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Abstract

PPtreeViz, an R package, was developed to explore projection pursuit methods for
classification. It provides functions to calculate various projection pursuit indices for clas-
sification and to explore the results in the space of projection. It also provides functions for
the projection pursuit classification tree. The visualization methods of the tree structure
and the features of each node in PPtreeViz can be used to easily explore the projection
pursuit classification tree structure and determine the characteristics of each class. To
calculate the projection pursuit indices and optimize these indices, we use the Rcpp and
RcppArmadillo packages in R to improve the speed.

Keywords: R, classification tree, projection pursuit, exploratory data analysis, data visualiza-
tion.

1. Introduction

Projection pursuit (Huber 1985) uses the projection pursuit index and optimization procedure
to find an interesting low dimensional projection. Such an interesting feature is defined by the
projection pursuit index, and we usually maximize the predefined projection pursuit index to
find an interesting projection. An interesting projection for classification is a view with the
most separable classes. Several projection pursuit indices with class information have been
suggested. For example, Lee, Cook, Klinke, and Lumley (2005) proposed the LDA (linear
discriminant analysis) projection pursuit index using class information through an extension
of the linear discriminant analysis idea. They also proposed the Lp index. These indices
work for a reasonable amount of data with a small number of variables. The PDA (penalized
discriminant analysis) index was developed for highly correlated data or a small number of
observations with very large number of variables (Lee and Cook 2010).
Lee, Cook, Park, and Lee (2013) proposed the projection pursuit classification tree, a new
approach to build a classification tree using projection pursuit indices with class information.
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At each node, the projection pursuit classification tree uses the best projection to separate two
groups of classes using various projection pursuit indices with class information. One class
is assigned to only one final node and the depth of the projection pursuit classification tree
cannot be greater than the number of classes. Therefore, the projection pursuit classification
tree constructs a simple but more understandable tree for classification. The projection
coefficients of each node represent the importance of the variables to the class separation of
each node. The behaviors of these coefficients are useful to explore how classes are separated
in a tree.
PPtreeViz is an R (R Core Team 2017) package that was developed to explore the projection
pursuit indices with classification as well as the projection pursuit classification tree. It
provides an initial overview of the data for classification, allowing us to further explore the
entire tree structure as well as each node of the tree.
A couple of R packages have been developed to draw a graphical representation of the
classification tree. The generic function plot.rpart from package rpart (Therneau, Atkin-
son, and Ripley 2017) shows a basic representation of the tree structure, and the prp and
fancyRpartPlot functions in rpart.plot (Milborrow 2017) package show more fancy plots.
Packages party (Hothorn, Hornik, Strobl, and Zeileis 2017) and partykit (Hothorn and Zeileis
2015) include plots of the tree with various options of the inner terminal node for the user to
explore the tree structure. Also, the tree representation is neat and clear, and each inner node
has an id number that can be used for further analysis. Most of these packages focus on the
representation of the tree structure and the status of the classes in each node. We adapted
the way that party draws the tree structure to represent the projection pursuit classification
tree and then added more features to explore the data space of each node. PPtreeViz also
provides the visualization tools to explore projection pursuit indices with class information.
This package is a useful exploratory data analysis tool for classification.
In Section 2, we review the various projection pursuit indices with class information, propose
two new indices with class information, and describe optimization methods for projection
pursuit indices. Visual exploration methods for the projection pursuit are also discussed.
The usages of R functions to calculate and optimize index values, and the method used to
visualize the results are described. In Section 3, we outline the way the projection pursuit
classification tree is constructed and show how to fit the projection pursuit classification tree
with functions in PPtreeViz. The visualization methods used to explore the projection pursuit
classification tree structure are discussed in Section 4. Examples and discussion then follow.

2. Projection pursuit for classification

2.1. Projection pursuit indices with class information

Let Xij be the p-dimensional vector of the j-th observation in the i-th class, i = 1, . . . , g,
j = 1, . . . , ni, g is the number of classes, and ni is the number of observations in class i. Also,
let

Bi = (X̄i. − X̄..)(X̄i. − X̄..)>, (1)

Wi = 1
ni

ni∑
j=1

(Xij − X̄i.)(Xij − X̄i.)>,
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where X̄i. =
∑ni

j=1 Xij/ni is the mean of the i-th class, X̄.. =
∑g

i=1
∑ni

j=1 Xij/n is the overall
mean, and n =

∑g
i=1 ni is the total number of observations.

LDA index

ILDA,W(A) = 1− |A>WA|
|A>(W + B)A|

(2)

where B =
∑g

i=1 niBi, W =
∑g

i=1 niWi and A is a projection matrix.
In this index, ni is used as the weight of class i. If the sizes of classes (ni) differ substantially,
the result of the projection pursuit method is affected by the sizes of the classes, and is usually
dominated by the class with a large size. Even though the observed data have different class
sizes, it might be interesting to find separations that are not influenced by class size. For this
purpose, we developed indices with the same weights, n/g, and this is equivalent to using no
weight.

ILDA,noW(A) = 1− |A>W∗A|
|A>(W∗ + B∗)A|

(3)

where B∗ =
∑g

i=1 Bi and W∗ =
∑g

i=1 Wi.
The LDAindex function is developed to calculate the LDA index value. It is written in C++
using the Rcpp (Eddelbuettel and François 2011) and RcppArmadillo (Eddelbuettel and
Sanderson 2014) packages in R. origclass is the group information; it should be a vector of
integers, characters or factors. origdata is the original data without group information and
should be a matrix. proj is the projection vector to be used if the user wants to project the
original data with a default value of NULL. If the user does not provide his/her own projection
vector, LDAindex treats origdata as the projected data and calculates the LDA index value
of the original data. weight is the option for the weight in the index calculation and the
default value is TRUE.

R> LDAindex(origclass = iris[, 5],
+ origdata = as.matrix(iris[, 1:4]))

[1] 0.9765614

R> LDAindex(origclass = iris[, 5],
+ origdata = as.matrix(iris[, 1, drop = FALSE]))
R> LDAindex(origclass = iris[, 5], origdata = as.matrix(iris[, 1:2]),
+ proj = matrix(c(1, 0), nrow = 2))

[1] 0.6187057

PDA index

When variables are highly correlated, |A>(W + B)A| in the LDA index is close to zero and
the LDA index does not work properly. The PDA index (Lee and Cook 2010) has a penalty
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term with λ to prevent the value of the determinant from being close to zero. λ is the value
in [0, 1] and controls the proportion of the penalty term. If λ = 0, no penalty term is added
and the PDA index is the same as the LDA index. If λ = 1, all variables are treated as
uncorrelated variables. If the observed data are highly correlated, we need to use a large λ.
The definition of the PDA index in Lee and Cook (2010) only works for the standardized
data. We extend this idea to the raw data. Let

WPDA = diag(W) + (1− λ)offdiag(W) (4)

where

diag(W) = diag(w11, . . . , wpp)
offdiag(W) = W− diag(W) (5)

Then,

IPDA,W(A, λ) = 1− |A>WPDAA|
|A> (WPDA + B) A|

. (6)

The main idea of the PDA index is to keep the diagonal elements of W and to reduce the
effect of the off-diagonal elements using λ. This approach weakens the correlations among
variables and keeps the variances of the variables. The PDAindex function is developed to
calculate the PDA index value, and it has one extra argument, lambda. The default value of
lambda is 0.1.

R> PDAindex(origclass = iris[, 5], origdata = as.matrix(iris[, 1:2]),
+ lambda = 0.2)

[1] 0.8198746

Lr index

The Lr index ignores the correlations among the variables, focusing only on the variations
of each variable, and uses Lr measure to calculate the variations. With various r, we can
find different views with separable classes (Lee et al. 2005). In PPtreeViz, we modified the
definition of Lr index to keep the index value in [0, 1].
Let

Yij,proj = A> ∗Xij =
[
yij1 · · · yijq

]>
(7)

be the projected data of Xij onto the q-dimensional projection A and

Bri =
q∑

l=1
|ȳi.l − ȳ..l|r (8)

Wri = 1
ni

q∑
l=1

ni∑
j=1
|yijl − ȳi.l|r (9)
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Then,

ILr,W(A) = 1− (Wr)1/r

(Wr +Br)1/r
(10)

where ȳi.l =
∑ni

j=1 yijl/ni, ȳ..l =
∑g

i=1
∑ni

j=1 yijl/n, Br =
∑g

i=1 niBri, and Wr =
∑g

i=1 niWri.
We can also use the same weight n/g instead of ni.

ILr,noW(A) = 1− (Wr
∗)1/r

(Wr
∗ +Br

∗)1/r
(11)

where Br
∗ =

∑g
i=1

n
gBri, Wr

∗ =
∑g

i=1
n
gWri.

The Lrindex function is developed to calculate the Lr index value. r should be a positive
integer value and the default value is 1.

R> Lrindex(origclass = iris[, 5], origdata = as.matrix(iris[, 1:2]), r = 1)

[1] 0.5497106

1D Gini index

The Gini is the impurity measure used in the classification tree (Hastie, Friedman, and Tib-
shirani 2011). Since this measure is defined for one-dimensional variables, the Gini projection
pursuit index is developed to find a one-dimensional projection only. Let yij,proj = a>Xij

and y∗1 ≤ · · · ≤ y∗n be the ordered observations of yij,proj , i = 1, . . . , g and j = 1, . . . , ni. For
each k = 1, . . . , n− 1, let

pLi,k = # of observations of class i in {y∗1, . . . , y∗k}
k

(12)

pRi,k =
# of observations of class i in

{
y∗k+1, . . . , y

∗
n

}
n− k

,

and

PL,Gini,k = −
g∑

i=1
pLi,k(1− pLi,k) (13)

PR,Gini,k = −
g∑

i=1
pRi,k(1− pRi,k)

PGini,k =
(
k

n

)
PL,Gini,k +

(
n− k
n

)
PR,Gini,k.

Then,

IGini(a) = max
k=1,...,n−1

{(g − 1) + g ∗ PGini,k}

where 1−g
g ≤ PGini,k ≤ 2−g

g and PGini,k = 2−g
g when all observations in {y∗1, . . . , y∗k} or{

y∗k+1, . . . , y
∗
n

}
are in the same class. The GINIindex1D function calculates the Gini index

value.
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R> GINIindex1D(origclass = iris[, 5],
+ origdata = as.matrix(iris[, 1, drop = FALSE]))

[1] 0.683281

1D entropy index

The entropy is another impurity measure used in the classification tree (Hastie et al. 2011).
We use the same approach to the 1D Gini index. Let

PL,Entropy,k =
g∑

i=1
pLi,k log pLi,k (14)

PR,Entropy,k =
g∑

i=1
pRi,k log pRi,k

PEntropy,k =
(
k

n

)
PL,Entropy,k +

(
n− k
n

)
PR,Entropy,k.

Then,

IEntropy(a) = max
k=1,...,n−1

{1 + PEntropy,k/ log(g)
1 + maxE/ log(g)

}
(15)

where − log(g) ≤ PEntropy,k ≤ maxE and

maxE =
{

log 2− log g if g is an even number
−1

2 log
(

g2−1
4

)
+ 1

2g log
(

g−1
g+1

)
if g is an odd number

The property of the entropy index differs from that of the Gini index. When g is an even
number, PEntropy,k has the value maxE when all observations in {y∗1, . . . , y∗k} are in g/2 classes
and

{
y∗k+1, . . . , y

∗
n

}
are in the other g/2 classes. This means that the entropy index has the

maximum value when two groups of classes are separable and each group consists of the
same number of classes. When g is an odd number, PEntropy,k has the value maxE when all
observations in {y∗1, . . . , y∗k} are in the (g+1)/2 classes and

{
y∗k+1, . . . , y

∗
n

}
are in the other

classes. Therefore, the entropy index finds different views from those of the Gini index. The
ENTROPYindex1D function is developed to calculate the entropy index value.

R> ENTROPYindex1D(origclass = iris[, 5],
+ origdata = as.matrix(iris[, 1, drop = FALSE]))

[1] 0.6068117

2.2. Optimization for the projection pursuit with LDA and PDA indices

We need to use an optimization procedure to find an interesting projection using the projection
pursuit index. For the LDA and PDA indices, we can calculate the theoretical optimum using
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the maximization lemma (Johnson and Wichern 2007). For the other indices, we use the
simulated annealing optimization method.

LDA index optimization

Finding the optimum A to maximize ILDA,W(A) is the same as finding A to maximize the
following

|A>BA|
|A> (W + B) A|

. (16)

Therefore, the optimal q-dimensional projection to maximize ILDA,W(A) is the first q eigen-
vectors of (W + B)−1 B. The same approach can be applied to ILDA,noW(A).
The LDAopt function is designed to find the theoretical optimal projection to maximize the
LDA index with various dimension of the projection. To calculate (W + B)−1, we use the
ginv function in the MASS package (Ripley 2017; Venables and Ripley 2002). q represents
the dimension of the projection.

R> LDA.proj.result <- LDAopt(origclass = iris[, 5],
+ origdata = iris[, 1:4], q = 2)
R> LDA.proj.result

$indexbest
[1] 0.9765614

$projbest
[,1] [,2]

[1,] -0.2087418 0.006531964
[2,] -0.3862037 0.586610553
[3,] 0.5540117 -0.252561540
[4,] 0.7073504 0.769453092

PDA index optimization

Finding the optimum A to maximize IPDA,W(A) is the same as finding A to maximize the
following

|A>BA|
|A> (WP DA + B) A|

. (17)

Therefore the optimal q-dimensional projection to maximize IPDA,W(A) is the first q eigen-
vectors of (WP DA + B)−1 B. The PDAopt function is designed to find the theoretical optimal
projection to maximize the PDA index.

R> PDA.proj.result <- PDAopt(origclass = iris[, 5], origdata = iris[, 1:4],
+ weight = TRUE, q = 1, lambda = 0.1)
R> PDA.proj.result
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$indexbest
[1] 0.9696339

$projbest
[,1]

[1,] -0.1440983
[2,] -0.3964776
[3,] 0.5001605
[4,] 0.7562280

2.3. Simulated annealing optimization

Since it is not easy to find the theoretical optimum projection for the Lr, Gini and entropy
indices, we modified the simulated annealing optimization algorithm to fit the projection
pursuit method. This algorithm can be applied to general projection pursuit indices. The
first approach for the simulated annealing optimization for the projection pursuit is found in
Lee et al. (2005). We modified their algorithm slightly to find the global optimummore quickly
and more precisely. We also give guidelines to set up the initial values of the parameters.

Simulated annealing optimization algorithm for the projection pursuit

1. Set an initial projection A0 and temp = 1.

2. Calculate the projection pursuit index value I0 = I(A0).

3. For k = 1, 2, . . . , maxiter,
step 1 temp = temp ∗ cooling.

For fast optimization, use temp = temp ∗ cooling2 while k < 1000.
step 2 Ak = temp ∗ random projection + A0.
step 3 Calculate Ik = I(Ak) and d.index = Ik − I0
step 4 If d.index > 0, A0 ← Ak and I0 ← Ik.

else A0 ← Ak and I0 ← Ik with probability exp(d.index/tempp)
where tempp = energy/ log(k + 2).

Repeat step1 1 to 4 until |d.index| < TOL or k = maxiter, where TOL = energy/106

.

Several parameters are used in this simulated annealing optimization. The cooling parameter
is used to determine the step size of a new projection Ak. This parameter is in (0, 1). If we
use a small value for cooling, the step size is rapidly reduced, and it becomes difficult to find
the global optimum. If we use cooling close to 1, the step size is slowly reduced, but there
is a strong chance to find the global optimum. We recommend using 0.999 for our projection
pursuit indices for classification to find the global optimum.
The energy parameter is used for the probability to take new projection. The smaller energy,
the higher the probability and the chance to take a new projection will be high. However,
the probability is also determined by the difference between the new projection pursuit index
and the old projection pursuit index, and the range of these values depends on the data. We
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suggest that energy = 1 − I where I is the projection pursuit index of the original data.
The PPopt function is designed to find the optimal projection to maximize the Lr, Gini and
entropy indices.

R> PP.proj.result <- PPopt(origclass = iris[, 5],
+ origdata = as.matrix(iris[, 1:4]), PPmethod = "Lr", r = 1)
R> PP.proj.result

$indexbest
[1] 0.8665575

$projbest
[,1]

[1,] -0.1332361
[2,] -0.4391126
[3,] 0.5394665
[4,] 0.7059775

2.4. Explore the projection pursuit indices with the two-dimensional data
To explore the properties of various projection pursuit indices with the two-dimensional data,
we provide an R function for Huber’s plot (Huber 1990). This plot represents the projection
pursuit index values in all possible directions in a 2D space. These indices are calculated
using the projections for (cos θ, sin θ), θ = 1◦, . . . , 180◦. For each projection, we calculate
the projected data and the index value of the projected data. The circle with a dashed line
represents the median of all index values and the solid circle shows the other index values
relative to this median. The projection with the maximum index value is indicated as a solid
line and the histogram of the data projected on to this optimal projection is also provided.
We use the ggplot2 package (Wickham 2009) to draw Huber plot and the histogram and use
gridExtra package (Auguie and Antonov 2015) to arrange these two plots. Figure 1 shows
a simple example of the Huber’s plot of the LDA index with two variables from iris data -
the sepal length and the sepal width. From the histogram of the projected data on the best
projection, we can see the separation of the setosa class from the other two classes, except for
one observation in the setosa.

R> Huberplot(as.matrix(iris[, 1:2]), iris[, 5], PPmethod = "LDA")

The Huberplot function provides PPmethod options for various projection pursuit indices with
class information. Also the user can use his/her own function with PPmethod = "UserDef"
and UserDefFtn options to calculate the index.
For the simple example, we use the principal component analysis. To find the first principal
component, we need to maximize the variance of the projected data, therefore we can define
to sampleIndex as a function to calculate the variance of the projected data. Figure 2 shows
the result of UserDefFtn = sampleIndex.

R> sampleIndex <- function(proj.data){
+ var(proj.data)
+ }
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Figure 1: Huber’s plot with the sepal length and the sepal width in the iris data. LDA index
with weight = TRUE is used.
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Figure 2: Huber’s plot for the first principal component. The user defined index function
sampleIndex is used.

R> Huberplot(iris[, 1:2], iris[, 5], PPmethod = "UserDef",
+ UserDefFtn = sampleIndex)

2.5. Exploring the optimal projection for classification

After finding the optimal projection in the q-dimensional space, it is worthwhile to explore
the data projected onto the optimal projection with the projection coefficients. We developed
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Figure 3: 1D LDAopt result with iris data.

the PPoptViz function to explore the projection space. The plot for the coefficient values of
the projection and the histogram of the projected data are provided for q = 1. The coefficient
values for each variable are represented using bars from zero (represented as a black line) and
the red dotted lines at ±1/√p represent the guidelines showing the significant importance
of the coefficients. If the coefficient value is outside of these dotted lines, we can conclude
that the corresponding variable plays an important role in the separation. The histogram
represents the distributions of each class with different colors and helps detect the view with
separable classes. We then use the plot of the projection coefficient values, to determine which
variables are important to separate classes in this optimal view.
Figure 3 shows the best projection coefficients and data projected onto the best projection
with iris data using the LDA index. Variables 3 and 4 have more important roles than the
other two variables to separate the setosa class. We also can observe some separation between
virginica and versicolor with some overlap between the two classes.

R> PPoptViz(LDAopt(origclass = iris[,5], origdata = iris[,1:4], q = 1))

For q > 1, the plots are provided with the type of q ∗ q matrix. The diagonal parts represent
the coefficient plots of the optimal projection in each dimension and the off-diagonal parts
represent the scatter plot of the data projected onto the corresponding projection. Figure 4
shows the best 2D projection coefficients and a scatter plot of the projected data. In the
scatter plot for the 1st dimension (dim 1) and 2nd dimension (dim 2), we can clearly see that
the setosa class is separated from the other classes. We also can see that the versicolor and
virginica class appear to be separable, although this is not clear and we cannot observe this
separation without color. Even though variables 2 and 4 have larger projection coefficients
than the other two variables in the 2nd dimension, this 2nd projection does not have an
important role for class separation. For iris data, the 1st projection shows enough separation.

R> PPoptViz(LDAopt(origclass = iris[, 5], origdata = iris[, 1:4], q = 2))
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Figure 4: 2D LDAopt result with iris data.

3. Projection pursuit classification tree

In this chapter, we explore how to construct the projection pursuit classification tree using
PPtreeViz. A projection pursuit classification tree (Lee et al. 2013) is a type of classification
tree that uses projection pursuit indices with class information. The usual tree-structured
classification finds the rule used to separate data into two groups using impurity measures that
determine the degree of purity of two groups in terms of classes. In contrast, the projection
pursuit classification tree finds the rule used to separate classes into two groups. This rule uses
the best projection to separate two groups of classes with various projection pursuit indices
with class information. One class is assigned to only one final node and the maximum depth
of the projection pursuit classification tree is the number of classes. Therefore, the projection
pursuit classification tree constructs a simple but more understandable tree for classification.
The projection coefficients for each node represent the importance of the variable in separating
the classes in each node, and the behaviors of these coefficients are useful to explore how classes
are separable.
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3.1. Projection pursuit classification tree with various indices

The original package PPtree uses C to calculate the projection pursuit indices and to op-
timize these indices. For the projection pursuit classification tree, the PPtree package also
provides three different functions with different indices and optimization methods: LDA.Tree,
PDA.Tree, and PP.Tree. At present, Rcpp is a popular tool to develop R packages with a
heavy computational load. Therefore we want to move on to use Rcpp instead of C. We
combine these three functions into the PPtreeClass for the projection pursuit classification
tree with the PPmethod option in PPtreeViz library. To use this function, we need at least
the two arguments, formula and data. The default value of PPmethod is “LDA". In the pro-
jection pursuit classification tree, we provide 8 different rules to define the cutoff values for
each node. Let m1, med1, s1, IQR1, and n1 be the mean, median, standard deviation, inter
quartile range, and sample size of the left group at each node, respectively, and let m2, med2,
s2, IQR2, and n2 be the mean, median, standard deviation, inter quartile range, and sample
size of the right group. The rules are then defined using the following formula:

Rule 1 = 0.5 ∗m1 + 0.5 ∗m2 (18)

Rule 2 =
(

n2
n1 + n2

)
∗m1 +

(
n1

n1 + n2

)
∗m2

Rule 3 =
(

s2
s1 + s2

)
∗m1 + s1

s1 + s2
∗m2

Rule 4 =
(

s2/
√
n2

s1/
√
n1 + s2/

√
n2

)
∗m1 +

(
s1/
√
n1

s1/
√
n1 + s2/

√
n2

)
∗m2

Rule 5 = 0.5 ∗med1 + 0.5 ∗med2

Rule 6 =
(

n2
n1 + n2

)
∗med1 +

(
n1

n1 + n2

)
∗med2

Rule 7 =
(

IQR2
IQR1 + IQR2

)
∗med1 +

(
IQR1

IQR1 + IQR2

)
∗med2

Rule 8 =
(

IQR2/
√
n2

IQR1/
√
n1 + IQR2/

√
n2

)
∗med1 +

(
IQR1/

√
n1

IQR1/
√
n1 + IQR2/

√
n2

)
∗med2

To calculate the means, medians, inter quartile ranges and standard deviations in each rule,
we use the stats packages (R Core Team 2017).

R> Tree.result <- PPTreeclass(Species~.,data = iris, PPmethod = "LDA")
R> Tree.result

=============================================================
Projection Pursuit Classification Tree result
=============================================================

1) root
2)* proj1*X < cut1 -> "setosa"
3) proj1*X >= cut1

4)* proj2*X < cut2 -> "versicolor"
5)* proj2*X >= cut2 -> "virginica"
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Error rates of various cutoff values
-------------------------------------------------------------

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8
error.rate 0.02 0.02 0.0267 0.0267 0.02 0.02 0.0267 0.0267

print is a generic plot function for the projection pursuit classification tree object, which
is the result from PPtreeClass. It prints the result of the projection pursuit classification
tree. The simple tree structure and the error rates with each rule are printed without any
other options. To print the projection coefficients and cutoff values at each node, we use
coef.print = TRUE and cutoff.print = TRUE options.

R> print(Tree.result, coef.print = TRUE, cutoff.print = TRUE)

=============================================================
Projection Pursuit Classification Tree result
=============================================================

1) root
2)* proj1*X < cut1 -> "setosa"
3) proj1*X >= cut1

4)* proj2*X < cut2 -> "versicolor"
5)* proj2*X >= cut2 -> "virginica"

Projection Coefficient in each node
-------------------------------------------------------------

1:"Sepal.Length" 2:"Sepal.Width" 3:"Petal.Length" 4:"Petal.Width"
proj1 -0.1929 -0.7096 0.6565 0.1679
proj2 -0.2268 -0.3558 0.4446 0.7901

Cutoff values of each node
-------------------------------------------------------------

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8
cut1 -1.0708 -1.5130 -1.2795 -1.0513 -1.0633 -1.4964 -1.3141 -1.0921
cut2 1.0629 1.0629 1.0444 1.0444 1.0589 1.0589 0.9882 0.9882

Error rates of various cutoff values
-------------------------------------------------------------

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8
error.rate 0.02 0.02 0.0267 0.0267 0.02 0.02 0.0267 0.0267

After fitting the projection pursuit classification tree, we can predict classes for new observa-
tions using the predict function.

R> n <- nrow(iris)
R> train.id <- sample(c(1:n), n * 0.9)
R> test.id <- c(1:n)[-train.id]
R> Tree.train <- PPTreeclass(Species ~ ., data = iris[train.id, ],
+ PPmethod = "LDA")
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R> predict(Tree.train, iris[train.id, 1:4], Rule = 1)

[1] versicolor setosa setosa versicolor virginica
[6] virginica virginica versicolor versicolor setosa

...
[131] setosa virginica virginica setosa virginica
Levels: setosa versicolor virginica

R> predict(Tree.train, iris[test.id, 1:4], Rule = 1)

[1] setosa setosa setosa setosa setosa
[6] versicolor versicolor versicolor versicolor virginica

[11] versicolor virginica virginica virginica virginica
Levels: setosa versicolor virginica

We also provide the PPclassify function. The PPclassify can count the number of predic-
tion errors if we know about the true class information.

R> PPclassify(Tree.result = Tree.train, test.data = iris[train.id, 1:4],
+ Rule = 1, true.class = iris[train.id, 5])

$predict.error
[1] 2

$predict.class
[1] "versicolor" "setosa" "setosa" "versicolor" "virginica"
[6] "virginica" "virginica" "versicolor" "versicolor" "setosa"
. . .

[131] "setosa" "virginica" "virginica" "setosa" "virginica"

R> PPclassify(Tree.result = Tree.train, test.data = iris[test.id, 1:4],
+ Rule = 1, true.class = iris[test.id, 5])

$predict.error
[1] 1

$predict.class
[1] "setosa" "setosa" "setosa" "setosa" "setosa"
[6] "versicolor" "versicolor" "versicolor" "versicolor" "virginica"

[11] "versicolor" "virginica" "virginica" "virginica" "virginica"

4. Visualization of projection pursuit classification tree
The projection pursuit classification tree focuses on the exploratory analysis as well as the
precision of classification. With this tree structure, we can determine the variables that play
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Figure 5: Plot of the structure of projection pursuit classification tree with iris data and plots
of nodes 1 and 3.

important roles in each separation. Thus, it is very important to explore each node in the
projection pursuit classification tree structure and to find out how to divide classes into two
groups. This is the main advantage of the projection pursuit classification tree. Therefore
we need to develop tools to explore the projection space of each node. PPtreeViz provides
two functions to explore the projection pursuit tree - plot and PPclassNodeViz. For the
plot with the tree structure, we modified plot for BinaryTree in the party package (Hothorn
et al. 2017). The plot function in the party package shows inner nodes with node id and
edges with condition. For the final nodes, however, it represents summary statistics for the
classification results. For the projection pursuit classification tree, we need to show the name
of the class and the node id for the final node. Therefore we need to modify plot in party.
The plot function in PPtreeViz is a generic plot function for an object with PPtreeclass
class, which is the result from the PPtreeClass function. The font.size and width.size
options are available for a large tree with a large number of groups. font.size determines
the size of the letters in the plot, and its default value is 17. width.size determines the size
of the ellipse for the inner node, and its default value is 1.

R> plot(Tree.result)
R> PPclassNodeViz(Tree.result, node.id = 1, Rule = 1)
R> PPclassNodeViz(Tree.result, node.id = 3, Rule = 1)

Figure 5(a) represents the projection pursuit classification tree with iris data. The ellipses
represent the inner nodes and the rectangles with group names represent the final nodes. The
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node id is shown in the square box by each node. In each ellipse, we find the optimal 1D
projection using the LDA index and find the cutoff values with various rules. At node 1, the
projection pursuit classification tree separates “setosa” from the other two classes and at node
3, this tree separates “virginica” from “versicolor”. We can explore these inner nodes more
closely using the PPclassNodeViz function, and the result is shown in Figure 5(b). We can
use the plot of the projection coefficients to figure out that variables 2 and 3 have important
roles in separating “setosa” from the other two groups, but they work in a different direction.
This means that “setosa” has a large value for variable 2 and a small value for variable 3. In
contrast, the other two classes have a small value of variable 2 and a large value of variable 3.
This result is shown in the middle plot titled “Mean of left and right nodes”. In this plot, “L”
refers to the left group (“setosa” in node 1) and “R” refers to the right group (“versicolor”
and “verginica”).
The dashed vertical red line in the histogram of the projected data represents the cutoff values
for the specified rule (-1.0708 in this plot). These coefficient values and cutoff values can be
checked with the coef.print = TRUE and cutoff.print = TRUE options in print function.
No errors occur at node 1.
Figure 5(c) shows the result for node 3 of the tree. From the coefficient plot, we can see that
variable 4 is the most important variable to separate “virginica” from “versicolor”. In this
node, a few observations are misclassified with rule 1.
The projection coefficients at each node are related to the correlations among variables. There-
fore it is helpful to explore the coefficients using the correlations. In the PPclassNodeViz
function, we provide an image option to draw the image plot of the correlation matrix. The
default value is FALSE, and in the next chapter we show how to use image = TRUE through
examples.
In the PPtreeViz library, we define the PPtreeclass class to save all results from fitting
the PPtreeClass function. Currently, partykit is commonly used to summarize and vi-
sualize tree structure in various ways. To use the properties of partykit, we define the
as.party.PPtreeclass function to add PPtreeclass class to the party class.

R> Party.result <- as.party(Tree.result)
R> Party.result

Model formula:
Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

Fitted party:
[1] root
| [2] proj1 >= -1.07081
| | [3] proj2 >= 1.06291: virginica (n = 51, err = 3.9%)
| | [4] proj2 < 1.06291: versicolor (n = 49, err = 2.0%)
| [5] proj1 < -1.07081: setosa (n = 50, err = 0.0%)

Number of inner nodes: 2
Number of terminal nodes: 3

R> plot(Party.result)
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Figure 6: Plot of the structure of projection pursuit classification tree with partykit.

V1 Weight of the fish
V2 Body length – length from the nose to the beginning of the tail
V3 Tail length – length from the beginning of the tail to the end of the tail
V4 Ratio of the length from the notch of the tail to the end of the tail to the tail length
V5 Ratio of height to the total length
V6 Ratio of width to the total length

Table 1: Variables in fishcatch data.

5. Example

5.1. Fishcatch data

This data set is from the Journal of Statistical Education Data Archive. It contains informa-
tion on 159 fish from 7 species (Bream, Parkki, Perch, Pike, Roach, Smelt, and Whitewish).
Six continuous variables (weight, length1, length2, length3, height and width) and one binary
variable (sex) are used. We modified the variables and make 6 new continuous variables (Ta-
ble 1). We use these 6 variables for the 7 species to explain how to use PPtreeViz to explore
the projection pursuit classification tree and each node of the tree. The result of the fitted
projection pursuit classification tree with PDA index (λ = 0.1) is:

=============================================================
Projection Pursuit Classification Tree result
=============================================================

1) root
2) proj1*X < cut1

4) proj2*X < cut2
6)* proj3*X < cut3 -> "Pike"
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Figure 7: Projection pursuit classification tree with fishery data.

7)* proj3*X >= cut3 -> "Smelt"
5) proj2*X >= cut2

8)* proj4*X < cut4 -> "Perch"
9) proj4*X >= cut4

10)* proj5*X < cut5 -> "Roach"
11)* proj5*X >= cut5 -> "Whitewish"

3) proj1*X >= cut1
12)* proj6*X < cut6 -> "Bream"
13)* proj6*X >= cut6 -> "Parkki"

Cutoff values of each node
-------------------------------------------------------------

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8
cut1 0.4239 0.8478 0.5452 0.3201 0.4122 0.8593 0.4955 0.2584
cut2 -0.8744 -1.2294 -0.8974 -0.7087 -0.9088 -1.2668 -1.1193 -0.9316
cut3 -0.3148 -0.2130 -0.0232 -0.0709 -0.3069 -0.2052 -0.0286 -0.0766
cut4 -0.4208 -0.1629 -0.4567 -0.5887 -0.4127 -0.1737 -0.4410 -0.5636
cut5 -0.3622 -0.0113 -0.3868 -0.5749 -0.4100 -0.0738 -0.5108 -0.6805
cut6 -0.7299 -0.3221 -0.8085 -1.0203 -0.7229 -0.3042 -0.8778 -1.0841
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Error rates of various cutoff values
-------------------------------------------------------------

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8
error.rate 0 0.0252 0 0.0126 0.0063 0.0314 0.0126 0.0252

Figure 7 is the result of the projection pursuit classification tree using the PDA index with
lambda=0.1. No misclassification occurs in this projection pursuit classification tree with
rules 1 and 3. At node 1, we can separate Bream and Parkki from the other fish classes.
Figure 8 represents the plot of node 1 with the image = TRUE option. In the histogram of
the projected data (the upper right panel), we can clearly see that Parkki and Bream are
separated from the other fish classes. The coefficient plot (the upper left panel) shows that
the height (V5) is the most important variable. From this plot, we can see that Parkki
and Bream have a tall (V5) and narrow width (V6) relative to the other classes of fish. In
the correlation plot (the lower right panel), yellow represents positively correlated and blue
represents negatively correlated variables. From this image plot, we can see that V1, V2
and V3 are positively correlated, V4 and V6 are negatively correlated, and V5 and V6 are
uncorrelated.
At node 2 (Figure 9), the projection pursuit classification tree separates Pike and Smelt from
the other fish classes. In this separation, the ratio of height (V5) is important. Pike and Smelt
are shorter than the other fish classes. In the data of node 2, V4 is negatively correlated with
V5 and V6. In contrast to the data at node 1, V5 and V6 are positively correlated at node 2.
Bream and Parkki are clearly separated in node 3, and Figure 10 presents the result of node
3. In this separation, the tail length (V3) is the most important variable while the ratio of the
notch length (V4) also plays an important role. This result reveals that Bream has a much
longer tail and much deeper notch than Pakki.
Pike and Smelt are separated at node 4 (Figure 11). Pike has longer body (V2), longer tail
(V3), and lighter weight (V1) than Smelt. In the data of node 4, V1, V2, and V3 are highly
negatively correlated with V4. Perch is separated from the others at node 5. From Figure 12,
we can see that Perch has a shorter tail (V3) and a longer length (V2), with a small notch
in the tail (V4) relative to Roach and Whitewish. At node 9 separation (Figure 13), we can
separate Roach from Whitewish with the role of two important variables, the ratio of the
notch (V4) and the weight (V1) of the fish. Whitewish are heavier than Roach and have a
small notch in the tail compared to that for Roach. The data at node 9 show that V4 is
negatively correlated with all other variables.
The projection pursuit classification tree can be used in PPtreeViz to determine the special
characteristics of each species, especially from a classification point of view. Fortunately, there
are no misclassification cases in this example. However, we can notice any misclassification
and the reason for it at each node by using the histogram of the projected data and the values
of the projection coefficients.

5.2. Isolated letter speech recognition data

The isolated letter recognition data (ISOLET) is from the UCI Machine Learning repository
(http://archive.ics.uci.edu/ml). In this repository, two data sets are available: one for
training and the other for testing. The training set has 240 observations and the testing set

http://archive.ics.uci.edu/ml
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Figure 8: Node 1 of fishery data.
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Figure 10: Node 3 of fishery data.
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Figure 11: Node 4 of fishery data.
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Figure 12: Node 5 of fishery data.
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Figure 13: Node 9 of fishery data.
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Figure 14: Projection pursuit classification tree with letter identification data.

has 60 observations for each letter. Both data sets have 617 variables. The descriptions of
the variables without matching the order in the data sets can be found in Cole and Fanty
(1990). This data set was adopted in several studied in machine learning (Cole and Fanty
1990, Dietterich and Bakiri 1991). The algorithms are mainly designed to precisely predict
letters with 617 variables from spoken letters. Their concern is focused on predictability, not
interpretability. However it is also important to determine the feature of each letter and to
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Figure 15: Node 2 of projection pursuit classification tree with letter identification data.
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Figure 16: Node 26 of projection pursuit classification tree with letter identification data.

understand their characteristics. In this paper, we have explored the tree structure of the
projection pursuit classification tree using the training set and the PDA index with lambda =
0.1. Figure 14 shows the entire projection pursuit classification tree structure of the ISOLET
data. The projection pursuit classification tree has 26 final nodes and the depth of this tree
is 14. With the plot function in PPtreeViz, we can draw this complicated tree structure
without any overlap. The training error rate for this projection pursuit classification tree is
0.0224 and the test error rate is 0.0693.
Figure 15 presents the results for node 2. In this ISOLET data, each variable is represented as
a line in the coefficient plot and the mean plot since we have too many variables. In the mean
plot, the variables with a large difference between the left and right group are shown in red.
Node 2 separates the letter F and S from the letter X. These two groups of letters have quite
different patterns, especially around variable 350 and 450. For these variables, the coefficient
plot has high peaks. Also the means between variables 150 and 220, and around variable 600
are different. Figure 16 shows the results for node 26, where J and K are separated from G, T,
A, E, B, D, V, and P. The main differences of the means between these two groups of letters
are in the first 200 variables, the variables between 450 and 470, and around variable 400.
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Figure 17: Node 35 of projection pursuit classification tree with letter identification data.

This feature is also captured by the coefficient plot. Figure 17 shows node 35 separating E,
B and D from V and P. The patterns between variable 450 and variable 600, around variable
330, and around variable 420 differ somewhat, and the coefficient plot has high peaks around
these variables. Due to the lack of information regarding the description of the variables,
we cannot clearly explain how these letters are differently classified. However, we determine
which variables mostly differ between the two groups and how they separate groups.

=============================================================
Projection Pursuit Classification Tree result
=============================================================

1) root
2) proj1*X < cut1

4) proj2*X < cut2
6)* proj3*X < cut3 -> "F"
7)* proj3*X >= cut3 -> "S"

5)* proj2*X >= cut2 -> "X"
3) proj1*X >= cut1

8)* proj4*X < cut4 -> "R"
9) proj4*X >= cut4

10) proj5*X < cut5
12) proj6*X < cut6

14)* proj7*X < cut7 -> "O"
15)* proj7*X >= cut7 -> "L"

13) proj6*X >= cut6
16)* proj8*X < cut8 -> "I"
17)* proj8*X >= cut8 -> "Y"

11) proj5*X >= cut5
18) proj9*X < cut9

20) proj10*X < cut10
22)* proj11*X < cut11 -> "C"
23)* proj11*X >= cut11 -> "Z"
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21) proj10*X >= cut10
24)* proj12*X < cut12 -> "M"
25) proj12*X >= cut12

26) proj13*X < cut13
28) proj14*X < cut14

30) proj15*X < cut15
32)* proj16*X < cut16 -> "G"
33)* proj16*X >= cut16 -> "T"

31) proj15*X >= cut15
34)* proj17*X < cut17 -> "A"
35) proj17*X >= cut17

36) proj18*X < cut18
38) proj19*X < cut19

40)* proj20*X < cut20 -> "E"
41)* proj20*X >= cut20 -> "B"

39)* proj19*X >= cut19 -> "D"
37) proj18*X >= cut18

42)* proj21*X < cut21 -> "V"
43)* proj21*X >= cut21 -> "P"

29) proj14*X >= cut14
44)* proj22*X < cut22 -> "J"
45)* proj22*X >= cut22 -> "K"

27) proj13*X >= cut13
46)* proj23*X < cut23 -> "W"
47) proj23*X >= cut23

48) proj24*X < cut24
50)* proj25*X < cut25 -> "U"
51)* proj25*X >= cut25 -> "Q"

49)* proj24*X >= cut24 -> "N"
19)* proj9*X >= cut9 -> "H"

Error rates of various cutoff values
-------------------------------------------------------------

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8
error.rate 0.0224 0.1347 0.0459 0.2774 0.0228 0.1449 0.0569 0.3431

6. Discussion
The projection pursuit classification tree is a tree for classification that is used with the
projection pursuit method. Each class in this tree is assigned to only one final node,which
simplifies the final tree structure. The final tree structure is worth exploring, since it is easy
to understand, to interpret how classes are separated and to explore the feature of each class.
The original R package PPtree for the projection pursuit classification tree was developed
using the C language for the main calculation. We want to keep PPtree with the C language
and also to make a new version for calculation with Rcpp. Therefore, we developed the
projection pursuit index calculation, optimization algorithm with Rcpp and RcppArmadillo
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packages. We also add a visualization of the result of the optimization for the projection
pursuit indices, the tree structure, and the data space in each node. We combine all these
methods into the PPtreeViz package.
There are a couple of R packages for the classification tree with a visualization of the tree
structure. rpart and rpart.plot are packages for the classification tree and for visualization
of the result of rpart. The generic plot of rpart does not show good presentation of the
tree structure. prp provides a more efficient plot of the tree structure including interactive
pruning option. fancyRpartPlot provides nice presentation of the tree structure. However
fancyRpartPlot is not suitable for a big tree with a large number of nodes.
The party and partykit packages provide a function for new classification tree method and
also provides a new approach to visualize the the general binary tree. Its visualization method
includes options of various plots that present the status of the final node, as well as the tree
structure. In its visualization of the tree structure, the inner nodes are represented as ellipses,
with an indication of the node, and the final nodes are represented as various type of plots.
Even though the visualization methods in party and partykit are useful, there is a limit to
exploring the projection pursuit classification tree.
The visualization of the tree structure in the PPtreeViz package adapted the method from
the party package for the inner node representation. For the final node, PPtreeViz presents
the assigned class with the node id, and this helps indicate the specific node with the node
id and explores the separations in each node as well as the overall tree structure. With this
PPtreeViz, we can easily understand how classes are separated, which features differ from the
other classes, etc. This information can be useful for further analysis in order to improve the
predictability of the classification. PPtreeViz also provides methods to explore the projection
pursuit indices using the class information.
In this paper, we propose two new indices, Gini and entropy, and we provide GINIindex1D and
ENTROPYindex1D functions to calculate the index values. According to the index definition,
these indices need to calculate PGini,k and PEntropy,k for all k = 1, . . . , n, and as well as find the
maximum values. It takes more time to get these index values than with other indices (LDA,
PDA, or Lp indices), even though we use Rcpp (Eddelbuettel and François 2011). It gets worse
when we use these indices in the PPopt function or PPtreeClass function. We recommend
not to use PPmethod = "GINI" or PPmethod = "ENTROPY" options in PPtreeClass with a
large number of observations or variables.
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