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Abstract

This paper introduces the R package meta4diag for implementing Bayesian bivariate
meta-analyses of diagnostic test studies. Our package meta4diag is a purpose-built front
end of the R package INLA. While INLA offers full Bayesian inference for the large set
of latent Gaussian models using integrated nested Laplace approximations, meta4diag
extracts the features needed for bivariate meta-analysis and presents them in an intu-
itive way. It allows the user a straightforward model specification and offers user-specific
prior distributions. Further, the newly proposed penalized complexity prior framework is
supported, which builds on prior intuitions about the behaviors of the variance and corre-
lation parameters. Accurate posterior marginal distributions for sensitivity and specificity
as well as all hyperparameters, and covariates are directly obtained without Markov chain
Monte Carlo sampling. Further, univariate estimates of interest, such as odds ratios, as
well as the summary receiver operating characteristic (SROC) curve and other common
graphics are directly available for interpretation. An interactive graphical user interface
provides the user with the full functionality of the package without requiring any R pro-
gramming. The package is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=meta4diag/ and its usage will be illustrated
using three real data examples.

Keywords: Bayesian analysis, bivariate meta-analysis, diagnostic test studies, graphical user
interface, integrated nested Laplace approximations, R package.

1. Introduction

A meta-analysis summarizes the results from multiple studies with the purpose of finding
a general trend across the studies. It plays a central role in several scientific areas, such
as medicine, pharmacology, epidemiology, education, psychology, criminology and ecology

http://dx.doi.org/10.18637/jss.v083.i01
https://CRAN.R-project.org/package=meta4diag/
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(Borenstein, Hedges, Higgins, and Rothstein 2011). A bivariate meta-analysis of diagnos-
tic test studies is a special type of meta-analysis that summarizes the results from sepa-
rately performed diagnostic test studies while keeping the two-dimensionality of the data
(Van Houwelingen, Arends, and Stijnen 2002; Reitsma, Glas, Rutjes, Scholten, Bossuyt, and
Zwinderman 2005). Results of a diagnostic test study are commonly provided as a two-by-
two table, which is a cross tabulation including four numbers: the number of patients tested
positive that are indeed diseased (according to some gold standard), those tested positive that
are not diseased, those tested negative that are however diseased and finally those tested neg-
ative that are indeed not diseased. Usually the table entries are referred to as true positives
(TP), false positives (FP), false negatives (FN) and true negatives (TN), respectively. Those
entries are used to compute pairs of sensitivity and specificity indicating the quality of the
respective diagnostic test. The main goal of a bivariate meta-analysis is to derive summary
estimates of sensitivity and specificity from several separately performed test studies. For this
purpose pairs of sensitivity and specificity are jointly analyzed and the inherent correlation
between them is incorporated using a random effects approach (Reitsma et al. 2005; Chu and
Cole 2006). Related accuracy measures, such as likelihood ratios (LRs), which indicate the
discriminatory performance of positive and negative tests, LR+ and LR− respectively, can
be also derived. Further, frequently used estimates include diagnostics odds ratios (DORs)
illustrating the effectiveness of the test or risk differences which are related to the Youden
index (Altman 1990; Youden 1950).

Reitsma et al. (2005) proposed to model logit sensitivity and logit specificity using a bivari-
ate normal likelihood, whereby the mean vector itself is modeled using a bivariate normal
distribution (normal-normal model). Our new package meta4diag (Guo and Riebler 2017)
follows the approach proposed by Chu and Cole (2006) and Hamza, Reitsma, and Stijnen
(2008) using an exact binomial likelihood (binomial-normal model). This approach has been
shown to outperform the approximate normal likelihood in terms of bias, mean-squared er-
ror (MSE) and coverage. Furthermore, it does not require a continuity correction for zero
cells in the two-by-two table (Harbord, Deeks, Egger, Whiting, and Sterne 2007). Recently,
Chen, Chu, Luo, Nie, and Chen (2015) and Kuss, Hoyer, and Solms (2014) proposed a third
alternative, the beta-binomial model, where sensitivity and specificity are not modeled after
the logit transformation but on the original scale using a beta distribution. The inherent
correlation is then incorporated via copulas (Kuss et al. 2014). In the absence of covariates or
in the case that all covariates affect both sensitivity and specificity (Harbord et al. 2007), the
binomial-normal model can be reparameterized into the hierarchical summary receiver op-
erating characteristic (HSROC) model (Rutter and Gatsonis 2001; Harbord et al. 2007). In
contrast to the binomial-normal model the HSROC model uses a scale parameter and an ac-
curacy parameter, which are functions of sensitivity and specificity and defines an underlying
hierarchical SROC (summary receiver operating characteristic) curve.

Different statistical software environments, such as the SAS software (SAS Institute Inc. 2013),
Stata (StataCorp. 2015) and R (R Core Team 2017), have been used in the past ten years
to conduct bivariate meta-analysis of diagnostic test studies. Within a frequentist setting
the SAS routines PROC MIXED and PROC NLMIXED can be used to fit the normal-normal and
binomial-normal model, see for example Van Houwelingen et al. (2002); Arends, Hamza,
Houwelingen, Heijenbrok-Kal, Hunink, and Stijnen (2008); Hamza, Arends, Van Houwelin-
gen, and Stijnen (2009). The SAS macro METADAS provides a user-friendly interface for the
binomial-normal model and the HSROC model (Takwoingi and Deeks 2008). Within Stata
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the module metandi fits the normal-normal model using an adaptive quadrature (Harbord
and Whiting 2009), while the module mvmeta performs maximum likelihood estimation of
multivariate random-effects models using a Newton-Raphson procedure (White 2009; Gas-
parrini, Armstrong, and Kenward 2012). The R package mada (Doebler 2017), a specialized
version of mvmeta, is specifically designed for the analysis of diagnostic accuracy. The package
provides both univariate modeling of log odds ratios and bivariate binomial-normal modeling
of sensitivity and specificity. A continuity correction is used for zero cells in the two-by-two
tables.

Since the number of studies involved in a meta-analysis of diagnostic tests commonly is small,
often less than 20 studies, and data within each two-by-two table can be sparse, the use of nu-
merical algorithms for maximizing the likelihood of the above complex bivariate model might
be problematic and lead to non-convergence (Paul, Riebler, Bachmann, Rue, and Held 2010).
Bayesian inference that introduces prior information for the variance and correlation param-
eters in the bivariate term is therefore attractive (Harbord 2011). Markov chain Monte Carlo
(MCMC) algorithms can be implemented through the generic frameworks WinBUGS (Lunn,
Thomas, Best, and Spiegelhalter 2000), OpenBUGS (Lunn, Spiegelhalter, Thomas, and Best
2009) or JAGS (Plummer 2003). There exist further specialized R packages for analyzing
diagnostic test studies in Bayesian setting, such as bamdit or HSROC (Verde 2017; Schiller
and Dendukuri 2015). Instead of modeling the link-transformed sensitivity and specificity di-
rectly, the package bamdit models the differences (Di) and sums (Si) of the link-transformed
sensitivity and specificity jointly. The quantities Di and Si are roughly independent by using
these linear transformations, so that Verde (2010) used a zero centered prior for the correla-
tion of Di and Si to represent vague prior information. Consequently, JAGS is used for model
estimation. In contrast, package HSROC builds on the HSROC model to jointly analyze
sensitivity and specificity with and without a gold standard reference test. Uniform priors on
a restricted interval are thereby assumed for all the hyperparameters and model estimation
is carried out using a Gibbs sampler (Chen and Peace 2013, Chapter 10). However, the use
of Bayesian approaches is still limited in practice which might be partly caused by the fact
that many applied scientists feel not comfortable with using MCMC sampling-based proce-
dures (Harbord 2011). Implementation needs to be performed carefully to ensure mixing and
convergence. Furthermore, MCMC based methods are often time consuming, in particular,
when interest lies in simulation studies which require several MCMC runs.

Paul et al. (2010) proposed to perform full Bayesian inference using integrated nested Laplace
approximations (INLA) which avoids MCMC entirely (Rue, Martino, and Chopin 2009).
The R package INLA (Lindgren and Rue 2015), see http://www.R-INLA.org/, implements
Bayesian inference using INLA for the large set of latent Gaussian models. However, we under-
stand that the range of options and the required knowledge of available features in INLA might
be overwhelming for the applied user interested in only one specific model. Here, we present a
new R package meta4diag which is a purpose-built package defined on top of INLA extracting
only the features needed for bivariate meta regression. Our package meta4diag implements
the binomial-normal model. Model definition is straightforward, and output statistics and
graphics of interest are directly available. Therefore, users do not need to know the structure
of the general INLA output object. Although its greatest strength, another criticism towards
Bayesian inference is the choice of prior distributions. Our package meta4diag allows the user
to specify prior distributions for the hyperparameters using intuitive statements based on the
recently proposed framework of penalized complexity (PC) priors (Simpson, Rue, Riebler,

http://www.R-INLA.org/
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Martins, and Sørbye 2017). Alternatively, standard prior distributions or user-specific prior
distributions can be used. Our package is appealing for routine use and applicable without
any deep knowledge of the programming language R via the integrated graphical user inter-
face (GUI) offering roll-down menus and dialog boxes implemented using the R package shiny
(Chang, Cheng, Allaire, Xie, and McPherson 2017).
The rest of this paper is organized as follows. In Section 2 we introduce the binomial-normal
model and discuss its estimation within a Bayesian inference setting. Here, specific emphasis
is given on the definition of prior distributions. Section 3 illustrates the functionality of
the package meta4diag. Model output and available graphics are described based on the
previously analyzed Telomerase (Glas, Roos, Deutekom, Zwinderman, Bossuyt, and Kurth
2003), Scheidler (Scheidler, Hricak, Yu, Subak, and Segal 1997) and Catheter (Chu, Guo,
and Zhou 2010) data sets. Further, the user-friendly graphical user interface is presented.
Finally, a conclusion is given in Section 4.

2. Introducing the statistical framework

2.1. Binomial-normal model for bivariate meta-analysis
In a bivariate meta-analysis, each study presents the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN). Let Se = TP/(TP + FN)
denote the true positive rate (TPR) which is known as sensitivity and Sp = TN/(TN + FP)
the true negative rate (TNR) which is known as specificity. Chu and Cole (2006) proposed the
following bivariate generalized linear mixed effects model to summarize the results of several
diagnostic studies, i = 1, . . . , I, by modeling sensitivity and specificity jointly:

TPi|Sei ∼ Binomial(TPi + FNi,Sei), logit(Sei) = µ+ Uiα + φi,

TNi|Spi ∼ Binomial(TNi + FPi, Spi), logit(Spi) = ν + Viβ + ψi, (1)(
φi
ψi

)
∼ N

[(
0
0

)
,

(
σ2
φ ρσφσψ

ρσφσψ σ2
ψ

)]
.

Here, µ, ν denote the intercepts for logit(Sei) and logit(Spi), respectively, and Ui, Vi study-
level covariate vectors with corresponding coefficient parameters α and β. The covariance
matrix of the random effects φi and ψi is parameterized using between-study variances σ2

φ,
σ2
ψ and correlation ρ.

The most-commonly-used logit link function can be replaced by other monotone link func-
tions, such as the probit or the complementary log-log transformation. We assume that both
sensitivity and specificity are modeled with the same link function. If desired, model (1) can
easily be changed to model sensitivity and the false positive rate (1−Sp), or the false negative
rate (1− Se) and specificity, or 1− Se and 1− Sp, instead of sensitivity and specificity, caus-
ing the corresponding change in parameter estimates. Different model options are available
through the argument model.type in the package meta4diag, see Section 3.3.

2.2. Specification of prior distributions
We specify prior distributions for all parameters, i.e., the three hyperparameters σ2

φ, σ2
ψ and

ρ, as well as the fixed effects µ, ν, α and β. Per default a normal prior with zero mean and
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Figure 1: An example of the PC prior for the variance calibrated such that P(σ > 1) = 0.05.
The black line is the prior density and the shaded area denotes the density weight a = 0.05
when the standard deviation is larger than u = 1.

large variance is used for the fixed effects µ, ν, α and β. The user is free to specify any
prior distribution for σ2

φ, σ2
ψ and ρ including the newly proposed penalized complexity (PC)

priors, see Simpson et al. (2017) for details. One of the four principles underlying PC priors is
Occam’s razor. The idea is to see a certain model component as a flexible extension of a base
model (commonly a simpler model) to which we would like to reduce if not otherwise indicated
by the data. Thinking of a Gaussian random effect with mean zero and covariance matrix σ2I,
the base model would be σ2 = 0, i.e., the absence of the effect. A PC prior puts maximum
density mass at the base model and decreasing mass with increasing distance away from the
base model. The PC prior for the variance components σ2

φ or σ2
ψ is discussed in Simpson

et al. (2017, Section 2.3) and corresponds to an exponential prior with parameter λ for the
standard deviation σφ or σψ, respectively. A simple choice to set λ is to provide (u, a) such
that P(σ > u) = a leading to λ = − log(u)/a with u > 0 and 0 < a < 1. Figure 1 shows an
example of the PC prior for the variance. In practice, the PC prior for the variance parameter
in a diagnostic meta-analysis could be derived from the belief of the interval that sensitivities
or specificities lie in. For example, choosing the contrast P(σ > 3) = 0.05 corresponds to
believing that the sensitivities or specificities lie in the interval [0.5, 0.95] with probability
0.95 (Wakefield 2007).

For the correlation parameter ρ, Harbord (2011) proposed to use a stronger prior than the
normal prior for the Fisher’s z-transformed correlation, which was used in Paul et al. (2010).
Motivated by the nature of diagnostic tests he proposed to use a prior which is not cen-
tered around zero but defined around some (negative) base value ρ0 instead (Reitsma et al.
2005). Using the PC prior framework the above suggestions can be implemented directly.
Simpson et al. (2017, Appendix A.3) derives the PC prior for the correlation parameter in
an autoregressive model of first order assuming the base model being defined at ρ0 = 0 and
identical statistical behavior left and right of 0. Although slightly tedious, this derivation
can be generalized to an arbitrary ρ0 and asymmetrical behavior to the left and right of ρ0
(Guo, Riebler, and Rue 2017). Within meta4diag() we offer three strategies to intuitively
define a PC prior for ρ given an arbitrary value of ρ0. Similar as for the variance, probability
contrasts are used to define the prior intuitively.
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Strategy 1: Specify the left tail behavior and the probability mass on the left-hand side of
ρ0 by,

P(ρ < u1|ρ0) = a1 and P(ρ < ρ0) = ω.

Here, (ρ0, ω, u1, a1) are the hyperparameters needed to define the prior density.

Strategy 2: Specify the right tail behavior and the probability mass on the left-hand side
of ρ0 by,

P(ρ > u2|ρ0) = a2 and P(ρ < ρ0) = ω.

Here, (ρ0, ω, u2, a2) are the hyperparameters needed to define the prior density.

Strategy 3: Specify left and right tail behaviors, by

P(ρ < u1|ρ0) = a1 and P(ρ > u2|ρ0) = a2.

Here, (ρ0, u1, a1, u2, a2) are the hyperparameters needed to define the prior density.

Figure 2 shows examples of the PC prior for the correlation using the three different strategies.
The prior density used in Paul et al. (2010) is shown as the gray dashed lines for comparison.
The parameters for the strategies are motivated based on the estimation results from Menke
(2014), who analyzed 50 independent bivariate meta-analyses which were selected randomly
from the literature within a Bayesian setting, and Diaz (2015), who reported frequentist
estimates based on a literature review of 61 bivariate meta-analyses of diagnostic accuracy
published in 2010. According to these two publications, the distribution of the correlation
seems asymmetric around zero. We find that around half of the correlation point estimates
are negative, with a mode around −0.2. Only a small proportion are larger than 0.4 and
values larger than 0.8 are rare. Based on these findings, we choose three differently behaved
PC priors that are all defined around ρ0 = −0.2.
Defining the parameters of the prior distributions based on probability contrasts seems very
intuitive. As illustrated it is straightforward to incorporate available prior knowledge into
the prior distributions, while still having the option to define vague priors using less stringent
probability contrasts. Although we recommend to specify priors for the variance and corre-
lation components separately, our package also offers the option to use an inverse Wishart
distribution as a prior for the entire covariance matrix.

3. Using package meta4diag

3.1. Package overview
The meta4diag package provides functions for fitting bivariate meta-analyses within a full
Bayesian setting as outlined in Section 2. The package is available via the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=meta4diag and can
be directly installed in R by typing

R> install.packages("meta4diag")

(given a working internet connection and the appropriate access rights on the computer).
Within this paper we use package version 2.0.7 and INLA version 17.11.11. Of note is that
meta4diag requires INLA to be installed, which can be done using

https://CRAN.R-project.org/package=meta4diag
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Figure 2: Illustration of potential PC priors for the correlation parameter ρ. The black
solid line shows the PC prior and the dashed gray line shows the prior density proposed
by Paul et al. (2010). In all plots we use ρ0 = −0.2. (a) Strategy 1: Prior derived using
P(ρ < −0.8|ρ0 = −0.2) = 0.1 and P(ρ < −0.2) = 0.4. (b) Strategy 2: Prior derived using
P(ρ > 0.8|ρ0 = −0.2) = 0.1 and P(ρ < −0.2) = 0.4. (c) Strategy 3: Prior derived using
P(ρ < −0.8|ρ0 = −0.2) = 0.1 and P(ρ > 0.8|ρ0 = −0.2) = 0.1.

R> install.packages("INLA",
+ repos = "https://inla.R-INLA-download.org/R/testing",
+ dependencies = TRUE)

Once the package and its dependencies are installed all analyses presented throughout this
work are reproducible.
The meta4diag package consists of one major function called meta4diag(). This function
estimates the Bayesian bivariate regression model for diagnostic test studies, assuming each
study provides TP, FP, TN and FN. Several studies can be grouped according to a categorical
variable. Posterior estimates for parameters of the bivariate model as well as common plots
and summary statistics are directly available. Inference is thereby performed using INLA,
which provides accurate deterministic approximations to all model parameters and linear
summary estimates. Based on the output of meta4diag() different plots of interest can be
generated and also non-linear summary estimates, for example the diagnostics odds ratio
(DOR), are available based on Monte Carlo estimation, whereby i.i.d. samples are generated
from the approximated posterior distribution using a built-in function of INLA.
The package includes three data sets which will be used in the following subsections to
illustrate the functionality of meta4diag. The data sets differ in their structure and the
availability of covariates. The first data set, called Telomerase, was presented by Glas et al.
(2003) and consists of 10 diagnostic test studies. There is no covariate information available.
The low number of studies involved makes this data set challenging when using maximum
likelihood procedures, see for example Riley, Abrams, Sutton, Lambert, and Thompson (2007)
and Paul et al. (2010). The second data set, called Scheidler, was presented in Scheidler et al.
(1997) and combines three meta-analyses to compare the utility of three types of diagnostic
imaging procedures to detect lymph node metastases in patients with cervical cancer. The
third data set, called Catheter, consists of 33 studies from a diagnostic accuracy analysis
presented by Chu et al. (2010) and provides disease prevalence as additional covariate.
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3.2. General data structure required

The first argument data in the function meta4diag() is the data set. It should be given
as a data frame with a minimum of 4 columns named TP, FP, TN and FN. If there is no
column named studynames providing study names, the meta4diag() function will generate
an additional column setting the study name indicators to study_1, . . ., study_n, where n is
the number of studies in the meta-analysis. Further columns are considered to be covariates.
The data set Telomerase can thus be defined using five columns, where the first column
provides study name indicators and the remaining four provide values of TP, FP, TN and
FN.

R> studynames <- c("Ito_1998", "Rahat_1998", "Kavaler_1998", "Yoshida_1997",
+ "Ramakumar_1999", "Landman_1998", "Kinoshita_1997", "Gelmini_2000",
+ "Cheng_2000", "Cassel_2001")
R> TP <- c(25, 17, 88, 16, 40, 38, 23, 27, 14, 37)
R> FP <- c(1, 3, 16, 3, 1, 6, 0, 2, 3, 22)
R> TN <- c(25, 11, 31, 80, 137, 24, 12, 18, 29, 7)
R> FN <- c(8, 4, 16, 10, 17, 9, 19, 6, 3, 7)
R> Telomerase <- data.frame(studynames = studynames, TP = TP, FP = FP,
+ TN = TN, FN = FN)
R> head(Telomerase)

studynames TP FP TN FN
1 Ito_1998 25 1 25 8
2 Rahat_1998 17 3 11 4
3 Kavaler_1998 88 16 31 16
4 Yoshida_1997 16 3 80 10
5 Ramakumar_1999 40 1 137 17
6 Landman_1998 38 6 24 9

3.3. Analyzing a standard meta-analysis without covariate information

Here, we show how to analyze the Telomerase data set which represents a meta-analysis of
studies that use the telomerase marker for the analysis of bladder cancer. To analyze the
data set, we first load the INLA and the meta4diag package in R using:

R> library("INLA")
R> library("meta4diag")

We then call the function meta4diag() as follows:

R> set.seed(18674)
R> res <- meta4diag(data = Telomerase, model.type = 1, var.prior = "PC",
+ var2.prior = "PC", cor.prior = "Normal", var.par = c(3, 0.05),
+ cor.par = c(0, 5), link = "logit", nsample = 10000, seed = 1672)

The data set is transferred as the first argument followed by the argument model.type =
1, saying that we would like to model sensitivity and specificity jointly. Of note is that



Journal of Statistical Software 9

the argument model.type can be any integer from 1 to 4 depending on which two accuracy
measures are going to be modeled. When model.type = 1, sensitivity and specificity are
modeled jointly. The sensitivity and (1 – specificity), (1 – sensitivity) and specificity and (1 –
sensitivity) and (1 – specificity) will be jointly modeled when model.type = 2, model.type
= 3 and model.type = 4, respectively. The argument var.prior is a character string to
specify the prior distribution for the (transformed) variance component of the first accuracy
measure, i.e., here the sensitivity. The options are "PC" for the PC prior, "Tnormal" for
the truncated normal prior, "Hcauchy" for the half-Cauchy prior and "Unif" for the uniform
prior, which are all defined on the standard deviation scale. Alternatively "Invgamma" for the
inverse gamma prior or any user specified prior defined on the variance scale can be chosen. A
user-specified prior for the variance is chosen by setting var.prior = "Table" and providing
a 2-column data frame to var.par. The first column provides support points for the variance
which should be in [0,∞], and the second column provides the corresponding prior density
at these points. Of note it that the usage of the "Table" prior in meta4diag is different
from that in INLA. While INLA requires the user to define the "Table" prior on the internal
parameterization of the hyperparameter, the user of meta4diag can work on the original scale.
The argument var2.prior is a character string to specify the prior distribution for the second
variance component. The options are the same as for the argument var.prior.

The argument cor.prior is a character string defining the prior distribution for the (trans-
formed) correlation parameter between the two accuracy measures. The options are "PC" for
the PC prior defined on the correlation scale, "Normal" for the normal distribution defined on
the Fisher’s z-transformed correlation, "Beta" for the beta distribution defined on a suitable
transformation, see documentation, and "Table" for an user specific prior defined on the cor-
relation scale. The "Table" prior for the correlation should be provided as a 2-column data
frame, where the first column provides suitable support points within [−1, 1], and the second
column provides the corresponding density mass of those points. Alternatively, if at least
one of the three arguments var.prior, var2.prior and cor.prior is set to "Invwishart",
an inverse Wishart distribution will be used for the covariance matrix ignoring any other
prior definitions for the remaining arguments. The arguments var.par, var2.par, cor.par
are numerical vectors specifying the hyperparameters for the priors for variance and corre-
lation parameters. If the inverse Wishart prior is used the hyperparameters can be set in
wishart.par. Prior definitions including parameterizations of the different options are given
in the package documentation of meta4diag() or makePriors(). Of note is that the argu-
ments var.prior, var2.prior and cor.prior are not case sensitive, i.e., var.prior = "pc"
is valid if one uses it to indicate the PC prior for the first variance component.

Here, we use the logit link function by using link = "logit". Alternative options are
"probit" for the probit link and "cloglog" for the complementary log-log transformation.
The argument quantiles requires a numerical vector with values in [0, 1] defining which pos-
terior quantiles should be returned. The default setting is c(0.025, 0.5, 0.975), and these
three quantiles will always be returned. The argument nsample is an integer specifying the
number of i.i.d. samples, generated from the approximated posterior distribution, which are
used to compute any non-linear function of interest, such as DOR, LR+ or LR−. The argu-
ment seed is required when nsample > 0 and used to control the random number generator
for sampling from the posterior distributions in INLA. In order to reproduce the result, we
also need to control the seed for the random number generator in R by controlling the variable
.Random.seed or using the function set.seed.
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To get summary information for all parameters of the model, we use the function summary():

R> summary(res)

Time used:
Pre-processing Running inla Post-processing Total

1.9662211 0.2238450 0.3630319 2.5530980

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant

mu 1.192 0.198 0.806 1.190 1.595
nu 2.302 0.651 1.073 2. 3.679

Model hyperpar:
mean sd 0.025quant 0.5quant 0.975quant

var_phi 0.243 0.178 0.050 0.195 0.717
var_psi 3.648 2.073 1.148 3.142 9.082
cor -0.819 0.200 -0.992 -0.888 -0.244

-------------------
mean sd 0.025quant 0.5quant 0.975quant

mean(Se) 0.766 0.032 0.699 0.767 0.825
mean(Sp) 0.897 0.052 0.767 0.907 0.971

-------------------
Correlation between mu and nu is -0.5504.
Marginal log-likelihood: -65.0459
Variable names for marginal plotting:

mu, nu, var1, var2, rho

Here, also the time needed to fit the model as well as the estimated correlation between the
two linear predictors, here µ and ν, are shown. This correlation is different from the hyper-
parameter correlation provided in cor, which corresponds to ρ̂, i.e., the posterior correlation
between random effects.
To plot the posterior marginal distribution of σ2

φ, say, we call the function plot() with
argument var.type = "var1". When defining separate prior distributions for the variance
and correlation parameters and setting overlay.prior = TRUE the prior distribution is shown
in the same device. The posterior marginal distributions of σ2

φ and σ2
ψ together with their

corresponding prior distribution are shown in Figure 3. Valid values of var.type are the
names of the fixed effects (i.e., "mu" and "nu" for this data set), "var1", "var2" or "rho".
The argument save can be set to FALSE (default) to indicate that resulting figures are not
saved on the computer, or to a file name, (e.g., "posterior_v1.pdf"), to indicate that the
plot is saved as "./meta4diagPlot/posterior_v1.pdf", where "./" denotes the current
working directory and the directory meta4diagPlot is created automatically if it does not
exist. Alternatively, the argument save can be set to TRUE to indicate that the plot is saved
in the directory meta4diagPlot whereby the name is chosen according to var.type. Many
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Figure 3: Posterior marginals (black solid line) of σ2
φ, σ2

ψ and ρ for the Telomerase data
together with the prior distributions (gray dashed line).

standard R plotting arguments, such as xlab, ylab, xlim, ylim and col, can also be set in
the plot() function.

R> par(mfrow = c(1, 3))
R> plot(res, var.type = "var1", overlay.prior = TRUE, lwd = 2, save = FALSE)
R> plot(res, var.type = "var2", overlay.prior = TRUE, lwd = 2, save = FALSE)
R> plot(res, var.type = "rho", overlay.prior = TRUE, lwd = 2, save = FALSE)

To get descriptive statistics of study-specific accuracy measures of interest, such as positive or
negative likelihood ratios LR+ or LR−, or the diagnostic odds ratio DOR, we call the function
fitted(). The argument accuracy.type requires a single character string specifying the
statistics of interest. Possible options are besides other "sens" (default), "spec", "TPR",
"TNR", "FPR", "FNR", "LRpos", "LRneg", "RD", "DOR", "LLRpos", "LLRneg" and "LDOR" .

R> fitted(res, accuracy.type = "TPR")

Diagnostic accuracies true positive rate (sensitivity):
mean sd 0.025quant 0.5quant 0.975quant

Ito_1998 0.7405 0.04928 0.6348 0.7433 0.8306
Rahat_1998 0.7938 0.04631 0.6929 0.7966 0.8782
Kavaler_1998 0.8294 0.02931 0.7699 0.8301 0.8851
Yoshida_1997 0.6936 0.05958 0.5562 0.7010 0.7910
Ramakumar_1999 0.6878 0.04830 0.5875 0.6898 0.7777
Landman_1998 0.7967 0.03804 0.7164 0.7982 0.8677
Kinoshita_1997 0.6219 0.06810 0.4784 0.6263 0.7418
Gelmini_2000 0.7797 0.04416 0.6879 0.7810 0.8639
Cheng_2000 0.7725 0.04940 0.6672 0.7744 0.8664
Cassel_2001 0.8550 0.03843 0.7703 0.8582 0.9212

R> fitted(res, accuracy.type = "DOR")

Diagnostic accuracies diagnostic odds ratio (DOR):
mean sd 0.025quant 0.5quant 0.975quant

Ito_1998 70.720 66.770 13.4700 52.900 236.000
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Rahat_1998 19.260 12.510 5.0830 16.210 51.460
Kavaler_1998 10.480 3.766 5.0000 9.843 19.420
Yoshida_1997 72.930 44.170 20.7900 62.500 186.600
Ramakumar_1999 211.700 190.300 47.3400 156.300 687.500
Landman_1998 18.750 8.933 6.9920 16.930 41.290
Kinoshita_1997 720.400 5751.000 12.4000 145.400 4412.000
Gelmini_2000 36.120 26.130 9.3120 29.460 102.700
Cheng_2000 37.470 22.420 11.0100 32.070 96.720
Cassel_2001 2.798 1.443 0.9042 2.494 6.474

A commonly used graphic to illustrate the results of a meta-analysis is the so-called forest
plot (Lewis and Clarke 2001). Figure 4 shows the forest plot including 95% credible intervals
for the Telomerase data set as obtained using the forest() function.

R> forest(res, accuracy.type = "sens", est.type = "mean", cut = c(0.4, 1),
+ nameShow = TRUE, dataShow = "center", estShow = TRUE, text.cex = 1.5,
+ arrow.lwd = 1.5)

The arguments nameShow, dataShow, estShow require a logical value indicating whether the
study names, the given observations (values of TP, FP, TN and FN) and values of credible
intervals are displayed as texts in the forest plot, respectively. The corresponding texts are
right aligned when the arguments are set to be TRUE. They could also be "left", "right"
or "center" specifying the different alignments. The argument accuracy.type is defined
as in the fitted() function. The argument est.type requires a character string specifying
the summary estimate to be used. The options are "mean" (default) and "median". The
arguments text.cex specifies the text size, while arrow.lwd specifies the line width for the
credible lines.
The two functions crosshair() and SROC() are available to study the result in the ROC
space with sensitivity on the y-axis and 1 – specificity on the x-axis. Figure 5 shows a
crosshair plot displaying the individual studies in ROC space with paired confidence intervals
representing sensitivity and specificity (Phillips, Stewart, and Sutton 2010). Figure 6 shows
a summary receiver operating characteristic curve (SROC) which is only available when no
separate covariates are included for the two model components, here sensitivity and specificity,
as only then the bivariate meta-regression approach is equivalent to the HSROC approach
(Rutter and Gatsonis 2001). The corresponding commands are:

R> crosshair(res, est.type = "mean", col = 1:10)
R> SROC(res, est.type = "mean", sroc.type = 1, dataShow = "o",
+ crShow = TRUE, prShow = TRUE)

The argument dataShow specifies whether the original data are shown. The argument crShow
and prShow are Boolean and indicate whether a credible region or prediction region, re-
spectively, is shown. The argument sroc.type takes an integer value from 1 to 5. When
sroc.type = 1, the function used to define the SROC line corresponds to “The regression
line 1” in Arends et al. (2008); Chappell, Raab, and Wardlaw (2009). The values sroc.type
= 2, sroc.type = 3, sroc.type = 4 and sroc.type = 5 correspond to “The major axis
method”, “The Moses and Littenberg’s regression line”, “The regression line 2” and “The
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Forest plot for true positive rate (sensitivity)

Figure 4: Forest plot of the true positive rate (sensitivity) for the Telomerase data. Study
names, the given observations (values of TP, FP, TN and FN) as well as model-based mean
estimates within 95% credible intervals are shown. At the bottom a summary estimate com-
bining all studies is provided. The size of the study specified estimate points (�) is propor-
tional to the length of the corresponding credible intervals, the shorter the interval length the
bigger the point and vice versa.

Rutter and Gatsonis’s SROC curve”, respectively. Different choices may result in different
SROC lines when the correlation for sensitivity and specificity is positive. We refer to Chap-
pell et al. (2009) for more details and a comparison of the different formulations.

3.4. Incorporating additional sub-data stratification

The Scheidler data set contains the results of a meta-analysis conducted by Scheidler et al.
(1997) to compare the utility of three types of diagnostic imaging, lymphangiography (LAG),
computed tomography (CT) and magnetic resonance (MRI), to detect lymph node metastases
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Figure 5: Crosshair plot for the Telomerase data set. Shown are the posterior means for
each study as the summary points together with paired lines showing the corresponding 95%
credible intervals for sensitivity and (1 – specificity). Colors are randomly chosen.
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Figure 6: SROC plot for the Telomerase data set. Each bubble represents one study and
indicates its observed sensitivity and specificity. The size of the bubble is proportional to the
number of individuals in this study. The solid black line is the SROC line. The star point
represents the summary point, the dashed blue line is the 95% credible region and the dashed
gray line is the 95% prediction region.
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in patients with cervical cancer. The data set consists of a total of 44 studies: the first 17 for
CT, the following 17 for LAG and the last 10 for MRI. The Scheidler data set is provided
in the package as a data frame with 44 rows. It has a special column named modality that
specifies to which imaging technology, namely CT, LAG or MRI, each study belongs to. The
first five lines of the data set are given as:

R> data("Scheidler", package = "meta4diag")
R> head(Scheidler)

studynames modality TP FP FN TN
1 Grumbine_1981 CT 0 1 6 17
2 Walsh_1981 CT 12 3 3 7
3 Brenner_1982 CT 4 1 2 13
4 Villasanta_1983 CT 10 4 3 25
5 vanEngelshoven_1984 CT 3 1 4 12
6 Bandy_1985 CT 9 3 3 29

There are two obvious ways to analyze this data set. First, analyze the meta-analysis of
each imaging technology separately, which gives each study its own estimates of the hyper-
parameters. Second, analyze all studies together and incorporate the stratification using a
technology-specific intercept.
To analyze all subdata separately, we call the function meta4diag() three times assuming
for each subset model (1) without covariate information. Here, we use the default settings of
meta4diag().

R> res.CT <- meta4diag(data = Scheidler[Scheidler$modality == "CT", ])
R> res.LAG <- meta4diag(data = Scheidler[Scheidler$modality == "LAG", ])
R> res.MRI <- meta4diag(data = Scheidler[Scheidler$modality == "MRI", ])

Prior distributions as well as other model details, such as the link function, can be changed
as described in Section 3.3.
To plot the results of all three analyses in one device, we can use the SROC() function with
the argument add = TRUE, see Figure 7a.

R> SROC(res.CT, dataShow = "o", lineShow = TRUE, prShow = FALSE,
+ data.col = "red", cr.col = "red", sp.col = "red")
R> SROC(res.LAG, dataShow = "o", lineShow = TRUE, prShow = FALSE,
+ data.col = "blue", cr.col = "blue", sp.col = "blue", add = TRUE)
R> SROC(res.MRI, dataShow = "o", lineShow = TRUE, prShow = FALSE,
+ data.col = "green", cr.col = "green", sp.col = "green", add = TRUE)

To analyze the entire data set, we consider the column modality as a categorical covariate
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and use the following model where the overall intercept is omitted:

TPi|Sei ∼ Binomial(TPi + FNi,Sei), logit(Sei) = µi + φi,

TNi|Spi ∼ Binomial(TNi + FPi, Spi), logit(Spi) = νi + ψi,

µi =


µCT if i = 1, . . . , 17
µLAG if i = 18, . . . , 34
µMRI if i = 35, . . . , 44

νi =


νCT if i = 1, . . . , 17
νLAG if i = 18, . . . , 34
νMRI if i = 35, . . . , 44(

φi
ψi

)
∼ N

[(
0
0

)
,

(
σ2
φ ρσφσψ

ρσφσψ σ2
ψ

)]
.

(2)

Here, i = 1, . . . , 44. To analyze this data in meta4diag, we call the function meta4diag()
with argument modality = "modality":

R> res <- meta4diag(data = Scheidler, modality = "modality")
R> res

Time used:
Pre-processing Running inla Post-processing Total

0.67642403 0.37233186 0.09966302 1.14841890

Model:Binomial-Normal Bivariate Model for Se & Sp.
Data contains 44 primary studies.

Data has Modality variable with level 3.
Covariates not contained.

Model using link function logit.

Marginals can be plotted with setting variable names to
mu.CT, mu.LAG, mu.MRI, nu.CT, nu.LAG, nu.MRI, var1, var2 and rho.

To print the estimates for the parameters of the model, we use the function summary():

R> summary(res)

Time used:
Pre-processing Running inla Post-processing Total

0.6840582 0.4051738 0.1005492 1.1897812

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant

mu.CT -0.144 0.272 -0.689 -0.141 0.386
mu.LAG 0.809 0.263 0.299 0.806 1.340
mu.MRI 0.192 0.347 -0.496 0.193 0.877
nu.CT 2.699 0.270 2.184 2.693 3.249
nu.LAG 1.589 0.231 1.141 1.585 2.057
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nu.MRI 3.027 0.343 2.368 3.021 3.722

Model hyperpar:
mean sd 0.025quant 0.5quant 0.975quant

var_phi 0.800 0.308 0.354 0.747 1.550
var_psi 0.701 0.258 0.324 0.658 1.327
cor -0.481 0.190 -0.790 -0.500 -0.058

-------------------
mean sd 0.025quant 0.5quant 0.975quant

mean(Se.CT) 0.465 0.061 0.346 0.465 0.583
mean(Se.LAG) 0.690 0.051 0.586 0.691 0.783
mean(Se.MRI) 0.547 0.077 0.394 0.548 0.692
mean(Sp.CT) 0.935 0.015 0.903 0.937 0.960
mean(Sp.LAG) 0.828 0.030 0.766 0.830 0.882
mean(Sp.MRI) 0.952 0.014 0.918 0.954 0.975

-------------------
Correlation between mu.CT and nu.CT is -0.3013.
Correlation between mu.LAG and nu.LAG is -0.3494.
Correlation between mu.MRI and nu.MRI is -0.3081.

Marginal log-likelihood: -249.72
Variable names for marginal plotting:

mu.CT, mu.LAG, mu.MRI, nu.CT, nu.LAG, nu.MRI, var1, var2, rho

We apply the SROC() function again to check the difference between a separate and joint
analysis:

R> SROC(res, dataShow = "o", lineShow = TRUE, prShow = FALSE,
+ cr.col = c("red", "blue", "green"), sp.col = c("red", "blue", "green"),
+ line.col = c("red", "blue", "green"))

Of note is that the SROC curves strongly vary depending on which formula is used to com-
pute them, see Chappell et al. (2009) for a discussion. Five different formulas are available
in meta4diag which can be chosen using the argument sroc.type, see Section 3.3 and doc-
umentation.
From Figures 7a and 7b, we can see that the estimated summary points are almost the same
in both analyses. However, the credible regions change slightly using the different model
formulations. More striking are the changes in the SROC curves, in particular for the LAG
subset (blue). Looking at the data there is no obvious trend that sensitivity increases along
with increasing 1 − specificity. The estimated posterior correlation ρ̂ is 0.1809 [−0.55, 0.79].
Chappell et al. (2009) stated that it is not appropriate to use SROC curves when ρ̂ is close to
zero or positive. Using separate analyses, we assume that each subdata has its own random
effect properties. While using the full data set with a categorical covariate, we assume that
all the subdata share the same covariance matrix. The choice of how to model the data
is up to the user. However, when the argument covariates is used in the modeling, i.e.,
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Figure 7: (a) SROC plot to compare the results for each sub-analysis of the Scheidler data
set. Red: result for CT data. Blue: result for LAG data. Green: result for MRI data.
Bubbles represent the observed values where the size is proportional to the number of study
participants, dashed lines are 95% credible regions and the star points are the summary points.
The lines show the corresponding SROC curves. (b) SROC plot for the joint analysis of the
Scheidler data set. Bubbles are the observations, dashed lines are 95% credible regions and
the star points are the summary points. The lines show the corresponding SROC curves.
Red: result for CT data. Blue: result for LAG data. Green: result for MRI data.

continuous covariates are included, the overall summary points, the confidence region and the
prediction region are no longer available through the function SROC(), and only the study
specific summary points can be obtained instead, see the example in Section 3.5.
The corresponding forest plot for this data set is shown in Figure 8. The plot is automatically
separated into three parts due to the column modality with three different levels.

R> forest(res, accuracy.type = "sens")

3.5. Use of continuous covariate information

The Catheter Segment Culture data consists of 33 studies from a diagnostic accuracy analysis
by Chu et al. (2010). The studies analyzed semi-quantitative (19 studies) and quantitative
(14 studies) catheter segment culture for the diagnosis of intravascular device-related blood
stream infection. In the data set a column with name type indicates whether a study is
based on semi-quantitative or quantitative catheter segment culture. We consider type as a
categorical covariate in the model so that it should be set to modality = "type". We choose
this data set as an example because it contains an additional column with name prevalence
providing disease prevalence information which can be considered as a continuous covariate.
To analyze the data set, we first load the Catheter data set:

R> data("Catheter", package = "meta4diag")
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Figure 8: Forest plot for the Scheidler data. The plot is separated into three parts relating
to the three sub-data sets.

R> head(Catheter)

studynames type prevalence TP FP TN FN
1 Cooper_1985 Semi-quantitative 3.6 12 29 289 0
2 Gutierrez_1992 Semi-quantitative 12.2 10 14 72 2
3 Cercenado_1990 Semi-quantitative 12.9 17 36 85 1
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4 Rello_1991 Semi-quantitative 13.2 13 18 67 0
5 Maki_1977 Semi-quantitative 1.6 4 21 225 0
6 Aufwerber_1991 Semi-quantitative 3.1 15 122 403 2

Consider that we would like to use the model:

FNi|Sei ∼ Binomial(TPi + FNi, Sei), logit(Sei) = µi + α · prevalencei + φi,

TPi|1− Spi ∼ Binomial(TNi + FPi, 1− Spi), logit(1− Spi) = νi + β · prevalencei + ψi,

µi =
{
µsemi-quantitative if i = 1, . . . , 19
µquantitative if i = 20, . . . , 33 νi =

{
νsemi-quantitative if i = 1, . . . , 19
νquantitative if i = 20, . . . , 33(

φi
ψi

)
∼ N

[(
0
0

)
,

(
σ2
φ ρσφσψ

ρσφσψ σ2
ψ

)]
.

(3)
That means we would like to model sensitivity and 1− specificity jointly as proposed by Chu
et al. (2010) for this data set. This can be done by setting model.type = 2. As the Catheter
Segment Culture data contains one categorical covariate type and one continuous covariate
prevalence, the argument modality is set to be "type" and argument covariates is set to
be "prevalence".

R> set.seed(19876)
R> res <- meta4diag(data = Catheter, model.type = 2, var.prior = "PC",
+ var2.prior = "PC", cor.prior = "PC", var.par = c(3, 0.05),
+ cor.par = c(1, -0.1, 0.5, -0.95, 0.05, NA, NA),
+ modality = "type", covariates = "prevalence",
+ quantiles = c(0.125, 0.875), nsample = 10000, seed = 1352)

Currently only one categorical covariate can be included in the model, whereas there is no
limitation for the number of continuous covariates. In order to include more than one contin-
uous covariate in the model, the user can provide a vector giving the names of all covariates
to be included or the respective column numbers in the data frame.
Here, we choose a PC prior for all hyperparameters. The vector of parameters for the PC
prior of the correlation parameter must always be of length 7 specifying as c(strategy, ρ0,
ω, u1, α1, u2, α2). However, u2 and α2 are not required when using strategy = 1, u1 and
α1 are not required when strategy = 2 and there is no need to specify ω when strategy =
3, see Section 2.2. To obtain the 12.5% and 87.5% quantiles in addition to the default 2.5%,
50% and 97.5% quantiles we set quantiles = c(0.125, 0.875). Summary estimates are
again obtained using the function summary():

R> summary(res)

Time used:
Pre-processing Running inla Post-processing Total

0.9602380 0.6268680 0.1075032 1.6946092

Fixed effects:
mean sd 0.025quant 0.125quant 0.5quant 0.875quant
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mu.Semi.quantitative 1.827 0.360 1.170 1.428 1.808 2.240
mu.Quantitative 1.758 0.439 0.940 1.269 1.739 2.259
nu.Semi.quantitative -1.999 0.236 -2.468 -2.267 -1.998 -1.732
nu.Quantitative -2.690 0.317 -3.326 -3.050 -2.686 -2.332
alpha.prevalence 0.006 0.015 -0.024 -0.011 0.006 0.022
beta.prevalence 0.032 0.012 0.008 0.019 0.032 0.046

0.975quant
mu.Semi.quantitative 2.594
mu.Quantitative 2.681
nu.Semi.quantitative -1.535
nu.Quantitative -2.074
alpha.prevalence 0.034
beta.prevalence 0.057

Model hyperpar:
mean sd 0.025quant 0.125quant 0.5quant 0.875quant 0.975quant

var_phi 1.039 0.481 0.391 0.561 0.942 1.575 2.249
var_psi 0.764 0.232 0.416 0.521 0.727 1.031 1.322
cor 0.094 0.216 -0.327 -0.161 0.094 0.349 0.506

Marginal log-likelihood: -239.5213
Variable names for marginal plotting:

mu.Semi.quantitative, mu.Quantitative, nu.Semi.quantitative,
nu.Quantitative, alpha.prevalence, beta.prevalence, var1, var2, rho

A forest plot for the log diagnostic odds ratio is given in Figure 9. Here, 75% credible intervals
are shown which is specified by setting the argument intervals = c(0.125, 0.875) within
the function forest().

R> forest(res, accuracy.type = "LDOR", est.type = "median", nameShow = TRUE,
+ estShow = "left", dataShow = "center", text.cex = 1.5, arrow.lwd = 1.5,
+ cut = c(0, 10), intervals = c(0.125, 0.875))

Of note is that when the argument covariates is available, the summary estimates cannot
be returned through the function forest(). Similarly, the summary points, confidence region
and prediction region in the SROC plot are not available. The SROC curve in contrast is
still available. However, it does not depend on the choice of the argument sroc.type, but is
computed according to Walter (2002) by fitting a regression equation

Di = a+ bSi,

where

Di = log
(

Ŝei
1− Ŝei

)
− log

(
1− Ŝpi
Ŝpi

)
and

Si = log
(

Ŝei
1− Ŝei

)
+ log

(
1− Ŝpi
Ŝpi

)
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Estimates

Forest plot for log diagnostic odds ratio (ldor)

Figure 9: Forest plot for the log diagnostic odds ratio (LDOR) of the Catheter data set. The
study names, original data set, estimated mean and corresponding 75% credible intervals are
also shown.

respectively. After fitting the regression line, the equation of the SROC curve can be obtained
as

SROC(x) =
exp

(
a

1−b

)
x(1+b)/(1−b)

1 + exp
(

a
1−b

)
x(1+b)/(1−b)

, x ∈ [0, 1].

3.6. Graphical user interface

To make Bayesian diagnostic meta-analysis easier to use for applied scientists, a cross-
platform, interactive and user-friendly graphical user interface has been implemented. The
graphical user interface can be used to load the data, set and graphically inspect the priors
as the hyperparameters are manually changed by sliders (see Figure 12), and run the model.
The results of the analysis are shown directly in the interface and can be saved for later
use. The graphical user interface only requires the basic knowledge of R required to start R,
load the packages and run the command that starts the graphical user interface. Within the
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Figure 10: GUI main window of meta4diag after start up. (A) toolbar, (B) tool control
panel, (C) view area, showing different pages (welcome message, data set, summary results,
graphics). In particular, the “Data Control Panel” is shown in the “tool control panel” area.
Users could upload their own data sets for analyzing or choose an example data set for
understanding the package. The “Welcome” page is shown in the “view area”. The basic
information for modeling and the description of bivariate meta-analysis of diagnostic test
studies are shown in this page.

interface all options are visualized as buttons or drop-down menus, and help for each option
is found as tooltips when the user moves the mouse over the option or the “Description area”.
The interface has been tested in the browsers “Internet Explorer”, “Mozilla Firefox”, “Google
Chrome” and “Safari” on Linux, Mac and Windows 10 operating systems.
The graphical user interface is started by loading the packages meta4diag and INLA and then
calling the function meta4diagGUI() with:

R> library("meta4diag")
R> library("INLA")
R> meta4diagGUI()

The start window of the graphical user interface is shown in Figure 10 and is divided into
three areas A, B and C. A contains the toolbar and has buttons for running INLA and
writing the results to a text file, and buttons for starting the tutorial, saving the results to
an R object for further study in R and for quitting the interface. B has 6 tabs that contain
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Figure 11: Details for two tool panels. Left: “Prior Control Panel”. In this panel, users can
set the prior distributions for the first variance component, the second variance component
and the correlation. In particular, the specification of the PC prior for the first variance
component is shown. The “Description area” is shown to explain what the prior is. The red
“Invalid!” indicates that the given value for the hyperparameter α is not valid. The interval
of the valid values can be seen from the tooltips of the indicator “Invalid”. Right: “Model
Control Panel”.

the various control panels, which are used to set up the analysis, such as the data control
panel, the prior control panel, and the model control panel. The options within these three
panels must be set before pressing the “RunINLA” button in A. The “Forest” control panel
and “SROC” control panel in B are used for choosing plotting settings, and can be used both
before and after running the model, and the “Fitted” panel allows the user to inspect the
estimates for different choices of accuracy types and can also be set after running the model.
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Figure 12: Interactive prior specification window. The prior density is shown and can be
changed by sliding the bottom bars.

Lastly, C has 10 tabs where the first is a welcome page and the rest are used to view the data
and the results.
Figure 11, which contains a screenshot of the “Prior Control Panel” on the left-hand side and
the “Model Control Panel” on the right-hand side, gives an example of how the user can set
the model and the prior. The description of the options in each panel is integrated in the GUI
through tooltips, but can also be found in the package documentation (see the man page for
meta4diag() for details). The left-hand side of the screenshot only shows how the user can
set the prior distribution for the first variance component, but the panel also contains options
for setting the priors on the second variance component and the correlation in the bivariate
model. Figure 12 illustrates how the user can explore different settings of the hyperparameters
interactively by sliding the sliders corresponding to each parameter. When the PC prior is
selected for the correlation parameter, the user may use either of the specification strategies
described in Section 2.2 to set the hyperparameters. The “Model Control Panel” shown on
the right-hand side of Figure 11 is used to specify the model type, link function, quantiles of
interest, and more.
After setting the options in the first three control panels and clicking the “RunINLA” button,
the chosen data set will be loaded and analyzed. The results of the analysis will be shown in
the view area (C) and, for example, the SROC plot can be viewed in the SROC tab of the
view area (C) as shown in Figure 13. The other tabs can be used to view summary estimates,
study-specific accuracy estimates, posterior marginal plots and the forest plot. In each case
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Figure 13: Example of an SROC plot in the view area and the “SROC Control Panel” in the
left tool bar.

the R code that generated the figure or text is also shown. If the data, the model or prior
settings are changed, the user must push the “RunINLA” button again to update the results.

4. Conclusion
The present paper demonstrates the usage of the R package meta4diag for analyzing bivariate
meta-analyses of diagnostic test studies with R, and illustrates its usage using three examples
from the literature. The package is built on top of the R package INLA and thus provides
full Bayesian inference without the need for Markov chain Monte Carlo techniques. This is
especially important when several or complex meta-analyses are studied, or simulation studies
shall be performed, as then the time speed-up becomes obvious. The model can be easily
specified, whereby the user does not need to know any INLA-specific details. Quantities rel-
evant in the field of diagnostic meta-regression are internally computed and returned directly
without requiring the user to work with the general and complex INLA output.
One of the biggest advantages – besides of being fast compared to other software packages
for Bayesian inference – is the flexible and at the same time intuitive prior specification
framework. In particular the newly proposed PC priors (Simpson et al. 2017) are supported.
Here, the user has the possibility to incorporate expert knowledge in the form of probability
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contrasts. Guo et al. (2017) compared the performance of different PC priors with previously
proposed priors in the bivariate model through an intensive simulation study and a real data
set. Both informative and less informative PC priors were studied, and results indicated that
the PC priors perform at least as good as previously used priors.
A graphical user interface makes the package also attractive for users who prefer to work
with interactive windows offering selection menus. The graphical user interface provides the
full functionality of the package. In addition the user can inspect the priors directly and
change them interactively. By offering fast inference within a Bayesian framework, intuitive
choice of prior distributions and the graphical user interface we feel that this package has
great potential for routine practice. As a future research direction, we would like to expand
the functionality of this package to a three-variate model analyzing sensitivity, specificity
and disease prevalence jointly. Further, we would like to investigate how to extend package
meta4diag when the assumption of a perfect reference test is not given.
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