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Abstract

In this paper the R package TP.idm to compute an empirical transition probability
matrix for the illness-death model is introduced. This package implements a novel non-
parametric estimator which is particularly well suited for non-Markov processes observed
under right censoring. Variance estimates and confidence limits are also implemented in
the package.
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1. Introduction

Multi-state models (Andersen, Borgan, Gill, and Keiding 1993; Commenges 1999; Hougaard
1999, 2000; Meira-Machado, de Ufia-Alvarez, Cadarso-Suérez, and Andersen 2009) are the
most commonly used models to describe longitudinal failure time data. A multi-state model
is a model for a stochastic process {X (), > 0} with a finite state space S = {1,...,N}. In
biomedical applications, the states may describe conditions like healthy, diseased, or clinical
symptoms, or they might be based on biological markers or some scale of a given disease. A
change of state is called a transition, or an event. States out of which transitions are modeled
are called “transient states”; in contrast, “absorbing states” are states out of which transitions
are not possible. The multi-state model is called progressive when the maximum number of
visits to each state is one.

The multi-state process is fully characterized through transition probabilities between states
h and j, defined for 0 < s < t as

Prj(s,t) = P(X(t) = j|X(s) = h, H,-) (1)
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or through transition intensities

Ppj (t,t + At)
Al (2)

representing the instantaneous hazard of progression to state j conditionally on occupying
state h. The transition probability Pj;(s,t) depends in general on the evolution of the pro-
cess over time, a “history” H,-, which collects the information on the process along the
interval [0,s). When the influence of H,- in (1) vanishes, the process is said to fulfill the
Markov condition. Thus, Markov processes have history-free transition intensities (2), and
they are characterized by a memoryless property, so the future evolution of the process just
depends on its current state and the time elapsed since time origin, being independent of the
states previously visited and the transition times among them. The Markov condition can be
exploited both to investigate theoretical properties of the multi-state process and to derive
estimation procedures (Andersen et al. 1993).

The progressive illness-death model is a particular multi-state model with three states, see
Section 2 for details. The model is useful to describe the progress of individuals from an
initial state to a terminal (absorbing) state, when they may undergo a certain intermediate
event. Despite its relative simplicity, the illness-death or disability model (Hougaard 2000)
has been widely used in the medical literature to describe the course of a disease, and to study
the possible influence of the intermediate event on the probability of death. In Section 4 we
apply the illness-death model to study progression after surgery for colon cancer patients,
who may experience a recurrence or death during the follow-up. Special submodels of the
illness-death model are the three-states progressive model (often used to analyze recurrent
events), in which all the individuals undergo the intermediate state, or the competing risks
model, in which the intermediate state becomes absorbing.

Several R packages for multi-state survival analysis are available on the Comprehensive R
Archive Network (CRAN). For example, the msSurv package (Ferguson, Datta, and Brock
2012) provides nonparametric estimation for right censored, left truncated time to event data.
This package can be used to estimate the state occupation probabilities Pj;(0,t) along with
the corresponding variance estimates and confidence limits. The package mvna (Allignol,
Beyersmann, and Schumacher 2008) computes the Nelson-Aalen estimator of the cumulative
transition hazard, possibly subject to right censoring and left truncation. The package etm
(Allignol, Schumacher, and Beyersmann 2011) provides the Aalen-Johansen transition prob-
ability matrix for a general multi-state model. It also features a Greenwood-type estimator
of the covariance matrix, described in Andersen et al. (1993), Equation 4.4.17. The package
handles both left truncated and right censored data. The mstate package (de Wreede, Fiocco,
and Putter 2011) permits the estimation of transition probabilities with the Aalen-Johansen
technique, possibly depending on covariates. The package can be applied to right censored and
left truncated data in semiparametric or nonparametric multi-state models. The msm package
(Jackson 2011) can be used to obtain estimates of the transition probabilities in continuous-
time Markov and hidden Markov multi-state models for longitudinal data. Both options
can be modeled in terms of covariates. The p3state.msm package (Meira-Machado and Par-
dinas 2011) provides nonparametric estimates in the right censored progressive illness-death
model, implementing the methods in Meira-Machado, de Ufia-Alvarez, and Cadarso-Sudrez
(2006) as well as Cox-like regression models for the transition intensities. Later, Aratjo,
Meira-Machado, and Roca-Pardinas (2014) developed the package TPmsm, which permits to
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compute the Aalen-Johansen estimator in the illness-death model, and alternative transition
probabilities estimates. These alternative estimators include presmoothed semiparametric
estimators, and estimators which incorporate covariate effects by means of kernel smoothing
too.

This paper describes the R package TP.idm (from transition probabilities for the illness-
death model; Balboa, de Una-Alvarez, and Meira-Machado 2018) which is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=TP.
idm. This package implements a novel non-Markovian estimator for the transition probability
matrix in the progressive illness-death model under right censoring, which has been proved to
perform better than previously proposed methods (de Utia-Alvarez and Meira-Machado 2015).
The package TP.idm reports empirical standard errors and confidence limits too. The new
estimator follows the seminal idea of Pepe (1991), see also Pepe, Longton, and Thornquist
(1991), being close to an estimator independently introduced by Titman (2015) too. For
completeness, the Aalen-Johansen estimator and its standard error and confidence limits are
also implemented.

The rest of this paper is organized as follows: Section 2 introduces the two aforementioned
estimators for the transition probabilities, as well as different methods to compute confidence
intervals. Section 3 briefly describes the TP.idm package. Section 4 illustrates the package
through a real data application and, finally, Section 5 gives some concluding remarks.

2. Methods

The progressive illness-death model involves three states, {1,2,3} say, and three possible
transitions among them: 1 — 2, 1 — 3, and 2 — 3. All the individuals are in state 1
at the time origin, and they are supposed to reach the final absorbing state 3 (typically
death) at some future time; along the process, they may experience or not an intermediate
event (transient state 2). When the intermediate event represents complications or recurrence
during the follow-up, the time spent in state 1 is usually referred to as the disease-free survival
time.

Two sets of transition probabilities are to be estimated: for 0 < s < ¢, {Py;(s,t),j = 1,2,3}
and, for 0 < s < t, {P2;(s,t),7 = 2,3}. In the case s = 0, the transition probabilities P1;(0, ),
J = 1,2,3, report the so-called occupation probabilities. It is assumed that n independent,
maybe censored trajectories corresponding to n individuals are observed. In this section we
review two possible nonparametric approaches to estimate the transition probabilities. The
first approach is free of the Markov assumption, while the second one exploits the Markov
condition to construct more accurate estimators.

2.1. Non-Markov transition probabilities

Following the notation in de Ufia-Alvarez and Meira-Machado (2015), we represent the avail-
able information as (Z;, T;, pi, 0;), i = 1,...,n, i.i.d. copies of (Z,T, p,d), where Z and T are
respectively the observed sojourn time in state 1 and the observed survival time, and p and
0 are their corresponding censoring indicators (0 for censoring).

de Ufia-Alvarez and Meira-Machado (2015) introduced a new nonparametric estimator of the

transition probabilities Py;(s,t) by considering the subset of individuals observed in state h
by time s. To be specific, let S; = {i : Z; > s} and So = {i : Z; < s < T;} be, respec-
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tively, the individuals observed in state 1 and in state 2 by time s. Then, under independent
right censoring, the Kaplan-Meier estimator applied to {(Z;, p;),i € S1} is a consistent es-
timator for P11(s,t), while the Kaplan-Meier estimators computed from {(73,;),7 € S1} or
{(T3,0;),1 € Sz} are consistent for P13(s,t) or Pas(s,t) respectively. For Pia(s,t) and Paa(s, )
the relationships Pia(s,t) = 1 — Pq1(s,t) — P13(s,t) and Paa(s,t) = 1 — Pas(s,t) are used
to derive suitable estimators. As mentioned, this approach follows the idea discussed in the
seminal paper by Pepe (1991), see also Pepe et al. (1991), and it leads to estimators similar
to those independently introduced by Titman (2015).

One important property of the new nonparametric estimators in de Utia-Alvarez and Meira-
Machado (2015) is that, unlike the Aalen-Johansen estimator (Aalen and Johansen 1978), they
are consistent regardless the Markov condition. Compared to other nonparametric estimators
with such property (Meira-Machado et al. 2006; de Utia-Alvarez 2010), the new estimators
are preferable due to their greater accuracy. Indeed, de Ufia-Alvarez and Meira-Machado
(2015) found through simulations that the new method reports smaller biases and variances.
Interestingly, it also avoids the systematic bias of previous proposals (Meira-Machado et al.
2006; Allignol, Beyersmann, Gerds, and Latouche 2014) when the support of the censoring
time is strictly contained in that of the survival time, which often occurs in practice due to
an insufficient follow-up time.

In practice, standard errors and confidence intervals are often demanded. In de Ufia-Alvarez
and Meira-Machado (2015) the simple bootstrap was suggested to this end. The simple
bootstrap just generates B samples of size n from the data, by sampling with replacement each
datum with equal probability 1/n. Then, the variance is estimated by the sampling variance
of the estimator when computed along the B bootstrap resamples. An alternative approach
to estimate the sampling variance is through plug-in methods, which proceed by replacing
the asymptotic variance of the estimator by an empirical counterpart. Explicit formulae for
the asymptotic variances of de Uha-Alvarez and Meira-Machado (2015)’s estimators were
provided in the web appendices of that paper. From these expressions, plug-in estimators can
be introduced in a straightforward way. For example, for Pia(s,t) the asymptotic variance
equals

o3 (1) = E{ [ (Z1, p1) — € (10, 00 21(20 > 5)} [P(21 > 5)%, (3)

where the transformations wﬁs) and §§S) can be estimated from the data (see Appendix A).
The expectation and the probability in (3) can be replaced by sampling averages to construct
the final estimator. One can proceed similarly for the other transition probabilities to derive
their plug-in variance estimators. Indeed, for Pii(s,t), P13(s,t), Paa(s,t) and Pas(s,t), the
estimators reduce to Greenwood-type formulae when applied to the specific subsets S; and
Ss. Details are given in Appendix A. The plug-in approach is less computationally demanding
than the bootstrap approach, and therefore it is implemented in the TP.idm package.

2.2. Aalen-Johansen transition probabilities
For any s,t with 0 < s < t, for Markov models we have
Prj(s,t) = P(X(t) = j|X(s) = h,Hs-) = P(X(t) = j|X(s) = h). (4)

Thus the future of the process after time s depends only on the state occupied by that time.
This is an important class of models where efficient estimators of transition probabilities can
be introduced.
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Andersen et al. (1993) defined the integrated hazard matrix A = (Ap;) where Ap;(t) =
3 anj(s)ds for all h, j with app(t) = — > hj @ng(t). Then, the transition probability matrix
P(s,t) = (Pnj(s,t)) is given as the product-integral

P(s,t) = H (I +dA(u)), (5)

(s:t]

where A = (Ap;). The Nelson-Aalen estimator of Aj;, denoted by flhj, is defined as

(6)

i o S In(@)(Ya(w)THd Ny (u), B g,
Ant) = { _Ozh;ﬁj Ap;(t), h=j,

where Jy(u) = I(Yy(u) > 0). Here, Yj,(u) and Nj;(u) denote, respectively, the number of
individuals observed in state h just prior time u, and the number of observed direct transitions
from h to j in the time interval [0, u]. Then, one can estimate the transition probability matrix
(5) by the N x N matrix

P(s,t) = [T (1 +dA(w)), (7)

(s,1]

where A = (Ahj) is the matrix with entries the elements in (6). This is the so-called Aalen-
Johansen estimator (Aalen and Johansen 1978).

It has been shown that the Aalen-Johansen estimator may be unsuitable when the process does
not fulfill the Markov condition (4), see Meira-Machado et al. (2006). The Markov condition is
violated when, e.g., the risk of death increases shortly after the recurrence of a disease; in such
a case, the length of stay in the intermediate state is relevant for prognosis, thus invalidating
the memoryless property of Markov processes. In Section 4 we compare the Aalen-Johansen
estimator to the Markov-free nonparametric estimator introduced in Section 2.1 in a practical
setting, to show the systematic biases that may appear in non-Markov scenarios.

The variance of the Aalen-Johansen estimator can be calculated by a Greenwood-type for-
mula. Specifically, the covariance matrix P(s,t) is given by (cfr. Andersen et al. 1993, Equa-
tion 4.4.17)

oV (P(s,t)) = /t P(u,t)" @ P(s,u—)COV (dA(u)) P(u,t) @ P(s,u-)", (8)

where COV (dA) is the covariance of the matrix dA. This expression can be greatly simplified

through a recursion formula (same reference).

2.3. Confidence intervals

Let FA’hj(s,t) be the transition probability from state h to state j between times s and ¢,
estimated by the non-Markovian estimator (Section 2.1) or by the Aalen-Johansen estimator
(7). Let 63;(s,t) be the empirical standard error, and let z, /2 be the upper « /2 quantile of
the standard normal distribution.

The linear confidence interval for If’hj(s, t) is defined as

A

Phj($7t) + Raf2 a—hj(sat)' (9)
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In addition to the linear confidence interval it is possible to consider transformations to
improve the confidence intervals in the case of small sample size such as log transformation
(10), log-log transformation (11) and complementary log-log transformation (12), see Thomas
and Grunkemeier (1975) and Kalbfleisch and Prentice (2002):

:I:Za/Z ) 6'hj(37 t) }
Phj(sat) 7

Ishj(s,t) exp{ (10)

202 - (5, 1) }
) )’

P s,t)ex ~ >
(5 ) p{Phj(s,t)log(Phj(s,t

—(1=P,.(s ex iza/2'6hj(8’t)
1 (1 P ﬁ) p{ (1 _ ﬁhj(s,t)) log (1 - Ishj(s’t)> }

These four methods are available in the TP.idm package.

3. The TP.idm package

The package TP.idm was developed to calculate estimates for the transition probability matrix
(if s > 0) or state occupation probability matrix (if s = 0) in the illness-death model. This
package includes the novel non-Markovian estimator (de Ufia-Alvarez and Meira-Machado
2015) described in Section 2.1, and the Aalen-Johansen estimator for a Markov model, see
Section 2.2, Equation 7. Confidence limits and plots are available too.

The main function of the package, TPidm, calculates the state occupation probabilities Pp,; (0, t),
and the transition probabilities Py;(s,t) for a given time s, estimated by the non-Markovian
method or by the Aalen-Johansen approach. The user can fix a specific “future time” t;
otherwise the maximum event time is automatically chosen. The function TPidm provides
confidence intervals for both methods too.

The data frame to be used in the main function of the package must have one row per
individual and must include at least the four variables named timel, eventl, Stime and
event, which correspond to the disease free survival time, disease free survival indicator,
time to death or censoring, and death indicator, respectively. These are the variables denoted
respectively by Z, p, T and ¢ in Section 2.1.

The arguments of the main function TPidm are:

data: A data frame as described above.

e s: The current time for the transition probabilities to be computed; s = 0 reports the
occupation probabilities.

e t: The future time for the transition probabilities to be computed. Default is "last"
which means the largest time among the uncensored entry times for the intermediate
state and the final absorbing state.

e cov: A categorial variable for optional by-group analysis; this variable must be a factor.

o CI: If TRUE (default), confidence intervals are computed.
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o level: Level of confidence intervals. Default is 0.95 (corresponding to 95%).

e ci.transformation: Transformation applied to compute confidence intervals. Possible
choices are "linear", "log", "log-log" and "cloglog", corresponding to formulae
(9)-(12). Default is "linear";

e method: The method used to compute the transition probabilities. Possible options are
"AJ" (Aalen-Johansen) or "NM" (non-Markovian). Default is "NM".

Additionally, the TP.idm package includes summary, print and plot methods for the object
returned by function TPidm. The print and summary methods provide details about the
multi-state model, the estimates of P(s,t), and the confidence limits and variances. The plot
function provides an automatic graphical display for the obtained results.

The main function TPidm saves the estimated transition probabilities, their estimated vari-
ances, and the corresponding confidence limits in a list, which can be later used to construct
plots other than the default ones.

The TP.idm package includes another function test.nm which performs a graphical test for
the Markov condition. This graphical test is a PP-plot which compares the estimations
reported by the Aalen-Johansen transition probabilities to their non-Markov counterparts.
Since the estimator for Pq1(s,¢) obtained from both methods is the same, Pii(s,t) is ex-
cluded from this graphical test. Also, since the Aalen-Johansen estimator is consistent in the
case s = 0 (occupation probabilities) regardless the Markov condition, a warning message is
reported by the package (“Markov assumption is not relevant for the estimation of occupation
probabilities”) in this case.

All these functions and parameters are illustrated in Section 4.

4. Application to real data

To illustrate how to use the functions available in the package TP.idm, in this section we
consider an application to real data. To this end, we use the data frame colonTP which is
available in package TP.idm. This data frame reports information on 929 patients from a large
clinical trial on Duke’s stage III colon cancer, who underwent a curative surgery for colon-
rectal cancer (Moertel and others 1990). In this study, 468 patients developed recurrence and,
among these, 414 died, while 38 patients died without recurrence. We model this data through
an illness-death progressive model with initial state “alive without recurrence”, intermediate
state “recurrence”, and final absorbing state “death”. Our focus is the estimation of the
transition probabilities and state occupation probabilities in this model, for all the patients
(Section 4.1) and for the three treatment groups (variable rx): Observation (315 patients),
Levamisole (310), and Levamisole+5 FU (304 patients) (Section 4.2). Below we show the
format of the data:

R> library("TP.idm")
R> data("colonTP", package = "TP.idm")
R> colonTP[1:6, 1:5]
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timel eventl Stime event rx
1 968 1 1521 1 Lev+5FU
2 3087 0 3087 0 Lev+5FU
3 542 1 963 1 Obs
4 245 1 293 1 Lev+5FU
5 523 1 659 1 Obs
6 904 1 1767 1 Lev+5FU

Note that timel < Stime means that a transition from initial state to intermediate state
occurred. If timel == Stime and eventl == 0, then the patient remained alive and disease-
free up to the end of the follow-up; while if timel == Stime and eventl == 1, then a direct
transition from the initial state to the final (absorbing) state was observed. The data frame
colonTP reproduces the information in the colon object of the package survival (Therneau
2017) but re-organized in a suitable way, so only one row is used for each patient. To help
the analysis, the value of Stime was increased in 0.5 units for the 7 cases reporting a zero
transition time from recurrence to death in the data frame colon.

4.1. Overall results

We estimate and plot the occupation probabilities along the first year after surgery for the full
set of 929 patients by applying the non-Markovian estimator (default method), by running
the following code lines:

R> nm01 <- TPidm(colonTP, s = 0, t = 365)
R> nmO1

Call:
TPidm(data = colonTP, s = 0, t = 365)

Parameters:

s= 0

t= 365

Method= NM

CI= TRUE

CI transformation= linear
Possible transitions:

[1] ll1 1II ll1 2" ||1 3"

Occupation probabilities at time t:

transition probs lower upper variance
1 1 0.75242196 0.72469972 0.7801442 2.000600e-04
1 2 0.16361679 0.14032419 0.1869094 1.412342e-04
1 3 0.08396125 0.06611612 0.1018064 8.289786e-05

R> plot (nm01)
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Figure 1: Non-Markovian occupation probabilities along the 365 days after surgery. Colon
cancer study.

The numerical results indicate that 75% of the patients are still alive and disease-free one
year after surgery (variance in estimation: 0.0002; 95% confidence limits: 0.725-0.780), while
16% are alive with recurrence by that time. The automatic plot (Figure 1) reports the
three occupation probabilities, together with pointwise 95% confidence limits (with the de-

fault ci.transformation = "linear"), along the first year after surgery, according to the
chosen value for the parameter t = 365. To obtain a full graphical display along time, one
should take the default t = "last" instead, see Section 4.2. The (uncensored) entry times

for the intermediate and the final states along the interval [0,365] are saved in the object
nmO1$times; therefore, this object contains all the possible jump points of the empirical tran-
sition probabilities along the fixed interval. In this case, nmO1$times has length 194. It is
possible to display estimated occupation probabilities at intermediate times by calling the
object nm01$all.probs[, 1, ] as follows:

R> nm01$all.probs[seq(1l, 194, length.out = 5), 1, ]

trans
Trows 11 12 13
8 0.9989236 0.001076426 0.00000000
122 0.9311087 0.058127018 0.01076426
204 0.8697524 0.100107643 0.03013994
279 0.8073197 0.136706136 0.05597417
365 0.7524220 0.163616792 0.08396125

This shows for example that, 122 days after surgery (=~ 4 months), the distribution of patients
is 93% alive and disease-free, 6% alive with recurrence, and 1% dead. Confidence limits and
variances for the intermediate time 122 can be displayed as follows:

R> nm01$all.probs[nmO1$times == 122, 1:4, ]
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trans
cols 11 12 13
probs 9.311087e-01 5.812702e-02 1.076426e-02
lower 9.148379e-01 4.313396e-02 4.125039e-03
upper 9.473795e-01 7.312008e-02 1.740349e-02
variance 6.891647e-05 5.851734e-05 1.147462e-05

We use the following lines to compute the non-Markovian occupation probabilities two years
after surgery, and the transition probabilities from time s = 365 (one year) to t = 730 (two
years) too:

R> nm02 <- TPidm(colonTP, s
R> nm12 <- TPidm(colonTP,
R> nm02

0, t = 730)
365, t = 730)

9]
I

Call:
TPidm(data = colonTP, s = 0, t = 730)

Parameters:

s= 0

t= 730

Method= NM

CI= TRUE

CI transformation= linear
Possible transitions:

[1] "1 1™ mg1 2m n1 3"

Occupation probabilities at time t:

transition probs lower upper variance
1 1 0.5994026 0.5679173 0.6308878 0.0002580580
12 0.1744163 0.1511832 0.1976494 0.0001405136
1 3 0.2261811 0.1992494 0.2531128 0.0001888131

R> nm12

Call:
TPidm(data

colonTP, s = 365, t = 730)

Parameters:

s= 365

t= 730

Method= NM

CI= TRUE

CI transformation= linear
Possible transitiomns:
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Figure 2: Non-Markovian transition probabilities P13(365,¢) and P23(365,t) for t € (365, 730].
Colon cancer study.

[1] ll1 1|| l|1 2" ||1 3" II2 2" ll2 3“

Transition probabilities at time t:

transition probs lower upper variance
1 1 0.7966309 0.76680585 0.82645591 2.315611e-04
1 2 0.1475010 0.12166865 0.17333340 1.737131e-04
1 3 0.0558681 0.03881836 0.07291783 7.567264e-05
2 2 0.3881579 0.31125428 0.46506151 1.539563e-03
2 3 0.6118421 0.53493849 0.68874572 1.539563e-03

Note that, when s > 0, five estimators are reported, corresponding to the five possible tran-
sitions. When s = 0, transition probabilities from the intermediate state 2 are not displayed
since no individual occupies that state at the time origin. By comparing the reported es-
timators, one can see that recurrence has a negative impact in the prognosis; indeed, the
two-year survival decreases from 94% (= 100(1 — 0.0559)%; confidence limits: 0.9271-0.9612)
to 39% (0.3113-0.4651) when one moves from the individuals alive and disease-free one year
after surgery to those with recurrence by that time. A graphical comparison of the transition
probabilities to the death state for both groups is reported in Figure 2, which is obtained by
running the following line:

R> plot(nm12, chosen.tr = c("1 3", "2 3"))

4.2. By-treatment analysis

We compute the non-Markovian (default method) state occupation probabilities Py;(0,t),
j=1,2,3witht = "last" (default future time) for the three treatment groups as follows:

11
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Figure 3: Non-Markovian disease-free survival function P;;(0,t) for the three treatment
groups. Colon cancer study.

R> nmOt_rx <- TPidm(colonTP, s = 0, cov = "rx")

The by-treatment numerical results can be displayed as before by using the following code
line:

R> nmOt_rx

The disease-free survival function P1;(0,t), together with the corresponding 95% confidence
limits (with default ci.transformation = "linear"), can be displayed in a single plot by
using the following lines:

R> plot(nmOt_rx, chosen.tr = c("1 1"), col = 1:3)
R> legend(0, 0.2, legend = c("Obs", "Lev", "Lev+5FU"), 1ty = 1, col = 1:3)

The result is shown in Figure 3. The plot corresponding to P13(0,¢) is given in Figure 4, and
it is simply obtained using:

R> plot(nmOt_rx, chosen.tr = c("1 3"), col = 1:3)
R> legend(0, 1, legend = c("Obs", "Lev", "Lev+5FU"), 1ty = 1, col = 1:3)

In Figures 3 and 4 it is seen how the combined treatment Levamisole+5 FU improves the
disease-free and overall survival functions, as previously reported for this dataset (Moertel
and others 1995).

The package TP.idm also allows for the computation of the Aalen-Johansen estimator. When
one is confident of the Markov assumption, the Aalen-Johansen is preferred over the non-
Markovian estimator since it reports a smaller variance in estimation. However, it has been
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Figure 4: Non-Markovian estimator of P13(0,¢) for the three treatment groups. Colon cancer
study.

shown that the Aalen-Johansen estimator may be inconsistent when the process does not
fulfill the Markov condition (Meira-Machado et al. 2006). In the following line we perform a
graphical test for the Markov condition in the Observation group:

R> test.nm(colonTP[colonTP$rx == "Obs", ], s = 365)

Specifically, the plot compares the Aalen-Johansen estimator and the non-Markovian estima-
tor for Pja(s,t), P13(s,t) and Paa(s,t), for the Observation group and s = 365 (Figure 5).
Since there exists a deviation of the plots with respect to the straight line y = x, one gets
some evidence on the lack of Markovianity of the underlying process beyond one year after
surgery. Indeed, the test for Markovianity based on the Cox model reported a p value of 0.062
(regression coefficient: —0.000528) for the Observation group, which can be seen by using the
function coxph of the package survival:

R> colonTP$entrytime <- colonTP$timel
R> coxph(Surv(timel, Stime, event) ~ entrytime,
+ data = colonTP[colonTP$timel < colonTP$Stime & colonTP$rx == "Obs", ])

Thus, in principle the application of the Aalen-Johansen method is not recommended here, due
to possible biases. For further illustration, in Figure 6 we jointly display the non-Markovian
estimator and the Aalen-Johansen estimator for Pos(s, t), Observation group and s = 365. In
this plot the differences between both estimators are clearly seen. The following lines can be
used to construct Figure 6:

R> plot(TPidm(colonTP[colonTP$rx == "Obs",], s = 365), chosen.tr = c("2 2"))

13
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Figure 5: Graphical test for the Markov condition, s = 365. Colon cancer study.
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Figure 6: Non-Markovian estimator with 95% pointwise confidence limits (black lines) and
Aalen-Johansen estimator (red line) for the transition probability Pas(s, t) for the Observation
group and s = 365. Colon cancer study.

R> ajlt.0bs <- TPidm(colonTP[colonTP$rx == "Obs",], s = 365, method = "AJ")
R> lines(ajlt.Obs$times, ajlt.Obs$all.probs[ , 1, 4], type = "s", col = 2)

5. Discussion

Multi-state models are often used to analyze time-to-event data. In the last years, a number
of R packages implementing multi-state models techniques have appeared, helping to the
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dissemination and application of multi-state models in biomedical research, among other
fields. The progressive illness-death model is a three-states model with plenty of applications,
for which novel statistical methods have been recently proposed. In particular, a lot of
emphasis has been put on the nonparametric estimation of the transition probability matrix
for the illness-death model. Alternatives to the classical approach introduced by Aalen and
Johansen (1978) include semiparametric approaches (Moreira, de Uiia-Alvarez, and Meira-
Machado 2013), which allow for a variance reduction; and Markov-free estimators (Allignol
et al. 2014), with general validity regardless of the Markov condition.

In this paper we have described the TP.idm package which implements, for the first time,
a novel non-Markovian transition probability matrix for the illness-death model (de Una-
Alvarez and Meira-Machado 2015). The package allows for right censored data, and it pro-
vides variance estimates as well as confidence limits. The new method is recommended over
previously existing non-Markovian estimators, due to its relatively greater accuracy (same
reference). It is also preferred to the Aalen-Johansen estimator when the process under in-
vestigation violates the Markov condition since, in such a case, the latter estimator may be
systematically biased. Since the Aalen-Johansen estimator is consistent for the estimation of
occupation probabilities even in non-Markov scenarios (Datta and Satten 2001), and because
of its generally smaller variance, it has been implemented in the TP.idm package too. We
have compared the computation time of the TPidm function to that of the etm package, which
can be used to obtain the Aalen-Johansen estimator too. The relative performance of these
two packages varies depending on the situation (sample size, presence of grouping or rounding
in the data) but, generally speaking, they report similar computation times.
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A. Plug-in variance estimators

In this section we provide the definition of the plug-in variance estimators referred in Sec-
tion 2.1. To this end, we recall some of the asymptotic results in the Web Appendices of
de Una-Alvarez and Meira-Machado (2015). Specifically, the non-Markovian estimator of
Pis(s,t), IS{\QM (s,t) say, is asymptotically Gaussian with limit variance

gg)( £) = (1 — Pis(s, 1))’ /t Pi3(s,dz)

, 13
s (1—Pi3(s,2))Sy) (2)S4(s) )

where Séf ) stands for the conditional survival function of T given Z > s, and Sz denotes the
survival function of Z. Note that Sz(s) can be estimated by n~! times the cardinal of the
subset S1, Sz (s) = n1s/n say, while Séf ) () can be estimated by the empirical survival function
of the T;’s computed from the subset &1, that is, S”éf)(m) =ntSr [T > 2)I(Z; > s).
Finally, replace Py3(s,t) in (13) by PNM(s,t) to get

(T, < )5:1(Z; > s)
" I(T; > T)I(Z; > 5))2

&9t = n(1 — PNM(s,1))? Z (14)
i:l

J

a Greenwood-type formula applied to the subsample S;. This leads to the plug-in variance
estimator VAR(PNM (s, 1)) = 6’% (t)/n.

Similarly, we obtain VAR(PYM (s, t)) = VAR(PYM (s, 1)) = 653 (t)/n, where

NT; <t)6;1(Z; < s <Ty)
V(T > T)I(Z; < 5 < T))?

G55 () = nPYM ( 22 (15)
1= 1

is a plug-in estimator for the limit variance aég) (t) in the Web Appendices of de Utia-Alvarez

and Meira-Machado (2015). Again, Equation 15 defines a Greenwood-type estimator, com-
puted in this case from the subset So.

Finally, introduce the transformations

fgs)(Ti,(Si) =(1- P13(S,t)> {M _ /Smin(Ti,t) ( Pis(s,dx) } (16)

St (T3) 1= Pis(s,2)) 5 ()
and .
%ES) (T, 6;) = P11(s, 1) {I(Z(ls)gt)pl + /mm(ziﬂf) P11(s, d(asc)) } ’ (17)
SN Z:) s Pii(s,x)S," ()
where S(ZS) denotes the conditional survival function of Z given Z > s. Then, the asymptotic

variance of PI)M (s, t) is given by Equation 3, cfr. de Ufia-Alvarez and Meira-Machado (2015,
Web Appendices), and it can be estimated by

n

559(0) = s/ > S W (i i) — &0 (T 00T (20 > 5). (18)

i=1

Here, ft(s) and 1[%(5) stand for the natural estimators of the transformations (16) and (17), which
are obtained when replacing the transition probabilities by their non-Markovian estimators,
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and the conditional survival functions Séf ) and Sg) by their empirical counterparts, namely
S$(z) = il S0, (T > 2)I(Z; > s) and S$)(z) = ni) S0, 1(Z; > 2)I(Z; > s). The
variance of PIM (s, t) is then estimated by \///A\\R(Isjl\;]\/[(s7 ) = 6%) (t)/n.
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