
JSS Journal of Statistical Software
February 2018, Volume 83, Issue 5. doi: 10.18637/jss.v083.i05

VNM: An R Package for Finding Multiple-Objective
Optimal Designs for the 4-Parameter Logistic

Model

Seung Won Hyun
Johnson and Johnson

Medical Devices

Weng Kee Wong
University of

California, Los Angeles

Yarong Yang
North Dakota

State University

Abstract

A multiple-objective optimal design is useful for dose-response studies because it can
incorporate several objectives at the design stage. Objectives can be of varying interests
and a properly constructed multiple-objective optimal design can provide user-specified
efficiencies, delivering higher efficiencies for the more important objectives. In this work,
we introduce the VNM package written in R for finding 3-objective locally optimal designs
for the 4-parameter logistic (4PL) model widely used in education, bioscience and in the
manufacturing industry. The package implements the methodology to construct multiple-
objective optimal designs in Hyun and Wong (2015). As illustrative examples, we focus
on a biomedical application where our objectives are to estimate: (1) the shape of the
dose-response curve, (2) the median effective dose level (ED50) and (3) the minimum
effective dose level (MED) in the 4PL model. Our VNM package uses a state-of-the-
art algorithm to generate multiple-objective optimal designs that meet the user-specified
efficiency requirement for each objective, provides tools for calculating the efficiency of
the generated design under each objective and also a plot for confirming optimality of the
VNM-generated design. The package can also be used to determine an optimal scheme
for allocating subjects to the various doses when the number and doses of the drug are
fixed in advance.

Keywords: c-optimal design, compound optimal design, dose-response study, equivalence the-
orem, target dose, R.

1. Introduction
Optimal designs are getting more attention nowadays because of rising experimental cost and
the desire to use minimum resources without sacrificing statistical precision in the inference
making process. Traditionally, optimal designs are developed under one objective or criterion
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and they are found either analytically by theory or numerically via an algorithm. In real
studies, there are usually more than one objective in a study and researchers often want to
incorporate multiple objectives into a single study to save resources. The objectives typically
have different levels of interest in the study and it is desirable to have a multiple-objective
optimal design that provides user-specified efficiency under each criterion, with higher effi-
ciencies for the more important objectives.
Numerous researches have attempted to tackle design problems with multiple objectives.
Almost all focus on a two-objective design problem (Stigler 1971; Lauter 1974; Lee 1988; Dette
1992; Cook and Wong 1994; Huang and Wong 1998; Song and Wong 1999; Tsai and Zen 2004;
Atkinson 2008; Leonov and Miller 2009; Padmanabhan and Dragalin 2010; Zhang, Wong, and
Peng 2012). Some used ad-hoc or numerical methods and a few found dual-objective optimal
designs using theory. Several researches mentioned that their method can be extended to
three or more objectives but do not provide concrete examples. From a technical viewpoint,
dual-objective optimal designs are relatively easier to find compared with finding an optimal
design for three or more objectives. This may explain why the statistical literature has many
dual-objective optimal design problems and virtually none on the construction of a three or
more objective optimal design over a continuous design space with a concrete application. A
limited number of 3-objective optimal designs has recently shown up in a non dose-response
set up where the design space is discrete. One example is in determining an optimal adaptive
allocation scheme for subjects to treatment groups under three or more criteria in a clinical
trial; see, for example, Antognini and Zagoraiou (2012).
Currently, the availability of tools for finding multiple-objective optimal designs is limited.
None of the commercial statistical software packages provides such capability. There is an
R package DoseFinding (Bornkamp, Pinheiro, and Bretz 2016) that provides a function
optDesign for searching dual-objective optimal designs when both objectives are equally
important. One objective is to estimate model parameters and the other objective is to esti-
mate the target dose, such as the ED100P or the MED. The ED100P is the dose that produces
a response rate of 100P% and the MED is the minimum effective dose. The function searches
the dual-objective optimal designs for a given set of dose-response models.
Multiple-objective optimal designs are especially appealing in a dose-response study. Re-
searchers often want to estimate the shape of dose-response function and want to study
selected properties of the agent at the same time. Given the multiple objectives, a multiple-
objective optimal design can help to identify the optimal number of dose levels to use, where
these optimal dose levels are and the optimal distribution of subjects over the selected dose
levels for attaining the objectives most efficiently. Hyun andWong (2015) recently constructed
optimal designs for estimating three interesting features in a 4-parameter logistic model and
each of these objectives may have different degrees of interest to the researcher. Their ap-
proach is systematic and can be directly applied to search for other types of multiple-objective
optimal designs in other models.
We describe here our VNM package that implements the method from Hyun and Wong
(2015) for generating one, two or three-objective optimal designs for the 4-parameter logis-
tic (4PL) model. This package is available from the Comprehensive R Archive Network at
https://CRAN.R-project.org/package=VNM. We chose the 4PL model because it is a model
frequently used to describe sigmoidal curves in several disciplines such as in the pharmaceu-
tical sciences, educational testings and in the manufacturing industries. Further, the 4PL
model becomes the widely used 2-parameter logistic (2PL) model or 3-parameter logistic
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(3PL) model by setting some of the model parameters equal to specific values. We focus
on designing an efficient dose-response trial to explore response relationship with the dose
levels (Holford and Sheiner 1981; MacDougall 2006; Goutelle, Maurin, Rougier, Barbaut,
Bourguignon, Ducher, and Maire 2008). After the user specifies the efficiencies sought for
the various objectives, our VNM package provides functions to (i) search for the multiple-
objective optimal designs, (ii) evaluate the efficiency of the multiple-objective optimal design
under each objective and (iii) provide a graphical tool to confirm optimality of the generated
design. In addition, when the dose levels in a dose-response study are fixed, our software can
also determine the optimal number of subjects to assign to the various dose levels under one
of the three criteria.
Section 2 describes the statistical background, model and optimality criteria. In Section 3, we
describe our algorithm and show how our VNM package may be used to obtain the multiple-
objective optimal designs. We also provide applications to find a multiple-objective optimal
design for a dose-response study. Section 4 contains a summary.

2. Background
Suppose we have resources to take a fixed total number of n independent observations for
the study. Assume further that Yi1, . . . , Yini are independent responses at dose level xi, i =
1, . . . ,K, from the statistical model

Yij = f(xi,Θ)+εij , εij ∼ N(0, σ2), j = 1, 2, . . . , ni, i = 1, 2, . . . ,K, n1+· · ·+nK = n. (1)

The function f(xi,Θ) is assumed to be known and differentiable, apart from the vector of
unknown model parameters Θ. Furthermore, assume that σ2 is finite and unknown. Design
questions concern the choice of K, the number of different doses required, and the values of
each xi and ni for i = 1, 2, . . . ,K. Obviously, the optimal choices depend on the given design
criterion, the statistical model and the range of plausible doses for the study.
The mean response in the 4PL model at x is

f(x,Θ) = θ1
1 + eθ2x+θ3

+ θ4, (2)

where x is the dose in log scale selected from a given dose interval. A common interest in drug
studies is to estimate the ED50 of the drug, which is the dose expected to produce an effect
mid-way between the expected responses at the extreme doses. This model is a transformation
of the 4-parameter Hill’s model (Khinkis, Levasseur, Faessel, and Greco 2003) commonly used
in biochemistry where x denotes the actual dose. The two models are essentially equivalent;
if a researcher works with the log dose, the 4PL model is appropriate, otherwise, the 4-
parameter Hill model is more appropriate when x is the actual dose (Dinse 2011; Reeve and
Turner 2013; Hyun and Wong 2015). The 4PL model has an advantage over the Hill model
in that it yields more stable parameter estimates. We may interpret the parameters in (2) as
follows: θ1 is the difference between the expected responses at the two extreme doses (upper
limit minus lower limit, sometimes called EMAX), θ2 is the negative of the Hill’s coefficient
in the Hill’s model that controls the rate of change in the response, θ3 is −θ2 log(ED50) and
θ4 is the lower limit of the response when θ1 > 0, θ2 6= 0, and −∞ < ED50 <∞. The model
becomes the 2PL model when θ1 = 1 and θ4 = 0 or the 3PL model when θ4 = 0.



4 VNM: An R Package for Multiple-Objective Optimal Design

In what is to follow, we work with continuous designs. Suppose n subjects are available for a
dose response study with K dose levels at xi and ni subjects are assigned at xi, i = 1, . . . ,K.
The continuous design is given by ξ = {(xi, wi)>}K1 , where wi = ni/n and n1 + . . .+nK = n.
In practice, n is predetermined by either cost or the number of subjects available for the study.
The continuous design is specified without regard to n and this simplification provides us a
general framework to find an optimal continuous designs for a nonlinear model. The main
advantages of working with continuous designs are that there are algorithms for finding several
types of optimal continuous designs and there is a direct way of confirming if a continuous
design is optimal or not using an equivalence theorem discussed below. Additional details are
available in design monographs such as Atkinson, Donev, and Tobias (2007) and Fedorov and
Leonov (2013).
Following convention, the worth of a design is measured by its Fisher information matrix.
This matrix obtained from using the continuous design ξ is

I(ξ;Θ) = n

σ2

K∑
i=1

wig(xi)>g(xi), (3)

where g(x,Θ) =
(
∂f(x,Θ)
∂θ1

, ∂f(x,Θ)
∂θ2

, ∂f(x,Θ)
∂θ3

, ∂f(x,Θ)
∂θ4

)
=
(

1
1+eθ2x+θ3 ,

−θ1xeθ2x+θ3
(1+eθ2x+θ3 )2 ,

−θ1eθ2x+θ3
(1+eθ2x+θ3 )2 , 1

)
.

This information matrix plays an important role in the formulation of the design criterion to
search the multiple-objective optimal designs. We assume nominal values for Θ are available
and so our constructed designs are locally optimal. For simplicity, we write g(x,Θ) = g(x).
To fix ideas, we suppose the three objectives in our dose response study are to estimate (i)
the shape of the dose-response curve, (ii) the ED50, the dose that produces an expected
response midway between the two extreme responses, and (iii) the minimum effective dose
MED that would result in a user-specified change in the anticipated response. For the first
objective, a D-optimal design is appropriate because such a design minimizes the volume of
the confidence ellipsoid for the model parameters. For the second and third objectives, the
quantities of interest are functions of the model parameters and so a c-optimal design that
minimizes the asymptotic variance of each of the estimates is appropriate. Accordingly, we
use c-optimal designs to estimate our two target doses, the ED50 and the MED, which, as we
show below, are functions of the model parameters. In all cases, the minimization is over all
designs on the given dose interval.
Under model (2), an explicit expression for the ED50 can be found directly from its definition:

ED50 = arg
x

{
f(x,Θ) = 1

2(θ1 + 2θ4)
}

= −θ3
θ2
.

Since the explicit form of the ED50 does not contain θ1 and θ4, the ED50 remains the same
form under the 2PL or the 3PL models. For MED, we used the definition from Padmanabhan
and Dragalin (2010) as the dose that produces a mean response of δ units better than the
minimum dose. Here, δ is the clinically significant effect predetermined by the researcher. It
follows that the explicit expression for MED in model (1) is given by

MED = arg
x
{f(x,Θ) = f(D1,Θ) + δ} =


log( −δ

θ1+δ )−θ3

θ2
, if θ2 > 0,

log( θ1−δ
δ

)−θ3
θ2

, if θ2 < 0.

The MED remains the same under the 3PL model but the MED under the 2PL model
is different and can be obtained by setting θ1 = 1 in the formula. If ED50′ is the first



Journal of Statistical Software 5

derivative of ED50 with respect to Θ and a design ξ is used, the asymptotic variance of
the estimated ED50 is proportional to Var(ÊD50)|ξ = ED50′I−(ξ;Θ)[ED50′]>, where I−(ξ;Θ) is a
generalized inverse of I(ξ;Θ). Similarly, if MED′ be the first derivative of MED with respect
to Θ and a design ξ is used, the asymptotic variance of the estimated MED is proportional
to Var(M̂ED)|ξ = MED′I−(ξ;Θ)[MED′]>.
Let ξD be the D-optimal design for estimating Θ, let ξED50 be the c-optimal design for
estimating the ED50 and let ξMED be the c-optimal design for estimating the MED. All are
locally optimal designs because they depend on the nominal values of Θ. The efficiencies of
a design ξ under these criteria are respectively given by:

e1(ξ) =
(
|I(ξ;Θ)|
|I(ξD;Θ)|

) 1
4

, e2(ξ) = Var(ÊD50)|ξED50

Var(ÊD50)|ξ
,

and

e3(ξ) = Var(M̂ED)|ξMED

Var(M̂ED)|ξ
.

We call the above efficiencies the D-efficiency, ED50-efficiency and MED-efficiency of the
design ξ, respectively. Each efficiency is clearly between 0 and 1 and if e(ξ) = c, this means
that the design ξ needs 100(1/c − 1)% more observations to provide the same accuracy for
estimating the quantity of interest as the optimal design. For instance, if a design ξ is about
as efficient as the D-optimal design ξD for estimating Θ, then e1(ξ) is close to 1; if this number
is one half, it means the design ξ has to be replicated twice to perform as well as the optimal
design. In practice, designs with high efficiencies across several criteria are sought.
Because an optimal design under one objective can perform poorly under another objective,
we need to compromise on the competing objectives and search for the multiple-objective
optimal design that appropriately balances the various needs. One way to do this is to find
an appropriate compound optimal design that optimizes a convex combination of the criteria
(Cook and Wong 1994) and another way is to find a design that maximizes an appropriate
product of the various efficiencies under the different criteria (Atkinson et al. 2007, Ch. 21).
For the latter approach, the criterion is to find a design that maximizes

Ψ = λ1 log(e1(ξ)) + λ2 log(e2(ξ)) + λ3 log(e3(ξ))

= λ1
s

log(|I(ξ;Θ)|)− λ2 log(Var(ÊD50))− λ3 log(Var(M̂ED)), (4)

where s is the number of parameters in the mean function and each λ1, λ2 and λ3 is pre-
selected, non-negative and

∑3
i=1 λi = 1. A larger value of λi implies that the i-th criterion

is relatively more important than the others. When λi = 1, the problem becomes one for
finding the optimal design for the i-th criterion only.
The general equivalence theorem is a powerful theoretical tool in optimal design theory that
can be used to find and confirm the optimality of a design when the design criterion is a
convex or concave function of the information matrix. To apply this theorem for our setup,
we first calculate the directional derivative function of (4) evaluated at the generated design
ξ in the direction of an arbitrary degenerate design at x to obtain the sensitivity function:

d(x, ξ) = λ1
s
g(x)I−(ξ;Θ)g

>(x) + λ2
(g(x)I−(ξ;Θ)[ED50′]>)2

ED50′I−(ξ;Θ)[ED50′]>
+ λ3

(g(x)I−(ξ;Θ)[MED′]>)2

MED′I−(ξ;Θ)[MED′]>
. (5)
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Design ξ e1(ξ) e2(ξ) e3(ξ)

ξD

(
−6.910 2.130 3.760 4.600

0.250 0.250 0.250 0.250

)
1.000 0.803 0.480

ξDual

(
−6.910 1.940 3.830 4.600

0.170 0.276 0.332 0.222

)
0.951 0.956 0.374

ξM,λ

(
−6.910 2.050 3.710 4.600

0.293 0.230 0.326 0.151

)
0.949 0.814 0.578

Table 1: Single, dual-objective and 3-objective optimal designs and their various efficiencies
in Example 1.

The general equivalence theorem states that, for a given vector λ = (λ1, λ2, λ3), the multiple-
objective optimal design ξM,λ optimizes (4) if and only if for all x in the dose interval,

d(x, ξM,λ) ≤ 1

with equality at the dose levels of ξM,λ. The sensitivity function contains a generalized inverse
of the information matrix of ξ and plays an important role in the search and verification of
the multiple-objective optimal design.

Example 1 We use the information from Miller, Guilbaud, and Dette (2007) and construct
a 3 objective optimal design for the 4PL model using (4) and compare its performance with
the locally D-optimal design and a dual-objective optimal design for estimating Θ and the
ED50. These optimal designs are obtained using our VNM package by setting in (4) (i)
λ1 = 1 to obtain the single objective D-optimal design, (ii) λ1 = λ2 = 0.5 to obtain the
dual-objective optimal design ξDual and (iii) λ1 = λ2 = λ3 = 1/3 to obtain the 3-objective
optimal design. The implementation details for our package are given in the next section and
we note that the single and dual-objective optimal designs can also be obtained using the
DoseFinding package in (Bornkamp et al. 2016).
Table 1 shows the efficiencies of the 3 types of optimal designs under each of the 3 objectives.
As expected, ξD has D-efficiency equal to 1 but does not perform well for estimating the
ED50 and MED, more so for the latter when it has only about 48% efficiency for estimating
the MED. The dual-objective optimal design ξDual provides balanced and high efficiencies
for estimating Θ and the ED50 but has an efficiency of only 37% for estimating the MED.
The multiple-objective optimal design ξM,λ compromises its overall efficiencies for the study
by improving the efficiency for estimating the MED beyond that provided by the D- and
dual-objective optimal designs by giving up slightly its efficiencies under the first two criteria.
Further improvement in the desired efficiencies may be possible by an appropriate choice of
the weight vector λ. This shows the flexibility and usefulness of a multiple-objective optimal
design.

3. The VNM package
In this section, we describe the VNM package for finding 3-objective optimal designs to
estimate the shape of dose-response, the ED50 and the MED for the 4PL model. The acronym
VNM stands for V-algorithm using Newton Raphson method to search multiple-objective
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optimal design. The package contains several functions useful for designing a dose-response
study using the 4PL model. The package also can be used for the 2PL or the 3PL models by
assigning specific values to some of the model parameters in the 4PL model. The function
MOPT finds and verifies that the generated design is the multiple-objective optimal design.
The functions Deff, ceff1 and ceff2 compute efficiencies of the generated design under the
three objectives and the function S.Weight computes the optimal proportions of subjects
for problems when the number and dose levels are fixed. The latter is frequently used in
situations when the drug under investigation is only available in few fixed dose levels and the
problem then is how to assign the subjects optimally to the dose levels under a given design
criterion.
Because there are currently no effective algorithms for generating multiple-objective optimal
designs, we developed the VNM package using a state-of-the-art algorithm for finding them.
Specifically, we first obtained the SAS/IML (SAS Institute Inc. 2004) code from Yang, Bieder-
mann, and Tang (2014), who had recently shown their algorithm can theoretically converge
to many types of single-objective optimal designs and also outperform current algorithms
for finding single-objective optimal designs. We recoded their SAS/IML codes into R codes
because R is open source and the research community at large can use it freely to gener-
ate various types of multiple-objective optimal designs. Finding multiple-objective optimal
designs is a much harder task than finding single-objective optimal designs because more vari-
ables have to be optimized and the criterion is more complex. Our carefully modified code
into R code based on the Yang’s algorithm was able to find the multiple-objective optimal
designs quickly but on rare occasions, it was unable to do so. To overcome the occasional
problem, we innovate an extra step A1 in our algorithm to provide a better initial design
for the search and this seems to have resolved the issue. The VNM package also includes
functions to evaluate the efficiencies of the generated design under the various single-objective
criteria and provide plots to confirm optimality of the generated designs. Additionally, the
package is also able to determine the optimal proportions of observations at a given number
of doses. Currently, our package is limited to search and evaluate multiple-objective optimal
designs under a user-specified model with three specific objectives but the package can be
easily modified to search for multiple-objective optimal designs for other models and have a
different number of user specified objectives.

3.1. A modified new algorithm for the multiple-objective optimal design

The VNM package requires to discretize the dose interval first. The default is a grid density
with points 0.01 units apart, but other choices are allowed by supplying a different value in
the argument of the function used to find the multiple optimal design. We denote the set
of generated dose levels at the tth iteration by Xt and the unknown proportions of subjects
at the first K − 1 dose levels by ωt, respectively, where ω = (w1, w2, · · · , wK−1)>, wi ≥ 0
and

∑K−1
i=1 wi ≤ 1. We also denote the generated design at the tth iteration by ξt, the

optimality criterion (4) and the sensitivity function (5) evaluated at ξt by Ψ(ξt) and d(x, ξt),
respectively. The steps in the main algorithm below are prefixed by the letter A and the steps
for a component of the algorithm performed by the Newton Raphson method are prefixed by
the letter N for improved clarity.
First, nominal values for the model parameters in Θ are required to initiate the code. These
may be available from a pilot study or using information from similar drugs. Alterna-
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tively, information on the value of a related vector of parameters is first sought before back-
transforming them to the actual nominal value for each parameter. For example, Miller et al.
(2007) and Bretz, Dette, and Pinheiro (2010) both used the 4-parameter logistic model to
study responses from their studies and solicited information on nominal values for the vector
P = (p1, p2, p3, p4), where p1 is the lower limit of the response, p2 is EMAX, p3 is the ED50
and p4 is the slope at the ED50. The rationale is that this can be a more practical way to
elicit likely values for the transformed parameters since they are more meaningful and more
easily available than the value of the parameter vector Θ.
The algorithm below has several tuning parameters to refine the search or change various
stopping rules. For instance, different grid sizes on the dose space may be needed (i.e.,
setting the grid size equal to 0.001 or 0.0001), different values of r may be needed to select
the initial dose levels in (A1), or different values of ε and εω to stop the whole algorithm in
(A5) or just terminate one component of the algorithm performed by the Newton Raphson
procedure in (N4). Input values for these parameters are required to start the algorithm. In
the VNM package, the grid size, r, ε and εω are denoted by grid, r, epsilon and epsilon_w
respectively. For convenience, we provide default values for these parameters: grid = 0.01, r
= 10, epsilon = 10−3, and epsilon_w = 10−6. These default values should be changed when
they do not produce the optimal design. For example, our experience is that the algorithm
may sometimes fail to find the multiple-objective optimal design with r = 10, where r is
the number of iterations to select the initial dose level to run the new algorithm. For these
cases, we increased its value to r = 30 or r = 50 and the algorithm was able to generate the
multiple-objective optimal design.
The algorithm includes the V-algorithm by Fedorov, Klimko, and Studden (1972) as a com-
ponent and runs sequentially as follows after the above inputs are supplied:

(A1) Run the V-algorithm using the sensitivity function (5) r times and select the last s+ 1
generated dose levels as the initial dose levels. The selected initial dose levels become
X1.

(A2) Apply the Newton Raphson method to determine the optimal proportions of subjects ωt
for Xt. For Xt, assign initial proportions of subjects ωt0 randomly. Then, the proportions
of subjects at the lth iteration ωtl are updated as follows (starting with τ = 0.2):

(N1) ωtl = ωtl−1 − τ(∂
2Ψ(ξt)
∂ωω>

)−1(∂Ψ(ξt)
∂ω ), where ∂2Ψ(ξt)

∂ωω>
and ∂Ψ(ξt)

∂ω are evaluated at ω =
ωtl−1.

(N2) Check if there are nonpositive proportions of subjects in ωtl . If so, go to Step N3.
Otherwise, go to Step N4.

(N3) Reduce τ to τ/2 and repeat steps N1 and N2 until τ reaches the small value 10−4. If
there are still nonpositive proportions of subjects in ωtl , remove the dose level with
the smallest proportion of subjects. Then go to Step N1 with the new design (i.e.,
the new design is the one that removes the dose level with the smallest proportion
of observations from ξt).

(N4) For a pre-selected small positive value εω, if ||ωtl − ωtl−1|| < εω, ωtl becomes the
optimal proportions of subjects ωt for the selected dose levels Xt. Otherwise, go
to Step N1 and update the proportions of subjects for the next iteration.
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(A3) Evaluate d(x, ξt) based on all dose levels in the give dose interval and select the dose x∗t
that maximizes d(x, ξt).

(A5) Stop the algorithm if |d(x∗t , ξt) − 1| ≤ ε. When the algorithm stops, ξt is the optimal
design.

(A6) Otherwise, set Xt+1 = Xt ∪ {x∗t } and repeat steps A2 to A5 after setting t = t+ 1.

In Step A1, we have modified one part of the algorithm proposed in Yang et al. (2014). In
their algorithm, a set of s + 1 uniform dose levels is used as the initial dose levels but we
modify this part to select better initial dose levels through the V-algorithm. If the selected
initial dose levels are far from the optimal dose levels, the algorithm will take longer to
find the optimal design. Sometimes it fails to find the optimal designs, especially when a
small weight is assigned to the first criterion (i.e., λ1 = 0.05 or λ1 = 0.1) in searching for
the multiple-objective optimal designs. The modified part (A1) in our algorithm solves this
problem. For finding multiple-objective optimal designs for different objectives under different
dose-response model, the Fisher information matrix (3) and the sensitivity function (5) need
to be modified. As long as the dose response model is a non-linear function of parameters and
the optimality criteria for the objectives are the convex functions, the above algorithm can
be easily modified and works well for searching for the multiple-objective optimal designs.

3.2. The functions in the VNM package
The VNM package can be obtained and loaded in R using the following commands:

R> install.packages("VNM")
R> library("VNM")

In this section, we use two real-data examples to demonstrate how to use the key functions
in the VNM package to generate multiple-objective optimal designs using the modified new
algorithm. The reference manual for the package provides the detailed descriptions of the
arguments required to run the functions.
Our first example is taken from Bretz et al. (2010) and the second is taken from Miller et al.
(2007). Bretz et al. (2010) constructed efficient designs to estimate target doses of interest
such as MED and the ED100P. Several dose response models were considered for a real Phase
II clinical study for asthma indication, and one of the models is the 3-parameter EMAX
model. This model is the same model as (2) when we set θ2 = −1. The other example comes
from Miller et al. (2007), who explored various design options for a phase IIB trial conducted
by AstraZeneca. The 4PL model (called EMAX-sigmoid model in their paper) was the model
of choice because of its ability to accommodate different dose-response patterns.
In the VNM package, different argument length of P will make all the functions run different
models. The functions run the 4PL model when all four nominal values in P are specified:
P = (p1, p2, p3, p4). For the 3PL model, the user needs to specify only three nominal values,
Emax, ED50, and the slope: P = (p2, p3, p4). For the 2PL model, the user needs to specify
only two nominal values, ED50 and the slope: P = (p3, p4).

The function MOPT

The MOPT function maximizes the optimality criterion (4) and verifies the optimality of the
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generated design using the general equivalence theorem by producing a graphical plot of
the function in (5). The user can then determine from the plot whether conditions in the
equivalence theorem are satisfied or not. If they are, the generated design is optimal, otherwise
it is not. The synopsis of the MOPT function is:

MOPT(LB, UB, P, lambda, delta, r = 10, grid = 0.01, epsilon = 1e-3,
epsilon_w = 1e-6, verbose = FALSE)

To run this function, the following minimum number of arguments are required: the lower and
the upper bounds of the dose interval in log scale, [LB, UB]; nominal values for the parameters
P; the user-selected weights for the first two objectives, lambda = (λ1, λ2); and the clinically
significant effect defined in the MED, delta = δ. Running the MOPT function provides the
computed maximum value of |d(x, ξt)−1| at each iteration from the algorithm, which stops if
the maximum value of |d(x, ξt)− 1| is less than ε at the tth iteration. The obtained multiple-
objective optimal design ξM and the plot of the sensitivity function d(x, ξM ) over the given
dose interval that confirms the optimality of the obtained design ξM are provided by using
the summary and the plot functions, respectively.
As an illustrative example, suppose we want to search the 3-objective optimal design for the
4PL model and the objectives are as previously mentioned. The first step is to input the
design parameters as ordered arguments into the function to search for the multiple-objective
optimal design.

Example 2 This example is taken from Bretz et al. (2010): [LB, UB] = [log(0.001), log(500)];
P = (60, 340, 107.14, 1); delta = 200; lambda = (1/3, 1/3).

R> Res.MOPT <- MOPT(LB = log(0.001), UB = log(500),
+ P = c(60, 340, 107.14, 1), lambda = c(1/3, 1/3), delta = 200, r = 30,
+ epsilon_w = 10^-7, verbose = TRUE)

Computing maximum value of the sensitivity function...
Iteration 1 : 0.007214814
Iteration 2 : 0.00782878
Iteration 3 : 1e-20
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

R> summary(Res.MOPT)

Obtained multiple-objective optimal design:
X-selected dose levels; W-corresponding proportions of subjects

[,1] [,2] [,3] [,4]
X -6.9100000 2.6300000 4.8600000 6.2100000
W 0.2705438 0.1565178 0.3781047 0.1948337

R> plot(Res.MOPT)
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Figure 1: Results from the plot function for Example 2 (left) and for Example 3 (right)
confirm optimality of the generated multiple-objective design.

Example 3 The following information is taken from Miller et al. (2007): [LB, UB] =
[log(0.001), log(100)]; P = (22, 16.8, 70, 1); delta = 5; lambda = (1/3, 1/3).

R> Res.MOPT <- MOPT(LB = log(0.001), UB = log(100),
+ P = c(22, 16.8, 70, 1), lambda = c(1/3, 1/3), delta = 5, r = 30,
+ verbose = TRUE)

Computing maximum value of the sensitivity function...
Iteration 1 : 0.0160029
Iteration 2 : 1e-20
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

R> summary(Res.MOPT)

Obtained multiple-objective optimal design:
X-selected dose levels; W-corresponding proportions of subjects

[,1] [,2] [,3] [,4]
X -6.9100000 2.0500000 3.7100000 4.6000000
W 0.2931272 0.2300621 0.3260085 0.1508022

R> plot(Res.MOPT)
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In Example 2, we can see that |d(x, ξ3) − 1| < ε = 10−3 is achieved within three iterations.
Thus, ξ3 is the multiple-objective optimal design that maximizes the product of efficiencies
for the three objectives when λ = (1/3, 1/3, 1/3). Similarly, Example 3 shows that two
iterations were required to determine that ξ3 is the multiple-objective optimal design when λ =
(1/3, 1/3, 1/3). The summary function shows the multiple-objective optimal design ξM with
its dose levels displayed in the first row after the label X and the corresponding proportions
of subjects displayed in the second row after the label W. The plot function shows the
verification plot (Figure 1). The plot is bounded above by unity over the given dose interval
with equality at the dose levels of the ξM and this confirms optimality of the design. We note
that if convergence did not occur, we would increase the number of iterations allowed by
increasing the value of r in the argument. Sometimes convergence can be achieved by reducing
the default values for the grid density through changing grid. In practice it may be difficult
to supply suitable values for the weights λ1 and λ2 to be used in the combined design criterion.
The next function can be used to provide informed values of λ1 and λ2 to use in the function
by computing the resulting efficiencies of the generated design under the three criteria.

The functions Deff, ceff1 and ceff2

The functions Deff, ceff1, and ceff2 evaluate the efficiencies of the generated design ξ
for estimating the shape of dose-response, ED50 and MED respectively. The Deff function
computes e1(ξ), the efficiency of ξ for estimating the model parameters relative to the lo-
cally D-optimal design. Similarly, the function ceff1 computes e2(ξ), the efficiency of ξ for
estimating the ED50 relative to the c-optimal design for the ED50, and the function ceff2
computes e3(ξ), the efficiency of ξ for estimating the sought MED relative to the c-optimal
design for the MED. These efficiencies enable the user to increase or decrease the value for λ1
or λ2 to obtain the multiple-objective optimal design that meets the user specified efficiency
requirements. The synopses are:

Deff(weight, P, dose, LB, UB, r = 10, grid = 0.01, epsilon = 1e-3,
epsilon_w = 1e-6)

ceff1(weight, P, dose, LB, UB, r = 10, grid = 0.01, epsilon = 1e-3,
epsilon_w = 1e-6)

ceff2(weight, P, dose, LB, UB, delta, r = 10, grid = 0.01, epsilon = 1e-3,
epsilon_w = 1e-6)

As before, the user needs to input the design parameters as ordered arguments into these
functions. For example, to check whether the design found from the function MOPT is the
sought multiple-objective optimal design, we input the selected dose levels, the corresponding
proportions of subjects in ξM , dose and weight, and the values for [LB,UB], P, and delta in
the function ceff2 for the desired MED. Running these 3 functions now produces the 3 types
of efficiencies of the design found from the function MOPT:

Example 2 (continued) The three implemented functions use the multiple-objective op-
timal design found in Example 2 and produce the following results:

R> Res.Deff <- Deff(weight = c(0.271, 0.156, 0.378, 0.195),
+ P = c(60, 340, 107.14, 1), dose = c(-6.91, 2.63, 4.86, 6.21),
+ LB = log(0.001), UB = log(500), r = 30)
R> summary(Res.Deff)
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D-optimal design:
[,1] [,2] [,3] [,4]

X -6.91 3.09 4.90 6.21
W 0.25 0.25 0.25 0.25
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
D-efficiency: 0.917277

R> Res.ceff1 <- ceff1(weight = c(0.271, 0.156, 0.378, 0.195),
+ P = c(60, 340, 107.14, 1), dose = c(-6.91, 2.63, 4.86, 6.21),
+ LB = log(0.001), UB = log(500), r = 30)
R> summary(Res.ceff1)

c-optimal design for ED50:
[,1] [,2] [,3] [,4]

X -6.91000000 2.450000 4.9500000 6.2100000
W 0.01721608 0.188835 0.4827803 0.3111686
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
c-efficiency for ED50: 0.7427698

R> Res.ceff2 <- ceff2(weight = c(0.271, 0.156, 0.378, 0.195),
+ P = c(60, 340, 107.14, 1), dose = c(-6.91, 2.63, 4.86, 6.21),
+ LB = log(0.001), UB = log(500), delta = 200, r = 30, epsilon_w = 10^-7)
R> summary(Res.ceff2)

c-optimal design for MED:
[,1] [,2] [,3]

X -6.9000000 -3.1200000 5.0200000
W 0.1132831 0.3874324 0.4992845
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
c-efficiency for MED: 0.6740114

Example 3 (continued) The three implemented functions use the multiple-objective op-
timal design found in Example 3 and produce the following results:

R> Res.Deff <- Deff(weight = c(0.293, 0.230, 0.326, 0.151),
+ P = c(22, 16.8, 70, 1), dose = c(-6.91, 2.05, 3.71, 4.60),
+ LB = log(0.001), UB = log(100))
R> summary(Res.Deff)

D-optimal design:
[,1] [,2] [,3] [,4]

X -6.9100000 2.1400000 3.7700000 4.6100000
W 0.2499987 0.2500039 0.2499987 0.2499986
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
D-efficiency: 0.9493769

R> plot(Res.Deff)
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R> Res.ceff1 <- ceff1(weight = c(0.293, 0.230, 0.326, 0.151),
+ P = c(22, 16.8, 70, 1), dose = c(-6.91, 2.05, 3.71, 4.60),
+ LB = log(0.001), UB = log(100), r = 30)
R> summary(Res.ceff1)

c-optimal design for ED50:
[,1] [,2] [,3] [,4]

X -6.9100000 1.9700000 3.8600000 4.6100000
W 0.1195043 0.2838973 0.3804929 0.2161055
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
c-efficiency for ED50: 0.8141781

R> Res.ceff2 <- ceff2(weight = c(0.293, 0.230, 0.326, 0.151),
+ P = c(22, 16.8, 70, 1), dose = c(-6.91, 2.05, 3.71, 4.60),
+ LB = log(0.001), UB = log(100), delta = 5, r = 30)
R> summary(Res.ceff2)

c-optimal design for MED:
[,1] [,2] [,3]

X -6.9100000 3.38000000 3.3900000
W 0.4999911 0.04358853 0.4564203
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
c-efficiency for MED: 0.5781364

The above two examples show that the functions Deff, ceff1 and ceff2, along with the
summary function, provide the single-objective optimal design and the efficiency of the entered
design under each criterion. For instance, in the first example, summary(Res.Deff) shows the
D-efficiency of the generated multiple-objective design ξM for estimating the model parameters
is 0.917. Likewise, the results from the functions ceff1 and ceff2 can be similarly interpreted.
In practice, the values for λ1 and λ2 are chosen so that the efficiencies of the generated design
meet the user-specified efficiencies for the 3 objectives. In general, we expect a larger value of
the weight, say λ1, used in the combined criterion will result in the generated design having a
higher D-efficiency and conversely. To meet the pre-specified efficiency requirement for each
criterion, the desired multiple-objective optimal design can be found by choosing the weights
λ1 and λ2 iteratively until the target is met. In particular, the function MOPT generates the
multiple-objective optimal design and the functions Deff, ceff1 and ceff2 determine their
efficiencies under the three objectives.
The next function is useful when the number of doses and the levels of the dosage are fixed in
a dose-response study using the 4PL model. Given fixed dose levels, the optimal allocation
of subjects to each dose for studying the three objectives are obtained.

The function S.Weight

The S.Weight function finds the optimal proportions of subjects at the given doses to estimate
the shape of dose-response, ED50, and the sought MED simultaneously. The function does so
by maximizing the optimality criterion (4) at the given dose levels using the Newton Raphson
algorithm described in the previous section. Specifically, the S.Weight function determines
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the optimal proportions of subjects (w∗1, w∗2, . . . , w∗k) for the fixed dose levels (x1, x2, . . . , xk),
and implements the design by rounding each w∗i n to the nearest integer ni and assigning them
to log dose xi subject to

∑k
i=1 ni = n. The synopsis of the S.Weight function is:

S.Weight(X, P, lambda, delta, epsilon_w = 1e-6)

The function S.Weight requires the following inputs to start the calculation: the fixed dose
levels X = (x1, x2, . . . , xk), P, lambda and delta. As mentioned earlier, εω = 10−6 is the
default value for the stopping criteria but the user can change it. For given user-selected
weights for the three objectives, S.Weight identifies the optimal proportions of subjects for
the given dose levels that maximizes the product of the three efficiencies, and verifies the
result.

Example 4 Suppose we wish to determine the optimal distribution of observations or sub-
jects at a fixed set of dose levels given by X = (−6.91, 2.99, 4.96, 6.21).

R> Res.SW <- S.Weight(X = c(-6.91, 2.99, 4.96, 6.21),
+ P = c(60, 340, 107.14, 1), lambda = c(1/3, 1/3), delta = 200)
R> summary(Res.SW)

Optimal Proportions of Subjects:
[,1] [,2] [,3] [,4]

X -6.9100000 2.9900000 4.9600000 6.2100000
W 0.2780878 0.1327987 0.3836465 0.2054669
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
The first derivative of the criterion: -0.006811909 0.0004366707 0.007847127
The second derivative of the criterion: -3555.153 -1546.873 -2130.887

Example 5 Suppose we wish to determine the optimal distribution of observations or sub-
jects at a fixed set of dose levels given by X = (−6.91, 2.22, 3.75, 4.60).

R> Res.SW <- S.Weight(X = c(-6.91, 2.22, 3.75, 4.60),
+ P = c(22, 16.8, 70, 1), lambda = c(1/3, 1/3), delta = 5)
R> summary(Res.SW)

Optimal Proportions of Subjects:
[,1] [,2] [,3] [,4]

X -6.9100000 2.2200000 3.7500000 4.6000000
W 0.2896592 0.2243598 0.3291802 0.1568009
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
The first derivative of the criterion: 3.117397e-05 -8.224572e-07 -5.821497e-07
The second derivative of the criterion: -12.70619 -12.2149 -11.4482

As shown in the above example, the summary function of the S.Weight result gives two sets
of output: the first set shows the generated proportions of subjects for the multiple objective
optimal design at the given set of doses when we weight the three objectives equally (i.e.,
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λ1 = λ2 = 1/3). We note that these optimal proportions of subjects are identical to the
ones obtained from the MOPT function since they have the same dose levels. The second part
of the output verifies optimality by checking whether the equivalence theorem is satisfied.
Specifically, it shows the generated proportions of subjects that maximize the criterion (4) by
reporting the first derivative of the criterion ∂Ψ(ξ)

∂ωi
at the dose levels (should be close to zero),

and the second derivative of the criterion ∂2Ψ(ξ)
∂ωiωj

at the given dose levels (should be negative).

4. Summary
We develop the user-friendly R package VNM that uses a state-of-the-art algorithm for gener-
ating multiple-objective optimal designs to estimate (1) the shape of the dose-response curve,
(2) the median effective dose ED50 and (3) the minimum effective dose level MED in the 4PL
model. The package also determines the optimal proportions of subjects to be assigned to
the given set of dose levels for the three criteria of interest. We hope that this package helps
practitioners find a multiple-objective optimal design to balance the competing demands in
the objectives and implement a more informed design.
In practice, practitioners first prioritize the importance of the various objectives and specify
efficiencies that the implemented design should deliver under the various criteria. Naturally,
the sought design should yield higher efficiencies for the more important objectives. For
example, the user may want the design to provide at least 80% efficiencies for estimating
both the ED50 and the MED (signifying equal interest in the two objectives), and subject to
these requirements, does as good as possible in estimating the model parameters. Second, it
must be determined which set of weights generates the design that has the specified efficiencies
for the 3 objectives. To do this, one can repeatedly apply the algorithm with different sets
of weights and find a generated design that meets the efficiency requirements for all the
objectives. This is generally a laborious task even though the time required to determine the
sought multiple-objective optimal design is now much reduced using our current package. An
alternative and likely more effective way of using this package to generate multiple-objective
optimal designs is described in Hyun and Wong (2015). Of course, if the demands are too
stringent, a multiple objective optimal design may not be found.
The codes we provide here are specific for the 2PL, 3PL and 4PL models but that they can
be readily modified to find other types of optimal designs using different statistical models for
other applications. It can also be directly modified to find a multiple-objective design when
there are four or more criteria. Similarly, Bayesian optimal designs can also be found directly
from our approach once a routine for computing the integration is included. In either case,
the directional directive of the compound criterion can be similarly calculated and evaluated
at the generated design to determine its optimality via the general equivalence theorem.
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