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Abstract

The mplot package provides an easy to use implementation of model stability and
variable inclusion plots (Miiller and Welsh 2010; Murray, Heritier, and Miiller 2013) as well
as the adaptive fence (Jiang, Rao, Gu, and Nguyen 2008; Jiang, Nguyen, and Rao 2009) for
linear and generalized linear models. We provide a number of innovations on the standard
procedures and address many practical implementation issues including the addition of
redundant variables, interactive visualizations and the approximation of logistic models
with linear models. An option is provided that combines our bootstrap approach with
glmnet for higher dimensional models. The plots and graphical user interface leverage
state of the art web technologies to facilitate interaction with the results. The speed of
implementation comes from the leaps package and cross-platform multicore support.

Keywords: model selection, variable selection, linear models, mixed models, generalized linear
models, fence, R.

1. Graphical tools for model selection

In this article we introduce the mplot package (Tarr, Miiller, and Welsh 2018) for R (R
Core Team 2017), which provides a suite of interactive visualizations and model summary
statistics for researchers to use to better inform the variable selection process and is available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=mplot. The methods we provide rely heavily on various bootstrap techniques to
give an indication of the stability of selecting a given model or variable and even though
not done here, could be implemented with resampling methods other than the bootstrap,
for example cross-validation. The ‘m’ in mplot stands for model selection/building and we
anticipate that in future more graphs and methods will be added to the package to further
aid better and more stable building of regression models. The intention is to encourage
researchers to engage more closely with the model selection process, allowing them to pair
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their experience and domain specific knowledge with comprehensive summaries of the relative
importance of various statistical models.

Two major challenges in model building are the vast number of models to choose from and the
myriad of ways to do so. Standard approaches include stepwise variable selection techniques
and more recently the lasso (least absolute shrinkage and selection operator). A common
issue with these and other methods is their instability, that is, the tendency for small changes
in the data to lead to the selection of different models.

An early and significant contribution to the use of bootstrap model selection is Shao (1996)
who showed that carefully selecting m in an m-out-of-n bootstrap drives the theoretical prop-
erties of the model selector. Miiller and Welsh (2005, 2009) modified and generalized Shao’s
m-out-of-n bootstrap model selection method to robust settings, first in linear regression and
then in generalized linear models. The bootstrap is also used in regression models that are
not yet covered by the mplot package, such as mixed models (e.g., Shang and Cavanaugh
2008) or partially linear models (e.g., Miiller and Vial 2009) as well as for the selection of
tuning parameters in regularization methods (e.g., Park, Sakaori, and Konishi 2014).

Assume that we have n independent observations y = (y1,...,%,)" and an n x p full rank
design matrix X whose columns are indexed by 1,...,p. Let a denote any subset of p,
distinct elements from {1,...,p}. Let X, be the corresponding n x p,, design matrix and x_,

denote the ith row of X,.

The mplot package focuses specifically on linear and generalized linear models (GLM). In
the context of GLMs, a model « for the relationship between the response y and the design
matrix X, is specified by

E(y) = (X4 Ba), and VAR(y) = 0®v(h(X; Ba)), (1)

where 3, is an unknown p,-vector of regression parameters and ¢ is an unknown scale pa-
rameter. Here E(-) and VAR(+) denote the expected value and variance of a random variable,
h is the inverse of the usual link function and both A and v are assumed known. When A is
the identity and v(-) = 1, we recover the standard linear model.

The purpose of model selection is to choose one or more models « from a set of candidate
models, which may be the set of all models A or a reduced model set (obtained, for example,
using any initial screening method). Many model selection procedures assess model fit using
the generalized information criterion (GIC),

A

GIC(a, \) = Q(a) + A\pa. (2)

The Q(a) component is a measure of “description loss” or “lack of fit”, a function that de-
scribes how well a model fits the data, for example, the residual sum of squares or —2 x log-
likelihood. The number of independent regression model parameters, p,, is a measure of
“model complexity”. The penalty multiplier, A, determines the properties of the model selec-
tion criterion (Miiller, Scealy, and Welsh 2013; Miller and Welsh 2010). Special cases, when
Q(a) = —2 x log-likelihood(a), include the AIC (Akaike infomation criterion) with A = 2,
BIC (Bayesian information criterion) with A = log(n) and more generally the generalized
information criterion (GIC) with A € R (Konishi and Kitagawa 1996).

The mplot package currently implements “variable inclusion plots”, “model stability plots”
and a model selection procedure inspired by the adaptive fence of Jiang et al. (2008). Variable
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inclusion plots were introduced independently by Miiller and Welsh (2010) and Meinshausen
and Bithlmann (2010). The idea is that the best model is selected over a range of values of
the penalty multiplier A and the results are visualized on a plot which shows how often each
variable is included in the best model. These types of plots have previously been referred to
as stability paths, model selection curves and most recently variable inclusion plots (VIPs) in
Murray et al. (2013). An alternative to penalizing for the number of variables in a model is
to assess the fit of models within each model size. This is the approach taken in our model
stability plots where searches are performed over a number of bootstrap replications and the
best models for each size are tallied. The rationale is that if there exists a “correct” model
of a particular model size it will be selected overwhelmingly more often than other models
of the same size. Finally, the adaptive fence was introduced by Jiang et al. (2008) to select
mixed models. This is the first time code has been made available to implement the adaptive
fence and the first time the adaptive fence has been applied to linear and generalized linear
models.

This article introduces three data examples that each highlight different aspects of the graph-
ical methods made available by package mplot. Sections 2-5 are based on a motivating
example where the true data generating model is known. We use this example to highlight
one of the classical failings of stepwise procedures before introducing variable inclusion plots
and model stability plots through the vis() function in Section 3. Our implementation of
the adaptive fence with the af () function is presented in Section 4.

For all methods, we provide publication quality classical plot methods using ggplot2 graphics
(Wickham 2016) as well as interactive plots using the googleVis package (Gesmann and de
Castillo 2011). In Section 5, we show how to add further utility to these plot methods by
packaging the results in a shiny web interface which facilitates a high degree of interactivity
(Chang, Cheng, Allaire, Xie, and McPherson 2017).

In Section 6 we show computing times in a simulation study, varying the number of variables
from 5 to 50; we further illustrate the advantage of using multiple core technology. We then
show with two applied examples the practical merit of our graphical tools in Section 7.

To conclude, we highlight in Section 8 the key contributions of the three data examples and
make some final brief remarks.

2. Illustrative example

We will present three examples to help illustrate the methods provided by the mplot package.
Two real data sets are presented as case studies in Section 7. The first of these is a subset of
the diabetes data set used in Efron, Hastie, Johnstone, and Tibshirani (2004) which has 10
explanatory variables and a continuous dependent variable, a measure of disease progression,
suitable for use in a linear regression model. The second is a binomial regression example
from Hosmer and Lemeshow (1989) concerning low birth weight.

The artificially generated data set was originally designed to emphasize statistical deficien-
cies in stepwise procedures, but here it will be used to highlight the utility of the various
procedures and plots provided by package mplot. A scatterplot matrix of the data and the
estimated pairwise correlations is given in Figure 1. All variables, while related, originate
from a Gaussian distribution. The data set and details of how it was generated are provided
with the mplot package.
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R> install.packages("mplot")
R> data("artificialeg", package "mplot")
R> help("artificialeg", package = "mplot")

Fitting the full model yields no individually significant variables.
R> library("mplot")

R> full.model <- 1Im(y ~ ., data = artificialeg)
R> round (coef (summary (full.model)), 2)

Estimate Std. Error t value Pr(>|tl|)

(Intercept) -0.10 0.33 -0.31 0.76
x1 0.64 0.69 0.92 0.36
x2 0.26 0.62 0.42 0.68
x3 -0.51 1.24 -0.41 0.68
x4 -0.30 0.25 -1.18 0.24
x5 0.36 0.60 0.59 0.56
x6 -0.54 0.96 -0.56 0.58
x7 -0.43 0.63 -0.68 0.50
x8 0.15 0.62 0.24 0.81
x9 0.40 0.64 0.63 0.53

Performing default stepwise variable selection yields a model with all explanatory variables
except xg. As an aside, the dramatic changes in the p values indicate that there is sub-
stantial interdependence between the explanatory variables even though none of the pairwise
correlations in Figure 1 are particularly extreme.

R> step.model <- step(full.model, trace = 0)
R> round (coef (summary (step.model)), 2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.11 0.32 -0.36 0.72
x1 0.80 0.19 4.13 0.00
x2 0.40 0.18 2.26 0.03
x3 -0.81 0.19 -4.22 0.00
x4 -0.35 0.12 -2.94 0.01
x5 0.49 0.19 2.55 0.01
x6 -0.77 0.15 -5.19 0.00
x7 -0.58 0.15 -3.94 0.00
x9 0.55 0.19 2.90 0.01

The true data generating process is, y = 0.6xg + ¢, where ¢ ~ N(0,22). The bivariate
regression of y on xg is the more desirable model, not just because it is the true model
representing the data generating process, but it is also more parsimonious with essentially
the same residual variance as the larger model chosen by the stepwise procedure. This example
illustrates a key statistical failing of stepwise model selection procedures, in that they only
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Figure 1: Scatterplot matrix of the artificially generated data set with estimated correlations
in the upper right triangle. The true data generating process for the dependent variable is
y = 0.6 13 + & where £ ~ N(0,2%).

explore a subset of the model space so are inherently susceptible to local minima in the
information criterion (Harrell 2001).

Perhaps the real problem of stepwise methods is that they allow researchers to transfer all
responsibility for model selection to a computer and not put any real thought into the model
selection process. This is an issue that is also shared, to a certain extent with more recent
model selection procedures based on regularization such as the lasso and least angle regression
(Tibshirani 1996; Tibshirani, Johnstone, Hastie, and Efron 2004), where attention focusses
only on those models that are identified by the path taken through the model space. In
the lasso, as the tuning parameter X is varied from zero to oo, different regression parameters
remain non-zero, thus generating a path through the set of possible regression models, starting
with the largest “optimal” model when A = 0 to the smallest possible model when A = oo,
typically the null model because the intercept is not penalized. The lasso selects that model
on the lasso path at a single A\ value, that minimizes one of the many possible criteria (such
as 5-fold cross-validation, or the prediction error) or by determining the model on the lasso
path that minimizes an information criterion (for example BIC).

An alternative to stepwise or regularization procedures is to perform exhaustive searches
of the model space. While exhaustive searches avoid the issue of local minima, they are
computationally expensive, growing exponentially in the number of variables p, with more
than a thousand models when p = 10 and a million when p = 20. The methods provided in the
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mplot package and described in the remainder of the article go beyond stepwise procedures by
incorporating exhaustive searches where feasible and using resampling techniques to provide
an indication of the stability of the selected model. The mplot package can feasibly handle up
to 50 variables in linear regression models and a similar number for logistic regression models
when an appropriate transformation (described in Section 7.2) is implemented.

3. Model stability and variable inclusion plots

The main contributions of the mplot package are model stability plots and variable inclusion
plots, implemented through the vis() function, and the simplified adaptive fence for linear
and generalized linear models via the af () function which is discussed in Section 4.

Our methods generate large amounts of raw data about the fitted models. While the print
and summary output from both functions provide suggestions as to which models appear to
be performing best, it is not our intention to have researchers simply read off the “best” model
from the output. The primary purpose of these techniques is to help inform a researcher’s
model selection choice. As such, the real value in using these functions is in the extensive
plot methods provided that help visualize the results and get new insights. This is reflected
in the choice of the name vis, short for visualize, as this is the ultimate goal — to visualize
the stability of the model selection process.

3.1. Model stability plots

In order to generate model stability and variable inclusion plots, the first step is to generate
a ‘vis’ object using the vis() function. To generate a ‘vis’ object for the artificial data
example the fitted full model object along with some optional arguments are passed to the
vis() function.

R> Im.art <- 1Im(y ~ ., data
R> vis.art <- vis(lm.art, B
+ seed = 2017)

artificialeg)
150, redundant = TRUE, nbest = "all",

The B = 150 argument provided to the vis() function tells us that we want to perform 150
bootstrap replications. See Murray et al. (2013) for more detail on the use of exponential
weights in bootstrap model selection. Specifying redundant = TRUE is unnecessary, as it is
the default option; it ensures that an extra variable, randomly generated from a standard
normal distribution and hence completely unrelated to the true data generating process, is
added to the full model. This extra redundant variable can be used as a baseline comparison
in the variable inclusion plots. The nbest argument controls how many models with the
smallest Q(a) for each model size k = 1,...,p are recorded. It can take an integer argument
or specifying nbest = "all" ensures that all possible models are displayed when the plot
method is called, as shown in the top left panel of Figure 2. Typically researchers do not
need to visualize the entire model space and in problems with larger numbers of candidate
variables it is impractical to store and plot results for all models. The default behavior of the
vis() function is to set nbest = 5, essentially highlighting the maximum enveloping lower
convex curve of Murray et al. (2013). Finally, the seed argument facilitates reproducibility
in the parallelized bootstrap resampling.
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Figure 2: Results of calls to plot(vis.art, interactive = FALSE) with additional argu-
ments which = "1vk" in the top left, which = "boot" in the top right and which = "vip"
at the bottom.

The simplest visualization of the model space is to plot a measure of description loss against
model complexity for all possible models, a special implementation is the Mallows C), plot
(Mallows 2000). This is done using the argument which = "1vk" to the plot function applied
to a ‘vis’ object. The string "1vk" is short for loss versus k, the dimension of the model.

R> plot(vis.art, interactive = FALSE, highlight = "x8", which = "lvk")

The result of this function can be found in the top left panel of Figure 2. The highlight
argument is used to differentiate models that contain a particular variable from those that
do not. This is an implementation of the “enriched scatter plot” of Murray et al. (2013).
There is a clear separation between models that contain xg and those that do not, that is,
all models containing xg (shown as red points) are clustered towards the bottom whereas the
models without xg (blue points) are positioned above in a separate cluster. There is no similar
separation for the other explanatory variables (not shown). These results strongly suggest
that zg is the single most important variable. For clarity the points have been jittered slightly
along the horizontal axis, though the model sizes remain clearly differentiated.

Rather than performing a single pass over the model space and plotting the description loss
against model size, a more nuanced and discerning approach is to use a (exponential weighted)
bootstrap to determine how often various models achieve the minimal loss for each model size.
The advantage of the bootstrap approach is that it gives a measure of model stability for each
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model size as promoted by Meinshausen and Biithlmann (2010), Miiller and Welsh (2010) and
Murray et al. (2013).

The weighted bootstrap has two key benefits over the residual or nonparametric bootstrap:
First, the weighted bootstrap always yields observable responses which is particularly relevant
when these observable values are restricted to be integers (as in many generalized linear
models), or, when y values are naturally bounded, say to be observed on the interval 0 to 1;
Second, the weighted bootstrap does not suffer from separation issues that regularly occur in
logistic and other models. The pairs bootstrap also yields observable responses and can be
thought of as a special (boundary) case of the weighted bootstrap where some weights are
allowed to be exactly zero, which can create a separation issue in logistic models. Furthermore,
Shao and Tu (1995, Chapter 10) show how the weighted bootstrap is also closely related to
the Bayesian bootstrap. Therefore, we have chosen to implement the weighted bootstrap
because it is a simple, elegant method that appears to work well. Specifically, we utilize the
exponential weighted bootstrap where the observations are reweighted with weights drawn
from an exponential distribution with mean 1 (see Murray et al. 2013 for more detail).

To visualize the results of the exponential weighted bootstrap, the which = "boot" argument
needs to be passed to the plot call on a ‘vis’ object. The highlight argument can again
be used to distinguish between models with and without a particular variable. Each circle
represents a model with a non-zero bootstrap probability, that is, each model that was selected
as the best model of a particular dimension in at least one bootstrap replication. Furthermore,
the area of each circle is proportional to the corresponding model’s bootstrapped selection
probability.

Figure 2 is an example of a model stability plot for the artificial data set. The null model, the
full model and the simple linear regression of y on xg all have bootstrap probabilities equal to
one. While there are alternatives to the null and full model their inclusion in the plot serves
two main purposes. Firstly, to gauge the potential range in description loss and secondly to
provide a baseline against which to compare other circles to see if any approach a similar size,
which would indicate that those are dominant models of a given model dimension. In Figure 2,
there appears to be dominant models in models of size three and ten, as demonstrated by
one of the circles being substantially larger than the other circles with models of the same
size. However, in model dimensions of between four and nine, there are no clearly dominant
models, that is, within each model size there are no models that are selected much more
commonly than the alternatives.

A print method is available for ‘vis’ objects which prints the model formula, log-likelihood
and proportion of times that a given model was selected as the “best” model within each
model size. The default minimum probability of a model being selected before it gets printed
is 0.3, though this can be customized by passing a min.prob argument to the print function.

R> print(vis.art, min.prob = 0.25)

name prob logLikelihood

y~1 1.00 -135.33

y~x8 1.00 -105.72

y~x4+x8 0.44 -103.63
y~x1+x2+x3+x4+x5+x6+x7+x9+RV 0.55 -99.09

The output above, reinforces what we know from the top right panel of Figure 2. The null
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model is always selected and in models of size two a regression of y on xg is always selected.
In models of size three the most commonly selected model is y~x4+x8, selected 44% of the
time. Interestingly, in models of size ten, the most commonly selected model does not contain
xg. We will see in the next section that this phenomenon is related to the failure of stepwise
variable selection with this data set.

3.2. Variable inclusion plots

Rather than visualizing a loss measure against model size, it can be instructive to consider
which variables are present in the overall “best” model over a set of bootstrap replications.
To facilitate comparison between models of different sizes we use the GIC, Equation 2, which
includes a penalty term for the number of variables in each model.

Using the same exponential weighted bootstrap replications as in the model selection plots,
we have a set of B bootstrap replications and for each model size we know which model has
the smallest description loss. This information is used to determine which model minimizes
the GIC over a range of values of the penalty parameter, A, in each bootstrap sample. For
each value of )\, we extract the variables present in the “best” models over the B bootstrap
replications and calculate the corresponding bootstrap probabilities that a given variable is
present. These calculations are visualized in a variable inclusion plot (VIP) as introduced
by Miiller and Welsh (2010) and Murray et al. (2013). The VIP shows empirical inclusion
probabilities as a function of the penalty multiplier A. The probabilities are calculated by
observing how often each variable is retained in B exponential weighted bootstrap replications.
Specifically, for each bootstrap sample b = 1,..., B and each penalty multiplier A, the chosen
model, dl/’\ € A, is that which achieves the smallest GIC(a, A; wyp) = Qb(a) + APa, where
wp, is the n-vector of independent and identically distributed exponential weights (we refer
to Section 2.5 in Murray et al. 2013 for more information on the weighted bootstrap). The
inclusion probability for variable x; is estimated by B~ -2 | T{j € 4%}, where I{j € a8} is
one if z; is in the final model and zero otherwise. Following Murray et al. (2013), the default
range of A values is A € [0, 2log(n)] as this includes most standard values used for the penalty
parameter.

The example shown in the bottom panel of Figure 2 is obtained using the which = "vip"
argument to the plot function. As expected, when the penalty parameter is equal to zero, all
variables are included in the model; the full model achieves the lowest description loss, and
hence minimizes the GIC when there is no penalization. As the penalty parameter increases,
the inclusion probabilities for individual variables typically decrease as more parsimonious
models are preferred. In the present example, the inclusion probabilities for the xg variable
exhibit a sharp decrease at low levels of the penalty parameter, but then increase steadily
as a more parsimonious model is sought. This pattern helps to explain why stepwise model
selection chose the larger model with all the variables except xg — there exists a local minimum.
Hence, for large models the inclusion of xg adds no additional value over having all the other
explanatory variables in the model.

It is often instructive to visualize how the inclusion probabilities change over the range of
penalty parameters. The ordering of the variables in the legend corresponds to their average
inclusion probability over the whole range of penalty values. We have also added an indepen-
dent standard Gaussian random variable to the model matrix as a redundant variable (RV).
This provides a baseline to help determine which inclusion probabilities are “significant” in
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the sense that they exhibit a different behavior to the RV curve. Variables with inclusion
probabilities near or below the RV curve can be considered to have been included by chance.

To summarize, VIPs continue the model stability theme. Rather than simply using a single
penalty parameter associated with a particular information criterion, for example the AIC
with A = 2, our implementation of VIPs adds considerable value by allowing us to learn from
a range of penalty parameters. Furthermore, we are able to see which variables are most often
included over a number of bootstrap samples. An alternative approach to assessing model
stability, the simplified adaptive fence, is introduced in the next section.

4. The simplified adaptive fence

The fence, first introduced by Jiang et al. (2008), is built around the inequality
Q) — Q(ay) <,

where Q is an empirical measure of description loss, « is a candidate model and « ¢ is the
baseline, “full” model. The procedure attempts to isolate a set of “correct models” that satisfy
the inequality. A model o*, is described as “within the fence” if Q(a*) — Q(ay) < ¢. From
the set of models within the fence, the one with minimum dimension is considered optimal. If
there are multiple models within the fence at the minimum dimension, then the model with
the smallest Q(a) is selected. For a recent review of the fence and related methods, see Jiang
(2014).

The implementation we provide in the mplot package is inspired by the simplified adaptive
fence proposed by Jiang et al. (2009), which represents a significant advance over the original
fence method proposed by Jiang et al. (2008). The key difference is that the parameter c is
not fixed at a certain value, but is instead adaptively chosen. Simulation results have shown

that the adaptive method improves the finite sample performance of the fence, see Jiang et al.
(2008, 2009).

The adaptive fence procedure entails bootstrapping over a range of values of the parameter
c. For each value of ¢ a parametric bootstrap is performed under ay. For each bootstrap
sample we identify the smallest model inside the fence, &(c). Jiang et al. (2009) suggest that
if there is more than one model, choose the one with the smallest Q(a). Define the empirical
probability of selecting model « for a given value of ¢ as p*(c,a) = P*{&(c) = a}. Hence,
if B bootstrap replications are performed, p*(c, «) is the proportion of times that model «
is selected. Finally, define an overall selection probability, p*(¢) = max,ec4 p* (¢, @) and plot
p*(c) against ¢ to find the first peak. The value of ¢ at the first peak, c¢*, is then used with
the standard fence procedure on the original data.

Our implementation is provided through the af () function and associated plot methods. An
example with the artificial data set is given in Figure 3 which is generated using the following
code.

R> af.art <- af(lm.art, B
R> plot(af.art, best.only
R> summary(af.art)

150, n.c = 50, seed = 2017)
TRUE, legend.position = "right", model.wrap = 4)

Call:
af(mf = lm.art, B = 150, n.c = 50, seed = 2017)
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Figure 3: Result of a call to plot(af.art) with additional arguments best.only = TRUE on
the left and best.only = FALSE on the right. The more rapid decay after the g model is
typical of using best.only = FALSE where the troughs between candidate/dominant models
are more pronounced.

Adaptive fence model (c*=23.6):
y ~ x8

Model sizes considered: 1 to 11 (including intercept).

The arguments indicate that we perform B = 150 bootstrap resamples, over a grid of 50
values of the parameter c. In this example, there is only one peak, with ¢* = 23.6.

One might expect that there should be a peak corresponding to the full model at ¢ = 0, but
this is avoided by the inclusion of at least one redundant variable. Any model that includes
the redundant variable is known to not be a “true” model and hence is not included in the
calculation of p*(c). This issue was first identified and addressed by Jiang et al. (2009).

There are a number of key differences between our implementation and the method proposed
by Jiang et al. (2009). Perhaps the most fundamental difference is in the philosophy under-
lying our implementation. Our approach is more closely aligned with the concept of model
stability than with trying to pick a single “best” model. This can be seen through the plot
methods we provide. Instead of simply using the plots to identify the first peak, we add a leg-
end that highlights which models were the most frequently selected for each parameter value,
that is, for each ¢ value we identify which model gave rise to the p*(c) value. In this way,
researchers can ascertain if there are regions of stability for various models. In the example
given in Figure 3, there is no need to even define a ¢* value, it is obvious from the plot that
there is only one viable candidate model, a regression of y on xg.

Our approach considers not just the best model of a given model size, but also allows users to
view a plot that takes into account the possibility that more than one model of a given model
size is within the fence. The best.only = FALSE option when plotting the results of the
adaptive fence is a modification of the adaptive fence procedure which considers all models
of a particular size that are within the fence when calculating the p*(c) values. In particular,
for each value of ¢ and for each bootstrap replication, if a candidate model is found inside
the fence, then we look to see if there are any other models of the same size that are also

11
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within the fence. If no other models of the same size are inside the fence, then that model
is allocated a weight of 1. If there are two models inside the fence, then the best model is
allocated a weight of 1/2. If three models are inside the fence, the best model gets a weight
of 1/3, and so on. After B bootstrap replications, we aggregate the weights by summing
over the various models. The p*(c) value is the maximum aggregated weight divided by the
number of bootstrap replications. This correction penalizes the probability associated with
the best model if there were other models of the same size inside the fence. The rationale is
that if a model has no redundant variables then it will be the only model of that size inside
the fence over a range of values of ¢. This results in more pronounced peaks which can help
to determine the location of the correct peak and identify the optimal ¢* value or more clearly
differentiate regions of model stability. This can be seen in the right hand panel of Figure 3.

Another key difference is that our implementation is designed for linear and generalized linear
models, rather than mixed models. As far as we are aware, this is the first time fence methods
have been applied to such models. There is potential to add mixed model capabilities to future
versions of the mplot package, but computational speed is a major hurdle that needs to be
overcome. The current implementation is made computationally feasible through the use of
the leaps (Lumley and Miller 2017) and bestglm (McLeod and Xu 2017) packages and the
use of parallel processing, as discussed in Section 6.

We have also provided an optional initial stepwise screening method that can help limit the
range of ¢ values over which to perform the adaptive fence procedure. The initial stepwise
procedure performs forward and backward stepwise model selection using both the AIC and
BIC. From the four candidate models, we extract the size of smallest and largest models, &y,
and ky respectively. To obtain a sensible range of ¢ values we consider the set of models
with dimension between k; — 2 and ky + 2. Due to the inherent limitations of stepwise
procedures, outlined in Section 2, it can be useful to check initial.stepwise = FALSE with
a small number of bootstrap replications over a sparse grid of ¢ values to ensure that the
initial.stepwise = TRUE has produced a reasonable region.

5. Interactive graphics

To facilitate that researchers can more easily gain value from the static plots given in Figures 2
and 3 and to help them interact with the model selection problem more closely, we have
provided a set of interactive graphics based on the googleVis package and wrapped them in
a shiny user interface. It is still quite novel for a package to provide a shiny interface for
its methods, but there is precedent, see, for example McMurdie and Holmes (2013) or Gabry
(2017).

Among the most important contributions of these interactive methods is: the provision of
tooltips to identify the models and/or variables; pagination of the legend for the variable
inclusion plots; and a way to quickly select which variable to highlight in the model stability
plots. These interactive plots can be generated when the plot() function is run on an ‘af’
or ‘vis’ object by specifying interactive = TRUE.

The mplot package takes interactivity a step further, embedding these plots within a shiny
web interface. This is done through a call to the mplot () function, which requires the full
fitted model as the first argument and then a ‘vis’ object and/or ‘af’ object (in any order).

R> mplot(lm.art, vis.art, af.art)
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Figure 4: Screen shots from the web interface generated using mplot ().

Note that the vis () and af () functions need to be run and the results stored prior to calling
the mplot () function. The result of a call to this function is a web page built using the shiny
package with shinydashboard stylings (Chang et al. 2017; Chang 2017). Figure 4 shows a
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series of screen shots for the artificial example, equivalent to Figures 2 and 3, resulting from
the above call to mplot ().

The top panel of Figure 4 shows a model stability plot where the full model that does not
contain zg has been selected and a tooltip has been displayed. It gives details about the
model specification, the log-likelihood and the bootstrap selection probability within models
of size 10. The tooltip makes it easier for users to identify which variables are included in
dominant models than the static plot equivalent. On the left hand side of the shiny interface,
a drop down menu allows users to select the variable to be highlighted. This is passed through
the highlight argument discussed in Section 3.1. Models with the highlighted variable are
displayed as red circles whereas models without the highlighted variable are displayed as blue
circles. The ability for researchers to quickly and easily see which models in the stability plot
contain certain variables enhances their understanding of the relative importance of different
components in the model. Selecting “No” at the “Bootstrap?” radio buttons yields the plot
of description loss against dimension shown in the top left panel of Figure 2.

The middle panel of Figure 4 is a screen shot of an interactive variable inclusion plot. When
the mouse hovers over a line, the tooltip gives information about the bootstrap inclusion
probability and which variable the line represents. Note that in comparison to the bottom
panel of Figure 2, the legend is now positioned outside of the main plot area. When the user
clicks a variable in the legend, the corresponding line in the plot is highlighted. This can be
seen in Figure 4, where the xg variable in the legend has been clicked and the corresponding
xg line in the variable inclusion plot has been highlighted. The highlighting is particularly
useful with the redundant variable, so it can easily be identified. If the number of predictor
variables is such that they no longer fit neatly down the right hand side of the plot, they
simply paginate, that is an arrow appears allowing users to toggle through to the next page
of variables. This makes the interface cleaner and easier to interpret than the static plots.
Note also the vertical lines corresponding to traditional AIC and BIC penalty values.

The bottom panel of Figure 4 is an interactive adaptive fence plot. The tooltip for a par-
ticular point gives information about the explanatory variable(s) in the model, the a* =
arg maxqec 4 p*(c, @) value and the (c,p*(c)) pair that has been plotted. Hovering or clicking
on a model in the legend highlights all the points in the plot corresponding to that model.
In this example, the xg legend has been clicked on and an additional circle has been added
around all points corresponding to the model that has xg as the sole explanatory variable. The
shiny interface on the left allows users to toggle between best.only = TRUE and best.only
= FALSE.

The interactive graphics and shiny interface are most useful in the exploratory stage of model
selection. Once the researcher has found the most informative plot through interactive anal-
ysis, the more traditional static plots may be used in a formal write up of the problem.

6. Timing

Any bootstrap model selection procedure is time consuming. However, for linear models,
we have leveraged the efficiency of the branch-and-bound algorithm provided by the leaps
package (Miller 2002; Lumley and Miller 2017). The bestglm package is used for GLMs; but
in the absence of a comparably efficient algorithm the computational burden is much greater
(McLeod and Xu 2017).
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Figure 5: Average time required to run the af() and vis() functions when n = 100. A
binomial regression was used for the GLM example.

Furthermore, we have taken advantage of the embarrassingly parallel nature of bootstrapping,
utilizing the doParallel, foreach and doRNG packages to provide cross platform multicore
support, available through the cores argument (Kane, Emerson, and Weston 2013; Revolution
Analytics and Weston 2017, 2015; Gaujoux 2017). By default it will detect the number of
cores available on your computer and leave one free.

Figure 5 shows the timing results of simulations run for standard use scenarios with 4, 8 or
16 cores used in parallel. Each observation plotted is the average of four runs of a given
model size. The simulated models had a sample size of n = 100 with 5,10, ...,50 candidate
variables, of which 30% were active in the true model.

The results show both the vis() and af () functions are quite feasible on standard desktop
hardware with 4 cores even for moderate dimensions of up to 40 candidate variables. The
adaptive fence takes longer than the vis() function, though this is to be expected as the
effective number of bootstrap replications is B X n.c, where n.c is the number of divisions
in the grid of the parameter c.

The results for GLMs are far less impressive, even when the maximum dimension of a can-
didate solution is set to nvmax = 10. In its current implementation, the adaptive fence is
only really feasible for models of around 10 predictors and the vis() function for 15. Fu-
ture improvements could see approximations of the type outlined by Hosmer, Jovanovic, and
Lemeshow (1989) to bring the power of the linear model branch-and-bound algorithm to
GLMs. An example of how this works in practice is given in Section 7.2.
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An alternative approach for high dimensional models would be to consider subset selection
with convex relaxations as in Shen, Pan, and Zhu (2012) or combine bootstrap model selection
with regularization. In particular, we have implemented variable inclusion plots and model
stability plots for package glmnet (Friedman, Hastie, and Tibshirani 2010). In general, this
is very fast for models of moderate dimension, but it does not consider the full model space.
Restrictions within the glmnet package imply that this approach is only applicable to linear
models, binomial logistic regression, and Poisson regression with the log link function. The
glmnet package also allows for "multinomial", "cox", and "mgaussian" families, though we
have not yet incorporated these into the mplot package.

7. Real examples

7.1. Diabetes example

Table 1 shows a subset of the diabetes data used in Efron et al. (2004). There are 10 explana-
tory variables, including age (age), sex (sex), body mass index (bmi) and mean arterial blood
pressure (map) of 442 patients as well as six blood serum measurements (tc, 1d1, hdl, tch,
1tg and glu). The response is a measure of disease progression one year after the baseline
measurements.

Figure 6 shows the results of the main methods for the diabetes data obtained using the
following code.

R> 1m.d <- 1m(y ~ ., data = diabetes)

R> vis.d <- vis(lm.d, B = 200, seed = 1)

R> af.d <- af(lm.d, B = 200, n.c = 100, c.max = 100, seed = 1)

R> plot(vis.d, interactive = FALSE, which = "vip")

R> plot(vis.d, interactive FALSE, which = "boot", max.circle = 10,

+ highlight = "hd1") + scale_x_continuous(breaks = c(2, 4, 6, 8, 10, 12))
R> plot(af.d, interactive = FALSE, best.only = TRUE,

+ legend.position = "right")

R> plot(af.d, interactive = FALSE, best.only = FALSE,

+ legend.position = "right")

A striking feature of the variable inclusion plot is the non-monotonic nature of the hdl line.

Serum measurements Response
Patient age sex bmi map tc 1dl hdl tch ltg glu Y
1 59 2 32.1 101 157 93.2 38 4 4.9 87 151
2 48 1 21.6 87 183 103.2 70 3 3.9 69 75
3 72 2 30.5 93 156 93.6 41 4 4.7 85 141
441 36 1 30.0 95 201 125.2 42 5 5.1 85 220
442 36 1 19.6 71 250 1332 97 3 4.6 92 57

Table 1: Measurements on 442 diabetes patients over 10 potential predictor variables and the
response variable, a measure of disease progression after one year.
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Figure 6: Diabetes main effects example.

As the penalty value increases, and a more parsimonious model is sought, the hdl variable is
selected more frequently while at the same time other variables with similar information are
dropped. Such paths occur when a group of variables contains similar information to another
variable. The hdl line is a less extreme example of what occurs with xg in the artificial
example (see Figure 2). The path for the age variable lies below the path for the redundant
variable, indicating that it does not provide any useful information. The bmi and 1tg paths
are horizontal with a bootstrap probability of 1 for all penalty values indicating that they are
very important variables, as are map and sex. From the variable inclusion plot alone, it is not
obvious whether tc or hdl is the next most important variable. Some guidance on this issue
is provided by the model stability and adaptive fence plots.

In order to determine which circles correspond to which models in the static version of the
bootstrap stability plot, we need to consult the print output of the ‘vis’ object.

R> vis.d

name prob logLikelihood

y~1 1.00 -25647.17

y~bmi 0.70 -2454.02

y~bmi+ltg 0.98 -2411.20

y~bmi+map+ltg 0.70 -2402.61
y~bmi+map+tc+ltg 0.36 -2397 .48
y~bmi+map+hdl+ltg 0.33 -2397.71
y~sex+bmi+map+hdl+ltg 0.72 -2390.13
y~sex+bmi+map+tc+ldl+ltg 0.48 -2387.30
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Figure 7: Diabetes interactions terms example.

As in the variable inclusion plots, it is clear that the two most important variables are bmi
and 1tg, and the third most important variable is map. In models of size four (including the
intercept), the model with bmi, 1tg and map was selected in 70% of bootstrap resamples.
There is no clear dominant model in models of size five, with tc and hdl both competing to
be included. In models of size six, the combination of sex and hdl with the core variables
bmi, map and 1tg, is the most stable option; it is selected in 72% of bootstrap resamples. As
the size of the model space in dimension six is much larger than the size of the model space
for dimension four, it could be suggested that the 0.72 empirical probability for the {bmi,
map, 1tg, sex, hdl} model is a stronger result than the 0.70 result for the {bmi, 1tg, map}
model.

The adaptive fence plots in the bottom row of Figure 6 show a clear peak for the model with
just bmi and 1tg. There are two larger models that also occupy regions of stability, albeit
with much lower peaks. These are {bmi, map, 1tg} and {bmi, map, 1tg, sex, hd1l} which also
showed up as dominant models in the model stability plots. Contrasting best.only = TRUE
in the lower left panel with best.only = FALSE in the lower right panel, we can see that the
peaks tend to be more clearly distinguished, though the regions of stability remain largely
unchanged.

Stepwise approaches using a forward search or backward search with the AIC or BIC all yield
a model with {bmi, map, 1tg, sex, 1dl, tc}. This model was selected 48% of the time in
models of size 7. The agreement between the stepwise methods may be comforting for the
researcher, but it does not aid a discussion about what other models may be worth exploring.

An interactive version of the plots in Figure 6 is available at http://garthtarr.com/apps/
mplot.


http://garthtarr.com/apps/mplot
http://garthtarr.com/apps/mplot

Journal of Statistical Software

To incorporate interaction terms, we suggest selecting the main effects first, then regressing
the relevant interaction terms on the residuals from the main effects model. This approach
ensures that the main effects are always taken into account. In this example, we estimate the
dominant model of dimension six and obtain the fitted residuals. The interaction terms are
then regressed on the fitted residuals.

R> 1m.d.main <- 1m(y ~ sex + bmi + map + hdl + ltg, data = diabetes)

R> summary(1m.d.main)

R> db.main <- diabetes[, c("sex", "bmi", "map", "hd1", "ltg")]

R> db.main$y <- residuals(lm.d.main)

R> 1m.d.int <- Im(y ~ . * . - sex - bmi - map - hdl - 1tg, data = db.main)
R> vis.d.int <- vis(Ilm.d.int, B = 200)

R> af.d.int <- af(Im.d.int, B = 200, n.c = 100, c.max = 10, seed = 2017)
R> vis.d.int

name prob logLikelihood
y~1 1.00 -2390.13
y~bmi.map+bmi.hdl+map.1ltg+hdl.1ltg 0.55 -2385.89

The result can be found in Figure 7. The variable inclusion plots suggest that the most im-
portant interaction terms are hdl.1ltg, bmi.hdl, map.ltg and bmi.map. The model stability
plot suggests that there are no dominant models of size 2, 3 or 4. Furthermore there are no
models of size 2, 3 or 4 that make large improvements in description loss. There is a dominant
model of dimension 5 that is selected in 55% of bootstrap resamples. The variables selected
in the dominant model are {bmi.map, bmi.hdl, map.ltg, hdl.1ltg}, which can be found in
the print output above. Furthermore, this model does make a reasonable improvement in
description loss, almost in line with the full model. This finding is reinforced in the adaptive
fence plots where there are only two regions of stability, one for the null model and another for
the {bmi.map, bmi.hdl, map.1ltg, hdl.1ltg} model. In this instance, the difference between
best.only = TRUE and best.only = FALSE is minor.

Hence, as a final model for the diabetes example we suggest including the main effects {bmi,
map, 1tg, sex, hdl} and the interaction effects {bmi.map, bmi.hdl, map.ltg, hdl.1ltg}. Fur-
ther investigation can also be useful. For example, we could use cross-validation to compare
the model with interaction effects, the model with just main effects and other simpler models
that were identified as having peaks in the adaptive fence. Researchers should also incorpo-
rate their specialist knowledge of the predictors and evaluate whether or not the estimated
model is sensible from a scientific perspective.

7.2. Birth weight example

The second example is the birthwt dataset from the MASS package (Venables and Ripley
2002) which has data on 189 births at the Baystate Medical Centre, Springfield, Massachusetts
during 1986. The main variable of interest is low birth weight, a binary response variable low
(Hosmer and Lemeshow 1989). We have taken the same approach to modelling the full model
as in Venables and Ripley (2002, pp. 194-197), where ptl is reduced to a binary indicator of
past history and ftv is reduced to a factor with three levels.

19
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R>
R>
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library("MASS")
bwt <- with(birthwt, {

"black", "other"))

= bwt)

+ race <- factor(race, labels = c("white",
+ ptd <- factor(ptl > 0)
+ ftv <- factor(ftv)
+ levels(ftv) [-(1:2)] <- "2+"
+ data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0),
+ ptd, ht = (ht > 0), ui = (ui > 0), ftv)
+ })
R> options(contrasts = c("contr.treatment", "contr.poly"))
R> bw.glm <- glm(low ~ ., family = binomial, data
R> round(coef (summary (bw.glm)), 2)

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.82 1.24 0.66 0.51
age -0.04 0.04 -0.96 0.34
1wt -0.02 0.01 -2.21 0.03
raceblack 1.19 0.54 2.22 0.03
raceother 0.74 0.46 1.60 0.11
smokeTRUE 0.76 0.43 1.78 0.08
ptdTRUE 1.34 0.48 2.80 0.01
htTRUE 1.91 0.72 2.65 0.01
uiTRUE 0.68 0.46 1.46 0.14
ftvil -0.44 0.48 -0.91 0.36
ftv2+ 0.18 0.46 0.39 0.69

The ‘vis’ and ‘af’ objects are generated using the fitted full model object as an argument to
the vis() and af () functions. The results are shown in Figure 8, where screen shots have
been taken of the interactive plots because they display the larger set of variables more clearly
than the static plot methods.

R>
R>
R>
R>
R>
R>

af.bw <- af(bw.glm, B = 150, c.max = 20, n.c = 40, seed = 1)

vis.bw <- vis(bw.glm, B = 150, seed = 1)

plot(vis.bw, which = "vip", interactive

= TRUE)

plot(vis.bw, which = "boot", highlight = "htTRUE", interactive = TRUE)

plot(af.bw, interactive = TRUE)
print (vis.bw, min.prob = 0.10)

name prob logLikelihood

low~1 1.00 -117.34

low~ptdTRUE 0.43 -110.95

low~1lwt 0.16 -114.35

low~uiTRUE 0.13 -114.80
low~age+ptdTRUE 0.15 -108.65
low~1lwt+htTRUE 0.13 -110.57
low~1lwt+ptdTRUE 0.11 -108.75
low~1lwt+ptdTRUE+htTRUE 0.15 -105.06
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Figure 8: Birth weight example.

21



22 mplot: Graphical Model Stability and Variable Selection in R

In this example, it is far less clear which is the best model, or if indeed a “best model” exists.
The majority of the the curves in the variable inclusion plot lie above the redundant variable
curve, except £tv2+ the least important variable. It is possible to infer an ordering of variable
importance from the variable inclusion plots, but there is no clear cutoff as to which variables
should be included and which should be excluded. This is also clear in the model stability
plots, where apart from the bivariate regression with ptd, there are no obviously dominant
models.

In the adaptive fence plot, the only model more complex than a single covariate regression
model that shows up with some regularity is the model with 1wt, ptd and ht, though at such
low levels, it is just barely a region of stability. This model also stands out slightly in the
model stability plot, where it is selected in 16% of bootstrap resamples and has a slightly
lower description loss than other models of the same dimension. It is worth recalling that the
bootstrap resamples generated for the adaptive fence are separate from those generated for the
model stability plots. Indeed the adaptive fence procedure relies on a parametric bootstrap,
whereas the model stability plots rely on an exponential weighted bootstrap. Thus, to find
some agreement between these methods is reassuring.

Stepwise approaches using AIC or BIC yield conflicting models, depending on whether the
search starts with the full model or the null model. As expected, the BIC stepwise approach
returns smaller models than AIC, selecting the single covariate logistic regression, low ~
ptd, in the forward direction and the larger model, low ~ lwt + ptd + ht when stepping
backwards from the full model. Forward selection from the null model with the AIC yielded
low ~ ptd + age + ht + 1lwt + ui whereas backward selection the slightly larger model,
low ~ lwt + race + smoke + ptd + ht + ui. Some of these models appear as features in
the model stability plots. Most notably the dominant single covariate logistic regression and
the model with 1wt, ptd and ht identified as a possible region of stability in the adaptive
fence plot. The larger models identified by the AIC are reflective of the variable importance
plot in that they show there may still be important information contained in a number of
other variables not identified by the BIC approach.

Calcagno and de Mazancourt (2010) also consider this data set, but they allow for the possi-
bility of interaction terms. Using their approach, they identify “two” best models

low ~ smoke + ptd + ht + ui + ftv + age + lwt + ui:smoke + ftv:age
low ~ smoke + ptd + ht + ui + ftv + age + lwt + ui:smoke + ui:ht + ftv:age

As a general rule, we would warn against the . * . approach, where all possible interaction
terms are considered, as it does not consider whether or not the interaction terms actually
make practical sense. Calcagno and de Mazancourt (2010) conclude that “Having two best
models and not one is an extreme case where taking model selection uncertainty into account
rather than looking for a single best model is certainly recommended!” The issue here is
that the software did not highlight that these models are identical as the ui:ht interaction
variable is simply a vector of zeros, and as such, is ignored by the GLM fitting routine.

As computation time can be an issue for GLMs, it is useful to approximate the results using
weighted least squares (Hosmer et al. 1989). In practice this can be done by fitting the logistic
regression and extracting the estimated logistic probabilities, 7;. A new dependent variable

is then constructed,
T Yi — T
zi=lo — |+ = >
’ g(l—m) (1 — ;)
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along with observation weights v; = #;(1 — #;). For any submodel « this approach produces
the approximate coefficient estimates of Lawless and Singhal (1978) and enables us to use the
leaps package to perform the computations for best subsets logistic regression as follows.

R> pihat <- fitted(bw.glm)

R> r <- residuals(bw.glm, type = "working")

R> z <- log(pihat / (1 - pihat)) + r

R> v <- pihat * (1 - pihat)

R> nbwt <- bwt

R> nbwt$z <- z

R> nbwt$low <- NULL

R> bw.lm <- 1m(z ~ ., data = nbwt, weights = v)

R> bw.lm.vis <- vis(bw.lm, B = 150, seed = 1)

R> bw.lm.af <- af(bw.1lm, B = 150, c.max = 20, n.c = 40, seed = 1)
R> plot(bw.lm.vis, which = "vip", interactive = TRUE)

R> plot(bw.lm.vis, which = "boot", highlight = "htTRUE", interactive = TRUE)
R> plot(bw.lm.af, interactive = TRUE)

The coefficients from bw.1lm are identical to bw.glm. This approximation provides similar
results, shown in Figure 9, in a fraction of the time.

8. Conclusion
In the rejoinder to their least angle regression paper, Efron et al. (2004) comment,

“In actual practice, or at least in good actual practice, there is a cycle of activity
between the investigator, the statistician and the computer ... The statistician
examines the output critically, as did several of our commentators, discussing the
results with the investigator, who may at this point suggest adding or removing
explanatory variables, and so on, and so on.”

We hope the suite of methods available in the mplot package adds valuable information to this
cycle of activity between researchers and statisticians. In particular, providing statisticians
and researchers alike with a deeper understanding of the relative importance of different
models and the variables contained therein.

In the artificial example, we demonstrated a situation where giving the researcher more infor-
mation in a graphical presentation can lead to choosing the “correct” model when standard
stepwise procedures would have failed.

The diabetes data set suggested the existence of a number of different dominant models at
various model sizes which could then be investigated further, for example, statistically using
cross-validation to determine predictive ability, or in discussion with researchers to see which
makes the most practical sense. In contrast, there are no clear models suggested for the birth
weight example. The adaptive fence has no peaks, nor is there a clearly dominant model in
the model stability plot even though all but one variable are more informative than the added
redundant variable in the variable inclusion plot.

While the core of the mplot package is built around exhaustive searches, this becomes com-
putationally infeasible as the number of variables grows. We have implemented similar vi-



24

mplot: Graphical Model Stability and Variable Selection in R
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Figure 9: Birth weight example with linear model approximation.
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sualizations to model stability plots and variable inclusion plots for package glmnet which
brings the concept of model stability to much larger model sizes, though it will no longer be
based around exhaustive searches.

The graphs provided by the mplot package are a major contribution. A large amount of infor-
mation is generated by the various methods and the best way to interpret that information is
through effective visualizations. For example, as is shown in Section 7.1, the path a variable
takes through the variable inclusion plot is often more important than the average inclusion
probability over the range of penalty values considered. It can also be instructive to observe
when there are no peaks in the adaptive fence plot as this indicates that the variability of the
log-likelihood is limited and no single model stands apart from the others. Such a relatively
flat likelihood over various models would also be seen in the model stability plot where there
was no dominant model over the range of model sizes considered.

Although interpretation of the model selection plots provided here is something of an “art”,
this is not something to shy away from. We accept and train young statisticians to interpret
QQ-plots and residual plots. There is a wealth of information in our plots, particularly the
interactive versions enhanced with the shiny interface, that can better inform a researchers’
model selection choice.
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