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Abstract

A key task in psychological assessment is the scaling of new psychological tests and
questionnaires. Item response theory (IRT) is a well-established framework for this area
of research. At present, IRT comprises a great variety of models, but to date, relatively
little attention has been paid to the scaling of nominal and continuous data. The R pack-
age pcIRT provides functions for estimating IRT models for polytomous (nominal) and
continuous data – the multidimensional polytomous Rasch model (Rasch 1961) and the
continuous rating scale model (Müller 1987). Both models are extensions of the dichoto-
mous logistic Rasch model (Rasch 1980) and retain its key feature of the separability
of structural and nuisance parameters. The multidimensional polytomous Rasch model
is suitable for nominal data under the assumption of a multidimensional space for the
response categories, and the continuous rating scale model is a direct extension of the
rating scale model developed by Andrich (1978) for continuous data.

Keywords: multidimensional polytomous Rasch model, continuous rating scale model, item
response theory.

1. Introduction
Instruments such as tests and questionnaires that measure a latent trait are well-established
research methods in the social sciences. Item response theory (IRT) provides a range of
statistical models for scaling these measurement tools. IRT is the predominant scaling method
used in large-scale assessments administered in an educational context (cf. OECD 2012; Olson,
Martin, and Mullis 2008) and is also an important scaling method for psychological tests and
questionnaires. To date, the majority of IRT models have focused on dichotomous and ordinal
data. However, new and innovative response formats make it necessary to provide scaling
methods for other data types as well. The newly developed package pcIRT (Hohensinn 2018)
– written in R (R Core Team 2018) – makes scaling methods for polytomous (nominal) and
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continuous data available to the user. More specifically, package pcIRT provides easy-to-
use functions for estimating the multidimensional polytomous Rasch model (MPRM), which
handles polytomous (nominal) data. In addition, the package allows the estimation of the
continuous rating scale model (CRSM), which scales continuous data. Package pcIRT is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=pcIRT.
IRT comprises a great variety of models. A majority of them have already been implemented
in various R packages. An up-to-date overview of R packages for IRT measurement is provided
by the CRAN Task View on Psychometric Models and Methods (Mair 2018).
The main characteristic of all IRT models is that they model the relationships between man-
ifest behavior on test tasks or questionnaire items and latent traits. Thus, IRT is based on
statistical models obtained by estimating the parameters of an item and of the respondents’
characteristics (Baker and Kim 2004). More basically, in the (dichotomous logistic) Rasch
model (Rasch 1980), the probability of a response of respondent v to item i, Xvi = 1, is given
by the following logistic function:

P(Xvi = 1|θv, βi) = exp (θv − βi)
1 + exp (θv − βi)

, (1)

where βi is interpreted as the difficulty of task or question i and θv represents the ability or
characteristic of the measured latent trait of respondent v.
The main characteristic of the Rasch model is the existence of sufficient statistics for the
parameters and, consequently, the ability to estimate the structural (item) parameters sep-
arately from the nuisance (person) parameters. This separate estimation is realized through
the derivation of the conditional likelihood for the Rasch model. In the conditional likeli-
hood, the person parameters are conditioned out. The estimation of item parameters using
the conditional likelihood is well known as conditional maximum likelihood (CML) estimation
(see Baker and Kim 2004). Several extensions of the Rasch model given in Equation 1 have
been derived that retain this key feature, whereas other IRT models, e.g., the 3-PL model
developed by Birnbaum (1968), are no longer models of the exponential family. Like the eRm
package (Maier, Hatzinger, and Maier 2015), the pcIRT package is based on CML estimation.
Mair and Hatzinger (2007) emphasize the advantages of extended Rasch models belonging to
the exponential family and of CML estimation in a very detailed way; please refer to their
paper for an extensive explanation.
Extensions of the dichotomous logistic Rasch model that retain the characteristic of being
a member of the exponential family can be divided into two broad categories: first, models
for polytomous and continuous data, and second, multidimensional models that assume more
than one latent trait θ. Among the larger set of R packages for IRT models, the eRm
package (Maier et al. 2015) is the only one that implements CML estimation and includes
functions for extended Rasch models that maintain parameter separability. Note that the
eRm package offers a variety of functions for estimating unidimensional Rasch models for
both dichotomous and polytomous data. By contrast, the pcIRT package presented here
offers functions for estimating the multidimensional polytomous Rasch model (MPRM) and
a (unidimensional) extension of the Rasch model for continuous data – the continuous rating
scale model (CRSM).
In its conception, the MPRM is an exceptional model. Its main difference from the nominal
response model developed by Bock (1972) (included, for example, in the mcIRT package, Reif
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2014) is its assumption of a multidimensional latent space. Furthermore, its primary difference
from all “typical” multidimensional IRT models is that the MPRM assumes a latent trait for
each response category instead of latent traits for subsets of items.
Other R packages such as TAM (Kiefer, Robitzsch, and Wu 2015) and mirt (Chalmers 2012)
allow the estimation of multidimensional IRT models but use marginal maximum likelihood
(MML) estimation instead of a CML estimation procedure.
Moreover, package pcIRT allows the MPRM to be estimated in an easy-to-use way while
still allowing the user to set a variety of constraints in the design matrix. In addition, the
package offers functions for estimating the CRSM and the Rasch model. This paper focuses
on describing the MPRM and its implementation in greater detail, with illustration through
examples.

2. Multidimensional polytomous Rasch model
When one discusses multidimensional IRT (MIRT) models, one is most often referring to
models in which a specific kind of MIRT model is included. These models have the common
feature that an item is assigned to a specific latent trait or to more than one trait (for an
overview of multidimensional IRT models, see Reckase 2009). The multidimensional polyto-
mous Rasch model (MPRM), which was formulated by Georg Rasch himself (Rasch 1961),
has a completely different model formulation. It is also a multidimensional model, in that
it assumes a multidimensional latent trait space. However, in contrast to other well-known
MIRT models, the MPRM assigns response categories to latent traits instead of items. Huang
and Mislevy (2010) demonstrated how the use of the MPRM provides additional information
about a multiple-choice achievement test: They analyzed a multiple-choice mechanics test
in physics and aimed at measuring both the competence level and the (mis)conceptions of
students who are learning physics. Therefore, the distractors for the items were developed to
represent different fundamental misconceptions (e.g., an Aristotelian instead of a Newtonian
view). The MPRM assumes a latent dimension θ for each response category – that is, for
each conceptual approach in physics, in this application. The results provide details regarding
the difficulties associated with each distractor and information about the (mis)conceptions to
which each student clings.
To emphasize the differences between the MPRM and “typical” MIRT models, as a first
step, the very general model formulation developed by Adams, Wilson, and Wang (1997) is
presented which is given by1

P(Xvi = h|θvd, ηk,bihd, aihd) = exp(
∑D

d=1 bihdθvd −
∑K

k=1 aihdηk)∑m
j=0 exp(

∑D
d=1 bihdθvd −

∑K
k=1 aihdηk)

. (2)

The probability of responding to item i in category h depends on the latent trait θd =
(θ1d, . . . , θNd) and the item components ηk. v indicates the person, and d indicates the latent
trait. Now, for deriving the MPRM from the general model given in Equation 2, the design
matrices A and B must be specified in the following way: Each response category corresponds
to a different underlying latent trait d. Consequently, the number of latent dimensions d must

1Equation 2 is expressed according to Rost and Carstensen (2002), with slightly modified indices for con-
sistency with the other model formulas given in this paper. In Rost and Carstensen (2002), a formalized
derivation of the MPRM from the general MIRT model given in Equation 2 can be found.
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θ1 θ2 θ3
h = 1 1 0 0
h = 2 0 1 0
h = 3 0 0 1

Table 1: An example of
a design matrix B for a
certain item i is given.
Each response category
h is assigned to a differ-
ent latent dimension θd

in the MPRM.

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 η11 η12
h = 1 1 0 0 0 0 0 0 0 0 0 0 0
h = 2 0 1 0 0 0 0 0 0 0 0 0 0
h = 3 0 0 1 0 0 0 0 0 0 0 0 0

Table 2: An example of a design matrix A for the three response
categories of item 1 is given. Each response category h is assigned
to a different item component parameter ηk in the MPRM.

be equal to the number of response categories h, that is, d = h. Furthermore, all items in
a data set must have the same number of categories. Suppose that we have one item i
associated with three response categories h = 1, 2, 3; then, θv = (θv1, θv2, θv3). Consequently,
B is a three-dimensional diagonal matrix that maps each response category h exclusively to
one θd, as shown in Table 1.
A design matrix A expresses the relations between each response category h and the item
component parameters η. In the MPRM, an item parameter is assigned to each item for each
category, which means that they are item category parameters. Continuing with the example
of three response categories h = 1, 2, 3, four items i = 1, . . . , 4 are now assumed. This results
in a total of 12 item component parameters ηk. Table 2 shows the design matrix A for item 1.
There are three item parameters for item i = 1: η1 for category 1, η2 for category 2 and η3 for
category 3. Obviously, η4, η5 and η6 are the item parameters for item 2, and so on. For the
MPRM, the term “item category parameter” expresses the meaning of the parameters more
precisely than the general term “item component parameter”. Therefore, these parameters will
henceforth be referred to as the item category parameters βih. For example, item component
parameter η2 which is assigned to item 1 and category 2 is indicated as β12. Restricting the
general MIRT model expressed in Equation 2 in this way leads to the MPRM (cf. Andersen
1995):

P(Xvi = h|θvh, βih) = exp (θvh + βih)∑m
j=1 exp (θvj + βij) . (3)

The probability that a person v responds to item i in category h depends on a person param-
eter, θvh, and the item parameter, βih.
The MPRM described thus far suffers from over-parameterization. This is avoided by impos-
ing the following constraints (see Fischer 1974):

m∑
h=1

θvh = 0, βim = 0, i = 1, . . . , r,
r∑

i=1
βih = 0, (4)

where m is the highest response category, h = 1, . . . ,m, and r is the number of items,
i = 1, . . . , r. The item component parameters for the highest category are set to zero. In
the example given above, this reduces the number of estimated ηk parameters to eight (see
Table 2) and the number of estimated θd parameters for person v to two (see Table 1).
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As a consequence, it follows that the MPRM reduces to the dichotomous logistic Rasch model
in the case of only two categories.
In contrast to most other MIRT models, the MPRM belongs to the family of Rasch models,
which means that sufficient statistics for the parameters are available. For the MPRM given
in Equation 3, the vector

yv =
(

r∑
i=1

xvi1, . . . ,
r∑

i=1
xvim

)
(5)

that sums all responses of person v for each category h provides sufficient statistics for the
person parameter vector of person v, θv. By virtue of the existence of sufficient statistics yv,
the conditional likelihood for the data set X can be derived as follows (Andersen 1973):

cL
(
β1, . . . ,βr|X

)
= cL

(
β1, . . . ,βr|Y

)
= exp

[ r∑
i=1

m∑
h=1

βihyih

] n∏
v=1

γ−1
(
Y, exp(β1, . . . ,βk)

)
, (6)

with Y based on the data set X according to Equation 5. γ is the combinatoric function
that yields the number of all possible response vectors according to a given marginal re-
sponse vector yv. Andersen (1972) developed an algorithm for the recursive calculation of γ
that is computationally efficient. The conditional likelihood expressed in Equation 6 enables
parameter estimation using the CML method.
Of course, the MPRM is primarily a model for scaling nominal data, as it has been used, for
instance, by Huang and Mislevy (2010). However, the MPRM also offers other interesting
applications. Andersen (1973) and Fischer (1974), in particular, note the possibility of testing
whether the assumed multidimensional space Θ can be reduced to a unidimensional one. This
test for unidimensionality is performed by setting the item category parameters βi1, . . . , βim

for an item i as linearly dependent: βih = βi · φh. In this manner, one can test whether the
assumption of ordinal scoring (an assumption that is always made, e.g., with regard to rating
scales for questionnaires) holds and, furthermore, whether the scoring function of an ordinal
scale can be estimated. This opens up an important field of application in the context of test
and questionnaire construction.

3. Implementation of the MPRM in the pcIRT package

3.1. General

Like most R packages, pcIRT uses S3 classes. The MPRM function enables the user to set
constraints on the model in a flexible way by specifying a design matrix through the argument
desmat as well as the arguments ldes and lp. How the restrictions on this model can be set
will be explained in greater detail and illustrated in Section 4.2. Furthermore, in Section 2, the
unidimensionality test for the MPRM was mentioned. This test is implemented in an extended
form. In its original conception, the test assumes the linear dependency βih = βi φh for
i = 1, . . . , r and h = 1, . . . ,m. MPRM also allows the setting of linearly dependent parameters
for only a subset of user-specified items i and categories h. This leads to far greater flexibility
in testing hypotheses regarding the unidimensionality of different response categories. The
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resulting conditional likelihood of the adapted MPRM is derived as follows:

cL
(
β1, . . . ,βr|X

)
= cL

(
β1, . . . ,βr|Y

)
=

exp
[( r∑

i=1

m∑
h=1

βihyih

)(1−c)
+
( r∑

i=1

h∑
j=1

βiφhyih

)c] n∏
v=1

γ−1
(
Y, exp(β1, . . . ,βr

)
, (7)

where c is an indicator variable. Thus, c = 1 indicates a given specification of the linearly
dependent parameters. As in Equation 6, Y is the sufficient statistic for the person parameters
and is defined in Equation 5.
This conditional likelihood is maximized by the optim function from the base R stats, using
the BFGS optimizer by default. It is possible to choose another available optimizer using the
control argument.
The functions for estimating the model are supplemented with several additional functions
that allow the user to check the fit of the model. A function for generating data sets in
accordance with the MPRM is also included.

3.2. Accuracy of parameter estimation

The described functions of the pcIRT package were evaluated through simulation studies. The
results of one of these simulations are presented here to illustrate the accuracy of parameter
estimation.
Considering that the main focus of this paper is on the MPRM, a comparison of the param-
eter estimation accuracy of this model offered by the pcIRT package with that of the TAM
package2 is presented. For this purpose, 1000 data sets were simulated with the number of
items r = 15, the number of categories m = 3 and the sample size n = 1000. The βih were
randomly drawn from N (0, 1.5) once and then fixed (parameters ∈ (−2.41; 4.01)). The θvh

were drawn from N (0, 1). The MPRM was estimated using the pcIRT package and the TAM
package. Figure 1 shows the differences between the fixed βih values and the estimated ones
(the means and the quantiles at 0.05 and 0.95 are displayed). β121 and β142 show a larger
difference compared with the other parameters. This is because these parameters were those
with the highest absolute values. The estimates produced by both packages are very similar
so that the two facets of the plot looks almost identical.
According to Figure 1, the mean square errors of parameter estimation are 0.01297 for the
pcIRT package and 0.01285 for the TAM package. The median time required to estimate the
MPRM was 2.55 seconds for the TAM package and 33.89 seconds for the pcIRT package.

4. Application of the MPRM function
This section illustrates the application of the MPRM with examples.

4.1. Estimation of the MPRM

As noted in Section 2, the MPRM function treats the input data as nominal. Thus, the main
field of application of the MPRM is the scaling of nominal data. The application of Huang

2Thanks to Alexander Robitzsch for his help in defining the design matrices in package TAM.
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Figure 1: Parameter estimation accuracy is compared between packages pcIRT and TAM.
The labels identify the parameters, e.g., the parameter β11 for item 1 and category 1 is labeled
as I1c1.

and Mislevy (2010) described above illustrates this main purpose very well. Therefore, a
different example was chosen here to provide insight into the variety of possible applications.
The example concerns a fundamental problem in test and questionnaire construction: Very
often, scoring functions are determined without further empirical evaluation. Subsequently,
the MPRM is used to assess and, finally, to estimate the appropriate scoring weights of the
response categories. This example follows an approach described in Fischer (1974).
Intelligence and competence tests are often administered as speed-and-power tests by addi-
tionally recording the time taken by the examinee to give a response. The purpose of this
analysis is to determine whether a fast solution expresses a different competence or facet of
ability than a slow solution. If this is true, then a fast solution would be linked to a different
latent trait than a slow solution, and a scoring method that awards additional points for fast
solutions (which is done in some intelligence tests) would be inappropriate. Otherwise, if all
three categories represent only graduated levels of the same competency, such awarding of
points would lead to a higher measurement precision. However, in either case, the selection of
an appropriate scoring function for the response categories is crucial. This question is studied
using the MPRM.
The data set reason is used, which contains the responses and response times for each of
eleven items on the reasoning test “META” (Gatternig and Kubinger 1994). The respondents
are asked to solve encoding tasks without time pressure. The data set was obtained from a
low-stakes test situation and includes observations of 404 students. After excluding three
respondents who quit the test and 21 persons who apparently only clicked through the test,
data from 380 students are analyzed. As usual, the items are scored as “not solved” (Xvi = 0)
or “solved” (Xvi = 1). In addition to the item responses, the response times in seconds for
each item are stored.

R> data("reason", package = "pcIRT")
R> head(reason.test[, 1:11], 3)
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I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11
[1,] 1 0 0 0 0 1 0 0 0 0 0
[2,] 1 0 0 0 0 0 0 0 1 0 0
[3,] 1 0 0 0 0 0 0 0 0 0 0

R> head(reason.test[, 12:17], 3)

BT1 BT2 BT3 BT4 BT5 BT6
[1,] 105.8 300.0 255.2 289.7 300.0 63.7
[2,] 54.7 166.3 136.8 89.0 108.2 61.0
[3,] 110.2 151.4 182.0 156.9 144.4 38.1

First, the item responses are recoded to a 3-categorical format. Based on the initial findings
for items 1 to 4, fast solutions with response times of up to 180 seconds (xvi = 1 & bvi ≤ 180)
are labeled as 0, slow solutions (xvi = 1 & bvi > 180) are labeled as 1, and incorrect responses
are labeled as 2. For items 5 to 11, the threshold for the response times is set to 130 seconds
instead.

R> reason.testR <- reason.test
R> itpos <- 1:11
R> tipos <- itpos + 11
R> co <- rep(c(180, 130), c(4, 7))
R> for (i in 1:length(itpos)) {
+ reason.testR[reason.test[, itpos[i]] == 1 &
+ reason.test[, tipos[i]] <= co[i], itpos[i]] <- 0
+ reason.testR[reason.test[, itpos[i]] == 1 &
+ reason.test[, tipos[i]] > co[i], itpos[i]] <- 1
+ reason.testR[reason.test[, itpos[i]] == 0, itpos[i]] <- 2
+ }

The MPRM takes as input data sets X in a wide format; that is, each column represents
an item, and each row represents an observation. The category levels must be consecutive
numbers, and all items must have the same number of response categories. Now, the MPRM
is estimated for the eleven items using the recoded data.
The generic summary function displays the convergence and estimated item category param-
eters.

R> MPRM.res <- MPRM(reason.testR[, 1:11])
R> summary(MPRM.res)

Call: MPRM(data = reason.testR[, 1:11])

Function calls:
function gradient

85 29
Convergence: convergence



Journal of Statistical Software – Code Snippets 9

Deviance: 3023.463
Number of Parameters: 20

-----------------------------------------------------
Parameter estimates:

beta I1 beta I2 beta I3 beta I4 beta I5 beta I6
cat 1 -3.258005 0.01287835 1.0428143 1.016488 -0.004341561 -0.7922870
cat 2 -1.880010 0.13279345 0.5030431 0.693977 -0.068718977 -0.6560851
cat 3 0.000000 0.00000000 0.0000000 0.000000 0.000000000 0.0000000

beta I7 beta I8 beta I9 beta I10 beta I11
cat 1 1.124702 0.6170842 -0.2543161 -0.1916351 0.6866170
cat 2 1.444394 0.3100316 -0.4439317 -0.2201612 0.1846675
cat 3 0.000000 0.0000000 0.0000000 0.0000000 0.0000000

SE I1 SE I2 SE I3 SE I4 SE I5 SE I6
cat 1 0.1513772 0.1735940 0.2410501 0.2355404 0.1752277 0.1497027
cat 2 0.1688102 0.1584189 0.1681306 0.1773452 0.1514670 0.1414774
cat 3 NA NA NA NA NA NA

SE I7 SE I8 SE I9 SE I10 SE I11
cat 1 0.2364460 0.2088610 0.1681042 0.1678936 NA
cat 2 0.2255492 0.1617454 0.1425058 0.1480273 NA
cat 3 NA NA NA NA NA

R> iccplot(MPRM.res, items = 4)

Finally, 20 item parameters are estimated; the parameters of the last (eleventh) item and those
for the highest category are fixed for normalization reasons (in accordance with Equation 4).
The highest category is the reference category and is set to 0. For the fixed parameters, no
SE is estimated, and the SE is therefore reported as NA in the summary. The normalization
constraints mentioned above must be taken into account when interpreting the parameter
estimations. For example, when comparing the different category parameters of item 1, one
should be aware that these parameter estimations are affected by the other item category
parameters because of the normalization within a category to a sum of zero. Thus, for
example, item 1 seems to be a rather easy item in general. That is, a response in the
category “fast solution” is more likely than one in the category “slow solution”. Similarly, both
“solved” categories are more likely than the (reference) category “not solved”. By contrast,
for item 4, it appears distinctly more difficult to solve the item quickly than to solve it with
a longer response time. The task of item 4 therefore seems to be considerably more difficult
than that of item 1. Figure 2 displays the item characteristic curves for item 4. The plots
show the variations in response probability for a certain response category depending on the
location with respect to the latent traits. For instance, the ICC here shows that the response
probability for category 3 increases with low latent trait locations in the first two latent trait
dimensions θ1 and θ2. This trait location corresponds to a high position in θ3. These plots
make it clear that the person parameters are interdependent. This is already obvious from
the normalization constraints of the person parameters (cf. 4).
In the next step, the person parameters θvh are estimated for all observed raw score vec-
tors except those with extreme scores (that is, at least one observation and at most r − 1
observations in each response category).
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Figure 2: The ICCs for all three response categories of item 4 are shown.

R> MPRM.pp <- person_par(MPRM.res)
R> head(MPRM.pp$ptable, 3)

pers.par.cat1 pers.par.cat2 pers.par.cat3 SE cat 1 SE cat 2
1|1|9 -1.058391 -0.6310490 1.6894399 1.446805 1.1688397
1|2|8 -1.191389 -0.1326835 1.3240726 1.397705 0.6738535
1|3|7 -1.234189 0.1811570 1.0530319 1.370542 0.5202010

The output displays one part of a table providing the person parameter estimates for the
observed raw score vectors. The row names indicate the raw score vectors. According to the
normalization constraints given in Equation 4, the person parameters must be interpreted
as intra-individual tendencies to choose a response category. For instance, respondents with
a raw score vector of xvi = (1, 1, 9) have a strong tendency to respond in category 3, with
θ̂3 = 1.69.
Next, it is tested whether the categorization of fast and slow solutions is a gradual one
or whether it is a qualitative difference. In the former case, the βih parameters should be
linearly dependent for a given item i. This is tested by means of a likelihood-ratio test
comparing the likelihood of the MPRM to the likelihood of a restricted MPRM that includes
the linear dependency βih = βi ·φh described in Section 2. To test this general unidimensional
hypothesis, the dLRT function is applied.

R> dLRT(MPRM.res)

emp Chi2: 16.04115
df: 9
p-value: 0.066

R> cor(MPRM.res$itempar[1, ], MPRM.res$itempar[2, ])

[1] 0.9427702

The unidimensional model does fit the data set with a type I risk of α = 0.05. The correlation
between the response categories, COR(β̂i1, β̂i2) = 0.943, is high.
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4.2. Estimation of a constrained MPRM

It is illustrated how the user can easily set constraints on the MPRM. To explain the relevant
functions, the example from Section 4.1 is continued. The example as presented thus far, a
case of three-categorical scoring with bonus points for a fast solution, is appropriate for a
reasoning test. Now, using a constrained MPRM, the optimal scoring should be determined
empirically. For this purpose, constraints are set on the MPRM such that each item category
parameter of category 2 is linearly dependent on the corresponding parameter of category 1:
βi2 = βi1 ·φh. Furthermore, the scoring parameter is set equal for all categories h, resulting in
one general φ. In essence, this is a unidimensional polytomous model with a scoring parameter
to be estimated.
To obtain this specification, three arguments must be passed to the function MPRM: First, the
design matrix must be built. The easiest way to achieve this is by using the automatically built
design matrix for the estimated general MPRM (from the estimation presented in Section 4.1)
and applying the desired modifications.

R> design <- MPRM.res$design

Each column of the design matrix represents an item category parameter that must be es-
timated, whereas each row displays the resulting item category parameters (including fixed
parameters or parameters resulting from normalization). For the general model, the resulting
number of item category parameters is 33 (11 items multiplied by 3 categories). Because of
the normalization constraints (see Equation 4), 20 item category parameters are estimated
in the general MPRM. Now, in this application, only the category parameters for category 1
and the scoring parameter φ – that is, a total of 11 parameters – need to be estimated. In
the first step, the item category parameters of categories 2 and 1 are set equal in the design
matrix for all items:

R> s1 <- seq(2, 30, by = 3)
R> s2 <- seq(1, 20, by = 2)
R> for (s in 1:length(s1)) {
+ design[s1[s], s2[s]] <- 1
+ }
R> design[32, s2]<- -1
R> designC <- design[, -c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)]

Modifying the design matrix in the presented way and using it in the function MPRM would
lead to a constrained MPRM, with the item category parameters of category 2 set equal to
those of category 1. In our example, however, we wish to estimate a constrained MPRM by
setting the item category parameters to be linearly dependent (not equal). Therefore, exactly
which item category parameters should be set as linearly dependent must be specified. This
is achieved by means of the argument ldes. For this purpose, a vector with a length equal
to the number of resulting item category parameters is created. Each position represents the
corresponding item category parameter. For example, in the present case, the item category
parameter in position 5 in the vector represents the parameter for item 2 and category 2 (β22).
Now, in this vector, the position of the item category parameter on which an item category
parameter is linearly dependent is plugged into that dependent item category parameter.
For example, if item category parameter β22 is estimated as linearly dependent on β21, the
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position of item category parameter β21 (which is 4) must be input into the vector at the
position of item category parameter β22 (which is 5).
The vector then looks as shown in the code output below:

R> ldc <- rep(0, nrow(designC))
R> ldc[c(2, 5, 8, 11, 14, 17, 20, 23, 26, 29)] <- c(1, 4, 7, 10, 13, 16, 19,
+ 22, 25, 28)
R> ldc

[1] 0 1 0 0 4 0 0 7 0 0 10 0 0 13 0 0 16 0 0 19 0 0 22 0
[25] 0 25 0 0 28 0 0 0 0

Finally, the user uses the argument lp to specify exactly how many scoring parameters φ need
to be estimated and which of these scoring parameters are equal. In our example, only one φ
should be estimated for all items. The three arguments desmat, ldes and lp are passed to
the MPRM function.

R> lpc <- rep(1, 10)
R> MPRM.unid <- MPRM(reason.testR[, 1:11], desmat = designC, ldes = ldc,
+ lp = lpc)
R> c(MPRM.unid$linpar, MPRM.unid$linpar_se)

[1] 0.6093301 0.03896333

The code output displays φ̂ with its standard error. This result yields the empirically derived
optimal scoring proportions of (0; 0.6; 1) for the reason data set. Thus, an appropriate scoring
approach for the test is to award 2 points for a fast and correct solution, 1.2 points for a slow
and correct solution, and 0 points for an incorrect response.

5. Future plans and outlook
There are plans to add additional possibilities for assessing the fit of item and response pat-
terns – that is, item and person fit indices for the models implemented thus far. Another
major feature planned for implementation is the extension of the model estimation for han-
dling values that are missing by design. In analogy to other extensions of the Rasch model,
the likelihood will be modified such that the MPRM can be estimated even if not all items
were administered to all examinees (which is often the case in large-scale assessments, for
example).
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