Härdle and Marron (1990); Delgado (1993); Kulasekera (1995); Young and Bowman (1995);
Bowman and Young (1996); Dette and Neumeyer (2001); Neumeyer and Dette (2003); Pardo-
Fernández, Van Keilegom, and González-Manteiga (2007); Park and Kang (2008); Srihera
and Stute (2010), among others. For a detailed review see González-Manteiga and Crujeiras
(2013). In addition, when the previous division into groups is governed by a discrete variable,
tests for the significance of this discrete variable could also be considered. Related work
includes Racine, Hart, and Li (2006); Lavergne (2001) and the references therein, for example.
All the above references focus on the regression functions, however, to our knowledge, there are
no references dealing with the comparison of derivatives. Furthermore, there exist procedures
described in the literature that test the monotonicity of the regression function (e.g., Bowman,
Jones, and Gijbels 1998) or techniques as the SiZer method (Chaudhuri and Marron 1997)
which let us evaluate if the observed features are really significant. This latter technique was
implemented in the SiZer package (Sonderegger 2012). However, to the best of our knowledge,
this is the first contribution dealing with the topic of testing critical points between curves.
In this article we explain and illustrate how numerical and graphical output for all methods
can be obtained using the npregfast package via life science applications. The applications
are chosen to solve two real problems related to the management of an aquatic living resource,
and to the spurt in growth for school-aged children and adolescents.
The remainder of the paper is structured as follows: Section 2 describes the estimation proce-
dures, jointly with practical questions such as bandwidth selection and computational accel-
eration, and the inference procedures for the performance of different tests. Section 3 presents
the implementation of the methods in package npregfast. The package capabilities using a
couple of real data examples are illustrated in Section 4 and lastly, Section 5 concludes with
some remarks.

2. Statistical methodology
In many practical situations, the response variable, Y , depends on a continuous covariate,
X. In such a regression framework, consideration might well be given to the nonparametric
regression model

Y = m(X) + ε, (1)

where m is a smooth unknown function and ε is the regression error with zero mean. The
main advantage of using these type of models is the flexibility and the ease of interpretation
of m.
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A generalization of the “pure” model in (1) is the regression model with factor-by-curve inter-
actions. In these type of models, the relationship between the response and the covariates can
change depending on the levels of a categorical variable, F . The possibility of incorporating
factor-by-curve interactions in nonparametric regression models has already been discussed
by Hastie and Tibshirani (1990). Ruppert and Wand (1994) and Coull, Ruppert, and Wand
(2001) also presented an algorithm based on penalized splines (P-splines), which would enable
these types of interactions to be incorporated into these types of models. Recently, Cadarso-
Suárez et al. (2006) and Roca-Pardiñas, Cadarso-Suárez, Nácher, and Acuña (2006) have
successfully applied these interactions to estimate neuron firing rates.
Based on this, to study the possible effect of F on the response, the following nonparametric
regression model including factor-by-curve interactions is considered

Y = f0(X) +


f1(X) + ε1 if F = 1,

· · ·
fM (X) + εM if F = M ,

(2)

where ε1, . . . , εM are the zero-mean errors for each level of the factor, f0 represents the global
effect of X on the response, and fl is the specific effect of X associated with the lth level of
factor F . Note that under model (2), the regression curves ml(x) = E(Y |X = x, F = l) are
given by

ml(X) = f0(X) + fl(X) for l = 1, . . . ,M.

In order to prevent different combinations of f0, f1, . . . , fM leading to the same model, the
sum of the specific effects across the levels are assumed to be zero. That is to say, for
each x,

∑M
l=1 fl (x) = 0 is enforced. Note that this identifiability condition does not put any

constraints on our model because it can be modified to conform to this condition.
In addition, when a factor-by-curve interaction is detected in model (2), it might be of interest
to draw inferences about some critical points of curves (such as minima, maxima or inflection
points), studying for this purpose the derivatives. In general, the critical point x0l referring
to the l level will be obtained from the derivative curve mr

l (x), for some r. Accordingly, we
define this point, x0l, for each l level, as

x0l = arg max
x

mr
l (x). (3)

The present section describes the estimation procedure for these types of models and for these
critical points, based on the use of local polynomial kernel smoothers, and explains in detail
the inference methods implemented in the package. It also shows the procedure used to select
the bandwidth of the estimator and draws attention to the technique applied to speed up
both the estimation and inference methods.

2.1. Estimation procedures
The factor-by-curve regression model in (2) is estimated using local polynomial kernel smooth-
ers (Wand and Jones 1995; Fan and Gijbels 1996). Given a sample {(Xi, Fi, Yi)}ni=1 of n
independent and identically distributed (i.i.d.) observations, and considering observations in
all the levels of F , the estimate of f0 at a point x is given by f̂0(x) = α̂0(x), being α̂0(x) the
first position of the vector (α̂0 (x) , α̂1 (x) , . . . , α̂R (x)) which is the minimizer of∑n

i=1

{
Yi −

∑R

r=0
αr (x) (Xi − x)r

}2
·K

(
Xi − x
h0

)
, (4)
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where K is a kernel function (normally, a symmetric density), h0 is the smoothing parameter
or bandwidth and R is the degree of the polynomial. Moreover, the estimated rth (r ≤ R)
derivative of f0(x) is given by f̂ r0 (x) = r!α̂r(x).
Once the estimation of f0 is obtained, the estimate of fl at a point x is given by f̂l(x) = α̂0l(x)
(for l = 1, . . . ,M), being α̂0l the first position of the vector (α̂0l (x) , α̂1l (x) , . . . , α̂Rl (x)) which
is the minimizer of∑n

i=1

{
Yi − f̂0 (Xi)−

∑R

r=0
αrl (x) (Xi − x)r

}2
·K

(
Xi − x
hl

)
I{Fi=l}, (5)

where hl is the bandwidth used to obtain f̂l and I the indicator function. Analogously, the
estimated rth (r ≤ R) derivative of fl(x) is given by f̂ rl (x) = r!α̂rl(x).
Note that the obtained estimates do not necessarily meet the imposed identifiability condition.
To do so, the following procedure is used. For each x, calculate the mean of the specific effects
of each level, S(x) = M−1∑M

l=1 f̂l(x), and replace the original f̂(x) and f̂l(x) by f̂l(x)−S(x)
and f̂0(x) + S(x), respectively.
Clearly, the estimated curves for each level at point x are given by m̂l(x) = f̂0(x) + f̂l(x), for
l = 1, . . . ,M , and the estimated rth derivative of ml(x) is given by m̂r

l (x) = f̂ r0 (x) + f̂ rl (x).
Finally, a natural estimator of the critical point x0l (3) can be obtained as the maximizer of

m̂r
l (k1), . . . , m̂r

l (kN )

with k1, . . . , kN being a grid of N equidistant points in a range of X values.
Note that the proposed methodology makes sense when the support of X is the same for all
the levels and it is also a closed and bounded interval.

2.2. Inference procedures
The procedures implemented in this package enable us to test two hypotheses. The first one
is a global test which assumes the hypothesis of equality of the M regression functions (or
derivatives) and the second one is a local test that enables us to test the hypothesis that,
among the levels of a given factor, the critical points are equal.

Global test
Here we expose a procedure to test the following null hypothesis based on the model in (2):

Hr
0 : mr

1(·) = · · · = mr
M (·) (6)

versus the general alternative

Hr
1 : mr

i (·) 6= mr
j(·) for some i, j ∈ {1, . . . ,M}.

It should be noted that the previous hypothesis is equivalent to f r1 (·) = · · · = f rM (·) = 0,
and therefore fl(x) =

∑r−1
j=0 ajlx

j will be a polynomial of degree r − 1 for l = 1, . . . ,M .1

1Let us assume that fr(x) = gr(x) for all x. Let h(x) = f(x) − g(x). Hence, hr(x) = fr(x) − gr(x) = 0.
By applying Taylor’s theorem to the function h up to order r, and taking into account that the derivatives of
h of order higher or equal than r are zero, we obtain

h(x) = f(x) − g(x) = h(0) + h1(0)x + h2(0)
2! x2 + · · · + hr−1(0)

(r − 1)! xr−1,

which shows that h(x) is a polynomial of degree r − 1.
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Accordingly, the null regression model is given by

Y = f0(X) +


∑r−1
j=0 aj1X

j + ε1 if F = 1,
· · ·∑r−1

j=0 ajMX
j + εM if F = M ,

(7)

and the regression curves ml are given by ml(X) = f0(X) +
∑r−1
j=0 ajlX

j . Note that, in the
expression (7), we have abused notation slightly. In fact, if r = 0 we are actually referring to
the null model Y = f0(X) + ε.
To test Hr

0 , we propose the use of the following test statistic based on direct nonparametric
estimates of f rl curves considering the L1 norm

T =
M∑
l=1

nl
n

n∑
i=1

∣∣f̂ rl (Xi)I{Fi=l}
∣∣,

being nl =
∑n
i=1 I{Fi=l}. For a detailed simulation study comparing other test statistics see

Sestelo (2013).
Note that if Hr

0 holds, the value of T should be close to zero. The test rule based on T consists
of rejecting the null hypothesis if T is larger than its (1−α)-percentile obtained under H0. To
approximate the distributions of the test statistic resampling methods such as the bootstrap
introduced by Efron (1979) (see also Efron and Tibshirani 1993; Härdle and Mammen 1993;
Kauermann and Opsomer 2003) can be applied instead. Here we use the wild bootstrap (Wu
1986; Liu 1988; Mammen 1993) because this method is valid also for heteroscedastic models
where the variance of the error is a function of the covariate. The testing procedure used here
involves the following steps:

Step 1. Compute the value of the test statistic, T , in the sample as explained above.

Step 2. Estimate the null regression model in (7). For this purpose, estimate f0(Xi) as we
mentioned in the estimation procedure in Section 2.1. Calculate Y l

i = Yi − f̂0 (Xi)
and with that fit the polynomial using least squares for each level. Obtain the pilot
estimates for i = 1, . . . , n,

m̂Fi(Xi) = f̂0(Xi) +
∑r−1

j=0
âjFiX

j
i .

Step 3. For b = 1, . . . , B, generate bootstrap samples
{(
Xi, Fi, Y

•b
i

)}n
i=1

with Y •bi = m̂Fi(Xi)+
ε•bi , and ε•bi being

ε•bi =

 ε̂i · (1−
√

5)
2 with probability p = 5+

√
5

10 ,

ε̂i · (1+
√

5)
2 with probability p = 5−

√
5

10 ,

where ε̂i = Yi − m̂Fi(Xi) are the residuals under H0, and compute T •b as in Step 1.

Finally, the decision rule consists of rejecting the null hypothesis if T > T 1−α, where T 1−α is
the empirical (1− α)-percentile of values T •b(b = 1, . . . , B) previously obtained.
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Local test

If the previous test is statistical significant and the equality of the mr
l curves (l = 1, . . . ,M)

is thus rejected, testing the null hypothesis of equality of critical points becomes of interest.
Note that it is possible for these points to be equal, even if the curves and/or their derivatives
are different. For instance, taking into account the maxima of the first derivatives, interest
lies in testing the following null hypothesis

H0 : x01 = · · · = x0M

versus the general alternative

H1 : x0i 6= x0j for some i, j ∈ {1, . . . ,M}.

The above null hypothesis is true if d = x0j − x0k = 0 where

(j, k) = arg max
(l,m)

{1≤l<m≤M}

|x0l − x0m|,

otherwise H0 is false. It is important to highlight the fact that, in practice, the true x0j are
not known, and consequently neither is d, so an estimate d̂ = x̂0j − x̂0k is used, where, in
general, x̂0l are the estimates of x0l based on the estimated curves m̂l.
Needless to say, since d̂ is only an estimate of the true d, the sampling uncertainty of these
estimates needs to be taking into account. Hence, a confidence interval may be created for d
at a specific level of confidence. Based on this, the null hypothesis is rejected if zero is not
contained in the interval.
The steps for construction of the bootstrap confidence interval for the true d are the following:

Step 1. From the sample data {(Xi, Fi, Yi)}ni=1, obtain the estimates for i = 1, . . . , n

m̂Fi(Xi) = f̂0(Xi) + f̂Fi(Xi)

based on the general model in (2), obtain the estimates of x0l based on (3) and then
retrieve the d̂ value.

Step 2. For b = 1, . . . , B, generate bootstrap samples
{(
Xi, Fi, Y

•b
i

)}n
i=1

as in Step 3 of
the algorithm for the global test presented earlier, though, in this case, using the
residuals of the general model in (2), ε̂i = Yi − m̂Fi(Xi), and compute d•b as in
Step 1.

Finally, the limits for the 100(1− α)% percentile confidence interval of d are given by

I =
(
d̂α/2, d̂1−α/2

)
,

where d̂p represents the p-percentile of d̂•1, . . . , d̂•B.

2.3. More technical details

It is well known that the nonparametric estimates m̂r
l (X) greatly depend on the bandwidths

h0, h1, . . . , hM used in the kernel-based algorithm for the estimation of the partial functions
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f0, f1, . . . , fM . Various methods for an optimal selection have been suggested, such as gener-
alized cross-validation (GCV; Golub, Heath, and Wahba 1979) or plug-in methods (see e.g.,
Ruppert, Sheather, and Wand 1995). See Wand and Jones (1995) for a good overview of this
topic. However, optimal bandwidth selection is still a challenging problem.
As a practical solution, in Equation 4 of the estimation algorithm, the bandwidth h0 is
automatically selected by minimizing the following cross-validation criterion:

CV0(h) =
∑n

i=1

(
Yi − f̂ (−i)

0 (Xi)
)2
, (8)

where f̂ (−i)
0 (X) indicates the fit at X, leaving out the ith data point based on the smoothing

parameter h0. Likewise, the bandwidths hl (l = 1, . . . ,M) of Equation 5 are selected by
minimizing

CVl(h) =
∑n

i=1
I{Fi=l}

(
Yi − f̂0 (Xi)− f̂ (−i)

l (Xi)
)2
, (9)

where f̂ (−i)
l (X) indicates the fit at X, leaving out the ith data point based on the smoothing

parameter hl.
Bootstrap resampling techniques are time-consuming processes because it is necessary to
estimate the model many times. Moreover, the use of the cross-validation technique for the
choice of the bandwidths implies a high computational cost, because it is necessary to repeat
the estimation operations several times to select the optimal bandwidths. Consequently,
recourse to some computational acceleration technique is fundamental to ensure that the
problem can be addressed adequately in practical situations. Thus, we use binning techniques
to speed up the process. A detailed explanation of this technique can be found in Fan and
Marron (1994).

3. Overview of the package npregfast
The npregfast package contains a set of functions for estimating nonparametric models, ob-
taining first and second derivatives, critical points, etc., as well as different tests for drawing
inferences about several features of these models. In view of the high cost entailed in these
methodologies and in order to maximize computational efficiency, the actual version of the
package is carried out using compiled Fortran. The functions within npregfast are briefly
described in Table 1.
The package is designed along lines similar to those of other R regression packages. Hence,
the main function of the package is frfast which, by default, fits a nonparametric regression
model based on local polynomial kernel smoothers. The arguments of this function are shown
in Table 2. Note that through the argument formula users can decide to fit a model taking
into account the interaction or not, and by means of the argument smooth it is possible
to select the type of smoother: kernel or splines. Numerical and graphical summaries of
the fitted object can be obtained by using the print, summary, plot and autplot methods
implemented for ‘frfast’ objects (arguments of the latter function are shown in Table 3).
Another of these methods is available for the predict function, which takes a fitted model of
the ‘frfast’ class and, given a new data set of values of the covariate, produces predictions.
As mentioned above, this package can be used to fit models taking into account factor-by-curve
interactions. In this framework, it will be necessary to ascertain if the factor produces an effect
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Function Description
frfast Main function for fitting regression models and obtaining the different

outputs (model estimates, first and second derivatives).
summary Method of the generic summary function for ‘frfast’ objects.
autoplot Visualization of ‘frfast’ objects with ggplot2 (Wickham 2009) graphics.

Provides the plots for model estimates and their 95% pointwise confidence
intervals based on bootstrap techniques. Additionally, with the diffwith
argument it is possible to draw the differences between two factor levels.

plot Visualization of ‘frfast’ objects with base graphics. Provides the plots
for model estimates and their 95% pointwise confidence intervals based
on bootstrap techniques. Additionally, with the diffwith argument it is
possible to draw the differences between two factor levels.

predict Takes a ‘frfast’ object produced by frfast() and, given a new set of
values for the model covariate, produces predictions.

critical Provides a table with the value of the covariate x (with 95% confidence
interval) that maximizes the initial estimation, that maximizes the first
derivative and where the second derivative equals zero.

criticaldiff Provides a table with the 95% confidence interval for the differences be-
tween the estimation of the critical function, for every two levels.

globaltest Function for testing the equality of the curves specific to each level.
localtest Function for testing the equality of the critical points estimated from the

respective level-specific curves.
allotest Function for testing the null hypothesis of an allometric model versus a

general hypothesis where the effect of the covariate on the response is
flexible and unknown.

runExample Launch a Shiny app that shows a demo of what can be done with the
package.

Table 1: Summary of functions in the npregfast package.

on the response and thus, that there is an interaction or, in contrast, the estimated regression
curves are equal. To this end, the package provides the globaltest function which answers
this question through a bootstrap-based test. If the factor results to be statistically significant,
then the use of the diffwith argument of the autoplot method for ‘frfast’ objects (or of
its base graphics version, the plot method for ‘frfast’ objects) enables the user to obtain a
graphical representation that shows the differences between the estimated curves (estimate,
first or second derivative) for any set of two levels of the factor. Additionally, the function
critical allows to obtain the value of the covariate that maximizes the estimate and first
derivative of the function and the value of the covariate where the second derivative equals
zero, for each of these levels. Again, to test if these estimated points are equal for all levels,
the package provides the localtest function. Note that, to compare these points between
any set of two levels, a confidence interval for the difference can be obtained by applying
the criticaldiff function. It should be noted that both smoothing methods (kernel and
splines) are available options to test the equality of the M curves specific to each level, or to
test the equality of critical points (i.e., for the globaltest and localtest functions).
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Arguments Description
formula An object of class ‘formula’; a symbolic description of the model to be fitted.
data A data frame or matrix containing the model response variable and covariates

required by the formula.
na.action A function which indicates what should happen when the data contains NAs.

The default is "na.omit".
model Type of model used: model = "np" for the nonparametric regression model,

model = "allo" for the allometric model.
smooth Type of smoother used: smooth = "kernel" for kernel smoothers and smooth

= "splines" for splines using the mgcv package (Wood 2017).
h0 The kernel bandwidth smoothing parameter for the global effect. By default,

cross-validation is used to obtain the bandwidth.
h The kernel bandwidth smoothing parameter for the partial effects.
nh Integer number of equally-spaced bandwidth in which the h is discretized, to

speed up computation.
weights Prior weights on the data.
kernel A character string specifying the desired kernel. Defaults to kernel =

"epanech", where the Epanechnikov density function kernel will be used. Also,
several types of kernel functions can be used: triangular and Gaussian density
function, with "triang" and "gaussian", respectively.

p Polynomial degree to be used. Its value must be the value of derivative + 1.
The default value is 3, returning the estimation, first and second derivative.

kbin Number of binning nodes over which the function is to be estimated.
nboot Number of bootstrap repeats. Defaults to 500 bootstrap repeats. The wild

bootstrap is used when model = "np" and the simple bootstrap when model
= "allo".

rankl Number or vector specifying the minimum value for an interval at which to
search for the x value that maximizes the estimate, and first or second deriva-
tive (for each level). The default is the minimum data value.

ranku Number or vector specifying the maximum value for an interval at which
to search for the x value that maximizes the estimate, and first or second
derivative (for each level). The default is the maximum data value.

seed Seed to be used in the bootstrap procedure.
cluster A logical value. If TRUE (default), the bootstrap procedure is parallelized (only

for smooth = "splines"). Note that there are cases (e.g., a low number of
bootstrap repetitions) that R will gain in performance through serial compu-
tation. R takes time to distribute tasks across the processors and also it will
need time for binding them all together later on. Therefore, if the time for
distributing and gathering pieces together is greater than the time needed for
single-thread computing, it is not worth to parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized
procedure. If NULL (default), the number of cores to be used is equal to the
number of cores of the machine – 1.

Table 2: Summary of the arguments of the main function frfast.
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Arguments Description
object ‘frfast’ object.
fac Factor level to be taken into account in the plot. By default, NULL.
der Number which determines any inference process. By default, NULL. If this

term is 0, the plot shows the initial estimate. If it is 1 or 2, it is designed for
the first or second derivative, respectively.

diffwith Factor level used for drawing the differences with respect to the level specified
in the fac argument. By default, NULL. The differences are computed for the
rth derivative specified in the der argument.

points Draw the original data into the plot. By default, TRUE.
xlab A title for the x axis.
ylab A title for the y axis.
ylim The y limits of the plot.
main An overall title for the plot.
col A specification for the default plotting color.
CIcol A specification for the default confidence intervals plotting color (for the fill).
CIlinecol A specification for the default confidence intervals plotting color (for the edge).
pcol A specification for the point color.
abline Draw an horizontal line into the plot of the second derivative of the model.
ablinecol The color to be used for abline.
lty The line type. Line types can either be specified as an integer (0 = blank,

1 = solid (default), 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6
= twodash) or as one of the character strings "blank", "solid", "dashed",
"dotted", "dotdash", "longdash", or "twodash", where "blank" uses “in-
visible lines” (i.e., does not draw them). See details in ?par.

CIlty The line type for confidence intervals. Line types can either be specified as an
integer (0 = blank, 1 = solid (default), 2 = dashed, 3 = dotted, 4 = dotdash, 5
= longdash, 6 = twodash) or as one of the character strings "blank", "solid",
"dashed", "dotted", "dotdash", "longdash", or "twodash", where "blank"
uses “invisible lines” (i.e., does not draw them). See details in ?par.

lwd The line width, a positive number, defaulting to 1. See details in ?par.
CIlwd The line width for confidence intervals, a positive number, defaulting to 1.
cex A numerical value giving the amount by which plotting symbols should be

magnified relative to the default. See details in ?par.
alpha Alpha transparency for overlapping elements expressed as a fraction between

0 (complete transparency) and 1 (complete opacity).
... Other options.

Table 3: Summary of the arguments of the autoplot method for ‘frfast’ objects.

4. npregfast in practice

It is now time to outline the implemented functions of our package in detail, and illustrate
these with two real data sets related to the life sciences. The first one is connected with
the biology and management of an aquatic living resource and the second one is related to
medical data, particularly, the age and height measurements of children.
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4.1. Relative growth curves for barnacles

The npregfast package includes a data set called barnacle with measurements of rostro-
carinal length and dry weight of barnacles from the Atlantic coast of Galicia (Spain), split
by a categorical variable indicating the site of harvest (Sestelo and Roca-Pardiñas 2011).
The usage of the package is illustrated by constructing the relative growth curves for this
species and determining the ideal size of capture of the stalked barnacle, Pollicipes pollicipes
(Gmelin, 1789). The commercial interest of this crustacean resides in their muscular peduncle,
the edible stalk of the barnacle, which commands high prices on the market (Goldberg 1984).
In Spain and Portugal, where harvesting of P. pollicipes is the highest, the phenomenon of
overfishing has affected this species to differing degrees (Bernard 1988; Cardoso and Yule 1995;
Cruz 2000; Molares and Freire 2003). Because of the economic importance of this barnacle in
several countries, we appreciate to deepen our knowledge about it. Accordingly, the main goal
of this data set is to illustrate the use of the R package to analyze the relationship between
the gain in weight and length of barnacles.
Each line of the data set represents the information from one specimen under study. The
DW variable denotes the dry weight of the individuals in grams, the RC variable is the rostro-
carinal length in millimeters – the variable that best represents the growth of the species
(Cruz 1993, 2000) – and the categorical variable F indicates the site where the specimens
were collected, Punta Lens (lens) and Punta de la Barca (barca). An excerpt of the data
set is shown below:

R> library("npregfast")
R> head(barnacle)[1:3, ]

DW RC F
1 0.14 9.5 barca
2 0.00 2.4 barca
3 0.42 13.1 barca

To estimate the length-weight relationship of this species we first consider a nonparametric
regression model without interaction. The polynomial degree was fixed to 2 based on the idea
of using later the first derivative.

R> mwo <- frfast(DW ~ RC, data = barnacle, p = 2, seed = 130853)
R> mwo

Call:
frfast(formula = DW ~ RC, data = barnacle, p = 2, seed = 130853)

*********************************************
Nonparametric Model
*********************************************

Number of Observations: 2000
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Number of Bootstrap Repeats: 500

Type of Nonparametric Smoother: kernel

Bandwidth: 0.21

Kernel Function: Epanechnikov

Note that, by default, the function frfast fits a flexible model using local polynomial kernel
smoothers where the bandwidth is selected by cross-validation. The bootstrap procedure is
used to obtain the 95% confidence interval for the estimation.
The graphical representation of the fit is obtained using the autoplot function. Figure 1 (left
panel) shows the estimated curve (solid line) for the overall study with the pointwise confi-
dence interval (shaded area). This curve shows the way in which individuals’ size increased
as their weight increased. The length-weight relationship is seen to be an increasing function
in almost the complete range of values; only the final section of the curve seems to stabilize to
a horizontal line. The way in which the gain weight occurs can be obtained by means of the
first derivative (Figure 1, right panel). The speed of growth (the increase in weight per unit
of RC), rather than constantly increasing, displayed a maximum at a specific size, after which
it began to decrease. Both plots can be plotted jointly with the following input commands:

R> library("gridExtra")
R> der0 <- autoplot(mwo, der = 0)
R> der1 <- autoplot(mwo, der = 1)
R> grid.arrange(der0, der1, nrow = 1, ncol = 2)

In biological studies, and specifically in population dynamics and stock assessment, it is
relevant to ascertain whether this length-weight relationship remains constant across sites
and was not altered by any possible local variability in the growth of this species. Therefore,
we now intend to estimate the model including the factor-by-curve interaction. This can be
obtained with the following code:

R> mwi <- frfast(DW ~ RC:F, data = barnacle, p = 2, seed = 130853)
R> summary(mwi)

Call:
frfast(formula = DW ~ RC:F, data = barnacle, p = 2, seed = 130853)

*********************************************
Nonparametric Model
*********************************************
Type of nonparametric smoother: kernel
Kernel: Epanechnikov
Bandwidth: 0.21 0.31 1.00
Polynomial degree: 2
Number of bootstrap repeats: 500
Number of binning nodes 100
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Figure 1: Regression curve (left) and first derivative (right) with pointwise bootstrap-based
95% confidence intervals (shaded area) for dry weight (DW) and rostro-carinal length (RC)
(overall study).

The number of data is: 2000
The factor's levels are: barca lens
The number of data for the level barca is: 1000
The number of data for the level lens is: 1000

Summaries for the response variable (for each level):
Level barca :

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.1300 0.4100 0.5437 0.8425 2.2500

Level lens :
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.1400 0.4350 0.5974 0.9500 2.5800

The summary method returns a numerical summary of the fit where it is possible to observe
the kernel used, the global and partial bandwidths obtained by cross-validation, the number
of bootstrap repeats used for obtaining the confidence interval for the estimation, the number
of binning nodes, the sample size by levels of the factor and a small summary for the response
by levels.
The fit can be again visualized by means of the generic function autoplot. As in the previous
case, it is possible to represent both the estimation and first derivative with the der argument.
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Figure 2: Regression curve (left) and first derivative (right) with bootstrap-based 95% confi-
dence intervals (shared area) for dry weight (DW) and rostro-carinal length (RC) for barnacles
from Punta de la Barca (upper panel) and for barnacles from Punta Lens (lower panel).

Additionally, the selection of the factor level is obtained by the fac argument. Figure 2 shows
the estimated length-weight relationship for the barnacles of the two sites of Galicia, Punta
de la Barca and Punta Lens.

R> library("ggplot2")
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R> der01 <- autoplot(mwi, der = 0, fac = "barca")
R> der11 <- autoplot(mwi, der = 1, fac = "barca") + ggtitle("")
R> der02 <- autoplot(mwi, der = 0, fac = "lens")
R> der12 <- autoplot(mwi, der = 1, fac = "lens") + ggtitle("")
R> grid.arrange(der01, der11, der02, der12, nrow = 2, ncol = 2)

The question that now arises is if the estimated curves for each level are identical and thus
indicate that there is no need to include the interaction in the model or, by contrast, the
barnacles show a difference in relative growth and the factor really produces an effect on the
response. To this end, the bootstrap-based test proposed before for testing the equality of
the M regression functions (or derivatives) was applied using the globaltest function.

R> globaltest(DW ~ RC:F, data = barnacle, p = 2, seed = 130853, der = 0)

Statistic pvalue Decision
1 5.194234 0 Rejected

R> globaltest(DW ~ RC:F, data = barnacle, p = 2, seed = 130853, der = 1)

Statistic pvalue Decision
1 1.221476 0.006 Rejected

Taking into account the results obtained, we can conclude that both the estimates and deriva-
tives are not equal between levels. This is also observed from the graphical representations.
The test concludes that the factor site produces an effect on the response.
Finally, an important issue related with any species that is subject to exploitation is the
establishment of limits on size. The estimation of adequate catch sizes for commercial marine
invertebrates includes biological aspects such as individual size at sexual maturation, growth
rate and length-weight relationship but also the yield in weight from the fishery (Sparre
and Venema 1997). According to this, the point that maximizes the first derivative of the
regression curve must be determined. This critical point would ensure high commercial yield
while simultaneously guaranteeing the regeneration and conservation of the population. To
obtain these points for both sites of harvest, the critical function can be applied.

R> critical(mwi, der = 1)

Critical Lwr Upr
Level barca 19.1995 18.56957 21.00946
Level lens 19.0040 18.45064 19.77458

The estimated critical points with their 95% confidence intervals seem to be similar between
the two sites of study. To ascertain the truth of this affirmation, the localtest function for
testing the equality of critical points was applied. In this case, one tests whether the points
that maximize the first derivatives of the curves are equal.

R> localtest(DW ~ RC:F, data = barnacle, p = 2, seed = 130853, der = 1)
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d Lwr Upr Decision
1 0.1955 -0.1521 1.1893 Accepted

According to the obtained confidence interval it is possible to conclude that, although the
effects of the size (RC) on the weight (DW) depend on the location (F) and consequently the
curves of the relative growth and their derivatives are different for each level, there is not a
statistically significant difference between the estimated sizes.

4.2. Spurt in child growth

We decided to also show the capabilities of package npregfast with another data set, which
contains the age and height measurements of 2500 children aged 5 to 19 years, split by sex
(1292 females and 1208 males). The usage of the package is illustrated by constructing growth
curves for school-aged children and adolescents and also by analyzing possible differences
in the growth of boys and girls. Other studies of this type can be obtained from http:
//www.who.int/childgrowth/en/. Finally, note that we applied in this section the two
smoothers implemented in the package (kernel and splines) in order to compare the possible
differences in the results. Below is an excerpt from the data frame of the data set used:

R> head(children)[1:3, ]

sex height age
1 male 150.77 13.25
2 female 170.59 14.17
3 female 167.31 15.17

Each line represents the information from one individual under study. The categorical variable
sex indicates the individual’s gender (male or female), the age variable corresponds to age in
years, and height is measured in centimeters. To estimate the growth of the children overall,
we firstly consider a nonparametric model without interaction.

R> mwo2k <- frfast(height ~ age, data = children, p = 2, seed = 130853)
R> mwo2k

Call:
frfast(formula = height ~ age, data = children, p = 2, seed = 130853)

*********************************************
Nonparametric Model
*********************************************

Number of Observations: 2500

Number of Bootstrap Repeats: 500

Type of Nonparametric Smoother: kernel

http://www.who.int/childgrowth/en/
http://www.who.int/childgrowth/en/
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Bandwidth: 0.28

Kernel Function: Epanechnikov

One can obtain the results from the previous model based on spline smoothing. The spline-
based model is obtained using argument smooth = "splines" (kernel is the default smoother)
of the function frfast.

R> mwo2s <- frfast(height ~ s(age), data = children, seed = 130853,
+ smooth = "splines")
R> mwo2s

Call:
frfast(formula = height ~ age, data = children, smooth = "splines",

seed = 130853)

*********************************************
Nonparametric Model
*********************************************

Number of Observations: 2500

Number of Bootstrap Repeats: 500

Type of Nonparametric Smoother: splines

The graphical representation of the fitted models can easily be obtained. Figure 3 plots the
estimated curves obtained by means of the two smoothers with their 95% pointwise confidence
intervals. As expected, in both cases, children’s height rises with the increase in years of life
until they reach a specific age; and thereafter their heights remain more or less constant. We
can also observe that estimates obtained using the two smoothers are very similar. This plot
can be obtained by using the following commands:

R> der0k <- autoplot(mwo2k, der = 0)
R> der0s <- autoplot(mwo2s, der = 0)
R> grid.arrange(der0k, der0s, nrow = 1, ncol = 2)

A common issue is to compare the growth between boys and girls. With this in mind, we fit
a model taking into account the interaction. Again, we estimate the proposed model using
both smoothers. It is worth mentioning that argument formula of the main function frfast
must be specified in a different manner depending on the chosen smoother.

R> mwi2k <- frfast(height ~ age:sex, data = children, p = 2, seed = 130853)
R> mwi2s <- frfast(height ~ s(age, by = sex), data = children, seed = 130853,
+ smooth = "splines")
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Figure 3: Regression curve (solid lines) with bootstrap-based 95% pointwise confidence inter-
vals (shaded area) for children’s height and age (overall study). Left panel: kernel smoothers.
Right panel: splines.

The estimated curves for each gender can again be obtained with the function autoplot.
Figures 4 and 5 show the estimated curves for males and females together with their first
derivatives using both smoothers. The obtained estimates are similar, though they seem to
be slightly smoother when using spline smoothing.

R> derk1 <- lapply(0:1, function(x) autoplot(mwi2k, der = x, fac = "male"))
R> derk2 <- lapply(0:1, function(x) autoplot(mwi2k, der = x,
+ fac = "female"))
R> grid.arrange(grobs = c(derk1, derk2), nrow = 2, ncol = 2)
R> ders1 <- lapply(0:1, function(x) autoplot(mwi2s, der = x, fac = "male"))
R> ders2 <- lapply(0:1, function(x) autoplot(mwi2s, der = x,
+ fac = "female"))
R> grid.arrange(grobs = c(ders1, ders2), nrow = 2, ncol = 2)

It is now time to asses if the factor really produces an effect on the response. To this end,
we apply the bootstrap-based test implemented in globaltest(). Judging by the function
output, the results would appear to suggest that the factor, sex, produces a real influence on
the children’s growth. This can also be observed from the graphical representation. Similarly,
it can be concluded that the derivatives of these curves are different between levels. Note
that the selection of the smoother does not change the hypothesis test conclusion.

R> globaltest(height ~ age:sex, data = children, p = 2, seed = 130853,
+ der = 0)
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Figure 4: Regression curve and first derivative (solid lines) with bootstrap-based 95% point-
wise confidence intervals (shaded area) for height and age of males (first row) and females
(second row) using kernel smoothers.

Statistic pvalue Decision
1 517.4986 0 Rejected

R> globaltest(height ~ s(age, by = sex), data = children, seed = 130853,
+ der = 0, smooth = "splines")
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Figure 5: Regression curve and first derivative (solid lines) with bootstrap-based 95% point-
wise confidence intervals (shaded area) for height and age of males (first row) and females
(second row) using splines.

Statistic pvalue Decision
1 515.6921 0 Rejected

R> globaltest(height ~ age:sex, data = children, p = 2, seed = 130853,
+ der = 1)
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Statistic pvalue Decision
1 143.6067 0 Rejected

R> globaltest(height ~ s(age, by = sex), data = children, seed = 130853,
+ der = 1, smooth = "splines")

Statistic pvalue Decision
1 165.5214 0 Rejected

In addition, Figures 4 and 5 (right panels) seem to suggest that females experience a spurt
in growth earlier than males do, with the two sexes achieving maximum rates of growth at
ages close to 10 and 13 years, respectively. These ages are obtained by the critical function
using the following command:

R> critical(mwi2k, der = 1)

Critical Lwr Upr
Level male 13.64412 5.841401 13.88881
Level female 10.47682 5.841401 10.84384

R> critical(mwi2s, der = 1)

Critical Lwr Upr
Level male 13.65030 12.89243 14.19899
Level female 10.06111 9.40000 11.11889

Paying close attention to the obtained confidence intervals using kernel smoothers, it is possi-
ble to observe that the lower limit of both intervals coincides with the smaller binning node.
This occurs due to the high variability of the estimates for ages lower than eight years, re-
sulting in a wide bootstrap confidence interval in this area. According to this, the critical
point of several bootstrap replicates is estimated as the first point of the distribution. Two
arguments of the frfast function (rankl and ranku) have been proposed in order to address
this situation. By specifying them, the user can set a range in which the critical point will
be searched.

R> mwi3k <- frfast(height ~ age:sex, data = children, p = 2, seed = 130853,
+ rankl = 8, ranku = 15)
R> critical(mwi3k, der = 1)

Critical Lwr Upr
Level male 13.64412 12.971581 13.88881
Level female 10.47682 9.022302 10.85744

Finally, in order to ensure that these differences are really significant, we apply the localtest
function. It tests whether the points that maximize the first derivatives of the curves are equal.
Judging by these results, the sex-related differences in growth seem to be evident (using kernel
or splines smoothers).
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R> localtest(height ~ age:sex, data = children, p = 2, seed = 130853,
+ der = 1, rankl = 8, ranku = 15)

d Lwr Upr Decision
1 3.1673 2.366 4.6626 Rejected

R> localtest(height ~ s(age, by = sex), data = children, seed = 130853,
+ der = 1, smooth = "splines")

d Lwr Upr Decision
1 -3.9538 -4.7719 -2.6092 Rejected

5. Conclusion
This paper discussed the implementation of some methods developed for estimating regression
models with or without factor-by-curve interactions in the R package npregfast. Among other
things, the package also implements two bootstrap-based procedures designed to test different
features of the estimated curves, particularly, to analyze whether the specific curves for each
level are equal and to test the equality of the critical points estimated from the respective
level-specific curves.
Finally, users may be interested in viewing a live interactive demo of the package in order to see
part of its capabilities before installing it. This is possible at http://sestelo.shinyapps.
io/npregfast.
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