
JSS Journal of Statistical Software
April 2018, Volume 84, Code Snippet 3. doi: 10.18637/jss.v084.c03

multipanelfigure: Simple Assembly of Multiple Plots
and Images into a Compound Figure

Johannes Graumann
Weill Cornell Medicine – Qatar

Richard Cotton
Weill Cornell Medicine – Qatar

Abstract

In scholarly publications, multiple graphical elements such as plots or raster images
are traditionally combined into a single compound figure using panels arranged in a grid.
Package multipanelfigure is a GPL-3 licensed R package that eases assembly of such
compound figures, allowing for straightforward integration of R specific plots using base
graphics, lattice and ggplot2 plots, as well as grid grobs in general. Also provided are
facilities to incorporate R external graphical output stored as SVG, PNG, JPEG, or TIFF
formatted files.

Keywords: plotting, reproducible research, R.

1. Introduction

In scholarly writing of documents such as reports, journal articles or books, multiple figures
are traditionally combined into multi-panel figures. Such figures represent graphical elements
arranged in a grid, with individual panels often identified by labels for ease of cross-referencing.
Component figures may be plots or raster images such as work flow diagrams and photographs.
In the case of R (R Core Team 2018), plots may be created using base graphics, lattice (Sarkar
2008), ggplot2 (Wickham 2009), etc. or may even be raw grid grobs.

Organizing the layout of multi-panel figures may be performed interactively using dedicated
desktop publishing, image editing, or office software. The manual nature of such assembly
renders this prone to human error. Common mistakes are including elements of different
resolutions, misalignment and heterogeneous font sizes. Being able to script the layout process
is thus a feature useful in the context of aiming at high quality output, reproducible research
and speedy generation of a press-ready final product.

https://doi.org/10.18637/jss.v084.c03


2 multipanelfigure: Simple Assembly of Compound Figures

1.1. Existing solutions

R provides several solutions for combining multiple plots and images. The layout function
in package graphics allows users to arrange a matrix of base plots. ggmatrix in package
GGally (Schloerke et al. 2017) provides similar functionality for plots from package ggplot2.
The gtable (Wickham 2016) package and grid.arrange in package gridExtra (Auguie 2017)
offer more flexible solutions with the same aim and allow for inclusion of arbitrary grid
grobs. Providing a higher level convenience layer, package multipanelfigure (Graumann 2018)
is based upon the functionality of package gtable and extends it to include base graphics,
lattice-based output and images in PNG, JPEG, SVG and TIFF format with the addition of
convenience functionality for panel labeling, handling of grob dimensions and capture of base
graphics. The package falls back on functionality from package gridGraphics (Murrell 2018),
the successor to package gridBase, for capturing base graphics as grobs and grid’s rasterGrob
to include raster images. Package multipanelfigure is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=multipanelfigure.

2. Creating a multi-panel figure

2.1. Specifying the layout

The multi_panel_figure function is used to create the layout to hold individual panels. Two
ways of specifying the dimensions of each panel within the structure have been implemented.
Firstly, one may specify the width and height of the entire assembled object, along with the
number of rows and columns of panels included. The following creates a multi-panel figure
layout setup to arrange panels in two rows and three columns. Measurement units default
to millimeters, but all units listed on the ?grid::unit help page are supported via the unit
argument. Aside from this ggplot2-inspired interface, dimensions may also be provided as
grid unit objects directly. The unit parameter is used to define an internal unique unit if
different units are mixed.

R> library("multipanelfigure")
R> figure1 <- multi_panel_figure(width = 90, height = 30, columns = 3,
+ rows = 2)

Printing a figure object without any panels shows its layout, as demonstrated by Figure 1.

R> figure1

Notice that in this case, all the rows and columns are the same size. Also notice that by default
a 5 mm gap has been created before each row and column (used for panel labels). This may
be changed or turned off by adjusting the row_spacing and column_spacing values.
The arguments width and height default to "auto", which will derive the figure’s dimensions
from the graphics device currently in use and works well for development.
A second way of specifying the dimensions of an assembled figure is to pass a vector of row
heights and a vector of column widths. This method allows individual rows/columns to have
different dimensions (see Figure 2 for an example).

https://CRAN.R-project.org/package=multipanelfigure


Journal of Statistical Software – Code Snippets 3

5mm
5mm 25mm 5mm 25mm 5mm

5mm
25mm

10mm (1, 1) (1, 2) (1, 3) 10mm

5mm 5mm

10mm

5mm

(2, 1)

25mm 5mm

(2, 2)

25mm 5mm

(2, 3)

25mm

10mm

Figure 1: A multi-panel figure layout with equal row heights and column widths.

0mm
5mm 20mm 10mm 40mm 5mm

0mm
20mm

10mm (1, 1) (1, 2) (1, 3) 10mm
0mm 0mm

20mm (2, 1) (2, 2) (2, 3) 20mm

0mm 0mm

30mm

5mm

(3, 1)

20mm 10mm

(3, 2)

40mm 5mm

(3, 3)

20mm

30mm

Figure 2: A multi-panel figure layout with varying row heights and column widths.

R> figure2 <- multi_panel_figure(width = c(20, 40, 20),
+ height = c(10, 20, 30), row_spacing = 0, column_spacing = c(5, 10))
R> figure2

When specifying figure dimensions in this way, minor arithmetic is involved in calculating the
size of the total figure, especially when interpanel spacing is used. For convenience, the size
of multi-panel figures (or other grobs) may be easily determined using figure_width and
figure_height.

R> figure_width(figure2)

[1] 100

R> figure_height(figure2)

[1] 60



4 multipanelfigure: Simple Assembly of Compound Figures

speed

di
st

0

20

40

60

80

100

120

5 10 15 20 25

●
●

●

●
●

●
●
●
●

●

●

●
●●
● ●

●●

●

●
●

●

●

●
●

●

●
●

●
●
●

●

●

●
●

●
●

●

●

●●
●
● ●

●

●

●●

●

●

A

Figure 3: A multi-panel figure with the left-hand panel filled with a scatter-plot of the cars
dataset.

2.2. Filling panels
Panels are inserted into a pre-created figure layout using the function fill_panel. The first
argument to this function is a ‘multipanelfigure’ object, and the second argument specifies
the plot/grob/image to be included. The function defaults to utilizing the first row with a
free panel, followed by the first column in that row with a free panel. Using the row and
column parameters, this behavior may be overridden and specified panels filled instead. In
the following example, a lattice plot is added by passing the object directly to fill_panel.
Figure 3 uses the cars data set from the datasets package, representing stopping distances of
cars by speed in the 1920s. Further down a JPEG will be inserted into this figure. As JPEG
images are currently stretched to fill the specified panel, height in the following example is
chosen to preserve the aspect ratio of the image used.

R> figure3 <- multi_panel_figure(width = 200, height = 71.8, rows = 1,
+ columns = 2)
R> library("lattice")
R> p <- lattice::xyplot(dist ~ speed, cars)
R> figure3 <- fill_panel(figure3, p)

Once panels have been inserted, the figure may be plotted as usual by printing it – either by
typing the variable name or explicitly calling print.

R> figure3

The signature of fill_panel is amenable for use with piping syntax. To facilitate use of that
add-on functionality, package multipanelfigure reexports magrittr’s (Bache and Wickham
2014) %>% forward pipe operator and %<>% compound assignment pipe operators to make
them accessible without explicitly loading the package of origin.
The following example uses a pipe to update the ‘multipanelfigure’ object with an addi-
tional panel, in this case a photo of a car from the 1920s. To include an image file in the
figure, simply pass a path to that image (either a path to a local file or a URL). The file type
(in this case JPG) is determined from the file extension. The updated multi-panel figure is
shown in Figure 4.

R> library("magrittr")
R> figure3 %<>% fill_panel(



Journal of Statistical Software – Code Snippets 5

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

●

●
●

●
●

●

●

●

●

●

●

●
●
●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

A B

Figure 4: The multi-panel figure from Figure 3, with an additional JPEG image in the right-
hand panel.

+ paste0("https://upload.wikimedia.org/wikipedia/commons/4/4d/",
+ "Ford-reconnaissance-car-haugh.jpg"), column = 2)
R> figure3

By default, panels are labeled with uppercase letters. This may be changed by using the
panel_label_type argument to multi_panel_figure. Alternatively, labels may be set for
individual panels using the label argument to fill_panel.

2.3. Saving a figure

Wrapping functionality provided by ggplot2 (ggplot2::ggsave), save_multi_panel_figure
provides a convenient means of exporting ‘multipanelfigure’ (or any grid) objects. The
export maintains the dimensions defined for the figure and the syntax is piping-compatible.
The graphics format used is derived from the extension of the supplied file name. Currently
supported are "eps", "ps", "tex" (pictex), "pdf", "jpeg", "tiff", "png", "bmp", "svg" and
"wmf" (Windows only). Figure 4 assembled above may thus be written to a portable network
graphics (PNG) file using the following:

R> figure3 %>% save_multi_panel_figure(filename = "Cars.png")

2.4. A more complex example

Extending the examples to more panels is simple: the creation of a ‘multipanelfigure’
object with more rows and columns is followed by further calls to fill_panel. The following
example recreates Supplementary Figure 4 from Billing et al. (2016). This combines images,
a ggplot, a grob, and a base plot. First we create the plot and grob objects.
Package ggplot2 plots from are included in the same way as lattice plots, by directly passing
the ‘ggplot’ object.

R> library("dplyr")
R> library("ggplot2")
R> panel_e_barplots <- billing2016_suppfig4e %>%
+ ggplot(aes(Experiment, Intensity)) + geom_bar(stat = "identity") +
+ geom_vline(xintercept = seq(3.5, 24.5, 3), linetype = "dotted") +



6 multipanelfigure: Simple Assembly of Compound Figures

+ facet_wrap(~ GeneName) + xlab(NULL) +
+ theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 3))

The VennDiagram package (Chen 2018) creates Venn diagrams as ‘gList’ objects, which are
essentially lists of grobs. These may also be added directly to multi-panel figures.

R> library("VennDiagram")
R> panel_f_venn <- draw.triple.venn(7129, 7023, 7136, 6536, 6566, 6655, 6312,
+ paste0("EXP", 1:3), scaled = FALSE, col = NA, fill = "grey50",
+ alpha = 1/3, ind = FALSE)

To include base graphics, they must first be converted to a grid equivalent, which is facilitated
by the capture_base_plot function provided by package multipanelfigure. In the following
example, a heatmap is created using an HCL color scale from the colorspace package (Zeileis,
Hornik, and Murrell 2009; Ihaka, Murrell, Hornik, Fisher, and Zeileis 2016). Base graphics
support in package multipanelfigure is work in progress and currently placement optimization
is required for each individual plot. This is exemplified by the adaptation of margin and
cexRow/cexCol in the example.

R> library("colorspace")
R> color_scale <- diverge_hcl(25, h = c(150, 0), c = 100)
R> panel_g_heatmap <- capture_base_plot(heatmap(billing2016_suppfig4g,
+ margins = c(12, 5), col = color_scale, cexRow = 0.7, cexCol = 0.7))

Constructing the complete figure is simply a matter of calling multi_panel_figure, then
chaining calls to fill_panel for each of the individual plots and images. In the following
example, note the use of the column argument to specify the column positioning of the panels
to be used. By setting it to a range column indices, a plot may span multiple columns.
Likewise, by modifying row, a panel may take up multiple rows.
For example, in the following code for Figure 5:

• Panel A sets column = 1:2. The panel accordingly covers elements (1, 1) and (1, 2).

• Panel E sets row = 2 and column = 2:3. Consequently this panel covers elements (2,
2) and (2, 3).

R> figure5 <- multi_panel_figure(width = c(75, 60, 75),
+ height = c(75, 75, 50, 75)) %>%
+ fill_panel("content/billing_2016_supp_fig4_a_design.png",
+ column = 1:2) %>%
+ fill_panel("content/billing_2016_supp_fig4_b_cytosol.png",
+ column = 3) %>%
+ fill_panel("content/billing_2016_supp_fig4_c_gel.png", row = 2) %>%
+ fill_panel("content/billing_2016_supp_fig4_d_western_blot.png",
+ row = 3, column = 1) %>%
+ fill_panel(panel_e_barplots, row = 2, column = 2:3) %>%
+ fill_panel(panel_f_venn, row = 4) %>%
+ fill_panel(panel_g_heatmap, row = 4, column = 2:3)
R> figure5



Journal of Statistical Software – Code Snippets 7

A B

C

D

MAP2K2 KDM1A H2AFV

ESC
, C

yt
, 1

ESC
, C

yt
, 2

ESC
, C

yt
, 3

ESC
, N

uc
, 1

ESC
, N

uc
, 2

ESC
, N

uc
, 3

ESC
, C

H
, 1

ESC
, C

H
, 2

ESC
, C

H
, 3

ESC
−M

SC
, C

yt
, 1

ESC
−M

SC
, C

yt
, 2

ESC
−M

SC
, C

yt
, 3

ESC
−M

SC
, N

uc
, 1

ESC
−M

SC
, N

uc
, 2

ESC
−M

SC
, N

uc
, 3

ESC
−M

SC
, C

H
, 1

ESC
−M

SC
, C

H
, 2

ESC
−M

SC
, C

H
, 3

BM
−M

SC
, C

yt
, 1

BM
−M

SC
, C

yt
, 2

BM
−M

SC
, C

yt
, 3

BM
−M

SC
, N

uc
, 1

BM
−M

SC
, N

uc
, 2

BM
−M

SC
, N

uc
, 3

BM
−M

SC
, C

H
, 1

BM
−M

SC
, C

H
, 2

BM
−M

SC
, C

H
, 3

ESC
, C

yt
, 1

ESC
, C

yt
, 2

ESC
, C

yt
, 3

ESC
, N

uc
, 1

ESC
, N

uc
, 2

ESC
, N

uc
, 3

ESC
, C

H
, 1

ESC
, C

H
, 2

ESC
, C

H
, 3

ESC
−M

SC
, C

yt
, 1

ESC
−M

SC
, C

yt
, 2

ESC
−M

SC
, C

yt
, 3

ESC
−M

SC
, N

uc
, 1

ESC
−M

SC
, N

uc
, 2

ESC
−M

SC
, N

uc
, 3

ESC
−M

SC
, C

H
, 1

ESC
−M

SC
, C

H
, 2

ESC
−M

SC
, C

H
, 3

BM
−M

SC
, C

yt
, 1

BM
−M

SC
, C

yt
, 2

BM
−M

SC
, C

yt
, 3

BM
−M

SC
, N

uc
, 1

BM
−M

SC
, N

uc
, 2

BM
−M

SC
, N

uc
, 3

BM
−M

SC
, C

H
, 1

BM
−M

SC
, C

H
, 2

BM
−M

SC
, C

H
, 3

ESC
, C

yt
, 1

ESC
, C

yt
, 2

ESC
, C

yt
, 3

ESC
, N

uc
, 1

ESC
, N

uc
, 2

ESC
, N

uc
, 3

ESC
, C

H
, 1

ESC
, C

H
, 2

ESC
, C

H
, 3

ESC
−M

SC
, C

yt
, 1

ESC
−M

SC
, C

yt
, 2

ESC
−M

SC
, C

yt
, 3

ESC
−M

SC
, N

uc
, 1

ESC
−M

SC
, N

uc
, 2

ESC
−M

SC
, N

uc
, 3

ESC
−M

SC
, C

H
, 1

ESC
−M

SC
, C

H
, 2

ESC
−M

SC
, C

H
, 3

BM
−M

SC
, C

yt
, 1

BM
−M

SC
, C

yt
, 2

BM
−M

SC
, C

yt
, 3

BM
−M

SC
, N

uc
, 1

BM
−M

SC
, N

uc
, 2

BM
−M

SC
, N

uc
, 3

BM
−M

SC
, C

H
, 1

BM
−M

SC
, C

H
, 2

BM
−M

SC
, C

H
, 3

0e+00

2e+10

4e+10

6e+10

In
te

n
s
it
y

E

250

224

233

343

6312

254

227

EXP1 EXP2

EXP3

F

E
S

C
_

E
X

P
2

E
S

C
_

E
X

P
3

E
S

C
_

E
X

P
1

E
S

C
−

M
S

C
_

E
X

P
2

E
S

C
−

M
S

C
_

E
X

P
1

B
M

−
M

S
C

_
E

X
P

3

E
S

C
−

M
S

C
_

E
X

P
3

B
M

−
M

S
C

_
E

X
P

2

B
M

−
M

S
C

_
E

X
P

1

GRB7

LIN28A

DNMT3B

UTF1

DPPA4

SALL4

POU5F1

ENG

ALCAM

THY1

CD44

NT5E

ITGB1

G

Figure 5: A multi-panel figure reproducing Billing 2016 Supplementary Figure 4. The figure’s
panels contain several PNG files, a ggplot, a grob, and a base plot.



8 multipanelfigure: Simple Assembly of Compound Figures

3. Summary
Packagemultipanelfigure is a GPL-3 licensed R package that enables the scriptable generation
of compound figures. Such figures are commonly used in scholarly publications and the
package provides an integrated, approachable high-level convenience interface to grid-based
functionality drawn from packages gtable (Wickham 2016), gridGraphics (Murrell 2018) and
grid itself. Inclusion of the corresponding raster graphics formats uses packages png (Urbanek
2013a), jpeg (Urbanek 2014) and tiff (Urbanek 2013b), respectively, and SVG images are
imported via package rsvg (Ooms 2017).
The resulting tool set makes it possible to script the entire assembly of compound figures
traditionally common in scientific literature in a straightforward manner. It thus removes
sources of human error inherent to assembly using interactive program options, speeds up the
process and renders it completely reproducible and documentable. In particular manuscript
preparation with R-based statistical analysis and plotting using tools like packages rmark-
down (Allaire et al. 2018) and/or knitr (Xie 2015), may benefit from the capabilities of a
high-level tool for the assembly of compound figures without the need to leave the chosen
authoring/development environment.

Acknowledgments
R.J.C, J.G. and the Proteomics Core at WCM-Q are supported by “Biomedical Research
Program” funds at Weill Cornell Medicine – Qatar, a program funded by Qatar Foundation.

References

Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J,
Chang W (2018). rmarkdown: Dynamic Documents for R. R package version 1.9, URL
https://CRAN.R-project.org/package=rmarkdown.

Auguie B (2017). gridExtra: Miscellaneous Functions for grid Graphics. R package version
2.3, URL https://CRAN.R-project.org/package=gridExtra.

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package version
1.5, URL https://CRAN.R-project.org/package=magrittr.

Billing AM, Ben Hamidane H, Dib SS, Cotton RJ, Bhagwat AM, Kumar P, Hayat S, Yousri
NA, Goswami N, Suhre K, Rafii A, Graumann J (2016). “Comprehensive Transcriptomic
and Proteomic Characterization of Human Mesenchymal Stem Cells Reveals Source Specific
Cellular Markers.” Scientific Reports, 6(21507), 1–15. doi:10.1038/srep21507.

Chen H (2018). VennDiagram: Generate High-Resolution Venn and Euler Plots. R package
version 1.6.20, URL https://CRAN.R-project.org/package=VennDiagram.

Graumann J (2018). multipanelfigure: Infrastructure to Assemble Multi-Panel Figures
(from ‘grob’s). R package version 1.0.0, URL https://CRAN.R-project.org/package=
multipanelfigure.

https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=magrittr
https://doi.org/10.1038/srep21507
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=multipanelfigure
https://CRAN.R-project.org/package=multipanelfigure


Journal of Statistical Software – Code Snippets 9

Ihaka R, Murrell P, Hornik K, Fisher JC, Zeileis A (2016). colorspace: Color Space Manipula-
tion. R package version 1.3-2, URL https://CRAN.R-project.org/package=colorspace.

Murrell P (2018). gridGraphics: Redraw Base Graphics Using grid Graphics. R package
version 0.2-1, URL https://CRAN.R-project.org/package=gridGraphics.

Ooms J (2017). rsvg: Render SVG Images into PDF, PNG, PostScript, or Bitmap Arrays.
R package version 1.1, URL https://CRAN.R-project.org/package=rsvg.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.

Schloerke B, Crowley J, Cook D, Briatte F, Marbach M, Thoen E, Elberg A (2017). GGally:
Extension to ggplot2. R package version 1.3.2, URL https://CRAN.R-project.org/
package=GGally.

Urbanek S (2013a). png: Read and Write PNG Images. R package version 0.1-7, URL
https://CRAN.R-project.org/package=png.

Urbanek S (2013b). tiff: Read and Write TIFF Images. R package version 0.1-5, URL
https://CRAN.R-project.org/package=tiff.

Urbanek S (2014). jpeg: Read and Write JPEG Images. R package version 0.1-8, URL
https://CRAN.R-project.org/package=jpeg.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.

Wickham H (2016). gtable: Arrange ‘grob’s in Tables. R package version 0.2.0, URL https:
//CRAN.R-project.org/package=gtable.

Xie Y (2015). Dynamic Documents with R and knitr. 2nd edition. Chapman & Hall/CRC.
doi:10.1201/9781315382487.

Zeileis A, Hornik K, Murrell P (2009). “Escaping RGBland: Selecting Colors for Statistical
Graphics.” Computational Statistics & Data Analysis, 53(9), 3259–3270. doi:10.1016/j.
csda.2008.11.033.

Affiliation:
Johannes Graumann
Weill Cornell Medicine – Qatar
Qatar Foundation, Education City, P.O.Box 24144, Doha, State of Qatar

https://CRAN.R-project.org/package=colorspace
https://CRAN.R-project.org/package=gridGraphics
https://CRAN.R-project.org/package=rsvg
https://www.R-project.org/
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=png
https://CRAN.R-project.org/package=tiff
https://CRAN.R-project.org/package=jpeg
https://CRAN.R-project.org/package=gtable
https://CRAN.R-project.org/package=gtable
https://doi.org/10.1201/9781315382487
https://doi.org/10.1016/j.csda.2008.11.033
https://doi.org/10.1016/j.csda.2008.11.033


10 multipanelfigure: Simple Assembly of Compound Figures

Current address:
Scientific Service Group Biomolecular Mass Spectrometry
Max Planck Institute for Heart and Lung Research
Ludwigstr. 43, D-61231 Bad Nauheim, Germany
E-mail: johannes.graumann@mpi-bn.mpg.de

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

April 2018, Volume 84, Code Snippet 3 Submitted: 2016-05-03
doi:10.18637/jss.v084.c03 Accepted: 2017-06-30

mailto:johannes.graumann@mpi-bn.mpg.de
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v084.c03

	Introduction
	Existing solutions

	Creating a multi-panel figure
	Specifying the layout
	Filling panels
	Saving a figure
	A more complex example

	Summary

