
JSS Journal of Statistical Software
February 2018, Volume 83, Issue 7. doi: 10.18637/jss.v083.i07

teigen: An R Package for Model-Based Clustering
and Classification via the Multivariate

t Distribution

Jeffrey L. Andrews
University of British Columbia

Jaymeson R. Wickins
MacEwan University

Nicholas M. Boers
MacEwan University

Paul D. McNicholas
McMaster University

Abstract

The teigen R package is introduced and utilized for model-based clustering and classi-
fication. The tEIGEN family of mixtures of multivariate t distributions is formed via an
eigen-decomposition of the component covariance matrices and subsequent component-
wise constraints. The teigen package implements all previously published tEIGEN family
members as well as eight additional models: four multivariate and four univariate. The
resulting family of 32 mixture models is implemented in both serial and parallel, with use-
ful dedicated functions. Methodology and examples that illustrate teigen’s functionality
are presented.

Keywords: mixture models, classification, model-based clustering, cluster analysis, multivari-
ate t distributions, teigen, R.

1. Introduction
The usage of mixture models for cluster analysis is commonly referred to as model-based
clustering. A random vector X arises from a parametric finite mixture model if the density of
origin can be written as f(x | ϑ) = ∑G

g=1 πgpg(x | θg), where ϑ is the parameter space, G is
the number of components, πg are the mixing weights such that ∑G

g=1 πg = 1 and all πg > 0,
and pg(x | θg) are parametric densities with parameters θg.
The multivariate Gaussian distribution has received the bulk of researchers’ attention over the
past couple of decades (e.g., Banfield and Raftery 1993; Celeux and Govaert 1995; Fraley and

http://dx.doi.org/10.18637/jss.v083.i07


2 teigen: Clustering and Classification via the Multivariate t Distribution in R

Raftery 2002; McNicholas and Murphy 2008). More recently, non-Gaussian mixture models
have attracted the attention of researchers (e.g., McLachlan and Peel 1998; Lin 2010; Karlis
and Santourian 2009; Andrews and McNicholas 2011b,a; Vrbik and McNicholas 2012, 2014;
Franczak, Browne, and McNicholas 2014; Browne and McNicholas 2015). The most common
method of fitting these models is by using the expectation-maximization algorithm or a closely
related variant.
The number of parameters requiring estimation in parametric mixture models can be compu-
tationally crippling and in many cases increases quadratically with the dimensionality of the
data. The bulk of these parameters lie in the covariance structures of the component den-
sities. One way of reducing this hindrance is the development of families of mixture models
that arise from constraints on the covariance structure – indeed, many of the previously noted
references are focused on this task. The flagship mixture model family is the set of Gaussian
parsimonious clustering models (GPCM), which is derived from the multivariate Gaussian
distribution with eigen-decomposed covariance structure (Banfield and Raftery 1993; Celeux
and Govaert 1995). All fourteen members of the GPCM family are available in the Rmixmod
package (Auder, Lebret, Iovleff, and Langrognet 2016) and the mixture package (Browne and
McNicholas 2016) and have also implemented in a recent update of the popular mclust pack-
age (Fraley and Raftery 1998; Fraley, Raftery, Murphy, and Scrucca 2012; Fraley, Raftery,
Scrucca, Murphy, and Fop 2016). Furthermore, skew-normal, restricted skew-t, unrestricted
skew-t, and generalized hyperbolic mixture distributions can be fit via the EMMIXskew
(Wang, Ng, and McLachlan 2017), EMMIXuskew (Lee and McLachlan 2013), and MixGHD
(Tortora, Browne, Franczak, and McNicholas 2015) packages, respectively.
In the section that follows, we introduce eight new models, a novel closed-form estimation for
the degrees of freedom, and review the multivariate t distributional equivalent of the GPCM
family – the tEIGEN family (Andrews and McNicholas 2012; Andrews, Wickins, Boers, and
McNicholas 2018) – for both clustering and classification. Section 3 includes specifics on the
R package introduced, while Section 4 gives examples for application of the package. We
conclude in Section 5 with a summary.

2. The tEIGEN family
Andrews and McNicholas (2012) introduce the 24-member tEIGEN mixture model family for
model-based clustering and classification. The tEIGEN family is derived from mixtures of
multivariate t distributions, whose density is

f(x | ϑ) =
G∑
g=1

πgft(x | µg,Σg, νg),

where ft(x | µg,Σg, νg) is the multivariate t density

ft(x | µg,Σg, νg) =
Γ
(
νg+p

2

)
|Σg|−

1
2

(πνg)
p
2 Γ
(νg

2
) [

1 + δ(x,µg |Σg)
νg

] νg+p
2

,

with mean vector µg, scale matrix Σg, and degrees of freedom νg.
Following the work of Banfield and Raftery (1993) and Celeux and Govaert (1995), an eigen-
decomposition is imposed on the scale matrix Σg = λgDgAgD>g , where Dg is the matrix of



Journal of Statistical Software 3

eigenvectors, Ag is the diagonal matrix of eigenvalues with |Ag| = 1, and λg are the associated
constants of proportionality. These individual scalars/matrices can then be constrained to
be equal across mixture components, or in some cases constrained to be the identity matrix:
Σg = λgIAI> = λgA, for instance. It is important to note that under certain constraints
on this covariance matrix decomposition, the model being fit loses the property of scale
invariance. As such, the teigen package will scale variables to have mean 0 and variance 1 by
default (see Section 3 for controlling this option). In addition, constraints are also imposed
on the degrees of freedom νg, following Andrews and McNicholas (2011a). Thus, taking
all possible combinations of these constraints into consideration would result in a 28-model
family (see Table 1), 24 of which were originally developed for the tEIGEN family (Andrews
and McNicholas 2012). Those 24 models correspond to 12 of the 14 decompositions of Σg

used in the GPCM family along with the constraint for νg. The four remaining models, and
methodology required for their estimation, are discussed in Section 2.1.
All of the previously considered tEIGEN models are applicable only to multivariate data. In
order for the package introduced herein to be applicable to univariate data, we introduce four
more models into the tEIGEN family. The univariate mixture takes the form

f(x | ϑ) =
G∑
g=1

πgft(x | µg, σ2
g , νg),

where µg is the component mean and σ2
g is the scale parameter. We once again allow con-

straints on the scale and degrees of freedom, by permitting them to be equal across groups.
The four resulting models are summarized in Table 2. Hereafter, we refer to the combination
of all 32 univariate and multivariate models as the ‘tEIGEN family’.

2.1. Parameter estimation

As in the majority of mixture modelling implementations, we use a variant of the expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) to perform parameter
estimation. The EM algorithm consists of two steps (expectation and maximization) per-
formed iteratively until convergence. On the E-step, we compute the expected value of the
complete-data log-likelihood, and on the M-step, the parameters are maximized according
to the complete-data log likelihood. The expectation-conditional maximization (ECM) algo-
rithm (Meng and Rubin 1993) adjusts the M-step to allow several, more efficient, conditional
maximization (or CM) steps.
To implement an EM algorithm, we need to be able to compute the likelihood for our mixture
models. First, we define a random variable Zig such that zig = 1 if observation i belongs to
group g and otherwise zig = 0. In a model-based classification (or semi-supervised) scenario,
we observe the first k observations with known group membership, and the remaining obser-
vations, giving n total observations, with unknown group membership. The likelihood can
thus be written

L(ϑ) =
k∏
i=1

G∏
g=1

[
πgft(xi | µg,Σg, νg)

]zig × n∏
j=k+1

H∑
h=1

πhft(xj | µh,Σh, νh). (1)

In a model-based clustering scenario, none of the group memberships are known, and therefore
the likelihood is simply the right hand side of Equation 1 with k = 0 and H = G. Note that



4 teigen: Clustering and Classification via the Multivariate t Distribution in R

Model λg Dg Ag νg Free covariance and df parameters
CIIC C I I C 1 + 1
CIIU C I I U 1 +G
UIIC U I I C G+ 1
UIIU U I I U G+G
CICC C I C C p+ 1
CICU C I C U p+G
UICC U I C C (p− 1) +G+ 1
UICU U I C U (p− 1) +G+G
CIUC C I U C Gp− (G− 1) + 1
CIUU C I U U Gp− (G− 1) +G
UIUC U I U C Gp+ 1
UIUU U I U U Gp+G
CCCC C C C C [p(p+ 1)/2] + 1
CCCU C C C U [p(p+ 1)/2] +G
UCCC U C C C [p(p+ 1)/2] + (G− 1) + 1
UCCU U C C U [p(p+ 1)/2] + (G− 1) +G
CUCC C U C C G[p(p+ 1)/2]− (G− 1)(p) + 1
CUCU C U C U G[p(p+ 1)/2]− (G− 1)(p) +G
UUCC U U C C G[p(p+ 1)/2]− (G− 1)(p− 1) + 1
UUCU U U C U G[p(p+ 1)/2]− (G− 1)(p− 1) +G
CCUC* C C U C [p(p+ 1)/2] + (G− 1)(p− 1) + 1
CCUU* C C U U [p(p+ 1)/2] + (G− 1)(p− 1) +G
CUUC C U U C G[p(p+ 1)/2]− (G− 1) + 1
CUUU C U U U G[p(p+ 1)/2]− (G− 1) +G
UCUC* U C U C G[p(p+ 1)/2] + (G− 1)(p) + 1
UCUU* U C U U G[p(p+ 1)/2] + (G− 1)(p) +G
UUUC U U U C G[p(p+ 1)/2] + 1
UUUU U U U U G[p(p+ 1)/2] +G

Table 1: tEIGEN model names and the number of covariance and degrees of freedom
parameters requiring estimation. ‘C’ denotes constrained, ‘U’ denotes unconstrained, and
‘I’ denotes the identity matrix. ‘*’ denotes the models being introduced in this manuscript.

there are alternative formulations which include information that falls somewhere between
clustering and classification – for example, semi-supervised clustering (Melnykov, Melnykov,
and Michael 2015) and fractionally supervised clustering (Vrbik and McNicholas 2015) – but
these paradigms are not addressed with the teigen software.
The CCUC, CCUU, UCUC, and UCUU models were not previously introduced due to issues
with their estimation procedure. Following recent work by Browne and McNicholas (2014)
that is implemented in the mixture package, an iterative majorize-minimize (MM) algorithm
is implemented in the estimation of the common eigenvectors. As an illustration, we provide
the specifics for the CCUC model where Σg = λDAgD>.

E-step (CCUC)

The E-step involves computing the conditional expected value of the component indicator



Journal of Statistical Software 5

Model σ2
g νg Free variance and df parameters

univCC C C 1 + 1
univCU C U 1 +G
univUC U C G+ 1
univUU U U G+G

Table 2: Univariate model names and the number of variance and degrees of freedom
parameters requiring estimation. ‘C’ denotes constrained, ‘U’ denotes unconstrained.

variables Zig and the characteristic weights Wig:

E[Zig | xi] =
πgft(x | µg, λDAgD>, νg)∑G
h=1 πhft(x | µh, λDAhD>, νh)

=: ẑig,

E[Wi | xi, Zig = 1] = νg + p

νg + δ(xi,µg | λDAgD>) =: ŵig.

The ẑig represent the probability that observation i belongs to group g given the current
component parameters. The ŵig can be thought of as a weight for how much influence
observation i has on the estimation of µg and Σg. This interpretation may become more
clear in the section that follows while viewing the updates for µ̂g and the sample covariance
matrix Sg.

CM-steps (CCUC)

The CM-steps involve conditionally maximizing the parameters with respect to the complete-
data log-likelihood. In the first of two CM-steps, the mixing proportions, component means,
and degrees of freedom are updated:

π̂g = ng
n

and µ̂g =
∑n
i=1 ẑigŵigxi∑n
i=1 ẑigŵig

,

where ng = ∑n
i=1 ẑig. We discuss a novel alternative estimation method for the degrees of

freedom in Section 2.2. In the second CM-step, the decomposed elements of the covariance ma-
trix are updated according to the algorithm that follows, where Sg = (1/ng)

∑n
i=1 ẑigŵig(xi−

µ̂g)(xi − µ̂g)>.

1. Iteration t = 1.

2. Update λ̂:

λ̂ =
∑G
g=1 tr{ngSgD̂Â−1

g D̂>}
np

.

3. If t is odd, update dummy matrix U according to (a), else update according to (b).
Here sg is the largest eigenvalue of ngSg and ag is the largest eigenvalue of (λ̂Âg)−1.

(a) U = ∑G
g=1 ng(λ̂Âg)−1(D̂old)>Sg − sg(λ̂Âg)−1(D̂old)>.

(b) U = ∑G
g=1 ngSgD(λ̂Âg)−1 − agngSgD.

4. Perform singular value decomposition on U = PBR>.



6 teigen: Clustering and Classification via the Multivariate t Distribution in R

5. Update D̂ = RP>.

6. Update

Âg = diag(ngD̂>SgD̂)
|ngD̂>SgD̂|1/p

.

7. Calculate Ft = 1
λ̂

∑G
g=1 tr{ngD̂Â−1

g D̂>Sg}+ np log(λ̂).

8. If t > 1, check if Ft − Ft−1 > ε1. If TRUE, t = t+ 1 and return to step 2, else end.

Note that ε1 is user defined with a default value of 0.001. See the discussion of eps in Section 3
for setting this value.

2.2. Degrees of freedom

In recent work (Andrews, McNicholas, and Subedi 2011; Andrews and McNicholas 2011b,a,
2012), the degrees of freedom are updated using numeric estimation of the following non-
closed-form equations: for unconstrained degrees of freedom

1− ϕ
(
ν̂g
2

)
+ log

(
ν̂g
2

)
+ ϕ

(
ν̂old
g + p

2

)
− log

(
ν̂old
g + p

2

)
+ 1
ng

n∑
i=1

ẑig(log ŵig − ŵig) = 0, (2)

is solved for ν̂g, while constraining across groups leads to the following equation

1− ϕ
(
ν̂

2

)
+ log

(
ν̂

2

)
+ ϕ

(
ν̂old + p

2

)
− log

(
ν̂old + p

2

)
+ 1
n

G∑
g=1

n∑
i=1

ẑig(log ŵig − ŵig) = 0,

that is solved for ν̂. In terms of the numeric solution, the uniroot function from R is used
which is based on the zeroin subroutine by Brent (1973).
Herein, we introduce a novel closed-form approximation for constrained degrees of freedom.
With k = −1− 1

n

∑G
g=1

∑n
i=1 ẑig(log ŵig − ŵig)− ϕ

(
ν̂old+p

2

)
+ log

(
ν̂old+p

2

)
, we can then find

an approximation with

ν̂ ≈
− exp (k) + 2 exp(k)

(
exp

(
ϕ
(
ν̂old

2

))
−
(
ν̂old

2 −
1
2

))
1− exp (k) . (3)

If we alternatively define

k = −1− 1
ng

n∑
i=1

ẑig(log ŵig − ŵig)− ϕ
(
ν̂old + p

2

)
+ log

(
ν̂old + p

2

)

then the approximation holds for ν̂g (unconstrained degrees of freedom) instead. Further
details and justification on this approximation can be found in Appendix A.

2.3. Initialization

EM algorithms for both clustering and classification require either the initialization of the
unknown zig (which uses maximum likelihood estimation to initialize the parameters) or
initialization of the model parameters (which uses expected value computations to initialize



Journal of Statistical Software 7

the zig). The teigen package makes use of the former, with several built-in options for
initialization: "kmeans", "hard" random, "soft" random, "emem" (which is described in the
paragraph that follows), and "uniform". The "uniform" option, as described by Andrews
et al. (2011), sets the initial ẑig = 1

G and is only available for classification scenarios because
otherwise the algorithm could not progress. The difference between hard and soft random is
the nature of the randomly initialized zig: hard referring to 0’s and 1’s, while soft takes on
random values between 0 and 1, inclusive. As a further alternative, the user can give specific
cluster memberships as an initialization, as described in Section 3. The "emem" option is
based on the “emEM” approach introduced by Biernacki, Celeux, and Govaert (2003). If
this initialization is used, then one of the teigen models (chosen by the user) is run for a
set number of iterations (chosen by the user) for a set number of starts (chosen by the user)
based on one of the other initialization methods ("soft", "hard", or "kmeans"). Then, the
resulting fit that maximizes the log-likelihood is used to initialize the main algorithm.
We note here that the EM algorithm, in the context of multivariate mixture models and
particularly as the number of groups increases, is quite prone to converging on local maxima.
This, in turn, means that teigen can be quite sensitive to starting values. For this reason,
the default "k-means" initialization will use 50 random starting points, and the "soft" or
"hard" (completely random) initialization methods are not recommended unless used under
the ‘emem’ approach. Users familiar with the previously noted mclust package should keep in
mind that the Mclust() command uses model-based hierarchical clustering to initialize the
EM algorithm – thus leading to deterministic results. This experience can be replicated (as
in Section 4.4) by using a deterministic clustering method as a custom initialization.
Note that the degrees of freedom must be initialized, and this value is also user-specified; the
default value is 50.

2.4. Estimated time remaining

The user has the option of the function returning, on a continual basis, the time the algorithm
has run thus far, estimated time remaining, and percent complete on a single line. An
underlying procedure for this updates the time estimates after each model has run – ‘each
model’ here refers to each G×28 model individually (28 referring to the number of multivariate
models in the family). The computational overhead for giving the time estimates is minimal:
in the range of a second or two under default (9 × 28 = 252 models) settings. Because it is
not updated during each EM iteration, longer model fittings will not lead to longer overhead
for the time estimates. Setting verbose = FALSE will silence the output, should the user so
desire.

2.5. Convergence

Convergence in our algorithm is determined by Aitken’s acceleration (Aitken 1926), which at
iteration t is given by

a(t) = l(t+1) − l(t)

l(t) − l(t−1) ,

where l(t−1) refers to the log-likelihood at iteration t− 1, and so on. Böhning, Dietz, Schaub,
Schlattmann, and Lindsay (1994) propose the usage of a(t) to compute an asymptotic estimate



8 teigen: Clustering and Classification via the Multivariate t Distribution in R

of the log-likelihood at iteration t+ 1 by

l(t+1)
∞ = l(t) + 1

1− a(t) (l(t+1) − l(t)).

We use the stopping criterion
l(t+1)
∞ − l(t+1) < ε2,

from Lindsay (1995) for user-specified ε2, with ε2 = 0.1 as the default. See the discussion of
argument eps in Section 3 for setting this value.

2.6. Model selection

Selecting the “best” model is a challenge within model-based clustering or classification appli-
cations, but the common practice (Fraley and Raftery 2002; McNicholas and Murphy 2010;
Andrews and McNicholas 2011b; McNicholas 2016) among researchers is the usage of the
Bayesian information criterion (BIC, Schwarz 1978), which is calculated as

BIC = 2l(x, ϑ̂)− r logn,

where l(x, ϑ̂) is the maximized log-likelihood, ϑ̂ is the MLE of ϑ, r is the number of free
parameters in the model, and n is the total number of observations.
Another model selection technique permitted with the teigen package is the integrated com-
pleted likelihood (ICL, Biernacki, Celeux, and Govaert 2000). The ICL makes use of the
concept of uncertainty rising from the probabilistic nature of model-based clustering. Gener-
ally, and also in the case of the teigen package, the main result of a clustering/classification
algorithm is a vector of group memberships. They are typically hardened to give maximum
a posteriori (MAP) classifications via

MAP{ẑig} =
{

1 if maxg{zig} occurs in component g,
0 otherwise.

The ICL is then calculated via

ICL ≈ BIC + 2
n∑
i=1

G∑
g=1

MAP{ẑig} log ẑig,

which is essentially the BIC penalized by the amount of classification uncertainty contained
in the model.

2.7. Plots

Three graphics are available when plotting an object of class teigen. The first is a bivariate
marginal contour plot, where the user can specify the desired variates as well as the resolu-
tion of the contours. The second plot is an uncertainty plot, where large dots signify large
uncertainty in the classification. Because the ẑig provide the probability that observation i
belongs to group g, we often interpret maxg{ẑig} as the ‘certainty’ of our classification of
observation i. Conversely, we can interpret 1−maxg{ẑig} as the ‘uncertainty’ of our classifi-
cation of observation i. The uncertainty plot is generated by using this number to determine
the point size through the argument cex. If the user passes cex to the plot, it is used for the



Journal of Statistical Software 9

size of the smallest point on the graph. Furthermore, the uncmult argument can magnify the
size differences for better readability if the user desires.
The two plots mentioned above are only available if the teigen object was generated with mul-
tivariate data. The options xmarg and ymarg specify which variables from the data set to plot.
By default the plot type is a character vector containing both "contour" and "uncertainty",
but the user may choose to specify just one of these types to plot just one graph. If both
types are provided, an interactive menu will be displayed so the user may switch back and
forth between both graphs.
The third plot, the univariate density plot, is the default plot for univariate data and an
optional plot for multivariate data. For multivariate data, if the user specifies ymarg = NULL,
the function will plot a marginal univariate density using xmarg as the single variable. This
plot includes the kernel density estimate from density(), the mixture distribution, and the
color-coded component densities.

3. Code specifics
The teigen package contains the function teigen() which allows the user to perform model-
based clustering or classification in serial or parallel with some flexibility on the specifics. The
function outputs an object of class teigen, for which dedicated print, plot, summary, and
predict methods are also included. Most code was written and developed in R 3.3.2 (R Core
Team 2017), with a couple of functions outsourced to C. We also note that running teigen
in parallel depends on the parallel package (which is now part of the R core software).

3.1. teigen()

The teigen() function has the following usage:

teigen(x, Gs = 1:9, models = "all", init = "kmeans", scale = TRUE,
dfstart = 50, known = NULL, training = NULL,
gauss = FALSE, dfupdate = "approx", eps = c(0.001, 0.1),
verbose = TRUE, maxit = c(Inf, Inf), convstyle = "aitkens",
parallel.cores = FALSE, ememargs = list(25, 5, "UUUU", "hard")))

and takes the following arguments:

• x: A numeric matrix, data frame, or vector (for univariate data).

• Gs: A number or vector indicating the number of groups to fit. Default is 1–9.

• models: A character vector specifying the models to fit. Models can be chosen using
the terminology from Tables 1 and 2. Alternatively, notation from the popular mclust
package can be used, using "V" for variable and "E" for equal across groups. In this
case, the first letter refers to volume, the second to shape, the third to orientation,
and fourth to degrees of freedom. Furthermore, the user can specify common groups
of models such as "all", "dfconstrained", "dfunconstrained", "univariate", and
"gaussian". When "gaussian" is specified, the 14 multivariate Gaussian equivalents
are used.



10 teigen: Clustering and Classification via the Multivariate t Distribution in R

• init: A list of initializing classifications of the form init[[G]] that contains the initial-
izing vector for all G groups considered (see example in Section 4.4). Alternatively, the
user can specify a character string indicating an initialization method. Currently, the
user can choose from "kmeans" (default), "hard" random, "soft" random, "uniform",
and "emem". See Section 2.3 for further details on these options.

• scale: Logical indicating whether or not the function should scale the data. Default is
TRUE – note that teigen models are not scale invariant.

• dfstart: The initialized value for the degrees of freedom. The default is 50.

• known: A vector of known classifications that can be numeric or character – must be the
same length as the number of rows in the data set. If using in a true classification sense,
give samples with unknown classification the value NA within known (see Section 4.3
below).

• training: Optional indexing vector for the observations whose classification is taken
to be known.

• gauss: Logical indicating if the algorithm should use the Gaussian distribution. If
models = "gaussian" then gauss = TRUE is forced.

• dfupdate: Character string or logical indicating how the degrees of freedom should be
estimated. The default is "approx", indicating a closed-form approximation be used.
Alternatively, "numeric" can be specified, which makes use of uniroot(). If FALSE,
the value from dfstart is used and the degrees of freedom are not updated. If TRUE,
"numeric" will be used for backward-compatibility.

• eps: Vector (of size 2) giving tolerance values for the convergence criterion. First
value is the tolerance level for iterated CM-steps. Second value is tolerance for the EM
algorithm: convergence is based on Aitken’s acceleration (default) or lack of progress.
See Sections 2.1 and 2.5 for relevant details.

• verbose: Logical indicating whether the running output discussed in Section 2.4 should
be displayed. This option is not available in parallel. The output displayed depends
on the width of the R window. With a width of 80 or larger: time run, estimated time
remaining, and percent complete are all displayed.

• maxit: Vector (of size 2) giving maximum iteration number for the iterated CM-steps
and EM algorithm, respectively. A warning is displayed if either of these maximums
are met.

• convstyle: Character string specifying the method of determining convergence. De-
fault is
"aitkens", which uses the criterion based on Aitken’s acceleration, but lack of progress
"lop" may be specified instead.

• parallel.cores: Logical indicating whether to run teigen in parallel or not. If TRUE,
then the function discerns the number of cores available and uses all of them. Alterna-
tively, a positive integer may be provided indicating the number of cores the user wishes
to use for running in parallel.



Journal of Statistical Software 11

• ememargs: A list of the controls for the emEM initialization: numstart – number of
starts (default 25); iter – number of EM iterations (default 5); model – character string
for the model name to be used (default "UUUU" from the C, U, I nomenclature, see details
below); init – character string for the initialization method for emEM (default hard, or
soft, or kmeans). The emEM initialization will run multiple, randomized initialization
attempts for a limited number of iterations, and then continue the model-fitting process.

Output from teigen() is an object of class teigen, which can be manipulated as a two-
pronged list object. The main contents are the results from the model chosen by the BIC,
with an additional list containing the results from the model chosen by the ICL:

• x: Data used for clustering/classification.

• index: Indexing vector giving observations taken to be known (only available when
clas is set greater than 0 or training is given).

• classification: Vector of group classifications as determined by the BIC.

• bic: BIC of the best fitted model.

• modelname: Name of the best model according to the BIC.

• allbic: Matrix of BIC values according to model and G. A value of -Inf is returned
when a model does not converge.

• bestmodel: Character string giving best model (BIC) details.

• G: Value corresponding to the number of components chosen by the BIC.

• tab: Classification table for BIC model (only available when known is given). When
classification is used, the “known” observations are left out of the table.

• fuzzy: The fuzzy clustering matrix for the model selected by the BIC.

• logl: The log-likelihood corresponding to the model with the best BIC.

• iter: The number of iterations until convergence for the model with the best BIC.

• parameters: List containing the fitted parameters: mean – matrix of means where the
rows correspond to the component and the columns are the variables; sigma – array
of scale covariance matrices (multivariate) or scale variances (univariate); lambda –
vector of scale parameters, or constants of proportionality; d – array of eigenvectors, or
orientation matrices; a – array of diagonal matrices proportional to eigenvalues, or shape
matrices; df – vector containing the degrees of freedom for each component; weights
– matrix of the expected value of the characteristic weights; pig – a vector giving the
mixing proportions.

• iclresults: List containing all the previous outputs, except x and index, pertaining
to the model chosen by the best ICL (all under the same name except allicl and icl
are the equivalent of allbic and bic, respectively).

• info: List containing a few of the original user inputs, for use by other dedicated
methods of the teigen class.



12 teigen: Clustering and Classification via the Multivariate t Distribution in R

3.2. plot.teigen()

The S3 plot method for objects of class teigen provides bivariate marginal contour and/or
uncertainty plots – for univariate data, it provides a univariate density plot. The function
has the following usage:

plot(x, xmarg = 1, ymarg = 2, res = 200, what = c("contour", "uncertainty"),
alpha = 0.4, col = rainbow(x$G), pch = 21, cex = NULL, bg = NULL, lty = 1,
uncmult = 0, levels = c(seq(0.01, 1, by = 0.025), 0.001), main=NULL,
xlab=NULL, draw.legend=TRUE, ...)

• x: An object of class teigen.

• xmarg: Scalar argument giving the number of the variable to be used on the x-axis.

• ymarg: Scalar argument giving the number of the variable to be used on the y-axis. Can
be set to NULL for a univariate marginal density of xmarg (using x[, xmarg] as data).

• res: Scalar argument giving the resolution for the calculation grid required for the
contour plot. Default is 200, which results in a 200 × 200 grid. Also determines how
smooth the univariate density curves are (higher res, smoother curves). Ignored for
uncertainty plots.

• what: Only used if the model provided by x is multivariate, this argument is a character
vector stating which plots should be sent to the graphics device – choices are "contour"
or "uncertainty". If not provided, an interactive prompt will appear and provide these
options.

• alpha: A factor modifying the opacity for the plotted points. Typically provided on
the interval [0, 1].

• col: A specification for the default plotting color – see section ‘Colour Specification’
in the par documentation. Note that the number of colors provided must equal to the
number of groups in the teigen object (extra colors ignored).

• pch: Either an integer specifying a symbol or a single character to be used as the
default in plotting points – see points documentation for possible values and their
interpretation. If pch is one of 21:25, see bg for coloring.

• cex: A numerical value specifying the amount by which plotting text and symbols
should be magnified relative to the default. For uncertainty plots, cex changes the size
of the smallest sized point. The relative sizes amongst the points remains the same. As
a result, the sizes of all the points change.

• bg: Background (fill) color for the open plot symbols if pch is one of 21 : 25. If no bg
is provided to color the inside of the points, then col will be used instead.

• lty: The line type for univariate plotting. See par documentation for more information.
Only updates the group curves, not the density or mixture curves.

• uncmult: A multiplier for the points on the uncertainty plot. The larger the number,
the more the size difference becomes exaggerated.



Journal of Statistical Software 13

• levels: Numeric vector giving the levels at which contours should be drawn. Default
is to draw a contour in 0.25 steps, plus a contour at 0.001. This may result in more/less
contours than desired depending on the resulting density.

• main: Optional character string for title of plot. Useful default if left as NULL.

• xlab: Optional character string for x-axis label.

• draw.legend: Logical for a default generation of a legend to the right of the plot.

• ...: Options to be passed to plot.

Note that if ymarg is NULL or the model provided by x is univariate, then plot() will provide
a univariate marginal density.

4. Examples
Herein, we present a number of clustering/classification examples to illustrate the teigen
package. We make use of a number of data sets from the base R distribution, as well as
a couple available in the gclus library (Hurley 2012). Note that all teigen() calls in this
illustration will force verbose = FALSE as the output produced will be computer specific;
the reader is encouraged to set this argument to TRUE (the default value) if desired. In the
interest of reproducibility, we use the set.seed() function when appropriate.

4.1. Model-based clustering: geometric example

To begin, we will provide a simple bivariate simulation to illustrate the geometrical difference
between some of the teigen models. First, we generate the data using clusterGeneration (Qiu
and Joe 2015) – a package that can be used to simulate groups of data.

R> library("clusterGeneration")
R> set.seed(542687)
R> sim <- genRandomClust(2, sepVal = .35, numReplicate = 1,
+ outputDatFlag = FALSE, outputLogFlag = FALSE, outputEmpirical = FALSE,
+ outputInfo = FALSE)$datList[[1]]

The genRandomClust command above specifies simulating 2 groups, with a sepVal of 0.35
(well-separated groups) and numReplicate indicates that we only seek one data set for this
illustration. The remaining arguments are used to avoid writing files to the user’s working
directory. Now we fit several teigen models to this simulation and plot the results in Figure 1.

R> library("teigen")
R> par(mfrow = c(2, 2))
R> set.seed(431)
R> CIIC <- teigen(sim, 2, models = "CIIC", verbose = FALSE)
R> plot(CIIC, levels = seq(0.03, 1, by = 0.1), what = "contour",
+ xlab = "Variable 1", ylab = "Variable 2", main = "CIIC model")
R> set.seed(431)



14 teigen: Clustering and Classification via the Multivariate t Distribution in R

−1 0 1 2

−
2

−
1

0
1

2

V
ar

ia
bl

e 
2

CIIC model
V

ar
ia

bl
e 

2

Variable 1

V
ar

ia
bl

e 
2

 0.03 
 0.03 

 0.13 

 0.13 

 0.23 

 0.23 

 0.33 

 0.33 

Group 1

Group 2

−1 0 1 2

−
2

−
1

0
1

2

V
ar

ia
bl

e 
2

UUCC model

V
ar

ia
bl

e 
2

Variable 1

V
ar

ia
bl

e 
2

 0.03 

 0.03 

 0.13 

 0.13 

 0.23 

 0.23 

 0.33 

Group 1

Group 2

−1 0 1 2

−
2

−
1

0
1

2

V
ar

ia
bl

e 
2

CCUC model

V
ar

ia
bl

e 
2

Variable 1

V
ar

ia
bl

e 
2

 0.03 

 0.03  0.13 

 0.13 

 0.23 

 0.23 

 0.33 

 0.33 

Group 1

Group 2

−1 0 1 2

−
2

−
1

0
1

2

V
ar

ia
bl

e 
2

UUUU model

V
ar

ia
bl

e 
2

Variable 1

V
ar

ia
bl

e 
2

 0.03 

 0.03 

 0.13 

 0.13 

 0.23 

 0.23 

 0.33 

 0.33 

Group 1

Group 2

Figure 1: Contour plots produced using the the S3 method for plot on a teigen object. These
four plots show some of the geometrical differences between the different tEIGEN models. The
BIC values are −1361.1 (CIIC), −1255.7 (UUCC), −1357.4 (CCUC), and −1209.2 (UUUU).

R> UUCC <- teigen(sim, 2, models = "UUCC", verbose = FALSE)
R> plot(UUCC, levels = seq(0.03, 1, by = 0.1), what = "contour",
+ xlab = "Variable 1", ylab = "Variable 2", main = "UUCC model")
R> set.seed(431)
R> CCUC <- teigen(sim, 2, models = "CCUC", verbose = FALSE)
R> plot(CCUC, levels = seq(0.03, 1, by = 0.1), what = "contour",
+ xlab = "Variable 1", ylab = "Variable 2", main = "CCUC model")
R> set.seed(431)
R> UUUU <- teigen(sim, 2, models = "UUUU", verbose = FALSE)
R> plot(UUUU, levels = seq(0.03, 1, by = 0.1), what = "contour",
+ xlab = "Variable 1", ylab = "Variable 2", main = "UUUU model")

The constrained eigen-decomposition on the scale matrix of the multivariate t distribution
has approximately the same effect, geometrically speaking, as this constraint would on the
covariance matrix of the multivariate Gaussian distribution. Therefore, in the cases plotted
in Figure 1, the CIIC model corresponds to ‘spherical with equal volume’, the UUCC model
corresponds to ‘ellipsoidal with equal shape’, the CCUC model corresponds to ‘ellipsoidal,



Journal of Statistical Software 15

equal volume, and orientation’, and the UUUU model allows for ellipsoids with ‘varying
volume, shape, and orientation’ in addition to giving no constraint on the degrees of freedom.

4.2. Model-based clustering: The basics on Old Faithful

The Old Faithful data set is available in base R distributions as faithful. It is bivariate data
measuring the time to eruption and length of eruption, both in minutes. In this example, we
use the entire tEIGEN family initialized with soft random starting values.

R> library("teigen")
R> data("faithful")
R> set.seed(13786)
R> teigen_faith <- teigen(faithful, Gs = 1:4, init = "soft", scale = FALSE,
+ verbose = FALSE)
R> summary(teigen_faith)

------------- Summary for teigen -------------
------ RESULTS ------
Loglik: -1130.182
BIC: -2327.635
ICL: -2328.299
Model: UUUC
# Groups: 2

Clustering Table:

1 2
97 175

R> plot(teigen_faith, what = "contour")

The plot is shown in Figure 2. As noted in Section 2.3, using the "soft" initialization is not
recommended due to the sensitivity of the EM algorithm. We can illustrate this sensitivity
by re-running with a different seed.

R> set.seed(73)
R> teigen_faith2 <- teigen(faithful, Gs = 1:4, init = "soft", scale = FALSE,
+ verbose = FALSE)
R> summary(teigen_faith2)

------------- Summary for teigen -------------
---- BIC RESULTS ----
Loglik: -1126.506
BIC: -2320.282
Model: CCCC
# Groups: 3



16 teigen: Clustering and Classification via the Multivariate t Distribution in R

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

w
ai

tin
g

Marginal Contour Plot

eruptions

 0.01 

 0.01 

 0.035 

 0.035 

 0.001 

 0.001 

Group 1

Group 2

Figure 2: Contour plot of the Old Faithful data set produced by using the plot S3 method
on a teigen object.

Clustering Table:

1 2 3
47 128 97

---- ICL RESULTS ----
Loglik: -1130.19
ICL: -2328.266
Model: UUUC
# Groups: 2

Clustering Table:

1 2
97 175

It is worth noting that the ICL criterion still suggests the same two-group model. In order
to illustrate the uncertainty plot, we plot the three-group solution in Figure 3 via

R> plot(teigen_faith2, what = "uncertainty")

With Figure 3, we can see the areas of high uncertainty in the classification results by focusing
our attention on the larger points – the larger the point, the more uncertainty associated with
its classification.
We can also illustrate the predict.teigen S3 method here by creating a new observation.
By default, the BIC is used to select the model, but we can alternatively use the ICL via the
argument modelselect.

R> predict(teigen_faith2, newdata = data.frame(eruptions = 2, waiting = 70))



Journal of Statistical Software 17

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

Uncertainty Plot

Group 1

Group 2

Group 3

Figure 3: Uncertainty plot of the Old Faithful data set produced by using plot S3 method
on a teigen object. Larger point sizes indicate a higher level of uncertainty regarding the
classification of the observation.

$fuzzy
[,1] [,2] [,3]

[1,] 1.085788e-07 9.018595e-13 0.9999999

$classification
[1] 3

R> predict(teigen_faith2, newdata = data.frame(eruptions = 2, waiting = 70),
+ modelselect = "ICL")

$fuzzy
[,1] [,2]

[1,] 0.9999414 5.859729e-05

$classification
[1] 1

Note that if the user specified that the data be scaled via scale = TRUE (which is default),
then predict.teigen will take care of the scaling when predicting new values. As such,
issues will arise if the user is not inputting newdata that is/are consistent with the original
teigen call.

4.3. Semi-supervised model-based classification: the basics on iris

The famous iris data set is available in base R distributions as iris. It contains four measure-
ments on 150 irises, hailing from three different species. We demonstrate the various ways of
performing model-based classification with the teigen package. First, we use only the models
from tEIGEN with unconstrained degrees of freedom. In a true classification scenario, there



18 teigen: Clustering and Classification via the Multivariate t Distribution in R

exists a subset of the data where group membership is unknown. In this scenario, the known
classification vector should have NA inputted for those values. The following example simu-
lates these circumstances. We randomly take 50% of the data to have unknown membership
and use the uniform initialization.

R> set.seed(357678)
R> irisknown <- iris[, 5]
R> irisknown[sample(1:nrow(iris), nrow(iris)/2)] <- NA
R> irisknown[1:5]

[1] setosa <NA> setosa <NA> <NA>
Levels: setosa versicolor virginica

R> tclass_iris3 <- teigen(iris[, -5], models = "dfunconstrained",
+ init = "uniform", known = irisknown, verbose = FALSE)
R> tclass_iris3$tab

newmap
setosa versicolor virginica

setosa 0 0 0
unknown 23 27 25
versicolor 0 0 0
virginica 0 0 0

We can see now that of the observations with unknown membership, 23 are classified as the
Iris setosa species, while 27 are classified as Iris versicolor and 25 as Iris virginica.
The index of the observations that are taken to be known are stored in $index. Therefore, as
an illustration, we can run the exact same analysis as before, but this time using a training
index rather than specifying unknown classifications in the known vector.

R> trainingset <- tclass_iris3$index
R> tclass_iris2 <- teigen(iris[, -5], models = "dfunconstrained",
+ init = "uniform", known = iris[, 5], training = trainingset,
+ verbose = FALSE)
R> tclass_iris2$tab

newmap
setosa versicolor virginica

setosa 23 0 0
versicolor 0 26 0
virginica 0 1 25

Because we actually know the true classification of the irises, we can verify the accuracy of
the algorithm this way. In this case, we have misclassified one of the ‘unknown’ observations
as Iris versicolor, when in fact it is from the Iris virginica species.
The classification table above represents the results from one particular classification run,
and therefore may not be indicative of teigen’s classification performance on the iris data



Journal of Statistical Software 19

set. Therefore, we now fit teigen models using 100 different training sets with 2
3 of the data

considered to have known group membership. We emphasize that this analysis is still in a
semi-supervised context, so care needs to be taken in the interpretation of ‘training’ versus
‘testing’ sets since all observations are used in the model fitting.

R> set.seed(4518)
R> des <- matrix(1:150, 150, 100)
R> des <- apply(des, 2, function(v) v[-c(sample.int(150, 50,
+ replace = FALSE))])
R> results_list <- apply(des, 2, function(v) teigen(iris[, -5],
+ init = "uniform", known = iris[, 5], training = v, verbose = FALSE))
R> table_list <- lapply(results_list, function(v) v$tab)
R> misclass <- unlist(lapply(table_list, function(v) 1 - sum(diag(v))/50))
R> mean(misclass)

[1] 0.031

R> sd(misclass)

[1] 0.02076808

We can see an average misclassification rate of 3.1%, with a standard deviation of around
2.1%. We can also aggregate the classification tables from all of the observations.

R> Reduce("+", table_list)

newmap
setosa versicolor virginica

setosa 1683 0 0
versicolor 0 1530 116
virginica 0 39 1632

This shows us, for instance, that the Iris setosa species is never misclassified through the 100
runs.

4.4. Model-based clustering: custom initialization on wine
The wine data set is available in the gclus library as wine. It contains 13 chemical measure-
ments on 178 samples of Italian red wine. Herein, we analyze the data using model-based
clustering with the entire tEIGEN family and illustrate how to perform user-specified initial-
izations. We initialize using hierarchical clustering via the hclust function in R. We also
illustrate the usage of the ICL as model selection and show how to find model parameters.

R> library("gclus")
R> data("wine")
R> hwine <- hclust(dist(scale(wine[, -1])))
R> initial <- lapply(1:5, function(i) cutree(hwine, k = i))
R> teigen_wine <- teigen(wine[, -1], Gs = 1:5, init = initial,
+ verbose = FALSE)
R> summary(teigen_wine)



20 teigen: Clustering and Classification via the Multivariate t Distribution in R

------------- Summary for teigen -------------
---- BIC RESULTS ----
Loglik: -2517.76
BIC: -5444.88
Model: CIUC
# Groups: 3

Clustering Table:

1 2 3
65 61 52

---- ICL RESULTS ----
Loglik: -2368.811
ICL: -5449.59
Model: UCCU
# Groups: 3

Clustering Table:

1 2 3
59 71 48

Note that in the summary above, the distinct results are provided for the BIC and ICL. When
this happens while using the teigen package, it is an indication that the two selection criteria
disagree on the ‘best’ model. The user can discern pertinent information from the model
chosen by the ICL through the $iclresults part of the teigen object. As an example, we
can take a look at the degrees of freedom and the classification table from the ICL chosen
model.

R> teigen_wine$iclresults$parameters$df

[1] 45.352618 8.270961 25.034678

R> table(wine[,1], teigen_wine$iclresults$class)

1 2 3
1 59 0 0
2 0 71 0
3 0 0 48

In this case, the tEIGEN family performs perfect clustering, correctly grouping all red wines
by varietal when using hclust as an initialization method and the ICL as the selection criteria.
We can illustrate, however, the sensitivity to starting values by performing the same analysis
with k-means as the initialization method.

R> teigen_wine_k <- teigen(wine[, -1], Gs = 1:5, verbose = FALSE)
R> summary(teigen_wine_k)



Journal of Statistical Software 21

------------- Summary for teigen -------------
------ RESULTS ------
Loglik: -2435.972
BIC: -5431.578
ICL: -5438.901
Model: UIUC
# Groups: 4

Clustering Table:

1 2 3 4
29 50 46 53

R> table(wine[,1], teigen_wine_k$iclresults$class)

1 2 3 4
1 9 50 0 0
2 20 0 46 5
3 0 0 0 48

4.5. Model-based clustering: emEM initialization on ckd

In the teigen package, we have included a cleaned-up version of the chronic kidney disease
(ckd) data set that can be found in the UCI Machine Learning Repository (Lichman 2013).
In this version, we have removed the categorical variables and any observations with missing
values on the remaining variables. After these adjustments, the data set contains 203 patients
with 11 diagnostic measures each and the classifying variable indicating whether or not they
have chronic kidney disease.
We now apply teigen to this data set while using the "emem" initialization (described in
Section 2.3).

R> data("ckd")
R> set.seed(9798)
R> teigen_ckd <- teigen(ckd[,-1], init = "emem",
+ ememargs = list(numstart = 100, iter = 5, model = "UUUU",
+ init = "soft"), verbose=FALSE)
R> teigen_ckd

BIC and ICL select the same model and groups.
The best model (BIC of -4085.98, ICL of -4091.5653) is UIUU with G=3

We can compare this to a similar fitting which uses only one instance of a soft random
initialization.

R> set.seed(9798)
R> teigen_ckd2 <- teigen(ckd[,-1], init = "soft", verbose=FALSE)
R> teigen_ckd2



22 teigen: Clustering and Classification via the Multivariate t Distribution in R

BIC and ICL select the same model and groups.
The best model (BIC of -4102.76, ICL of -4110.4846) is UIUU with G=4

As we can see, the more thorough emem initialization results in a better model fit (BIC of
−4086 versus −4103) when compared to a single random initialization.

4.6. Model-based clustering: univariate clustering on bank

The bank notes data set is available in the gclus library as bank. It contains a number of
measurements on both counterfeit and genuine Swiss bank notes. We select the Diagonal
variable to perform univariate clustering on.

R> library("gclus")
R> data("bank")
R> attach(bank)
R> set.seed(20637)
R> teigen_bank <- teigen(Diagonal, init = "hard", verbose = FALSE,
+ scale = FALSE)
R> summary(teigen_bank)

------------- Summary for teigen -------------
------ RESULTS ------
Loglik: -268.2134
BIC: -568.2166
ICL: -576.7961
Model: univUC
# Groups: 2

Clustering Table:

1 2
104 96

R> table(Status, teigen_bank$class)

Status 1 2
0 4 96
1 100 0

The number of misclassified bank notes is only four. Interestingly, these four bank notes
are all true notes that have been misclassified as counterfeit. Here we briefly illustrate the
plotting function for univariate data (see Figure 4).

R> plot(teigen_bank, xlab = "Diagonal (in mm)")

Note that the res argument determines the number of values evaluated for the internal
curve() call for a univariate plot; thus it, again, affects resolution (see Figure 5).



Journal of Statistical Software 23

137 138 139 140 141 142 143

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
en

si
ty

Univariate Density Plot

Diagonal (in mm)

| | |||| | | || | || | || | || || || || | ||| || || | | || | || || || | || || |||| || ||| | | |||| || | | || | || | ||||| || | ||| | | || ||| || ||| | |||| | || | ||| || | |||| | | || || || || || |||| |||||| |||| ||| | || || || | | | ||| || || || |||| | || ||| || |||| || || ||| | || || || || | || |

density()

mixture

Group 1

Group 2

Figure 4: Density plot of the diagonal measure from the bank data set produced by using the
plot S3 method on a univariate teigen object.

137 138 139 140 141 142 143

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

| | |||| | | || | || | || | || || || || | ||| || || | | || | || || || | || || |||| || ||| | | |||| || | | || | || | ||||| || | ||| | | || ||| || ||| | |||| | || | ||| || | |||| | | || || || || || |||| |||||| |||| ||| | || || || | | | ||| || || || |||| | || ||| || |||| || || ||| | || || || || | || |

137 138 139 140 141 142 143

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
en

si
ty

| | |||| | | || | || | || | || || || || | ||| || || | | || | || || || | || || |||| || ||| | | |||| || | | || | || | ||||| || | ||| | | || ||| || ||| | |||| | || | ||| || | |||| | | || || || || || |||| |||||| |||| ||| | || || || | | | ||| || || || |||| | || ||| || |||| || || ||| | || || || || | || |

Figure 5: Density plots of the diagonal measure from the bank data set produced by using
the plot S3 method on a univariate teigen object with differing resolutions.

R> par(mfrow = c(1, 2))
R> par(mar = c(2, 2, 1, 1))
R> plot(teigen_bank, res = 10, draw.legend = FALSE, main = "", lwd = 3)
R> plot(teigen_bank, res = 100, draw.legend = FALSE, main = "", lwd = 3)

If the resolution is too small, we can see cases like the left-hand side of Figure 5 where the
density function is not evaluated close enough to the modes to provide an accurate represen-
tation.



24 teigen: Clustering and Classification via the Multivariate t Distribution in R

4.7. Model-based clustering on a multi-core CPU

The parallelized method is now illustrated on the body data set from the gclus library. It
contains a variety of physical measurements on male and female participants. Once again,
we initialize via hierarchical clustering. The machine used for the demo analysis contains
an octo-core CPU clocked at 3.5 GHz per core (AMD Phenom FX-8350). Note that if
parallel.cores = TRUE then the detectCores() function from the parallel package will
detect the number of cores available and use all of them.

R> library("gclus")
R> data("body")
R> bodydist <- dist(scale(body[, -25]))
R> hbody <- hclust(bodydist)
R> initial <- lapply(1:9, function(i) cutree(hbody, k = i))
R> system.time(teigen_body <- teigen(body[, -25], init = initial,
+ verbose = FALSE))

user system elapsed
21.028 0.012 21.048

R> system.time(teigen_bodyp4 <- teigen(body[, -25], init = initial,
+ parallel.cores = 4))

user system elapsed
0.480 0.184 9.100

R> system.time(teigen_bodyp8 <- teigen(body[, -25], init = initial,
+ parallel.cores = TRUE))

user system elapsed
0.400 0.148 6.069

Comparing the time requirements of each model-fitting, we can see that speed improvements
can be achieved by using several cores. We now check to see if the three runs are identical,
and then check the clustering results.

R> identical(teigen_body, teigen_bodyp8)

[1] TRUE

R> identical(teigen_body, teigen_bodyp4)

[1] TRUE

R> table(body[,"Gender"], teigen_bodyp8$class)



Journal of Statistical Software 25

1 2
0 257 3
1 4 243

As we can see, when using the hierarchical clustering for initialization and the BIC as model-
selection, there are seven misclassifications on the body data set.

4.8. Model-based clustering: Comparison with mclust on body

In the final example, we compare teigen clustering results with those of a popular multivariate
Gaussian mixture model package that contains the equivalent eigen-decomposed covariance
structure: version 5.2 of the mclust R package (Fraley et al. 2016). Care must be taken to
make the comparison valid, so first the body data set from the gclus package (Hurley 2012) is
loaded and scaled. This data set contains various physical and demographic measures on 507
adults. The intended grouping variable Gender is recorded in column 25 and is thus removed.

R> library(gclus)
R> library(mclust)
R> data(body)
R> sdata <- scale(body[, -25])

Next, the same initialization that Mclust makes use of must be supplied to the teigen call,
so a list is supplied with the hcVVV results. We note here that we reduce the number of groups
considered from the default for both methods (1–9) to 1–4. We assure the reader that neither
method selects a larger number of groups than 4, so this is only to reduce computation time.

R> mclustinit <- list()
R> hcfit <- hcVVV(data = sdata)
R> for(i in 1:4) {
+ mclustinit[[i]] <- hclass(hcfit, i)
+ }

Finally, the convergence criteria and tolerance levels for both the M-step and the EM cycles
need to be matched up. We specify the same tolerance levels and convergence criteria in
teigen as the defaults for Mclust.

R> fitt <- teigen(sdata, Gs = 1:4, init = mclustinit, convstyle = "lop",
+ eps = c(sqrt(.Machine$double.eps), 1.e-5), verbose = FALSE)
R> fitg <- Mclust(sdata, G = 1:4, initialization = list(hcfit))
R> fitt

The best model (BIC of -18655.17) is UCCC with G=2
The best model (ICL of -18661.26) is UCCU with G=2

R> fitg

'Mclust' model object:
best model: ellipsoidal, equal shape and orientation (VEE) with 4 components



26 teigen: Clustering and Classification via the Multivariate t Distribution in R

R> table(body[, 25], fitt$classification)

1 2
0 257 3
1 5 242

R> table(body[, 25], fitg$classification)

1 2 3 4
0 63 0 5 192
1 2 187 57 1

As can be seen above, both models result in a misclassification of eight individuals. However,
the results from the Gaussian model split each group up whereas the more robust teigen
model retains the true group structure.

5. Summary
The tEIGEN family was developed further by introducing the four remaining multivariate
mixture models based on an eigendecomposition of the scale matrix, as well as four univariate
mixture models, and including a novel closed-form approximation for the degrees of freedom.
Coinciding with this progress, the teigen R package was introduced and described in detail. It
allows the user to fit the tEIGEN family of multivariate and univariate t distribution mixture
models to numeric data in serial or parallel, with a number of built-in options and error-
catches. Examples further illustrated how teigen can be used and showed its effectiveness as
a clustering technique.

Acknowledgments
The authors gratefully acknowledge helpful comments on earlier versions of the teigen pack-
age from a number of colleagues, as well as the constructive critiques on both the software
and manuscript from anonymous reviewers. This work was supported at various stages by
a doctoral postgraduate scholarship (Andrews) from the Natural Sciences and Engineering
Research Council of Canada (NSERC), individual NSERC Discovery Grants (Andrews, Mc-
Nicholas), the Canada Research Chairs program (McNicholas) and the Research, Scholarly
Activity, and Creative Achievement Fund at MacEwan University (Andrews). This document
was produced using Sweave (Leisch 2002).

References

Aitken AC (1926). “A Series Formula for the Roots of Algebraic and Transcendental
Equations.” Proceedings of the Royal Society of Edinburgh, 45, 14–22. doi:10.1017/
s0370164600024871.

http://dx.doi.org/10.1017/s0370164600024871
http://dx.doi.org/10.1017/s0370164600024871


Journal of Statistical Software 27

Andrews JL, McNicholas PD (2011a). “Extending Mixtures of Multivariate t Factor Analyz-
ers.” Statistics and Computing, 21(3), 361–373. doi:10.1007/s11222-010-9175-2.

Andrews JL, McNicholas PD (2011b). “Mixtures of Modified t Factor Analyzers for Model-
Based Clustering, Classification, and Discriminant Analysis.” Journal of Statistical Plan-
ning and Inference, 141(4), 1479–1486. doi:10.1016/j.jspi.2010.10.014.

Andrews JL, McNicholas PD (2012). “Model-Based Clustering, Classification, and Discrim-
inant Analysis via Mixtures of Multivariate t Distributions.” Statistics and Computing,
22(5), 1021–1029. doi:10.1007/s11222-011-9272-x.

Andrews JL, McNicholas PD, Subedi S (2011). “Model-Based Classification via Mixtures of
Multivariate t Distributions.” Computational Statistics & Data Analysis, 55(1), 520–529.
doi:10.1016/j.csda.2010.05.019.

Andrews JL, Wickins JR, Boers NM, McNicholas PD (2018). teigen: Model-Based Clustering
and Classification with the Multivariate t Distribution. R package version 2.2.2, URL https:
//CRAN.R-project.org/package=teigen.

Auder B, Lebret R, Iovleff S, Langrognet F (2016). Rmixmod: An Interface for MIXMOD.
R package version 2.1.1, URL https://CRAN.R-project.org/package=Rmixmod.

Banfield JD, Raftery AE (1993). “Model-Based Gaussian and Non-Gaussian Clustering.”
Biometrics, 49(3), 803–821. doi:10.2307/2532201.

Biernacki C, Celeux G, Govaert G (2000). “Assessing a Mixture Model for Clustering with the
Integrated Completed Likelihood.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(7), 719–725. doi:10.1109/34.865189.

Biernacki C, Celeux G, Govaert G (2003). “Choosing Starting Values for the EM Algorithm for
Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.” Computational
Statistics & Data Analysis, 41(3), 561–575. doi:10.1016/s0167-9473(02)00163-9.

Böhning D, Dietz E, Schaub R, Schlattmann P, Lindsay B (1994). “The Distribution of the
Likelihood Ratio for Mixtures of Densities from the One-Parameter Exponential Family.”
Annals of the Institute of Statistical Mathematics, 46, 373–388. doi:10.1007/bf01720593.

Brent R (1973). Algorithms for Minimization without Derivatives. Prentice-Hall, New Jersey.

Browne RP, McNicholas PD (2014). “Estimating Common Principal Components in High
Dimensions.” Advances in Data Analysis and Classification, 8(2), 217–226. doi:10.1007/
s11634-013-0139-1.

Browne RP, McNicholas PD (2015). “A Mixture of Generalized Hyperbolic Distributions.”
Canadian Journal of Statistics, 43(2), 176–198. doi:10.1002/cjs.11246.

Browne RP, McNicholas PD (2016). mixture: Mixture Models for Clustering and Classifica-
tion. R package version 1.4, URL https://CRAN.R-project.org/package=mixture.

Celeux G, Govaert G (1995). “Gaussian Parsimonious Clustering Models.” Pattern Recogni-
tion, 28, 781–793. doi:10.1016/0031-3203(94)00125-6.

http://dx.doi.org/10.1007/s11222-010-9175-2
http://dx.doi.org/10.1016/j.jspi.2010.10.014
http://dx.doi.org/10.1007/s11222-011-9272-x
http://dx.doi.org/10.1016/j.csda.2010.05.019
https://CRAN.R-project.org/package=teigen
https://CRAN.R-project.org/package=teigen
https://CRAN.R-project.org/package=Rmixmod
http://dx.doi.org/10.2307/2532201
http://dx.doi.org/10.1109/34.865189
http://dx.doi.org/10.1016/s0167-9473(02)00163-9
http://dx.doi.org/10.1007/bf01720593
http://dx.doi.org/10.1007/s11634-013-0139-1
http://dx.doi.org/10.1007/s11634-013-0139-1
http://dx.doi.org/10.1002/cjs.11246
https://CRAN.R-project.org/package=mixture
http://dx.doi.org/10.1016/0031-3203(94)00125-6


28 teigen: Clustering and Classification via the Multivariate t Distribution in R

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38. doi:
10.1142/9789812388759_0028.

Fraley C, Raftery A, Scrucca L, Murphy TB, Fop M (2016). mclust: Normal Mixture Mod-
elling for Model-Based Clustering, Classification, and Density Estimation. R package ver-
sion 5.2, URL https://CRAN.R-project.org/package=mclust.

Fraley C, Raftery AE (1998). “How Many Clusters? Which Clustering Methods? Answers
via Model-Based Cluster Analysis.” The Computer Journal, 41(8), 578–588. doi:10.1093/
comjnl/41.8.578.

Fraley C, Raftery AE (2002). “Model-Based Clustering, Discriminant Analysis, and Density
Estimation.” Journal of the American Statistical Association, 97(458), 611–631. doi:
10.1198/016214502760047131.

Fraley C, Raftery AE, Murphy TB, Scrucca L (2012). mclust Version 4 for R: Normal Mixture
Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical
Report 597, Department of Statistics, University of Washington.

Franczak BC, Browne RP, McNicholas PD (2014). “Mixtures of Shifted Asymmetric Laplace
Distributions.” IEEE Transactions on Pattern Analysis and Machine Intelligence,, 36(6),
1149–1157. doi:10.1109/tpami.2013.216.

Hurley C (2012). gclus: Clustering Graphics. R package version 1.3.1, URL https://CRAN.
R-project.org/package=gclus.

Karlis D, Santourian A (2009). “Model-Based Clustering with Non-Elliptically Contoured
Distributions.” Statistics and Computing, 19, 73–83. doi:10.1007/s11222-008-9072-0.

Lee SX, McLachlan GJ (2013). “EMMIXuskew: An R Package for Fitting Mixtures of
Multivariate Skew t Distributions via the EM Algorithm.” Journal of Statistical Software,
55(12), 1–22. doi:10.18637/jss.v055.i12.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In COMPSTAT 2002 — Proceedings in Computational Statistics, pp. 575–580.
Springer-Verlag.

Lichman M (2013). “UCI Machine Learning Repository.” URL http://archive.ics.uci.
edu/ml.

Lin TI (2010). “Robust Mixture Modeling Using Multivariate Skew t Distributions.” Statistics
and Computing, 20, 343–356. doi:10.1007/s11222-009-9128-9.

Lindsay BG (1995). “Mixture Models: Theory, Geometry and Applications.” In NSF-CBMS
Regional Conference Series in Probability and Statistics, volume 5. Hayward, California:
Institute of Mathematical Statistics.

McLachlan GJ, Peel D (1998). “Robust Cluster Analysis via Mixtures of Multivariate t Distri-
butions.” In Lecture Notes in Computer Science, volume 1451, pp. 658–666. Springer-Verlag,
Berlin.

http://dx.doi.org/10.1142/9789812388759_0028
http://dx.doi.org/10.1142/9789812388759_0028
https://CRAN.R-project.org/package=mclust
http://dx.doi.org/10.1093/comjnl/41.8.578
http://dx.doi.org/10.1093/comjnl/41.8.578
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1109/tpami.2013.216
https://CRAN.R-project.org/package=gclus
https://CRAN.R-project.org/package=gclus
http://dx.doi.org/10.1007/s11222-008-9072-0
http://dx.doi.org/10.18637/jss.v055.i12
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/s11222-009-9128-9


Journal of Statistical Software 29

McNicholas PD (2016). Mixture Model-Based Classification. Chapman and Hall/CRC, Boca
Raton.

McNicholas PD, Murphy TB (2008). “Parsimonious Gaussian Mixture Models.” Statistics
and Computing, 18, 285–296. doi:10.1007/s11222-008-9056-0.

McNicholas PD, Murphy TB (2010). “Model-Based Clustering of Longitudinal Data.” The
Canadian Journal of Statistics, 38(1), 153–168. doi:10.1002/cjs.10047.

Melnykov V, Melnykov I, Michael S (2015). “Semi-Supervised Model-Based Clustering with
Positive and Negative Constraints.” Advances in Data Analysis and Classification, pp. 1–23.
doi:10.1007/s11634-015-0200-3.

Meng XL, Rubin DB (1993). “Maximum Likelihood Estimation via the ECM Algorithm: A
General Framework.” Biometrika, 80, 267–278. doi:10.1093/biomet/80.2.267.

Qiu W, Joe H (2015). clusterGeneration: Random Cluster Generation (with Specified Degree
of Separation). R package version 1.3.4, URL https://CRAN.R-project.org/package=
clusterGeneration.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Tortora C, Browne RP, Franczak BC, McNicholas PD (2015). MixGHD: Model Based Clus-
tering, Classification and Discriminant Analysis Using the Mixture of Generalized Hyper-
bolic Distributions. R package version 1.8, URL https://CRAN.R-project.org/package=
MixGHD.

Vrbik I, McNicholas PD (2012). “Analytic Calculations for the EM Algorithm for Multivariate
Skew-Mixture Models.” Statistics & Probability Letters, 82(6), 1169–1174. doi:10.1016/
j.spl.2012.02.020.

Vrbik I, McNicholas PD (2014). “Parsimonious Skew Mixture Models for Model-Based Clus-
tering and Classification.” Computational Statistics & Data Analysis, 71, 196–210. doi:
10.1016/j.csda.2013.07.008.

Vrbik I, McNicholas PD (2015). “Fractionally-Supervised Classification.” Journal of Classi-
fication, 32(3), 359–381. doi:10.1007/s00357-015-9188-9.

Wang K, Ng A, McLachlan G (2017). EMMIXskew: The EM Algorithm and Skew Mix-
ture Distribution. R package version 1.0.2, URL https://CRAN.R-project.org/package=
EMMIXskew.

http://dx.doi.org/10.1007/s11222-008-9056-0
http://dx.doi.org/10.1002/cjs.10047
http://dx.doi.org/10.1007/s11634-015-0200-3
http://dx.doi.org/10.1093/biomet/80.2.267
https://CRAN.R-project.org/package=clusterGeneration
https://CRAN.R-project.org/package=clusterGeneration
https://www.R-project.org/
http://dx.doi.org/10.1214/aos/1176344136
https://CRAN.R-project.org/package=MixGHD
https://CRAN.R-project.org/package=MixGHD
http://dx.doi.org/10.1016/j.spl.2012.02.020
http://dx.doi.org/10.1016/j.spl.2012.02.020
http://dx.doi.org/10.1016/j.csda.2013.07.008
http://dx.doi.org/10.1016/j.csda.2013.07.008
http://dx.doi.org/10.1007/s00357-015-9188-9
https://CRAN.R-project.org/package=EMMIXskew
https://CRAN.R-project.org/package=EMMIXskew


30 teigen: Clustering and Classification via the Multivariate t Distribution in R

A. Closed-form degrees of freedom
Here we provide further details and justification for the approximation for the degrees of
freedom introduced in Section 2.2. Rearranging Equation 2, we get

log
(
ν̂

2

)
− ϕ

(
ν̂

2

)
= −1− 1

n

G∑
g=1

n∑
i=1

ẑig(log ŵig − ŵig)− ϕ
(
ν̂old + p

2

)
+ log

(
ν̂old + p

2

)
.

The right-hand side is constant with respect to the newest estimate of ν̂; for ease of what
follows, we define this as k. Taking the exponential, we are given

ν̂

2 exp
(
ϕ
(
ν̂
2

)) = exp(k).

Now, exp
(
ϕ
(
ν̂
2

))
may be approximated by ν̂

2 −
1
2 for ν̂ > 2. We plot the difference for this

approximation for the interval (2,200] in Figure 6.

R> curve(exp(digamma(x/2)) - (x/2 - 1/2), from = 2.0001, to = 200)

The resulting plot shows a monotone decreasing error as the degrees of freedom increases,
with a maximum value of approximately 0.0615 at x = 2.0001 and a minimum value of
approximately 0.0004 at x = 200.
Inputting this approximation and solving for ν̂, we get

ν̂ ≈ − exp(k)
1− exp(k) . (4)

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x

ex
p(

di
ga

m
m

a(
x/

2)
) 

−
 (

x/
2 

−
 1

/2
)

Figure 6: Plot of the difference between the exponential of a digamma function and its
approximation for values between 2 and 200.



Journal of Statistical Software 31

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
0.

30
−

0.
28

−
0.

26
−

0.
24

−
0.

22
−

0.
20

−
0.

18

k

nu
m

er
ic

_e
st

(x
) 

−
 (

−
ex

p(
x)

/(
1 

−
 e

xp
(x

))
)

Figure 7: Plot of the difference between the numerically solved estimate and the closed form
estimate for varying values of k.

In terms of estimates, we can check the differences between the numeric estimate and this
approximation (plotting results in Figure 7).

R> numeric_est <- function(x) {
+ sapply(x, function(w) uniroot(function(j) - w + log(j/2) - digamma(j/2),
+ interval = c(1, 300))$root)
+ }
R> curve(numeric_est(x) - (-exp(x)/(1 - exp(x)) ), from = 0.0051, to = 0.69,
+ xlab = "k")

Along the x-axis in Figure 7 are the constants k for the calculations. As such, the estimate
along the left-hand side is approximately close to 200 degrees of freedom, and the right is
approximately 2 degrees of freedom. Clearly, the closed-form approximation is consistently
smaller than the numeric estimate, and there is a linear relationship where the approximation
is closer (within 0.17) at higher degrees of freedom. Because the error is relatively consistent
(falls between 0.168 and 0.300 for all relevant estimates), we introduce a simple corrective
term that makes use of the previous estimate:

ν̂ ≈
− exp (k) + 2 exp(k)

(
exp

(
ϕ
(
ν̂old

2

))
−
(
ν̂old

2 −
1
2

))
1− exp (k) . (5)

Finally, we note if we alternatively define

k = −1− 1
ng

n∑
i=1

ẑig(log ŵig − ŵig)− ϕ
(
ν̂g

old + p

2

)
+ log

(
ν̂g

old + p

2

)



32 teigen: Clustering and Classification via the Multivariate t Distribution in R

then Equations 4 and 5 hold for ν̂g (unconstrained degrees of freedom) instead.
Interestingly, testing through simulations has shown that the numeric and closed estimations
are essentially equivalent in terms of estimation accuracy. While the closed approximation
tends to require more iterations than the numeric estimate before converging, it conversely
takes less time per iteration – which means that in all cases we have noted a faster runtime
for the end user when using the closed-form approximation. See discussion of dfupdate in
Section 3 for details on setting this option.

Affiliation:
Jeffrey L. Andrews
Department of Statistics
University of British Columbia – Okanagan Campus
Kelowna, British Columbia, Canada
E-mail: jeff.andrews@ubc.ca
URL: http://stat.ok.ubc.ca/faculty/andrews.html

Jaymeson R. Wickins
MacEwan University
Edmonton, Alberta, Canada

Nicholas M. Boers
Department of Computer Science
MacEwan University
Edmonton, Alberta, Canada
E-mail: boersn@macewan.ca

Paul D. McNicholas
Department of Mathematics & Statistics
McMaster University
Hamilton, Ontario, Canada
E-mail: mcnicholas@math.mcmaster.ca
URL: http://www.paulmcnicholas.info/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
February 2018, Volume 83, Issue 7 Submitted: 2015-12-29
doi:10.18637/jss.v083.i07 Accepted: 2016-12-21

mailto:jeff.andrews@ubc.ca
http://stat.ok.ubc.ca/faculty/andrews.html
mailto:boersn@macewan.ca
mailto:mcnicholas@math.mcmaster.ca
http://www.paulmcnicholas.info/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v083.i07

	Introduction
	The tEIGEN family
	Parameter estimation
	E-step (CCUC)
	CM-steps (CCUC)

	Degrees of freedom
	Initialization
	Estimated time remaining
	Convergence
	Model selection
	Plots

	Code specifics
	teigen()
	plot.teigen()

	Examples
	Model-based clustering: geometric example
	Model-based clustering: The basics on Old Faithful
	Semi-supervised model-based classification: the basics on iris
	Model-based clustering: custom initialization on wine
	Model-based clustering: emEM initialization on ckd
	Model-based clustering: univariate clustering on bank
	Model-based clustering on a multi-core CPU
	Model-based clustering: Comparison with mclust on body

	Summary
	Closed-form degrees of freedom

