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Abstract

This paper presents the R package EMMIXcskew for the fitting of the canonical fun-
damental skew t-distribution (CFUST) and finite mixtures of CFUST distributions (FM-
CFUST) via maximum likelihood (ML). The CFUST distribution provides a flexible fam-
ily to model non-normal data, with parameters for capturing skewness and heavy-tails in
the data. It formally encompasses the normal, t, and skew normal distributions as special
and/or limiting cases. A few other versions of the skew t-distributions are also nested
within the CFUST distribution.

In this paper, an expectation-maximization (EM) algorithm is described for computing
the ML estimates of the parameters of the FM-CFUST model, and different strategies for
initializing the algorithm are discussed and illustrated. The methodology is implemented
in the EMMIXcskew package, and examples are presented using two real datasets.

The EMMIXcskew package contains functions to fit the FM-CFUST model, including
procedures for generating different initial values. Additional features include random
sample generation and contour visualization in 2D and 3D.

Keywords: mixture models, fundamental skew distributions, skew normal distribution, skew
t-distribution, EM algorithm, R.

1. Introduction

Finite mixture models, in particular normal mixture models, have been widely used in statis-
tics and a diverse range of applied fields such as bioinformatics, biomedicine, economics,
finance, genetics, image analysis, psychometrics, and social science. They provide a powerful
and flexible tool for the probabilistic modeling of data, with applications ranging from density
estimation to clustering, classification, and discriminant analysis. For a survey on mixture
models and their applications, see Everitt and Hand (1981), Titterington, Smith, and Markov
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(1985), McLachlan and Basford (1988), Lindsay (1995), Böhning (2000), McLachlan and Peel
(2000), and Frühwirth-Schnatter (2006), the edited volume of Mengersen, Robert, and Tit-
terington (2011), and also the papers by Banfield and Raftery (1993) and Fraley and Raftery
(1998).
In recent years, mixture models with skew component distributions have received increasing
attention. These models adopt densities that can take more flexible distributional shapes than
the traditional normal and t-distributions as component distributions, rendering them suitable
for a wider range of applications. Of these, the skew t-distribution is gaining popularity due
to its ability to handle both the asymmetry and heavy-tailedness in the data. In particular, a
number of different formulations of the skew t-distribution have been proposed in the model-
based clustering literature (see, for example, Lee and McLachlan 2014a, 2016a; McLachlan and
Lee 2016, and the references therein). They have also found many applications in a range of
fields, including astrophysics (Riggi and Ingrassia 2013), financial risk analysis and modeling
(Soltyk and Gupta 2011; Bernardi 2013; Lee and McLachlan 2013b; Abanto-Valle, Lachos,
and Dey 2015), fisheries science (Contreras-Reyes and Arellano-Valle 2013), flow cytometry
(Pyne et al. 2009; Frühwirth-Schnatter and Pyne 2010; Rossin, Lin, Ho, Mentzer, and Pyne
2011; Ho, Lin, Chang, Haase, Huang, and Pyne 2012; Hu et al. 2013; Pyne et al. 2014; Lee,
McLachlan, and Pyne 2014; Lin, McLachlan, and Lee 2016; Lin, Wu, McLachlan, and Lee
2015; Lee, McLachlan, and Pyne 2016b; Pyne, Lee, and McLachlan 2015), image segmentation
(Lee and McLachlan 2013a), pharmaceutical science (Schaarschmidt, Hofmann, Jaki, Grün,
and Hothorn 2015), and the social sciences (Muthén and Asparouhov 2014; Asparouhov and
Muthén 2016). For a comprehensive survey of skew distributions, see, for example, the
articles by Azzalini (2005); Arellano-Valle and Azzalini (2006); Arellano-Valle, Branco, and
Genton (2006), the book edited by Genton (2004), and the recent monograph by Azzalini and
Capitanio (2014).
Recently, Lee and McLachlan (2016a) considered a finite mixture of canonical fundamental
skew t (FM-CFUST) distributions. The formulation of this skew t-distribution has a general
p×q matrix of skewness parameters (Arellano-Valle and Genton 2005). It thus provides a more
general characterization than the restricted and unrestricted skew t-distributions (adopting
the terminology of Lee and McLachlan 2013c). This paper describes the R (R Core Team
2017) package EMMIXcskew for the fitting of the FM-CFUST model (Lee and McLachlan
2018). It implements the EM algorithm described in Lee and McLachlan (2016a) and provides
other functionalities such as random sample generation, density evaluation, and the plotting
of contours in 2D and 3D.
The remainder of this paper is organized as follows. Section 2 provides a brief description of
the CFUST distribution and its nested models. Section 3 outlines an EM algorithm for fitting
finite mixtures of CFUST distributions and examines different approaches for generating
starting values for this EM algorithm. In the next two sections, the usage of the EMMIXcskew
package is illustrated using real and simulated examples. Finally, we conclude with some brief
remarks in Section 6.

2. The CFUST and related distributions

To establish notation, let Y be a p-dimensional random vector that follows a multivariate
CFUST distribution, denoted by Y ∼ CFUST p,q(µ,Σ,∆, ν). Then the density of Y is given
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by

f (y;µ,Σ,∆, ν) = 2q tp (y;µ,Ω, ν) Tq
(
c(y)

√
ν + p

ν + d(y) ; 0,Λ, ν + p

)
, (1)

where

Ω = Σ + ∆∆>,
c(y) = ∆>Ω−1 (y − µ) ,

Λ = Iq −∆>Ω−1∆,

d(y) = (y − µ)>Ω−1 (y − µ) .

It can observed from (1) that the CFUST distribution is indexed by the parameters (µ,Σ,∆, ν),
where µ is a p-dimensional vector of location parameters, Σ is a positive definite scale matrix,
∆ is a p × q matrix of skewness parameters, and ν is a scalar degrees of freedom parameter
that regulates the tails of the distribution. In the above, we let tp (y;µ,Ω, ν) denote the p-
dimensional t-distribution with location parameter µ, scale matrix Ω, and degrees of freedom
ν, and Tq(·) is the q-dimensional (cumulative) t-distribution function.
As mentioned previously, the CFUST distribution includes some commonly used distributions
as special and/or limiting cases. Taking ∆ = 0 reduces (1) to the symmetric multivariate
t-density tp(µ,Ω, ν), and further letting ν → ∞ and ν = 1 leads to the multivariate normal
Np(µ,Ω) and Cauchy Cp(µ,Ω) distributions, respectively. If ∆ is constrained to be a diagonal
matrix, we obtain the skew t-distribution of Sahu, Dey, and Branco (2003) which is referred to
as the unrestricted skew t-distribution using the terminology in Lee and McLachlan (2014a,
2013c). To obtain the classical skew t-distribution by Azzalini and Capitanio (2003) from (1),
one can set q = 1 or take ∆ to be a matrix of zeros except for one column (Lee and McLachlan
2016a). This formulation of the skew t-distribution, referred to as the restricted skew t-
distribution, is equivalent to that given by Branco and Dey (2001); Gupta (2003); Lachos,
Ghosh, and Arellano-Valle (2010) and Pyne et al. (2009); see Lee and McLachlan (2013c).
Analogously, the restricted and unrestricted skew normal distributions can be obtained by
placing appropriate constraints on ∆ and letting ν → ∞. Some properties of the CFUST
distribution are described in Arellano-Valle and Genton (2005). It is of interest to note that
this distribution suffers an identifiability issue as discussed in Lee and McLachlan (2016a).
In brief, this means that the CFUST density is invariant under permutations of the columns
of the skewness matrix ∆, but this does not affect parameter estimation. Hence, in practice,
the user only needs to be aware that changing the order of the columns of ∆ does not affect
the density of the CFUST distribution.
There are several R packages available on the Comprehensive R Archive Network (CRAN)
that deal with (multivariate) mixture models with skew component densities. In particular,
the restricted and unrestricted versions of the skew t-mixture models are implemented in
EMMIXskew (Wang, Ng, and McLachlan 2017) and EMMIXuskew (Lee and McLachlan
2013d), respectively. The package mixsmsn (Prates, Cabral, and Lachos 2013) implements
the family of finite mixtures of scale-mixture of skew normal distributions, which includes a
skew normal distribution and a skew t-distribution that is equivalent to the restricted skew
normal distribution and restricted skew t-distribution, respectively. However, the estimation
procedure used in package mixsmsn imposes the condition that all components of the skew t-
mixture model share a common value for the degrees of freedom. A recently developed package
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MixGHD (Tortora, ElSherbiny, Browne, Franczak, and McNicholas 2017) provides functions
to fit finite mixtures of generalized hyperbolic distributions. For the classical multivariate skew
normal and skew t-distributions, the sn package (Azzalini 2017) can be used. For traditional
normal mixture models and related tools, a number of other packages are available on CRAN,
such as bgmm (Biecek, Szczurek, Vingron, and Tiuryn 2012), flexmix (Leisch 2004; Grün and
Leisch 2008), mclust (Fraley and Raftery 2007; Scrucca, Fop, Murphy, and Raftery 2016),
and mixtools (Benaglia, Chauveau, Hunter, and Young 2009).

3. Fitting CFUST mixtures via the EM algorithm
The density of a finite mixture model is given by a convex linear combination of component
densities. More formally, adopting the CFUST distribution as component density, we obtain
a finite mixture of CFUST (FM-CFUST) distributions with density given by

f(y; Ψ) =
g∑

h=1
πhf(y;µh,Σh,∆h, νh), (2)

where πh (h = 1, . . . , g) are the mixing proportions and f(·) denotes the CFUST den-
sity given by (1). The mixing proportions satisfy πh ≥ 0 and ∑g

h=1 πh = 1. The vector
Ψ = (π1, . . . , πg−1,θ

>
1 , . . . ,θ

>
g ) contains all the unknown parameters of the model, with θh

containing the elements of µh and δh, the distinct elements of Σh, and νh.
For the fitting of the FM-CFUST model, we employ the EM algorithm (Dempster, Laird,
and Rubin 1977) to compute the maximum likelihood (ML) estimate of the parameters of
the model. The EM algorithm proceeds by alternating repeatedly between the E- and M-
steps until the changes in the log likelihood values are less than some specified small value
indicating convergence.
To facilitate parameter estimation via the EM algorithm, a set of latent variables are in-
troduced, namely the component labels Zj (corresponding to the j = 1, . . . , n independent
observations Y ), alongside two random variables U j and Wj that follow a half-normal distri-
bution and a gamma distribution, respectively. Thus, the complete-data for the FM-CFUST
model consist of these missing variables and the observations yj . This leads to a four-level
hierarchical characterization of the FM-CFUST model, given by

Y j | uj , wj , zhj = 1 ∼ Np

(
µ+ ∆huj ,

1
wj

Σh

)
,

U j | wj , zhj = 1 ∼ HN q

(
0, 1
wj
Iq

)
,

Wj | zhj = 1 ∼ gamma
(
νh
2 ,

νh
2

)
,

Zj ∼ Multg (1,π) , (3)

where Zj is a g-dimensional vector of binary component labels such that Zhj = (Zj)h = 1
if the jth observation belongs to the hth component and zero otherwise. Here, HN q(0,Σ)
denotes the q-dimensional half-normal distribution with scale matrix Σ, gamma(α, β) denotes
the gamma distribution with mean α

β , and Multg(1,π) denotes the multinomial distribution
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of one draw and g categories with probabilities specified by π. We now outline the E- and
M-steps of the EM algorithm for fitting the FM-CFUST model.

3.1. The E-step

The E-step of the EM algorithm requires the calculation of Q(Ψ; Ψ(k)), the so-called Q-
function, which is the conditional expectation of the complete-data log likelihood given the
observed data Y , using the current estimate of Ψ, which is denoted by Ψ(k) after the kth
iteration. It follows that on the (k + 1)th iteration, the E-step requires the following five
conditional expectations to be calculated,

z
(k+1)
hj = EΨ(k)

[
zhj = 1 | yj

]
, (4)

w
(k+1)
hj = EΨ(k)

[
whj | yj , zhj = 1

]
, (5)

e
(k+1)
1hj = EΨ(k)

[
log(whj) | yj , zhj = 1

]
, (6)

e
(k+1)
2hj = EΨ(k)

[
whjuhj | yj , zhj = 1

]
, (7)

e
(k+1)
3hj = EΨ(k)

[
whjuhju

>
hj | yj , zhj = 1

]
. (8)

The expressions for (4) to (8) are given in Lee and McLachlan (2016a) and are therefore not
repeated here. However, it should be noted that e(k+1)

1hj can be evaluated using different ap-
proaches, two of which are described in the above reference. For simplicity, the EMMIXcskew
package implements the one-step-late (OSL) approach for this conditional expectation. It
should be noted that the use of the approximate OSL approach to calculate e(k)

1hj can result
in the incomplete-data likelihood not increasing monotonically. This conditional expectation
can be calculated more accurately by a power series derived in Lee and McLachlan (2014b,
2016a) for which monotonicity of the likelihood is preserved. An implementation of this
option will be provided in a future update of this package.

3.2. The M-step

On the (k + 1)th iteration of the the M-step, the current estimate of Ψ, Ψ(k), is updated to
Ψ(k+1), which is chosen to globally maximize Q(Ψ; Ψ(k)) over Ψ. For the FM-CFUST model,
the M-step leads to the following updates:

π
(k+1)
h = 1

n

n∑
j=1

z
(k+1)
hj ,

µ
(k+1)
h =

∑n
j=1 zhjw

(k+1)
hj yj −∆(k)

h

∑n
j=1 z

(k+1)
hj e

(k+1)
2hj∑n

j=1 z
(k+1)
hj w

(k+1)
hj

,

∆(k+1)
h =

 n∑
j=1

z
(k+1)
hj

(
yj − µ

(k+1)
h

)
e

(k+1)>
2hj

 n∑
j=1

z
(k+1)
hj e

(k+1)
3hj

−1

, (9)

Σ(k+1)
h =


n∑
j=1

z
(k+1)
hj

[
w

(k+1)
hj

(
yj − µ

(k+1)
h

) (
yj − µ

(k+1)
h

)>
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−∆(k+1)
h e

(k+1)
2hj

(
yj − µ

(k+1)
h

)>
−
(
yj − µ

(k+1)
h

)
e

(k+1)>
2hj ∆(k+1)>

h

+∆(k+1)
h e

(k+1)>
3hj ∆(k+1)>

h

]} n∑
j=1

z
(k+1)
hj

−1

. (10)

An update of the degrees of freedom νh is obtained by solving the following equation for
ν

(k+1)
h ,

0 =
(

n∑
h=1

z
(k+1)
hj

)[
log

(
ν

(k+1)
h

2

)
− ψ

(
ν

(k+1)
h

2

)
+ 1

]
−

n∑
j=1

z
(k+1)
hj

(
e

(k+1)
1hj − w(k+1)

hj

)
,

where ψ(·) denotes the digamma function.

3.3. Generating initial values for parameters

As the log likelihood function may exhibit a complicated profile with many local maxima
and the EM algorithm is sensitive to its initial values, it is important to choose good start-
ing values. In this section, we consider three strategies for generating valid initial values for
the EM algorithm for the FM-CFUST model. For the remainder of this section, we sup-
press the subscript h (denoting the index of a component in a mixture model) for notational
convenience.

Nested approach

An intuitive approach is to start the EM algorithm with the solution given by one of the nested
models of a CFUST distribution, for example, the results from fitting a normal or t-mixture
model. This option is available in EMMIXcskew with the fmcfust.init function (see Sec-
tion 5.2), which accepts the outputs from the packages EMMIXskew and EMMIXuskew. The
former package provides routines to fit mixtures of (multivariate) normal and t-distributions,
restricted skew normal and skew t-distributions, whereas the latter package fits a mixture of
unrestricted skew t-distributions.

Method of moments-based approach

Another approach is based on the moments of an unrestricted multivariate skew normal
(uMSN) distribution. As noted earlier, the uMSN distribution is a nested case of the CFUST
distribution. It can be characterized as the convolution of a truncated normal variable and a
multivariate normal variable as follows,

Y j = µ+ ∆|U0j |+U1j , (11)

where µ ∈ R, ∆ = diag(δ) is a diagonal matrix of skewness parameters with diagonal elements
given by δ, U0j ∼ Np(0, Ip) and U1j ∼ Np(0,Σ). The uMSN distribution (11) has mean
and variance given by

E(Y j) = µ+
√

2
π
δ,

VAR(Y j) = Σ +
(

1− 2
π

)
∆2. (12)
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When rearranging the above expressions, we obtain an expression for µ and Σ in terms of δ
(recall that by definition ∆ = diag(δ) for the uMSN distribution). To obtain an initial value
for δ(0), one can consider reducing the values of the diagonal elements of Σ(0) by an arbitrary
proportion (1− a) where a ∈ [0, 1] (Lin 2010). This leads to a set of expressions given by

δ(0) = ±

√
π(1− a)
π − 2 s∗,

Σ(0) = S + (a− 1)diag(s∗),

µ(0) = ȳ −
√

2
π
δ(0), (13)

where the sign of each element of δ(0) is given by the sign of the third-order sample moment
of the corresponding variable about its sample mean. In (13), s∗ is a p-dimensional vector
containing the diagonal elements of the sample covariance matrix S, and ȳ denotes the sample
mean. Concerning the degrees of freedom, it can be set (initially) to a large number to reflect
a uMSN distribution.

Transformation approach
A third approach is based on a transformation of Y j in an attempt to better handle the
correlation of the variables in Y j . We consider the transformation vector Xj = CY j , where
C is an orthogonal matrix such that the covariance matrix of Xj , VAR(Xj), is diagonal.
In practice, we work with the sample covariance matrix of Y j . Then we can fit a uMST
distribution to the transformed vector Xj , where each Xj can be characterized as

Xj = CY j

= µ+ ∆|U0j |+U1j , (14)

where U0j and U1j follow a central multivariate t-distribution with ν degrees of freedom and
scale matrix given by Iq and Σ, respectively. Note that in (14), we have used a stochastic
representation of the CFUST distribution that is analogous to (11) for a uMSN distribution.
On pre-multiplying Xj by C> in (14) to obtain Y j , we have

Y j = C>µ+C>∆|U0j |+C>U1j . (15)

This suggests that an initial value for µ and for ∆ in a CFUST distribution can be given
by C>µ̂ and C>∆̂, respectively, where µ̂ and ∆̂ are the estimates of µ and ∆ obtained by
fitting the uMST distribution toXj . However, it should be noted that if the true distribution
of Y j were a CFUSN distribution, then the transformed data Xj may not necessarily have
a uMSN distribution even though VAR(Xj) is diagonal. This happens when the off-diagonal
elements of Σ cancel out the off-diagonal elements of ∆∆>. But it might be expected that
in most situations where the sample covariance matrix of the Xj is approximately diagonal,
the matrix Σ and the skewness matrix ∆ are both diagonal or close to it.
In the case where a mixture of CFUST distributions is to be fitted rather than a single
component distribution, we would need to first cluster the Y j into g clusters and proceed
separately within each cluster as described above.
The above three methods are implemented in the function fmcfust.init of the EMMIXcskew
package. By default, the package adopts the moments method. An example on a real dataset
demonstrating the use of these approaches is given in Section 5.2.
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3.4. Stopping criterion
We adopt the Aitken acceleration-based stopping criterion as the default strategy to assess
the convergence of the EM algorithm for the FM-CFUST model. The EMMIXcskew package
also provides a few other criteria as an alternative, including those based on the relative
change in the log likelihood value and estimates of the parameters of the model.

Aiken acceleration-based approach
In brief, when using the default strategy, our algorithm terminates when the absolute differ-
ence between a log likelihood value and its asymptotic estimate is smaller than a specified
tolerance, ε; that is, when ∣∣∣`(k+1)

∞ − `(k+1)
∣∣∣ < ε, (16)

where `(k+1) is the log likelihood value at the (k + 1)th iteration and `(k+1)
∞ is its asymptotic

estimate, given by

`(k+1)
∞ = `(k) + `(k+1) − `(k)

1− a(k) . (17)

In the above, a(k) = `(k+1)−`(k)

`(k)−`(k−1) denotes the Aitken’s acceleration at the kth iteration (Böhning,
Dietz, Schaub, Schlattmann, and Lindsay 1994; McLachlan and Krishnan 1997). The default
tolerance of ε = 10−6 is applied to the examples in the following sections, but the user can
specify a different value.

Relative likelihood-based approach
Another commonly used stopping criterion is to monitor the relative changes in the log like-
lihood values at the end of each iteration and to stop the algorithm when the (relative)
difference between two successive log likelihood values is less than a specified threshold. More
formally, our algorithm terminates when∣∣∣`(k+1) − `(k)

∣∣∣∣∣`(k+1)
∣∣ < ε, (18)

where the threshold ε is set to 10−6 by default. Again, the user can specify a different
threshold.

Relative parameters-based approach
Apart from tracking the changes in the log likelihood value, one can also monitor the changes
in the parameter estimates. In this case, the algorithm is considered to have converged when
the relative change in all the parameter estimates is less than a specified threshold ε. Note
that this criterion implies that the relative change of all the free parameters needs to be
smaller than ε, that is, all elements of Ψ including the mixing proportions. Let [Ψ]j denote
the jth element of Ψ. Thus, the EM algorithm terminates when∣∣∣[Ψ](k+1)

j − [Ψ](k)
j

∣∣∣∣∣∣[Ψ](k+1)
j

∣∣∣ < ε, (19)
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is satisfied for all j. Again, the default tolerance is ε = 10−6.

3.5. Notes on the EM implementation

In the EM algorithm described in this paper, the number of components g and the dimension
q of the skewing vector must be specified. In practice, these are typically unknown and model
selection criteria are employed to aid in choosing appropriate values of g and q. Some of the
more commonly used information criteria include the Bayesian information criterion (BIC;
Schwarz 1978), given by

BIC = m logn− 2`,

and the Akaike information criterion (AIC; Akaike 1974), given by

AIC = 2m− 2`,

where m is the number of free parameters, n is the number of observations, and ` is the
value of the log likelihood function at the fitted parameter vector. As is typical in fitting a
mixture of factor analyzers (MFA) models, one may fit the FM-CFUST model for a range
of values of p and q and choose the combination of p and q corresponding to the lowest AIC
or BIC. An alternative strategy for automatically selecting an appropriate value of g was
considered in Lee and McLachlan (2016c) which is based on the minimum message length
(MML) criterion. However, concerning the value of q, it was observed in Lee and McLachlan
(2016a) that when fitting the CFUST model with q = p it was able to model data generated
from the rMST (q = 1) and uMST (q = p and ∆ is a diagonal matrix) distributions quite
well. In particular, the estimated ∆ matches the true ∆ reasonably well. For example, in
the case of data generated from an rMST distribution, all but one of the columns of the
estimated ∆ has elements being relatively small, thus resembling the q = 1 case. Hence, in
the implementation of the EM algorithm in the EMMIXcskew package, the default value of
q is set to p. But the user is encouraged to experiment with different values of q when fitting
the FM-CFUST model.

4. Using the EMMIXcskew package
The EMMIXcskew package implements the EM algorithm described in Section 3 and provides
additional functions such as random sample generation, density evaluation, and graphics out-
puts. The software is primarily written in R. Package EMMIXcskew is available from CRAN
at https://CRAN.R-project.org/package=EMMIXcskew. In the following, we demonstrate
the basic usage of the EMMIXcskew package using simple examples. In particular, the fol-
lowing main routines are discussed:

• dfmcfust: evaluation of density values;

• rfmcfust: generation of a random sample from a FM-CFUST distribution;

• fmcfust: fitting a FM-CFUST model;

• init.cfust: generation of initial values for use in fmcfust;

https://CRAN.R-project.org/package=EMMIXcskew
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Parameters R arguments Dimensions Description
µ mu p× 1× g the location parameters
Σ sigma p× p× g the scale matrices
∆ delta p× q × g the skewness parameters
ν dof g × 1 the degrees of freedom
π pro g × 1 the mixing proportions

Table 1: Structure of the model parameters in package EMMIXcskew.

• fmcfust.contour.2d: plotting a 2D graph of the contours of a FM-CFUST model;

• fmcfust.contour.3d: plotting 3D surface contours of a FM-CFUST model.

4.1. The density function of the FM-CFUST distribution

The density of a FM-CFUST distribution is calculated by the dfmcfust function. The inputs
to be passed into this function must be structured as described in Table 1. Briefly, the
parameters µ, Σ, and δ are each implemented as a list of g matrices, where g is the number
of components in the fitted model. Each element of the list objects mu, sigma, and delta
(h = 1, . . . , g) must be specified as a p×1, p×p, and p×q matrix, respectively. The parameters
dof and pro are g by 1 arrays, representing the degrees of freedom and the mixing proportions
for each component, respectively. Finally, the input data are specified by dat, an n×p matrix
where each row represents an individual observation.
Typically, one may be interested in calculating density values for a fitted FM-CFUST model
(obtained from the fmcfust function). In this case, the output object of the fitted model can
be directly passed into dfmcfust as a single argument known. Note that if both known and
all the model parameters were provided by the user, only the values specified by known would
be used. Issuing the following command will return a vector of n× 1 density values.

dfmcfust(dat, mu, sigma, delta, dof, pro, known = NULL)

For a single CFUST distribution (that is, g = 1), the dcfust function can be used. Here, the
arguments mu, sigma, and delta need not be a list object, but mu can be a numeric array,
and sigma and delta are matrices. Similar to the above function call, dcfust can be called
at the R command prompt as follows, which will return a numeric vector of density values.

dcfust(dat, mu, sigma, delta, dof)

4.2. Fitting a single CFUST distribution

To fit the FM-CFUST model with a single component (g = 1), the main routine fmcfust can
be used. This implements the EM algorithm described in Section 3, with the default strategy
for initial values given in (13). By default, q is assumed to be the same as p. A typical call
of fmcfust is:

fmcfust(g, dat, q = p, initial = NULL, known = NULL, itmax = 100, eps = 1e-6,
nkmeans = 20, verbose = TRUE)
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As a simple example, we consider the iris dataset, available directly in R. For illustration
purposes, we look at the Versicolor species and focus on the two variables Sepal.Width and
Pedal.Length. We first create a new data object iris.versicolor with the required data,
then execute the fmcfust function with g = 1. This is the minimum information that must
be supplied to fmcfust.

R> library("EMMIXcskew")
R> data("iris", package = "datasets")
R> iris.versicolor <- subset(iris, Species == "versicolor",
+ c(Sepal.Width, Petal.Length))
R> Fit.versicolor <- fmcfust(1, iris.versicolor)

The above command will return a ‘fmcfust’ object, containing the final estimate of the
parameters, the predicted cluster labels, and a number of measures associated with the
fitted model. The final estimated parameters are contained in Fit.versicolor and can
be accessed using Fit.versicolor$mu, Fit.versicolor$sigma, Fit.versicolor$delta,
Fit.versicolor$dof, and Fit.versicolor$pro. To view these parameters, summary can
be called:

R> summary(Fit.versicolor)

Finite Mixture of Multivariate CFUST Distribution
with 1 component

Mean:
[,1]

[1,] 3.415878
[2,] 4.886890

Scale matrix:
[,1] [,2]

[1,] 0.006138577 -0.007283746
[2,] -0.007283746 0.020649780

Skewness matrix:
[,1] [,2]

[1,] -0.4901844 -0.37242352
[2,] -0.9067630 0.03643873

Degrees of freedom:
[1] 87.47343

The other arguments of fmcfust are similar to that used in fmmst from the EMMIXuskew
package, which fits a FM-uMST model (see Section 4.2 in Lee and McLachlan 2013d for
details). Briefly, known is a list of model parameters that are known a priori and, if supplied,
will not be updated in the iterations of the EM algorithm. The arguments itmax and eps
determine when the EM algorithm is terminated. If either the maximum number of iterations
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Figure 1: Contours of a FM-CFUST model fitted to the versicolor data.

as specified by itmax is reached or the tolerance as specified by eps is obtained, the EM loop
will terminate. User specified initial values can be supplied using initial. Note that this
must be a list object structured as in Table 1. The argument nkmeans specifies the number
of k-means trials to be performed when using the default starting strategy. With verbose =
TRUE, fmcfust prints the log likelihood value at each iteration and displays a summary of the
estimated parameters of the model.
Note that in the above example we have used the default starting strategy to generate initial
values, and assume q = p. As pointed out in Section 3, this may not always give the optimal
fit. It is highly recommended that the EM algorithm is run from a range of different starting
values. Some alternative methods for generating different starting values are discussed in
Section 3.3. These are implemented in init.cfust (see Section 5.2 for further discussions).
In addition, the user can also experiment with different values of q. However, it is interesting
to note that for the simulated dataset of Section 4.1 in Lee and McLachlan (2016a), it was
observed that the FM-CFUST model is able to (roughly) recover the structure of ∆ without
prior knowledge of any constraints on the matrix of skewness parameters.
To assist in choosing a suitable model for the data from a range of different fitted results
(for example, using different starting values), log likelihood values and information measures
such as AIC and BIC can be compared. These values are available as part of the out-
put of fmcfust and can be accessed using Fit.versicolor$loglik, Fit.versicolor$aic,
and Fit.versicolor$bic. They can also be viewed using the print command as shown
below for the example above. The contours of the fitted model can be visualized using
fmcfust.contour.2d (see Figure 1). Further details and examples of contour plots will be
given in Section 5.5.

R> Fit.versicolor
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[... the first five elements omitted ...]

$tau
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1
[,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]

[1,] 1 1 1 1 1 1 1 1 1 1 1
[,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35]

[1,] 1 1 1 1 1 1 1 1 1 1 1
[,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46]

[1,] 1 1 1 1 1 1 1 1 1 1 1
[,47] [,48] [,49] [,50]

[1,] 1 1 1 1

$clusters
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

$loglik
[1] -32.30904

[... omitted ...]

$aic
[1] 84.61809

$bic
[1] 103.7383

attr(,"class")
[1] "fmcfust"

4.3. Fitting a FM-CFUST distribution

Consider now the fitting of a three-component FM-CFUST model to the entire iris dataset.
It consists of four geometric measurements on 150 observations of Iris, with 50 observations
from each of three species of Iris (Setosa, Virginica, and Versicolor). The following code fits
a FM-CFUST model using the results of a FM-uMST model as starting values.

R> fit.unrestricted <- fmmst(3, iris[, -5])
R> fit.iris <- fmcfust(3, iris[, -5], initial = fit.unrestricted,
+ method = "EMMIXuskew")

Again, this returns a ‘fmcfust’ object.

R> summary(fit.iris)
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Finite Mixture of Multivarate CFUST distributions
with 3 components

Component means:
[,1] [,2] [,3]

[1,] 4.8679805 6.345495 5.888911
[2,] 3.2808574 3.066433 2.808218
[3,] 1.4284854 4.474566 5.037776
[4,] 0.1343135 1.317947 2.072857

Component scale matrices:
[[1]]

[,1] [,2] [,3] [,4]
[1,] 0.0443155123 0.062560935 -0.001555865 -0.0009055586
[2,] 0.0625609347 0.113034980 -0.005108049 -0.0020813145
[3,] -0.0015558648 -0.005108049 0.004406555 -0.0001740700
[4,] -0.0009055586 -0.002081314 -0.000174070 0.0014520658

[[2]]
[,1] [,2] [,3] [,4]

[1,] 0.09082837 0.025318534 0.026025963 0.019138368
[2,] 0.02531853 0.017247010 0.006095164 0.013002944
[3,] 0.02602596 0.006095164 0.018280168 0.007674967
[4,] 0.01913837 0.013002944 0.007674967 0.013629673

[[3]]
[,1] [,2] [,3] [,4]

[1,] 0.21074014 0.09797725 0.14126357 0.08172475
[2,] 0.09797725 0.06086965 0.07169831 0.04819943
[3,] 0.14126357 0.07169831 0.11362605 0.07220769
[4,] 0.08172475 0.04819943 0.07220769 0.06428646

Component skewness matrices:
[[1]]

[,1] [,2] [,3] [,4]
[1,] 0.31881607 -0.27858936 0.007451725 0.12347998
[2,] 0.07624950 -0.11956707 0.069916385 0.16058854
[3,] -0.04518459 -0.15517472 0.171888937 0.07288276
[4,] 0.01427354 -0.01726205 0.004160663 0.14294473

[[2]]
[,1] [,2] [,3] [,4]

[1,] -0.26796239 0.08370167 -0.5825564 0.25394904
[2,] 0.15322068 -0.23231167 -0.3423376 0.04590616
[3,] 0.05281789 0.22558561 -0.6678741 0.11566868
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[4,] 0.12572280 0.08299180 -0.2042711 0.00693709

[[3]]
[,1] [,2] [,3] [,4]

[1,] 0.136604953 -0.13416227 0.51626696 0.3693572
[2,] -0.017316931 0.14984453 -0.15684980 0.2290862
[3,] -0.219815729 0.03858686 0.53215188 0.3052493
[4,] -0.006738985 0.10835577 -0.04398362 -0.1216563

Component degrees of freedom:
51.74962 185.8696 127.0018

Component mixing proportions:
0.3333333 0.3314382 0.3352285

4.4. Nested special cases of the FM-CFUST distribution

In this section, we focus on the restricted and unrestricted versions of MST mixture models.
For the normal and t-mixture models, routines for fitting them are implemented in package
EMMIXskew. As noted earlier, the rMST distribution corresponds to a CFUST distribution
with q = 1. Thus setting q = 1 in fmcfust will fit a FM-rMST model. However, as package
EMMIXskew uses a specialized implementation of the EM algorithm for this model, the user is
encouraged to use this package when fitting a FM-rMST model. Similarly, the EMMIXuskew
package can be used for the fitting of a FM-uMST model. To fit the FM-rMST model to the
same dataset as in the example above using the EMMIXcskew package, the following code
can be used.

R> fit.restricted <- fmcfust(3, iris[, -5], q = 1)

The above model can also be fitted using the EMMIXskew package with the command
fit.restricted <- EmSkew(iris[, -5], 3, "mst", debug = FALSE).
We can compare the predicted cluster labels of these models against the true class labels.
For all three models, the predicted cluster labels are stored as clust in the output object.
A cross-tabulation of these labels suggests that the fitted FM-CFUST model performs well
with only one misclassified observation, whereas the FM-rMST and FM-uMST models have
three and six misclassified observations, respectively.

R> table(iris$Species, fit.iris$clust)

1 2 3
setosa 50 0 0
versicolor 0 49 1
virginica 0 0 50

R> table(iris$Species, fit.restricted$clust)
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Model FM-CFUST FM-rMST FM-uMST
MCR 0.0067 0.3733 0.0200

Table 2: Misclassification rate of the three skew t-mixture models fitted to the iris dataset.

1 2 3
setosa 6 0 44
versicolor 0 50 0
virginica 0 50 0

R> table(iris$Species, fit.unrestricted$clust)

1 2 3
setosa 50 0 0
versicolor 0 47 3
virginica 0 0 50

The misclassification rate (MCR) against the true labels can be calculated using error.rate
from the EMMIXskew package. In this example, the FM-CFUST model obtained the lowest
MCR compared to the FM-rMST and FM-uMST models (see Table 2 and the code below).
Figure 2 shows the clustering of the iris dataset using these three models.

R> error.rate(unclass(iris$Species), fit.iris$clust)

[1] 0.006666667

R> error.rate(unclass(iris$Species), fit.restricetd$clust)

[1] 0.3733333

R> error.rate(unclass(iris$Species), fit.unrestricted$clust)

[1] 0.02

R> panel1 <- function(x, y, ...) {
+ points(x, y, col = c("red", "green3", "blue")[fit.iris$clust],
+ pch = 20)
+ }
R> panel2 <- function(x, y, ...) {
+ points(x, y, col = c("red", "green3", "blue")[fit.unrestricted$clust],
+ pch = 20)
+ }
R> panel3 <- function(x, y, ...){
+ points(x, y, col = c("red", "green3", "blue")[fit.restricted$clust],
+ pch = 20)
+ }
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Figure 2: Clustering of the iris dataset. The upper panels of the figure on the left show
the true labels, whereas the lower panels are the predicted labels given by the FM-CFUST
model. For the figure on the right, the upper panels correspond to the results given by the
FM-uMST model and the lower panels correspond to that given by the FM-rMST model.

R> pairs(iris[1:4], main = "Iris Data", pch = 20,
+ col = c("red", "green3", "blue")[unclass(iris$Species)],
+ lower.panel = panel1)
R> pairs(iris[1:4], main = "Iris Data", upper.panel = panel2,
+ lower.panel = panel3)

In the case of univariate data, note that all three models become identical, and thus the use of
EmSkew from the EMMIXskew package is recommended as it provides a more computationally
efficient implementation. It should be noted that the fitting of the FM-uMST and FM-CFUST
models can be time consuming due to the amount of calculations required, especially when
q is large. When tested on a 3.4GHz machine, the example in Section 4.2 took around 3.5
seconds to complete. For the examples in this section, the CPU time for the FM-CFUST,
FM-uMST, and FM-rMST models is around 1856, 1927, and 13 seconds, respectively. Note
that if the specialized implementation of the EMMIXskew package is used, the CPU time for
the FM-rMST model in this example reduces to 0.8 seconds.

5. Miscellaneous functions

This section presents some illustrative examples on how to generate random observations,
generate/provide initial values (for the EM algorithm), use different stopping criteria, and
draw contour plots for a FM-CFUST model using package EMMIXcskew.
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5.1. Random sample from the FM-CFUST distribution

The CFUST admits a convolution-type stochastic representation that facilitates random sam-
ple generation. More specifically, let U0 and U1 be independent random variables following
multivariate normal distributions given by Np(0,Σ) and Nq(0, Iq), respectively. Let also w
be a scalar random variable with the gamma(ν2 ,

ν
2 ) distribution. Then

Y = µ+ 1√
w

∆|U0|+
1√
w
U0 (20)

has a CFUST distribution with density given by (1). The rcfust function adopts (20) to
generate a random sample of CFUST observations. Its mixture version is implemented as
rfmcfust in package EMMIXcskew. These two functions are given, respectively, by

rcfust(n, mu, sigma, delta, dof, known = NULL, ...)
rfmcfust(g, n, mu, sigma, delta, dof, pro, known = NULL, ...)

Input arguments for the above functions follow the same structure as described in Section 4.1,
permitting the parameters of the CFUST (or FM-CFUST) model to be specified either indi-
vidually using mu, sigma, delta, and dof (and also pro for a FM-CFUST model) or within a
list object using known. The argument n specifies the number of random observations to be
generated. In the case of a FM-CFUST model, n is either a single integer (which represents
the total number of observations to be generated) or a vector of g integers representing the
number of observations to be generated from each of the g component. Note that if n is a
single value, rfmcfust will determine the sample size for each component using the mixing
proportion specified by pro.
As an example, suppose one would like to generate 10 random observations from a CFUST

distribution with µ = (1, 2)>, Σ = I2, ∆ =
[

2 1
1 2

]
, and ν = 4, the following command can

be issued at the R command prompt. A 10× 2 matrix will be returned.

R> rcfust(10, c(1, 2), diag(2), matrix(c(2, 1, 1, 2), 2, 2), 4)

[,1] [,2]
[1,] 5.836001 5.600793
[2,] 3.080172 4.213700
[3,] 3.305617 4.888012
[4,] 4.390739 3.109635
[5,] 4.003996 4.686407
[6,] 1.609795 1.599386
[7,] 3.361534 5.326190
[8,] 3.449745 4.474217
[9,] 10.886028 7.964134

[10,] 5.752894 7.049037

Generating observations from a mixture of CFUST distributions is also quite simple using
rfmcfust. We first create an object with the required parameters. This can then be directly
passed into rfmcfust. An example is shown below. A n × (p + 1) matrix is returned where
the last column gives the component label for each generated data point.
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R> obj <- list()
R> obj$mu <- list(c(17, 19), c(5, 22), c(6, 10))
R> obj$sigma <- list(diag(2), matrix(c(2, 0, 0, 1), 2),
+ matrix(c(3, 7, 7, 24), 2))
R> obj$delta <- list(matrix(c(3, 0, 2, 1.5), 2, 2),
+ matrix(c(5, 0, 0, 10), 2, 2), matrix(c(2, 0, 5, 0), 2, 2))
R> obj$dof <- c(1, 2, 3)
R> obj$pro <- c(0.25, 0.25, 0.5)
R> rfmcfust(3, 100, known = obj)

[,1] [,2] [,3]
[1,] 46.143907 25.56151304 1
[2,] 17.816665 18.22572581 1
[3,] 33.915805 25.54308697 1
[4,] 44.609637 15.81099978 1
[5,] 54.766995 16.10253015 1
[6,] 18.610320 19.74165026 1
[7,] 25.303312 20.80981782 1
[8,] 20.608770 21.58460735 1
[9,] 19.679756 20.51390429 1

[10,] 20.988970 16.10998335 1

[... the rest omitted ...]

5.2. Starting values for fitting FM-CFUST distributions

Three different strategies for generating starting values for the FM-CFUST model were de-
scribed in Section 3.3. These are implemented in the EMMIXcskew package. Apart from
the default starting strategy (13) which makes use of moment-based estimates of a uMSN
distribution, the init.cfust function implements the transformation approach (15) as one
of its options, and accepts starting values based on the results of its nested models as another
option. The arguments of the function are the following:

init.cfust(g, dat, q = p, initial = NULL, known = NULL, clust = NULL,
nkmeans = 20, method = c("moments", "transformation", "EMMIXskew",
"EMMIXuskew"))

To use a fitted model given by the packages EMMIXskew and EMMIXuskew, set method to
"EMMIXskew" and "EMMIXuskew", respectively, and the output of the functions EmSkew and
fmmst can be directly passed into init.fust using the argument initial. If an initial value
of the parameter vector is not supplied (that is, initial = NULL), then the default option is to
provide an initial value for each component-parameter vector obtained by applying the method
of moments (that is, method = "moments") to the clusters corresponding to the components.
These clusters are obtained by using the k-means procedure, but the user can specify an
initial partition obtained using some other method of clustering, for example, a model-based
approach using a mixture of t-distributions. The user-specified initial partition is passed in
using clust. If the transformation approach is preferred, set method = "transformation".
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Again, in this case, if an initial partition is not supplied, the partition given by k-means
clustering is used.
An example session is shown below demonstrating how to use the above function to generate
different starting values. We use the Geyser dataset (Azzalini and Bowman 1990), which
contain measurements on 299 successive eruptions of the Old Faithful Geyser during August
1 to August 15 1985. The two variables recorded were the waiting time between eruptions
and the duration of each eruption, both measured in minutes. This dataset is available from
the MASS package (Venables and Ripley 2002).

R> data("geyser", package = "MASS")
R> plot(geyser, pch = 20)

An initial inspection of the dataset (Figure 3(a)) suggests three clusters. Hence, we set g
to 3. In the example below, initial.default and initial.transformation refers to the
default (moment-based) approach and the transformation approach, respectively. For the
nested approach, we have demonstrated in Section 4.3 how to use the results of a fitted FM-
uMST model as initial values. In that example, the model was fitted using fmmst() in our
package, which is a replica of the same function in the EMMIXuskew package, and hence the
option method = "EMMIXuskew" was used. This option can be used in the same way to supply
initial values from the EMMIXuskew package. In addition, the EMMIXcskew package also
accepts outputs from the EMMIXskew package which provides routines to fit finite mixtures
of normal, t, (restricted) skew normal, and (restricted) skew t-distributions. In this case, the
option method = "EMMIXskew" is used to pass the results to fmcfust().

R> initial.default <- init.cfust(3, geyser)
R> initial.transformation <- init.cfust(3, geyser, method = "transformation")
R> fit.geyser.restricted <- EmSkew(geyser, 3, "mst", debug = FALSE)
R> initial.restricted <- init.cfust(3, geyser,
+ initial = fit.gesyser.restricted, method = "EMMIXskew")
R> fit.geyser.unrestricted <- fmmst(3, geyser)
R> initial.unrestricted <- init.cfust(3, geyser,
+ initial = fit.gesyser.unrestricted, method = "EMMIXuskew")
R> fit.geyser.t <- EmSkew(geyser, 3, "mvt", debug = FALSE)
R> initial.t <- init.cfust(3, geyser, initial = fit.gesyser.t,
+ method = "EMMIXskew")

To help choose an appropriate starting value, we can compare the log likelihood values for
the FM-CFUST model fitted using these initial values.

R> initial.default$loglik

[1] -1903.598

R> initial.transformation$loglik

[1] -1448.322

R> initial.restricted$loglik
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[1] -1335.039

R> initial.unrestricted$loglik

[1] -1404.773

R> initial.t$loglik

[1] -1347.48

In this case, the starting value that corresponds to the fitted model of FM-rMST gave the
highest log likelihood value. We now proceed to fit a FM-CFUST model using the default
starting strategy, the transformation approach, and the fitted model of FM-rMST.

R> fit.geyser1 <- fmcfust(3, geyser, initial = initial.default)
R> fit.geyser2 <- fmcfust(3, geyser, initial = initial.transformation)
R> fit.geyser3 <- fmcfust(3, geyser, initial = initial.restricted)
R> fit.geyser1$loglik

[1] -1415.519

R> fit.geyser2$loglik

[1] -1345.042

R> fit.geyser3$loglik

[1] -1333.349

According to the final log likelihood values shown above, the results of fit.geyser3 are
preferred. This corresponds to the result using the initial value with the highest log likelihood
value identified above. Note that this may not always be the case; that is, using the initial
value with the highest log likelihood value may not always give the optimal results compared
to those with smaller initial log likelihood values. It is advisable to run the EM algorithm
using a range of different starting values. To visualize the clustering results of the above three
models, we can plot the data with colors according to the predicted cluster labels given by
these models, as shown below. Figures 3(a), 3(b), and 3(c) show the results using the default
strategy, the transformation approach, and the fitted FM-rMST model, respectively. It can
be observed that fit.geyser2 perhaps gave a more natural partition of the data, although
its log likelihood value is lower than that given by fit.geyser3.

R> plot(geyser, pch = 20, col = c("red", "blue", "green")[fit.geyser1$clust])
R> plot(geyser, pch = 20, col = c("red", "blue", "green")[fit.geyser2$clust])
R> plot(geyser, pch = 20, col = c("red", "blue", "green")[fit.geyser3$clust])
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Figure 3: The Old Faithful Geyser data from the MASS package. (a) Scatter plot of the
data. (b) Clustering results of the FM-CFUST model using the default (moments-based)
approach for generating starting values. (c) Clustering results of the FM-CFUST model
using the transformation approach for generating starting values. (d) Clustering results of
the FM-CFUST model using the results of FM-rMST model as starting values.

5.3. Stopping criteria
The stopping criteria described in Section 3.4 are available through the convergence option
in fmcfust(). The default is using Aitken’s acceleration-based approach (convergence =
"Aitken"). The other two options are convergence = "likelihood" and convergence =
"parameters", referring to the relative likelihood-based and relative parameters-based ap-
proach respectively. For illustration, using the Geyser dataset and initial.restricted as
initial values as an example, we can run the EM algorithm with the relative likelihood-based
and relative parameter-based convergence criteria using the following commands.

R> fit.geyser4 <- fmcfust(3, geyser, initial = initial.restricted,
+ convergence = "likelihood")

Finite Mixture of Multivariate CFUST Distributions
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with 3 components
----------------------------------------------------

Iteration 0 : loglik = -1335.039
Iteration 1 : loglik = -1335.011
Iteration 2 : loglik = -1334.988
Iteration 3 : loglik = -1334.965
Iteration 4 : loglik = -1334.943
Iteration 5 : loglik = -1334.921

[... rest omitted ...]

--------------------------------------------------
Iteration 100: loglik = -1333.349

R> fit.geyser5 <- fmcfust(3, geyser, initial = initial.restricted,
+ convergence = "parameters")

Finite Mixture of Multivariate CFUST Distributions
with 3 components

----------------------------------------------------

Iteration 0 : loglik = -1335.039
Iteration 1 : loglik = -1335.011
Iteration 2 : loglik = -1334.988
Iteration 3 : loglik = -1334.965
Iteration 4 : loglik = -1334.943
Iteration 5 : loglik = -1334.921

[... rest omitted ...]

--------------------------------------------------
Iteration 100: loglik = -1333.349

In both cases, we can observe from the output above that the EM algorithm terminates in
the same number of iterations for this example.

5.4. Choosing the number of components g with BIC
Model selection criteria are typically used to guide the choice of g when fitting finite mixture
models. The fmcfust() function provides the values of AIC and BIC as part of the output
when fitting a FM-CFUST model. We show here a short example of using BIC to assist
in choosing the optimal value of g. We fit the FM-CFUST model with g = 1, . . . , 4 to the
Geyser data, using the default starting strategy. In this case, the lowest BIC corresponds to
the model with g = 2.

R> fit.geyser.g1 <- fmcfust(1, geyser)
R> fit.geyser.g2 <- fmcfust(2, geyser)
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R> fit.geyser.g3 <- fit.geyser1
R> fit.geyser.g4 <- fmcfust(4, geyser)
R> fit.geyser.g1$bic

[1] 3166.708

R> fit.geyser.g2$bic

[1] 2963.828

R> fit.geyser.g3$bic

[1] 3013.451

R> fit.geyser.g4$bic

[1] 3069.532

5.5. Visualization of fitted contours

Contour plots for a FM-CFUST model can be produced easily using the functions
fmcfust.contour.2d and fmcfust.contour.3d for a two-dimensional and three-dimensional
space, respectively. These two functions take a number of arguments described below.

fmcfust.contour.2d(dat, model, grid = 50, drawpoints = TRUE, clust = NULL,
nlevels = 10, component = NULL, ...)

fmcfust.contour.3d(dat, model, grid = 20, drawpoints = TRUE, clust = NULL,
levels = 0.9, component = NULL, ...)

Briefly, dat is a dataset that is either a matrix or data.frame. Note that if dat is not
specified, then the limits of the axes of the plot must be specified (using the standard xlim,
ylim, and zlim arguments). The parameters of the FM-CFUST model are specified using
model. Typically, this is an output from fmcfust. The argument grid determines the grid
size of the plots. Thus the higher the number in grid, the smoother the contours (at the cost
of longer computation time). The data points (if provided) are plotted by default. By setting
drawpoints = FALSE, only the contours will be plotted. In the case where g > 1, a user-
specified partition of the data can be provided using clust. This is used when drawpoints
= TRUE and the data points in the plot will be color-coded using the labels in clust. The
arguments nlevels and levels control how many contours are displayed and at which per-
centiles are they computed, respectively. Finally, component specifies which component is
included in the plot. This option allows the components to be plotted individually without
taking into account the mixing proportions. In contrast, the default is to return the contours
of a mixture density.
To illustrate the use of fmcfust.contour.2d, we reconsider the iris.versicolor example
in Section 4.2. Figure 1 can be generated by the following command in R.
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R> fmcfust.contour.2d(iris.versicolor, fit.Versicolor, drawpoints = FALSE,
+ main = "versicolor")

We now turn to an example of generating a 3D contour plot of a FM-CFUST model. Sup-
pose we would like to draw the contours of a two-component FM-CFUST distribution with
parameters µ1 = (0, 0, 0)>, µ2 = (5, 5, 5)>, ν1 = ν2 = 3, π = (0.2, 0.8),

Σ1 =

 5 2 1
2 5 1
1 1 1

 , Σ2 = 2I3, ∆1 =

 1 0 0
1 0 0
1 0 0

 , and ∆2 =

 5 0 0
0 10 0
0 0 15

 .
We first create an object obj with these parameters. By default, a mixture density is produced
when running fmcfust.contour.3d (see Figure 4(a)). A first remark on this figure is that
the two components seem to be ‘joined’ together. To gain a better view of the shapes of
these two components, we may set components = 1:2 so that their mixing proportions are
ignored. In addition, we generate 500 random observations from the specified FM-CFUST
model and include them in the plot. Observe now in Figure 4(b) that the two components
are plotted as two separate objects and their colors are matched with the simulated data.

R> obj <- list()
R> obj$mu <- list(matrix(c(0, 0, 0), 3), matrix(c(5, 5, 5), 3))
R> obj$sigma <- list(matrix(c(5, 2, 1, 2, 5, 1, 1, 1, 1), 3, 3),
+ 2 * diag(3))
R> obj$delta <- list(matrix(c(1, 0, 0, 1, 0, 0, 1, 0, 0), 3, 3),
+ matrix(c(5, 0, 0, 0, 10, 0, 0, 0, 15), 3, 3))
R> obj$dof <- c(3, 3)
R> obj$pro <- c(0.2, 0.8)
R> fmcfust.contour.3d(model = obj, level = 0.98, drawpoints = TRUE,
+ xlab = "X", ylab = "Y", zlab = "Z", xlim = c(-20, 50),
+ ylim = c(-20, 50), zlim = c(-20, 80))
R> X <- rfmcfust(2, 500, known = obj)
R> fmcfust.contour.3d(X, model = obj, level = c(0.99, 0.92),
+ drawpoints = TRUE, clust = X[, 4], xlab = "X", ylab = "Y", zlab = "Z",
+ xlim = c(-20, 50), ylim = c(-20, 50), zlim = c(-20, 80),
+ component = 1:2)

6. Concluding remarks
This paper presented the EMMIXcskew package for the fitting of a CFUST distribution and
finite mixtures of CFUST distributions to heterogeneous data that exhibit non-normal fea-
tures. In addition to computing the maximum likelihood estimates of the model parameters,
the EMMIXcskew package provides routines for random number generation, density eval-
uation, the plotting of 2D and 3D contours, and a few different methods for initial values
generation for the FM-CFUST model. A finite mixture of CFUST distributions provides a
model for the robust extension of traditional normal mixture models, with greater flexibility
in handling asymmetry and heavy tails. The skewness parameters of a CFUST distribution
are characterized by a general matrix, which provides an elegant unification of the restricted
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Figure 4: Contour plots of FM-CFUST models generated by the EMMIXcskew package. (a)
3D contours of the density of a FM-CFUST distribution. (b) 3D contours of the density of
each component of the FM-CFUST distribution.

and unrestricted skew t-distributions. The aim of this package is to provide users with the
option of fitting this flexible distribution to their dataset. Model selection criteria such as the
AIC and BIC are provided for the FM-CFUST model to assist the user in choosing between
different models for their data.
It is noted that the fitting of a FM-CFUST model can be quite computationally intensive when
q is large. This is due to the calculations of some of the conditional expectations involved in
the E-step of the EM algorithm. Future work will consider applicable strategies to speed up
the parameter estimation process for this model such as parallel implementations described
in Lee, Leemaqz, and McLachlan (2016a, 2018) and Lee and McLachlan (2016b).
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