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Abstract

Cox’s regression model for the analysis of survival data relies on the proportional
hazards assumption. However, this assumption is often violated in practice and as a con-
sequence the average relative risk may be under- or overestimated. Weighted estimation
of Cox regression is a parsimonious alternative which supplies well interpretable average
effects also in case of non-proportional hazards.

We provide the R package coxphw implementing weighted Cox regression. By means
of two biomedical examples appropriate analyses in the presence of non-proportional haz-
ards are exemplified and advantages of weighted Cox regression are discussed. Moreover,
using package coxphw, time-dependent effects can be conveniently estimated by including
interactions of covariates with arbitrary functions of time.

Keywords: effect size, proportional hazards model, R package, survival analysis, weighted
estimation.

1. Introduction

When analyzing survival data Cox’s proportional hazards regression (Cox 1972) continues
to be one of the most popular methods of analysis. However, its assumption of proportional
hazards, i.e., the assumption that the effects of all covariates do not change over time, is often
violated in practice. Consequently, the relative risk for a covariate exhibiting non-proportional
hazards obtained by Cox regression may be under- or overestimated. But various methods of
analysis are available to avoid this bias. Choosing an appropriate method may depend on

1. the aim of the analysis, i.e., whether a detailed description of the time-dependent effect
or a single effect size measure is required,
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2. the availability of a-priori subject matter information concerning a possible time-de-
pendent effect,

3. the number of events and the sample size as it may restrict the complexity of the fitted
model,

4. whether the covariate with non-proportional hazards is of primary interest or if it is
used as an adjustment variable.

In the following, we briefly discuss methods, which can be used irrespective of the type of
departure from proportional hazards, and for which implementations in R (R Core Team
2017) are readily available.
Often, non-proportional hazards are just ignored and standard Cox regression is used to ob-
tain a single estimate of the hazard ratio (HR) for each covariate. This is then interpreted as
an average effect of that covariate. During some periods of the follow-up this value will over-
estimate the true time-dependent effect and for other periods it will underestimate it. Such
an analysis may be acceptable, if for a covariate a time-dependent effect has been detected
with HRs constantly larger or smaller than 1, i.e., if the sign of the log HR estimate β̂(t)
remains unchanged throughout follow-up. However, estimates from Cox regression ignoring
non-proportionality were shown to be sensitive not only to the type of departure from pro-
portionality but also to the censoring pattern of the data (Xu and O’Quigley 2000; Dunkler,
Schemper, and Heinze 2010). Therefore, such an estimate does not generalize to its assumed
uncensored population value.
The non-proportionality of one or more covariates can be taken into account explicitly by
using either stratification, estimating an “extended Cox regression” where some coefficients
are allowed to vary with time, or by using weighted Cox regression.
If only one categorical covariate with a small number of distinct categories which is not
of primary interest exhibits non-proportional hazards then stratification might be suitable.
This has the advantage that the type of time-dependent effect does not have to be specified.
However, the effect of the stratifying covariate cannot be examined.
If one assumes that a covariate of primary interest has different short-term and long-term
effects, one could express these effects by estimating piecewise constant HRs for consecutive
periods using separate models. However, such an analysis is based on the assumptions of con-
stant HRs within each period and a sudden change at the cutpoint between two periods. Both
assumptions are usually unrealistic. But such a piecewise constant model might sometimes
be preferred over more complex approaches because of its simplicity.
More generally, Cox regression can be extended to accommodate different types of non-
proportional hazards by including an interaction of a covariate with time. This is techni-
cally realized by a time-dependent covariate, which is a product of the value of a covariate
with a pre-specified function of time t, γ(t). The function γ(t) can be chosen such that a
time-dependent effect of a particular shape results. With γ(t) = t, a linear time-dependent
effect will be obtained, while γ(t) = log(t) will yield a log-linear time-dependent effect. More
flexible time-dependent effects can be obtained, if products of the covariate with the elements
of a data-derived vector-valued function of time are used (Lehr and Schemper 2007; Royston
and Altman 1994; Heinzl and Kaider 1997). Significant regression coefficients for these inter-
action terms suggest that the respective covariate does not exhibit proportional hazards. A
multiple Cox regression extended in this way may even include several interactions of various
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covariates with time. This option of analysis is the most flexible one, however, it is only
useful with larger sample sizes and if a concise description of the time-dependent effect is of
interest. Furthermore, it will not always be possible to draw clear decisions from such models,
in particular, if the sign of the corresponding regression coefficient changes during follow-up.
For example, in a medical context, the purpose of a model with survival data is often to de-
cide which therapy most likely will lead to longer survival. Using an extended Cox regression
model with a time-by-covariate interaction to account for non-proportional hazards may not
be suitable to answer this question.
Finally, weighted Cox regression is a parsimonious option to account for time-dependent effects
applicable also for small samples sizes (Schemper 1992; Sasieni 1993). Schemper, Wakounig,
and Heinze (2009) suggested to weight the contributions of each event time to the partial
likelihood according to the product of the survivor function and the inverse cumulative prob-
ability of follow-up at that time. Therefore, at each event time, their weighting function is
proportional to the expected number of subjects at risk if censoring had not occurred. By
applying these weights, weighted Cox regression yields estimates of average HRs which them-
selves approximate the odds of concordance, defined for two treatment groups A and B as
OC = P(TA < TB)/P(TB < TA), where TA and TB denote survival times from two subjects
randomly selected from these groups. Odds of concordance can be conveniently transformed
into concordance probabilities c = P(TA < TB) = OC/(OC + 1), which are intuitive effect
size measures. They permit a clear-cut answer to the question which treatment or level of a
prognostic factor is preferable, independent from the assumption of proportional hazards.
Here we present the R package coxphw (Heinze, Ploner, and Dunkler 2018) which implements
weighted estimation in Cox regression providing unbiased average HR estimates irrespective
of proportionality of hazards. Moreover, our package provides options to estimate time-
dependent effects conveniently by including interactions of covariates with arbitrary functions
of time, with or without making use of the weighting option. Two biomedical examples
are introduced in Section 2 motivating and exemplifying the application of weighted Cox
regression. A brief review of the weighted Cox regression methodology is provided in Section 3,
followed by the description of the R package coxphw in Section 4. A small simulation study
illustrates the beneficial effect of weighted Cox regression (Section 5) before in Section 6
weighted and standard Cox regression are applied to the examples and differences in estimates
and interpretation are discussed. Final remarks follow in Section 7.

2. Motivating examples

2.1. Gastric cancer study

The Gastrointestinal Tumor Study Group (1982) presented results from a clinical trial on
survival of 90 patients with locally advanced, non-resectable gastric carcinoma comparing
treatment by a combination of chemotherapy and radiation to chemotherapy alone (variable
radiation). The aim of this randomized study was to determine if radiation is beneficial to
the survival of patients with gastric carcinoma under chemotherapy. During a median follow-
up time of 4.34 years 79 (87.78%) events were recorded; in the groups with and without
radiation 42 (93.33%) and 37 (82.22%) patients died, respectively. The data set is available
in the R package coxphw.
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Figure 1: Gastric cancer study: (A) Plot of cumulative survival probabilities for radiation.
Crossing survival curves indicate non-proportional hazards, i.e., a time-dependent effect. (B)
A plot of scaled Schoenfeld residuals versus F̂ (t) as a means to detect non-proportionality.
The circles represent the scaled Schoenfeld residuals. The black continuous line is the locally
weighted scatter-plot smoother (LOWESS) of the scaled Schoenfeld residuals and the black
dashed lines are its 95% confidence limits. The red dotted line is a linear regression line of
the scaled Schoenfeld residuals on the transformed time. (C) To directly visualize the time-
dependent effect β̂(t) of radiation a plot of scaled Schoenfeld residuals versus time is usually
preferred. However, during time periods with few events the log relative hazard β̂(t) should
not be overinterpreted.
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Crossing cumulative survival curves as visualized in Figure 1A are typical for situations of
non-proportional hazards. In this example, one may hypothesize that radiation has a harm-
ful effect, but only within the first two years. Generally, plots of scaled Schoenfeld residuals
versus (functions of) time t can be used to detect non-proportionality (Grambsch and Th-
erneau 1994) (Figure 1B). Following Grambsch and Therneau (1994), the locally weighted
scatter-plot smoother (LOWESS) applied to the scaled Schoenfeld residuals approximates
the time-dependent log relative hazard β̂(t) of treatment with radiation (radiation = 1)
versus treatment without radiation (radiation = 0, reference). In this plot, we have used
the Kaplan-Meier estimate of the empirical distribution function F̂ (t) for the x-axis instead
of time t itself, which has the advantage that observed events are evenly distributed over
the axis. Consequently, the LOWESS is not disproportionally influenced by periods during
which the occurrence of events is rare. In case of proportional hazards, one would expect
the LOWESS to follow a horizontal line. Therefore, in Figure 1B any departure from a hori-
zontal line indicates a violation of the proportional hazards assumption of radiation. Such
a departure can be assessed by testing, in a linear regression analysis of scaled Schoenfeld
residuals on time, whether the slope estimate is different from zero (Harrell 2001, p. 487).
For radiation this test, which is also implemented in the cox.zph function of the survival
package (Therneau 2017), gives a highly significant p value < 0.001. Generally, such a test
may fail to reveal departures from proportionality in case of non-monotone, e.g., U-shaped,
trends. From Figure 1C, a plot of scaled Schoenfeld residuals versus untransformed times, we
learn that the effect of radiation may change slightly faster during earlier times.
Ignoring the time-dependent effect and applying a Cox regression (using the coxph function
of the R package survival) gives a HR for treatment with radiation of 1.15 (95% CI: 0.74–1.81;
p = 0.537) compared to treatment without radiation. However, this effect estimate is biased
if the true HR is time-dependent, and likely also biased with respect to the true average HR.
The amount of this latter bias depends on the combination of the time-dependency and the
censoring pattern in this study. In Section 6.1 we will revisit this example and discuss other,
more appropriate methods of analysis which will take the time-dependent effect of radiation
correctly into account.

2.2. Biofeedback therapy study

In this small clinical trial comprising 33 patients suffering from aspiration after head and neck
surgery the effect of biofeedback therapy (bfb) on time until success of therapy, i.e., complete
swallowing rehabilitation, was evaluated (Denk and Kaider 1997). Patients were randomized
into two groups: 19 (57.58%) patients received videoendoscopic biofeedback therapy, i.e., the
patients and therapists could visually control swallowing maneuvers on a monitor (bfb = 1)
and 14 (42.42%) received the standard therapy (bfb = 0). The median therapy duration
was 25 days; during follow-up 13 (68.42%) events of successful swallowing rehabilitation were
recorded in the biofeedback group and 10 (71.43%) events were observed in the group without
biofeedback. The therapy was started as soon as the healing process after surgery was finished.
The time elapsing from surgery to start of therapy was considered an important covariate
determining success of therapy. Because of the skewed distribution of this time interval,
a log2-transformation was applied prior to analysis (variable log2heal). The data set is
available in the R package coxphw.
Kaplan-Meier analysis provides some graphical evidence that an apparent early advantage of
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Figure 2: Biofeedback therapy study: (A) Cumulative survival plot depicting the probability
of full swallowing rehabilitation due to bfb. Since log2heal is not accounted for in the
Kaplan-Meier analysis, the plot should not be the only means to check the proportional
hazards assumption of bfb. Based on a multiple Cox regression with bfb and log2heal,
plots of scaled Schoenfeld residuals versus F̂ (t) for (B) bfb and (C) log2heal are shown, as
a means to detect non-proportionality. For more information on the plots see the caption of
Figure 1B. The range of the y-axis of the plot with log2heal is restricted to −4 to 4.

biofeedback therapy may vanish with ongoing duration of therapy (Figure 2A). Hence, the
assumption of proportional hazards could be violated for bfb. The plots of scaled Schoenfeld
residuals from a multiple Cox regression with bfb and log2heal versus F̂ (t) visualize possible
time-dependent effects of both covariates (Figures 2B and 2C). (Non-proportional hazards
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should always be checked in the multiple Cox regression model as the confounding of a
covariate with other covariates can induce or remove non-proportional hazards.) A global
test for non-proportional hazards of any covariate, as implemented in cox.zph of the survival
package, gives a p value of 0.001, and for bfb and log2heal the p values are 0.036 and 0.003,
respectively. Figures 2B and 2C only approximate the shapes of the time-dependent effects,
because in each case there was no adjustment for a time-dependent effect of the other covariate
in the model.
Time-dependent effects of bfb and log2heal could be modeled by an extended Cox regres-
sion including additional time-dependent covariates, i.e., products of bfb and log2heal with
suitable functions of time. However, small sample size and small number of events restrict
the number of degrees of freedom which can be used during model development considerably
and hence impose restrictions on the complexity of the fitted model (Steyerberg, Eijkemans,
Harrell, and Habbema 2000).
In Section 6.2 we shall discuss how an average log hazard ratio of bfb can be estimated and
how the estimate can be transformed into a simple effect size measure for clear-cut therapy
decisions.

3. Methods

3.1. Weighted Cox regression

In a sample of N (1 ≤ i ≤ N) subjects m distinct and uncensored survival times tj (m ≤ N ,
1 ≤ j ≤ m) are observed. For each subject i we assume that a covariate (row) vector
xi of k (r = 1, . . . , k) covariates is recorded. The set of subjects without the event and
uncensored prior to tj , i.e., the risk set, is denoted by Rj . Using a Cox regression a vector
of coefficients is estimated by setting the first derivative of the log partial likelihood (the
score vector) to zero, and by solving the resulting estimating equations numerically, usually
using the iterative Newton-Raphson algorithm. In weighted Cox regression a weight function
w(tj) is introduced to weight the contributions to the partial likelihood at the m uncensored
failure times differently. Thus, weighted regression coefficients β̂ are derived by solving the
estimating equations

∂ logL(β)
∂βr

=
m∑

j=1
w(tj)

xjr −
∑

l∈Rj
xlr exp(β̂>xl)∑

l∈Rj
exp(β̂>xl)

 = 0.

If the weights w(tj) are set to 1, then a standard Cox regression is obtained. Early versions
of weighted Cox regression were proposed by Schemper (1992) and Sasieni (1993). These
suggestions used as weights either the observed number of individuals at risk R(tj) or the
empirical survivor function estimate at these times Ŝ(tj), extending the tests by Breslow
(1970) and Prentice (1978), respectively, to a multi-covariate situation as does the Cox model
to Mantel’s logrank test (Mantel 1966). In these suggestions, weighted Cox regression was
proposed as a robust alternative to the standard Cox estimator, reducing the influence of a
violated proportional hazards assumption, but also of outlying survival times on parameter
estimates. Xu and O’Quigley (2000) showed that without censoring standard Cox regression
estimates a time-averaged effect also in case of non-proportional hazards. Let G(tj) denote
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the cumulative probability of follow-up until tj , i.e., the survivor function of the potential
follow-up time distribution. Then, applying the weighting function w(tj) = G(tj)−1 to the
score equations yields time-averaged regression effects also for censored samples (Xu and
O’Quigley 2000).
Finally, Schemper et al. (2009) suggested the weighting function w(tj) = S(tj)G(tj)−1. These
weights are proportional to NE(tj), the expected number of subjects at risk at each tj if there
had been no censoring, and this greatly enhances interpretability of the resulting hazard ratio
estimates, denoted as “average hazard ratios” by Schemper et al. (2009). Specifically, these
authors have shown that in a two-group comparison, average hazard ratios approximate the
odds of concordance OC = c/(1− c) = P(TA < TB)/P(TB < TA) very well, TA and TB being
the survival times of two randomly chosen subjects of groups A and B. Intuitively, this can
be explained as each pairwise comparison of a subject that fails with all subjects still at risk
being given equal importance. (Approximately, if a risk set has NE subjects and one of them
fails, there are NE−1 ≈ NE pairwise comparisons within the risk set.) By contrast, standard
Cox regression attributes similar importance to each risk set. Further details are contained
in the contribution by Schemper et al. (2009).
The approximation extends to the general situation of a continuous covariate x, where a
generalized concordance probability c′ can be defined as

c′ = P(Ti < Te|xi = xe + 1),

where Ti and Te the survival times of randomly chosen subjects with covariate values xi and
xe, respectively. Generalized odds of concordance follow directly as c′/(1− c′). The definition
of c′ also includes the concordance probability c of a two-group comparison, setting xi = 1 and
xe = 0. The approximation of the odds of concordance with average HRs is valid independent
of the type of non-proportionality and the censoring pattern. Thus, c′ is useful if the analyst is
not interested in a detailed description of a time-dependent effect, but in a summary measure
suitable for decision making. If proportional hazards can be safely assumed, an estimate of
c′ (and of c) can also be derived from standard Cox regression by (Dunkler et al. 2010)

ĉ′ = exp(β̂)/(1 + exp(β̂)).

Weighted Cox regression models can be estimated by plugging estimates for S(tj) and G(tj)
into the weighting function, such as Ŝ(tj), the left-continuous Kaplan-Meier estimate of the
survivor function at time tj , and Ĝ(tj), the probability of still being followed-up at tj , esti-
mated by the Kaplan-Meier method with reversed meaning of the status indicator (Schemper
and Smith 1996). Inference for estimates of weighted Cox regression can be based on the
Lin (1991) and Sasieni (1993) sandwich estimate Â−1B̂Â−1 with −Â and −B̂ denoting the
sum of contributions to the second derivative of the log likelihood, weighted by ŵ(tj) and
ŵ(tj)2, respectively. This estimate is independent from the scaling of the weights and in case
of no weighting it is algebraically equal to the usual variance estimate based on inversion
of the Fisher information matrix. This variance estimate is theoretically valid only in case
of proportional hazards and without model misspecification. Therefore, and since applica-
tion of weighted Cox regression usually implies a violated proportional hazards assumption,
the robust covariance estimate should be used (Lin and Wei 1989; Therneau and Grambsch
2000, Chapter 7.2). An estimate of the covariance matrix can also be obtained by using the
Jackknife, where the regression coefficients are computed leaving out each individual in turn.
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The resulting matrix of “difference in β̂” residuals D̂ is then used to compute the covariance
matrix as V̂ = D̂>D̂. The Jackknife variance estimate is valid also in case of misspecification.
Unequal weighting of the contributions to the likelihood usually increases the variability of
estimates, in particular in situations of proportional hazards. However, empirical studies have
shown that this increase appears to be moderate (Wakounig, Heinze, and Schemper 2015),
and this finding is further supported by our simulation study presented in Section 5.

4. The R package coxphw
The R package coxphw implements weighted estimation of Cox regression. The most impor-
tant arguments of the package’s main function coxphw are:

• formula is an R formula with a survival object as returned by the Surv function from the
survival package (Therneau 2017) as the response on the left of the ~ operator, and the
model terms on the right. In order to specify time-dependent effects, the model terms
can also contain products of covariates with functions of the survival time variable (e.g.,
Surv(t, status) ~ x + log(t):x), which the formula parser of coxphw will identify
and treat appropriately.

• data is a data-frame containing the variables given in formula.

• template determines which type of (weighted) estimation of Cox regression is requested.
The analyst can choose between "AHR" for estimation of average HRs (Schemper et al.
2009), "ARE" for estimation of average regression effects (Xu and O’Quigley 2000) and
"PH" for unweighted Cox proportional hazards regression. "AHR" is the default type of
estimation.

• robust requests the robust (Lin-Wei) covariance matrix used for any significance testing,
if set to TRUE. This is the recommended choice and the default.

• jack requests that the covariance matrix is estimated by the Jackknife. Default is set
to FALSE.

• trunc.weights can be used to truncate the weights such that disproportional influence
of some outlying event times is avoided. Weight truncation can increase the precision
of estimates, but introduces a mild bias. trunc.weights specifies the quantile of the
observed weight distribution at which weights are to be truncated. Before using this
option, it is recommended to inspect the values of the weights as a function of time, using
the plot function (see below). For mild truncation, a value of 0.95 is recommended.
Default is 1, indicating that no truncation is applied.

• alpha is the significance level of confidence limits (confidence level 1− α) with 0.05 as
default.

• betafix can be used to hold some of the regression coefficients constant at pre-defined
values, in particular for use with time-dependent effects. A vector with one element for
each regression coefficient is expected. While an NA element will lead to estimation of
the corresponding effect, a numeric element will hold the related regression coefficient
constant at this value and prevent its estimation. The default value is betafix =
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NULL, requesting unrestricted estimation of all regression coefficients. In Section 6.2 an
application of this option will be presented. betafix has a similar meaning and can be
used alternatively to specifying an offset term in the model formula. However, while
offset is restricted to time-fixed effects, betafix enables the user to hold time-varying
regression coefficients constant.

The package’s two workhorse functions have been implemented in Fortran 90. The first func-
tion, WEIGHTEDCOX, applies Newton-Raphson iteration to arrive at the regression coefficients
(Thisted 1988, p. 164). The second function, LIKE, computes the weighted first and second
derivatives of the log partial likelihood, which are the main ingredients of the Newton-Raphson
iteration. This latter function uses efficient updating of these quantities over the risk sets.
coxphw provides some possibilities to fine-tune the iterative estimation procedure, which are
explained in the help pages. coxphw uses Breslow and Crowley (1974)’s tie-handling method.
A call to coxphw generates an object of class ‘coxphw’, and corresponding summary, print,
coef, vcov and confint methods are available. A plot method can be used to visualize the
weighting function. Further utility functions contained in the coxphw package are:

• predict, which computes potentially non-linear or time-dependent effect estimates at
specified values of a variable and has an accompanying plot method for visualizing
time-dependent or non-linear hazard ratios,

• concord, which computes the generalized concordance probabilities ĉ′ for each covariate.
This function can also be applied to an object of class ‘coxph’.

5. Simulation
We conducted a small simulation study to demonstrate similarity of standard and weighted
Cox regression under proportional hazards, and the advantages of weighted Cox regression
in case of non-proportional hazards. For simplicity, we simulated studies with one binary
explanatory variable x, xi ∼ Bernoulli(0.5), i = 1, . . . , N . In the proportional hazards scenario
(Figure 3PH), we simulated survival times following a Cox-Weibull distribution (Bender,
Augustin, and Blettner 2005), by first generating uniformly distributed random numbers
u ∼ U [0, 1] and then computing survival times as t = [− log(u)/0.11 exp(β>x)]1/1.22 with
β = 0.2007. In the non-proportional hazards scenario (Figure 3NPH), we assumed that
survival times of subjects with xi = 0 followed a Cox-exponential distribution, obtained by
t = − log(u)/0.3565, while the survival times of those with xi = 1 followed a Cox-Gompertz
distribution, obtained by t = (1/1.6) log[1 − 1.6 log(u)/0.0228]. This setting was chosen so
that both scenarios have underlying concordance probabilities of 0.55, which were numerically
determined by P(T1 < T0) =

∫
f1(t)S0(t)dt, with f1(t) denoting the density of survival times

in group of subjects with x = 1 and S0(t) denoting the survivor function in the group with
x = 0 (Dunkler et al. 2010). In each scenario we simulated 2000 data sets with N = 1000
observations each. To quantify the effect of censoring, we simulated both administrative and
exponential censoring. Administrative censoring was implemented by censoring all survival
times t at a pre-defined maximum follow-up time τ if t > τ . We iteratively determined τ
to obtain proportions of administrative censored times of 10% and 15%. For exponential
censoring a Cox-exponentially distributed potential follow-up time was simulated as y =
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Figure 3: Simulation: Plot of cumulative survival probabilities of the proportional hazards
scenario (PH) and the non-proportional hazards scenario (NPH). The gray vertical lines
indicate the assumed maximum follow-up times for administrative censoring of 10% and 15%.

− log(u)/λ, where u ∼ U [0, 1] and λ = 0.0602 for the proportional hazards scenario and
λ = 0.122 for the non-proportional hazards scenario, determining these values such that
exponential censoring rates of 25% were obtained. The observable survival times were then
defined as t∗ = min(t, y). For each simulated data set we generated six versions; a data set
with A) no censoring, B) 25% exponential censoring, C) 10% administrative censoring, D)
both B and C, E) 15% administrative censoring, F) both B and E. With uncensored data
the concordance probability ĉ = P(Ti < Te|xi = 0, xe = 1) is algebraically equal to the
nonparametric two-sample test statistic of Mann and Whitney (1947) and to the area under
the receiver operating characteristic curve (Hanley and McNeil 1982).

From Table 1 we learn that in the proportional hazards scenario from both Cox regression and
weighted Cox regression unbiased estimates of concordance probabilities can be derived, and
Cox regression, which explicitly exploits the proportional hazards assumption, gives slightly
more efficient estimates. However, in case of non-proportional hazards the Cox regression
coefficients vary with the type and the magnitude of censoring, while weighted Cox regression
coefficients remain fairly constant. When deriving estimates of concordance probabilities
from the regression coefficients, we see that there is almost no systematic bias induced by
weighted Cox regression, while Cox regression grossly underestimates c. While exponential
censoring alone does not systematically impact the weighted Cox estimates, administrative
censoring limits the time range covered by the data to a maximum value of τ and thus restricts
the averaging of the time-dependent hazard ratio to the domain t ∈ [0, τ ]. In this case, no
estimation procedure can yield unbiased estimates without making strong and untestable
assumptions about the regression coefficients beyond τ .
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Scenario Weighted
(percent censored) Cox regression Cox regression

β̂ ĉ× 100 β̂ ĉ× 100
PH: A (0) 0.200 55.0 (0.025) 0.200 55.0 (0.028)
PH: B (25) 0.199 55.0 (0.029) 0.199 55.0 (0.030)
PH: C (10) 0.200 55.0 (0.026) 0.200 55.0 (0.029)
PH: D (29) 0.199 55.0 (0.029) 0.199 55.0 (0.031)
PH: E (15) 0.200 55.0 (0.027) 0.200 55.0 (0.029)
PH: F (32) 0.199 55.0 (0.030) 0.199 55.0 (0.031)
NPH: A (0) −0.382 40.6 (0.028) 0.213 55.3 (0.033)
NPH: B (25) −0.211 44.7 (0.031) 0.207 55.1 (0.036)
NPH: C (10) −0.382 40.6 (0.028) 0.213 55.3 (0.033)
NPH: D (29) −0.211 44.7 (0.031) 0.207 55.1 (0.036)
NPH: E (15) −0.342 41.5 (0.029) 0.223 55.5 (0.033)
NPH: F (32) −0.180 45.5 (0.032) 0.216 55.4 (0.035)

Table 1: Simulation results: Mean estimated regression coefficients β̂ and concordance proba-
bilities ĉ×100 by Cox regression and by weighted Cox regression for the proportional hazards
scenario (PH) and the non-proportional hazards scenario (NPH) are shown. For each of the
2000 simulated data sets and for each scenario six versions were obtained and analyzed; A)
no censoring, B) 25% exponential censoring, C) 10% administrative censoring, D) both B and
C, E) 15% administrative censoring, F) both B and E. Under both PH and NPH scenarios
and no censoring, the true concordance probability is 0.55. Standard errors for β̂ were all
0.001 if rounded to the third decimal place. Standard errors for ĉ× 100 are given in brackets.

6. Examples revisited

6.1. Gastric cancer study
In Section 2.1 we have seen that the effect of radiation on survival in the gastric cancer
study suggests a time-dependent effect, i.e., an initially harmful effect of radiation decreasing
over time. In the following, we describe the results according to various methods, focusing on
the capabilities of package coxphw.

Ignoring non-proportional hazards
Ignoring non-proportionality a standard Cox regression can be estimated using coxphw by
the following command:

R> coxphw(Surv(yrs, status) ~ radiation, data = gastric, template = "PH")

or, equivalently, using the R package survival:

R> coxph(Surv(yrs, status) ~ radiation + cluster(id), data = gastric,
+ method = "breslow")

In coxphw, the robust variance estimate is computed by default to account for misspecifi-
cations such as lack of proportional hazards. In coxph the robust variance is invoked by
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adding the term cluster(id) where id is a unique subject identifier. In coxphw by default
each line is assumed a distinct “cluster” for the computation of the robust covariance, but
an id argument is available to specify other clusters of observations if needed. Computation
of the robust variance could also be entirely switched off by setting robust = FALSE. The
estimated HR of radiation, obtained by both equivalent function calls, is 1.15 (95% CI:
0.74–1.81; p = 0.537). However, as can be seen in Figure 1B the sign of the time-dependent
log HR β̂(t) of radiation changes during follow-up and consequently the non-proportional
hazards of radiation should probably not be ignored. Since some survival times are censored,
we must consider that the coefficient obtained by this standard Cox regression is possibly a
biased estimate of the average population effect.

Estimating piecewise constant hazard ratios

As the cumulative survival probabilities (Figure 1A) and the Schoenfeld residuals (Figures 1B
and 1C) suggest differing short-term and long-term effects of radiation, separate modeling
of different time periods might be a more suitable method of analysis. In this example, we
assume that no prior knowledge of the time-dependent effect is available which could guide the
choice of an appropriate cutpoint. Thus, time periods are separated such that an equal number
of events are observed before and after the cutpoint. In our example, this cutpoint is at one
year. Two separate Cox regression models are now fitted, describing the effect of radiation
during the first year, and after the first year. In the model for the first year any survival times
longer than one year are censored at this point. Hence, the data set for this model consists
of 90 patients experiencing 39 (43.33%) events during follow-up with 25 (55.56%) events in
the radiation group and 14 (31.11%) events in the group without radiation. A plot of scaled
Schoenfeld residuals (see accompanying R example code) still shows some non-proportional
hazards but the test for non-proportionality now yields a p value of 0.103. For the second
time period only subjects alive at one year and with a follow-up longer than one year are
included, leading to a sample of 51 patients with 40 events (78.43%); with 12 (60.00%) and
28 (90.32%) events occurring in the groups with and without radiation, respectively. The test
for non-proportionality gives a p value of 0.446.
The first Cox regression model reveals a significant harmful effect of radiation on survival
(HR 2.40; 95% CI: 1.27–4.55; p = 0.007) up to one year. By contrast, the second model
suggests a non-significant protective effect of radiation (HR 0.55; 95% CI: 0.28–1.08; p =
0.081) after one year.

Including a time-by-covariate interaction

Extending a Cox regression by an interaction of radiation with time, a single model could
be used to estimate the effect of radiation in the two time periods. Using coxphw this model
can be estimated very conveniently by first defining a function of time which represents the
piecewise constant estimation, and secondly, by including a product term of radiation and
this function of time in the formula of a call to coxphw. The function using a simple time-
varying indicator to separate two periods after one year is defined by

R> fun <- function(t) as.numeric(t > 1)

The product of radiation and fun(t) is specified as a model term in the formula argument
of coxphw:
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R> coxphw(Surv(yrs, status) ~ radiation + fun(yrs):radiation,
+ data = gastric, template = "PH"))

The coxphw function can recognize that the name of the time variable (yrs) appears in the
product term. As a consequence, the function will compute fun(yrs) at each event time and
generate a time-dependent product term, which for each subject is updated in each risk set.
This way of specifying time-by-covariate interactions is even more convenient than that used
by coxph, which uses a special argument, tt, to define such interactions:

R> coxph(Surv(yrs, status) ~ radiation + tt(radiation) + cluster(id),
+ tt = function(x, t, ...) x * (t > 1), data = gastric,
+ method = "breslow")

coxphw will yield the following estimates, which are identical to those obtained by the call to
coxph:

Model fitted by unweighted estimation (PH template)

coef se(coef) exp(coef) lower0.95 upper0.95 z p
radiation 0.877 0.326 2.405 1.270 4.554 2.693 0.007
fun(yrs):radiation -1.483 0.476 0.227 0.089 0.577 -3.116 0.002

Wald Chi-square = 10.300 on 2 df, p = 0.006

The HR estimate (exp(coef)) of radiation, i.e., the effect of radiation compared to therapy
without radiation, in the first period is 2.405, as in this period, fun(yrs) equals 0. The HR of
fun(yrs):radiation has to be interpreted as the ratio of the two HRs of both time periods
of radiation: the HR of the second period divided by the HR of the first period. Thus,
the HR of the second period follows as the product of the two HRs, 2.405 · 0.227 = 0.546,
or, equivalently, as the exponentiated sum of the two regression coefficients, exp(0.8774 −
1.4826) = exp(−0.6052) = 0.546.
An extended Cox regression may include interactions of covariates with any function of
time γ(t) and thus is able to accommodate time-dependent effects. The simplest function
of time γ(t) is γ(t) = t, which leads to the estimation of an effect linearly changing with time.
It can be estimated with coxphw using the following function call:

R> fit1 <- coxphw(Surv(yrs, status) ~ radiation + yrs:radiation,
+ data = gastric, template = "PH")

or equivalently using coxph

R> coxph(Surv(yrs, status) ~ radiation + tt(radiation) + cluster(id),
+ tt = function(x, t, ...) x * t, data = gastric)

Again both function calls yield identical estimates.

Model fitted by unweighted estimation (PH template)
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coef se(coef) exp(coef) lower0.95 upper0.95 z p
radiation 1.270 0.433 3.561 1.522 8.328 2.930 0.003
yrs:radiation -0.965 0.341 0.381 0.195 0.743 -2.831 0.005

Wald Chi-square = 9.048 on 2 df, p = 0.011

The regression coefficient of radiation (1.270) is the effect of chemotherapy at yrs = 0, i.e.,
at baseline. The coefficient corresponding to yrs:radiation (−0.965) gives the yearly change
of this effect. From the two regression coefficients, the HRs at arbitrary time points can be
derived by inserting different times into the formula: exp(1.270− 0.965×yrs). The HRs at 6
months, one year and two years are estimated as 2.20 (95% CI: 1.21–3.99), 1.36 (0.85–2.15),
and 0.52 (0.24–1.12), respectively. These estimates can also be obtained conveniently by using
the predict function of coxphw:

R> predict(fit1, type = "slice.time", x = "yrs", z = "radiation",
+ newx = c(0.5, 1, 2), exp = TRUE, pval = TRUE, verbose = TRUE)

yrs HR HR lower 0.95 HR upper 0.95 p
1 0.5 2.198 1.210 3.992 0.0098
2 1.0 1.356 0.854 2.155 0.1971
3 2.0 0.517 0.238 1.121 0.0946

Objects obtained with predict can also be plotted to visualize the time-dependent effect
(Figure 4).

R> fit1est <- predict(fit1, type = "slice.time", x = "yrs", z = "radiation",
+ newx = seq(from = 0.1, to = 3, by = 0.1))
R> plot(fit1est, addci = TRUE)

Often a log-linear function of time γ(t) = log(t) is more suitable to model time-dependent
effects, in particular if the HR changes faster during early follow-up times compared to later
times. Such a log-linear time-dependent effect can be requested by the following command:

R> coxphw(Surv(yrs, status) ~ radiation + log(yrs):radiation,
+ data = gastric, template = "PH")

In our example, this specification of the time-dependent effect (Wald test of model: p = 0.373)
does not fit as well as the linear one (p = 0.011). Although the LOWESS curve in Figure 1C
would suggest that the linear time-dependent effect is not ideal, it still yields a better model
fit than the log-linear time-dependent effect, which assumes a more rapid change shortly
after start of follow-up. Time-dependent effects agreeing more closely with the LOWESS
curve could be obtained by modeling more complex functions of time γ(t) derived in a data-
dependent way. For example, restricted cubic splines (Heinzl and Kaider 1997) could be
applied using coxph with the rcs argument. However, in the gastric cancer study with its
relatively small sample size the danger of overfitting the data outweights the possible merits
of a more complex modeling approach.
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Figure 4: Gastric cancer study: Plot of the linear time-dependent effect of radiation
with 95% confidence limits obtained by applying the plot method to an object of class
‘predict.coxphw’.

Weighted Cox regression

Weighted estimation of Cox regression gives a properly population-averaged estimate of the
effect of radiation on survival also in case of non-proportional hazards. Using coxphw such
a population-averaged HR can be estimated by the following statement:

R> fit2 <- coxphw(Surv(yrs, status) ~ radiation, data = gastric,
+ template = "AHR")
R> summary(fit2)

coxphw(formula = Surv(yrs, status) ~ radiation, data = gastric,
template = "AHR")

Model fitted by weighted estimation (AHR template)

coef se(coef) exp(coef) lower 0.95 upper 0.95 z p
radiation 0.463 0.239 1.588 0.995 2.536 1.937 0.053

Wald Chi-square = 3.753 on 1 df, p = 0.053

Generalized concordance probability:
concordance prob. lower 0.95 upper 0.95

radiation 0.6136 0.4986 0.7172

While standard Cox regression estimated the HR of radiation as 1.15 (95% CI: 0.74–1.81;
p = 0.537), the average HR estimate by weighted estimation is 1.59 (95% CI: 1.00–2.54;
p = 0.053). As explained above, from the average HR estimate the generalized concordance
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Figure 5: Gastric cancer study: Weights used by weighted Cox regression are plotted against
time. Survival weights, Ŝ(tj), are the left-continuous survivor function estimates at time tj ;
censoring weights, Ĝ(tj)−1, are estimates of the follow-up distribution obtained by Kaplan-
Meier estimation with reversed meaning of the status indicator at time tj ; and combined
(normalized) weights are the product of the survival and the censoring weights, rescaled to a
mean of 1.

probability ĉ′ can be derived, which in our example is computed as 0.6136. This means, that
with a probability of 61.36% (95% CI: 49.86–71.72%), a patient treated with radiation is
expected (at baseline) to die earlier than a patient treated without radiation.
If a few “long survivors” are present in a data set, weights used in weighted Cox regression may
exhibit a very skew distribution. Such extremely unequal weighting will not bias the estimates,
but may result in low precision of the estimates, i.e., wide confidence intervals. Truncation
of weights at a suitable value, e.g., their 95th percentile, may greatly increase precision while
introducing only a small amount of bias (Dunkler et al. 2010). The distribution of weights
can be reviewed by using the plot method.

R> plot(fit2)

In this example (Figure 5), the censoring weights are very small during the first four years
and increase sharply afterwards. However, the normalized total weights have a fairly narrow
range from 0.31 to 1.74. Hence, truncation of weights using the trunc.weights argument
coxphw may not seem necessary. If the weights were truncated at the, e.g., 95th percentile, the
range of the normalized total weights would barely change to [0.31, 1.65], and this would yield
very similar average HR estimates (HR 1.588; 95% CI: 0.995–2.533; p = 0.053) as without
truncation of weights.
Table 2 summarizes the results of the discussed methods to analyze the time-dependent effect
of radiation. A standard Cox regression would falsely give the impression that survival



18 coxphw: Weighted Cox Regression in R

Estimate (95% CI) p value
Ignoring non-proportional hazards ∗
HR Cox regression 1.152 (0.735–1.805) 0.537

Estimating piecewise constant HRs ∗
HR 1st year 2.405 (1.270–4.554) 0.007
HR >1st year 0.546 (0.277–1.078) 0.081

Including a time-by-covariate interaction
HR at 0.5 years 2.197 (1.210–3.992) 0.010
HR at 1 year 1.356 (0.854–2.155) 0.197
HR at 2 years 0.517 (0.238–1.121) 0.095

Weighted Cox regression
average HR 1.588 (0.995–2.533) 0.053
ĉ′% 61.35 (49.87–71.70) 0.053

Table 2: Gastric cancer study: Four approaches to estimate the time-dependent effect of
radiation. Estimates are either hazard ratios (HRs) or, if applicable, the generalized con-
cordance probability in percent ĉ′% with their 95% confidence intervals (CI), and Wald test
p values. In the model including a time-by-covariate interaction a linear time-dependent
effect was assumed. ∗ indicates possibly biased HR estimation based on models ignoring
non-proportional hazards of radiation.

of a patient with and without radiation is similar. Modeling the time-dependent effect in
more detail reveals clear changes over time. Average HR as an effect size measure and the
generalized concordance probability ĉ′ are suitable to support clear-cut treatment decisions.
In our example, results point towards better prognosis under chemotherapy alone, but the
difference in survival between the two groups fails to reach significance at the 5% level.

6.2. Biofeedback therapy study

In Section 2.2 we saw that biofeedback therapy had a time-dependent effect on full swallowing
rehabilitation when adjusted for healing time. As the sign of the time-dependent log HR, β̂(t),
changes over time (Figure 1B), the time-dependency of the effect of bfb should not be ignored
by using a standard Cox regression. Applying it nonetheless, the HR of biofeedback therapy
compared to standard therapy adjusted for log2heal is estimated as 1.31 (95% CI: 0.67–2.58;
p = 0.434).
Since the sample is small and both variables bfb and log2heal exhibit non-proportional
hazards neither stratification nor explicit modeling of the time-dependent effects are appro-
priate. Denk and Kaider (1997) restricted the follow-up time to 40 days and applied a Cox
regression for bfb adjusted for log2heal. Now that weighted Cox regression is available, the
data could be re-analyzed in order to derive the average HR of bfb adjusted for log2heal
and a corresponding adjusted estimate of the generalized concordance probability ĉ′. Unlike
the original analysis of Denk and Kaider (1997), this would greatly support decisions on the
best therapy for patients to achieve fast swallowing rehabilitation after the healing process
has been completed.
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In this example, it is not just that both covariates exhibit time-dependent effects, but
log2heal is also a strong confounder of bfb. Misspecification of the effect of one variable may
thus lead to bias in the estimate of the other variable. For example, if we aim at estimating an
average HR of bfb we are implicitly assuming a constant effect of that variable, which is not
correct and hence may induce bias in the estimation of the regression coefficients of log2heal
and its interaction with time. As a remedy, we propose the following two-stage estimation
procedure which ensures that the effect estimate of log2heal is approximately unbiased and
still allows for an unbiased assessment of the average HR of bfb:

Stage 1. The time-dependent effect of log2heal is estimated while appropriately taking into
account the non-proportional hazards of bfb. One way to achieve this is to estimate an
extended Cox regression model which includes the interaction of log2heal with time,
and is stratified by bfb.

Stage 2. Weighted Cox regression is employed to estimate the average HR of bfb while
holding the regression coefficients of log2heal and the interaction of log2heal with
time fixed at their respective values estimated at stage 1.

The model of stage 1 can be estimated using coxph. Specifically, we estimate a log-linear
time-dependent effect of log2heal, stratified for bfb. (A linear interaction with time was
also evaluated, but did not improve the model fit.)

R> stage1 <- coxph(Surv(thdur, success) ~ strata(bfb) + log2heal +
+ tt(log2heal) + cluster(id), data = biofeedback,
+ tt = function(x, t, ...) x * log(t), method = "breslow")

coxph(formula = Surv(thdur, success) ~ strata(bfb) + log2heal +
tt(log2heal) + cluster(id), data = biofeedback,
tt = function(x, t, ...) x * log(t), method = "breslow")

n= 33, number of events= 23

coef exp(coef) se(coef) robust se z p
log2heal 0.737 2.089 0.901 0.380 1.940 0.052
tt(log2heal) -0.415 0.660 0.326 0.149 -2.786 0.005

At stage 2 an average HR for bfb adjusted for the time-dependent effect of log2heal estimated
at stage 1 is estimated using coxphw. Regression coefficients for the effects of log2heal and
tt(log2heal) = log(thdur):log2heal can be held constant by making use of the betafix
argument of coxphw.

R> summary(coxphw(Surv(thdur, success) ~ bfb + log2heal +
+ log(thdur):log2heal, data = biofeedback, template = "AHR",
+ betafix = c(NA, coef(stage1)))

This call to coxphw, setting the first element of betafix to NA, specifies that the first regres-
sion coefficient (bfb) should be estimated without restrictions. The values of the other two
regression coefficients are held constant at the values extracted from the model of stage 1
using coef(stage1). This call of coxphw will give the following output:
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Figure 6: Biofeedback therapy study: Weights used by weighted Cox regression are plotted
against time. For information on the different weights see Figure 5.

coxphw(formula = Surv(thdur, success) ~ bfb + log2heal + log(thdur):log2heal,
data = biofeedback, template = "AHR", betafix = c(NA, coef(stage1)))

Model fitted by weighted estimation (AHR template)

coef se(coef) exp(coef) lower0.95 upper0.95 z p
bfb 0.597 0.373 1.816 0.874 3.775 1.599 0.110
log2heal 0.737 NA 2.089 NA NA NA NA
log(thdur):log2heal -0.415 NA 0.660 NA NA NA NA

Wald Chi-square = 2.556 on 1 df, p = 0.110 (based on: bfb )

Generalized concordance probability:
concordance prob. lower 0.95 upper 0.95

bfb 0.6449 0.4663 0.7906
log2heal 0.6763 NA NA
log(thdur):log2heal 0.3977 NA NA

Note that for log2heal and the interaction of log2heal with time, log(thdur):log2heal, no
standard error estimates are given, as their regression coefficients were not re-estimated in the
model. The global Wald test only relates to those variables for which regression coefficients
were estimated, and thus, in our example, refers to bfb only.
The average HR of bfb when adjusted for log2heal is estimated as 1.82 (95% CI: 0.87–
3.78; p = 0.110). From the generalized concordance probability ĉ′ we can conclude that



Journal of Statistical Software 21

among all (hypothetical) pairs of patients with equal healing time but with different thera-
pies, therapy with biofeedback will earlier lead to full swallowing rehabilitation than therapy
without biofeedback in 64.49% of the cases (95% CI: 46.63–79.06). Of course, while being an
interesting finding, the result is failing to reach conventional levels of significance.

Weights applied in weighted Cox estimation can be checked using the plot function (Figure 6).
We see that the variability of the normalized total weights is sufficiently small in this example.

7. Concluding remarks and summary

The choice of an adequate method to analyze survival data in the presence of non-proportional
hazards will always depend on the type of research question. If researchers are interested
in prediction of survival time, then they should explicitly model a time-dependent effect,
probably in a data-dependent fashion, but observing general rules of statistical modeling
(Harrell, Lee, and Mark 1996). However, for models to be used in etiologic research, i.e.,
to estimate causal effects of treatments or risk factors, a single number such as the average
HR or the generalized concordance probability c′ will often be more suitable and better
interpretable. These measures allow non-parametric comparisons of life-expectancy between
groups of subjects, which are also easier to communicate to non-statisticians.

The average HR (and the related generalized concordance probability c′) can be estimated
by weighted Cox regression using the weighting function w(t) = S(tj)G(tj)−1 (Schemper
et al. 2009). Other, earlier proposed weighting schemes do not necessarily lead to average
HRs that can be transformed to concordance probabilities (Schemper 1992; Sasieni 1993; Xu
and O’Quigley 2000). Unweighted Cox regression also provides a summary effect, but in
case of non-proportional hazards its estimate is dependent on the censoring pattern. Since
censoring is a property of a study and usually not of a population, estimates from standard Cox
regression are not generalizable if censoring and time-dependence of effects are substantial.
In case of proportional hazards, (unweighted) Cox regression will provide the most efficient
estimates, but weighted Cox regression can still be safely applied as it will not introduce bias.

In Tables 3 and 4 we summarize methods of analysis in the presence of non-proportional
hazards. In this paper, we introduced the R package coxphw implementing weighted Cox
regression. This package significantly extends the R toolbox for survival analysis. Beyond the
estimation of static weighted Cox regression models it enables the inclusion of interactions of
covariates with functions of time for unweighted and weighted Cox regression models by using
an intuitive syntax in the formula argument. Regression coefficients of covariates can be fixed
at specified values, even if these covariates are assumed to have time-dependent effects. As
exemplified in the biofeedback therapy study, this allows to implement a two-stage estimation
process in which an average hazard ratio is estimated for one covariate while accounting for
a time-dependent effect of another covariate.

The R package coxphw is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=coxphw or at http://cemsiis.meduniwien.ac.
at/en/kb/science-research/software/. The latter link also points to a SAS (SAS Institute
Inc. 2013) macro WCM enabling weighted estimation of Cox regression.

https://CRAN.R-project.org/package=coxphw
http://cemsiis.meduniwien.ac.at/en/kb/science-research/software/
http://cemsiis.meduniwien.ac.at/en/kb/science-research/software/
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Method Interpretation of β̂ Additional DFs Functions
in R

Ignoring non-PH: Cox
regression

log HR 0 coxph
coxphw

Weighted Cox regression
with ŵ(tj) = Ĝ(tj)−1

(Xu and O’Quigley 2000)

average regression
effect

0 coxphw

Weighted Cox regression
with ŵ(tj) = Ŝ(tj)Ĝ(tj)−1

(Schemper et al. 2009)

log average HR 0 coxphw

Concordance regression
(Dunkler et al. 2010)

log odds of concordance 0 concreg

Piecewise constant HRs piecewise log HR 1 for each
additional period

coxph
coxphw

Stratification no explicit estimation,
only adjustment

0 coxph with
strata

Including time-by-covariate
interactions: Explicit
specification
(e.g., linear, log-linear)

time-dependent log HR dependent on
function (linear &
log-linear: 1)

coxph,
coxphw

Including time-by-covariate
interactions: Data-driven
specification (e.g., RCS)

time-dependent log HR RCS: number of
knots−1

RCS: coxph

Table 3: Various methods of analysis of survival data with non-proportional hazards in R.
An appropriate analysis may depend on prior knowledge of possible time-dependent effects,
the aims of the analysis, the sample size, and number of events. coxph is implemented in the
package survival (Therneau 2017); coxphw in coxphw; and concreg in concreg (Heinze et al.
2016). Package rms (Harrell 2017) has to be loaded before applying restricted cubic splines
using coxph. DF, degrees of freedom; Ĝ(tj), estimate of the follow-up distribution obtained
by Kaplan-Meier estimation with reversed meaning of the status indicator at time tj ; HR,
hazard ratio; PH, proportional hazards; RCS, restricted cubic splines; Ŝ(tj), left-continuous
Kaplan-Meier estimate of the survivor function at time tj .



Journal of Statistical Software 23

Method Advantages & disadvantages

Ignoring non-PH:
Cox regression

+ simple and efficient, if HR is always < 1 or > 1
− estimates depending on type of non-PH and on censoring

pattern

Weighted Cox regression
with ŵ(tj) = Ĝ(tj)−1

(Xu and O’Quigley 2000)

+ provides an average effect that is independent of the
observed censoring pattern

− “average regression effect” is not interpretable as log odds
of concordance

− “average regression effect” is not suitable for prediction

Weighted Cox regression
with ŵ(tj) = Ŝ(tj)Ĝ(tj)−1

(Schemper et al. 2009)

+ independent from type of non-PH and censoring pattern
+ good approximation of c′ for HRs up to a value of 4
− concept of average HRs is not suitable for prediction

Concordance regression
(Dunkler et al. 2010)

+ independent from type of non-PH and censoring pattern
+ estimates c′
− less efficient than weighted Cox regression with
ŵ(tj) = Ŝ(tj)Ĝ(tj)−1

Piecewise constant HRs + simple interpretation
− usually only rough approximation of the true

time-dependent effect

Stratification + no need to specify the type of time-dependency
− only suitable for a categorical covariate which is not of

primary interest

Including time-by-covariate
interactions: Explicit
specification
(e.g., linear, log-linear)

+ often suitable for monotone patterns of time-dependencies
− not flexible

Including time-by-covariate
interactions: Data-driven
specification
(e.g., RCS)

+ allows parsimonious, but flexible estimation of
time-dependent effects

− requires sufficient sample size and number of events
− results may differ between alternative methods

Table 4: Advantages and disadvantages of various methods to analyze survival data with
non-proportional hazards. c′, generalized concordance probability; Ĝ(tj), estimate of the
follow-up distribution obtained by Kaplan-Meier estimation with reversed meaning of the
status indicator at time tj ; HR, hazard ratio; PH, proportional hazards; RCS, restricted cubic
splines; Ŝ(tj), left-continuous Kaplan-Meier estimate of the survivor function at time tj .
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