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Abstract

This article describes the R package mcglm implemented for fitting multivariate co-
variance generalized linear models (McGLMs). McGLMs provide a general statistical
modeling framework for normal and non-normal multivariate data analysis, designed to
handle multivariate response variables, along with a wide range of temporal and spatial
correlation structures defined in terms of a covariance link function and a matrix linear
predictor involving known symmetric matrices. The models take non-normality into ac-
count in the conventional way by means of a variance function, and the mean structure is
modeled by means of a link function and a linear predictor. The models are fitted using
an estimating function approach based on second-moment assumptions. This provides a
unified approach to a wide variety of different types of response variables and covariance
structures, including multivariate extensions of repeated measures, time series, longitudi-
nal, genetic, spatial and spatio-temporal structures. The mcglm package allows a flexible
specification of the mean and covariance structures, and explicitly deals with multivariate
response variables, through a user friendly formula interface similar to the ordinary glm
function. Illustrations in this article cover a wide range of applications from the tra-
ditional one response variable Gaussian mixed models to multivariate spatial models for
areal data using the multivariate Tweedie distribution. Additional features, such as robust
and bias-corrected standard errors for regression parameters, residual analysis, measures
of goodness-of-fit and model selection using the score information criterion are discussed
through six worked examples. The mcglm package is a full R implementation based on
the Matrix package which provides efficient access to BLAS (basic linear algebra subrou-
tines), Lapack (dense matrix), TAUCS (sparse matrix) and UMFPACK (sparse matrix)
routines for efficient linear algebra in R.
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1. Introduction
The mcglm package (Bonat 2018) for R (R Core Team 2017) provides functions to fit and
analyze multivariate covariance generalized linear models (McGLMs; Bonat and Jørgensen
2016). The package is designed to take full advantage of the modular specification of the
models using a glm style interface. Additional features include robust and bias-corrected
standard errors for regression parameters, measures of goodness-of-fit and residual analysis.
The mcglm package is a full R implementation based on the Matrix (Bates and Maechler
2017) package which provides efficient access to C and Fortran 90 libraries such as BLAS (basic
linear algebra subroutines), Lapack (dense matrix), TAUCS (sparse matrix) and UMFPACK
(sparse matrix) routines for efficient linear algebra in R. Package mcglm is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
mcglm.
McGLMs are fitted by means of quasi-likelihood and Pearson estimating functions, based on
second-moment assumptions, and implemented in an efficient Newton scoring algorithm (Bonat
and Jørgensen 2016; Jørgensen and Knudsen 2004). The mean structure for each response
variable is specified in the orthodox way by means of a link function and a linear predic-
tor. Similarly, the covariance structure for each response variable is defined in terms of a
covariance link function combined with a matrix linear predictor involving known symmetric
matrices. The models take non-normality into account by means of a variance function. Fi-
nally, the generalized Kronecker product (Martinez-Beneito 2013) is employed to specify the
joint covariance matrix for all response variables involved in the model.
The main features of the McGLMs framework include the ability to deal with most common
types of response variables, such as continuous, count, proportions and binary/binomial.
Characteristics such as symmetry or asymmetry, excess zeros and overdispersion are easily
handled by choosing a variance function. We can model many different types of dependence,
such as those present in repeated measures, longitudinal, time series, genetic, spatial and
spatio-temporal data by different specifications of the covariance link function and the matrix
linear predictor. Furthermore, all these features extend to multivariate response variables
using the generalized Kronecker product allowing to compute the correlation between response
variables.
The analysis of non-normal multivariate data currently involves a choice between a consid-
erable array of statistical modeling frameworks. Possible approaches include the generalized
linear mixed models (GLMMs; Verbeke, Fieuws, Molenberghs, and Davidian 2014; Fieuws,
Verbeke, and Molenberghs 2007), models based on copulas (Krupskii and Joe 2013) and in
particular Gaussian copula marginal models (Masarotto and Varin 2012), hierarchical gener-
alized linear models (Lee and Nelder 1996) and generalized estimating equations (Liang and
Zeger 1986; Liang, Zeger, and Qaqish 1992) to cite a few.
Although all aforementioned methodologies can deal with multivariate response variables,
currently software implementations have been focused on models for one dependent response
variable. Furthermore, different types of dependence such as those present in repeated mea-
sures, longitudinal, genetic and spatial data may demand different software packages. It is
interesting to note that well-established R packages such as lme4 (Bates, Mächler, Bolker,
and Walker 2015) and nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2017) do
not deal with multivariate response variables. In the Bayesian context the flexible packages
INLA (Lindgren and Rue 2015) and MCMCpack (Martin, Quinn, and Park 2011) do not
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handle multivariate response variables, judging from the package documentation. The pack-
age gcmr (Masarotto and Varin 2017) implements Gaussian copula regression models in R.
This package provides a rich set of models to model the covariance structure, but is limited
to handle one response variable. Similarly, the package hglm (Rönnegård, Shen, and Alam
2010) provides functions to fit hierarchical generalized linear models along with a large set
of models to describe the covariance structure, but is also limited to deal with one response
variable. GEE models can be fitted in R by one of the following packages: geeM (McDaniel,
Henderson, and Rathouz 2013), gee (Carey 2015) and geepack (Højsgaard, Halekoh, and Yan
2006). All of them are limited to deal with one response variable and the modeling of the
covariance structure is currently restricted to making a selection from a short list of pre-
specified covariance structures, such as auto-regression or compound symmetry. In R, there
are at least two GLMMs packages that can deal with multivariate response variables, namely
MCMCglmm (Hadfield 2010), which uses Markov chain Monte Carlo methods in the Bayesian
framework, and the package SabreR (Crouchley 2012), which uses marginal likelihood but is
limited to dealing with at most three response variables.
In SAS the GLIMMIX procedure for GLMMs deals with multivariate response variables but
is limited to the exponential family of distributions and a few pre-determined covariance
structures (SAS Institute 2011). Other software platforms for fitting generic random-effects
models via Markov chain Monte Carlo methods, such as JAGS (Plummer 2003) WinBUGS
(Lunn, Thomas, Best, and Spiegelhalter 2000) and Stan (Carpenter, Gelman, Hoffman, Lee,
Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell 2017), can deal with multivariate
response variables but carry substantial overheads in terms of computational times and con-
vergence checks, while being cumbersome to implement non-standard covariance structures
and more general probability distributions, such as the Tweedie and Poisson-Tweedie distri-
butions. These limitations of current software availability for joint mean-covariance modeling
of multivariate response variables motivated us to develop an implementation of McGLMs
and consequently the mcglm package.
The main goal of this article is to describe the functionalities of the mcglm package for fitting
multivariate covariance generalized linear models. Through six worked examples, we show
the flexibility of the package to deal with different types of dependence structures, arising
for example in mixed models, repeated measures and longitudinal data analysis, as well as in
spatial areal data. By using the score information criterion, we discuss the selection of the
linear and matrix linear predictor components. More challenging examples, as the cases of
mixed outcomes (Bonat 2017), multivariate Poisson-Tweedie models for count data (Jørgensen
and Kokonendji 2016; Bonat, Olivero, Grande-Vega, Fárfan, and Fa 2017) and multivariate
Tweedie models (Jørgensen 2013; Jørgensen and Lauritzen 2000) for spatial areal data are
also discussed.
The article is organized as follows. Section 2 introduces the multivariate covariance general-
ized linear models with emphasis to the specification of the matrix linear predictor. Section 3
presents the fitting algorithm based on the estimating function approach. Section 4 pro-
vides some measures of goodness-of-fit. In particular, we discuss the generalized error sum of
squares (ESS), the pseudo Gaussian log-likelihood (plogLik) and its extensions, the pseudo
Akaike information criterion (pAIC) and the Kullback-Leibler (pKLIC) information criterion.
Furthermore, the score information criterion (SIC) is presented for the selection of the com-
ponents of the linear and matrix linear predictors. Section 5 introduces the R implementation
discussing the main functions and methods available in the mcglm package. Section 6 illus-
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trates the package usage through six worked examples. Finally, Section 7 presents a discussion
and directions for future work on the improvement of the mcglm package.

2. Multivariate covariance generalized linear models
Let YN×R = {Y 1, . . . ,Y R} be an outcome matrix and let MN×R = {µ1, . . . ,µR} denote the
corresponding matrix of expected values. Let Σr denote the N ×N covariance matrix within
the outcome r for r = 1, . . . , R. Similarly, let Σb be the R × R correlation matrix between
outcomes. The McGLMs (Bonat and Jørgensen 2016) are defined by

E(Y) = M = {g−1
1 (X1β1), . . . , g−1

R (XRβR)}

VAR(Y) = C = ΣR

G
⊗Σb

where ΣR

G
⊗Σb = Bdiag(Σ̃1, . . . , Σ̃R)(Σb⊗I)Bdiag(Σ̃>1 , . . . , Σ̃

>
R) is the generalized Kronecker

product (Martinez-Beneito 2013). The matrix Σ̃r denotes the lower triangular matrix of the
Cholesky decomposition of Σr. The operator Bdiag() denotes a block diagonal matrix and I
denotes an N ×N identity matrix. The functions gr() are orthodox link functions. Let Xr

denote an N × kr design matrix and βr a kr× 1 regression parameter vector. For continuous,
binary, binomial, proportions or indexes the covariance matrix within outcomes Σr is defined
by

Σr = V(µr; pr)
1
2 (Ω(τ r))V(µr; pr)

1
2 .

Similarly, for count data the covariance matrix within outcomes takes the following form

Σr = diag(µr) + V(µr; pr)
1
2 (Ω(τ r))V(µr; pr)

1
2 , (1)

where V(µr; pr) = diag(ϑ(µr; pr)) denotes a diagonal matrix, whose main entries are given
by the variance function ϑ(·; pr) applied element wise to the vector µr.
The variance function plays an important role in McGLMs, since different choices for ϑ(·; pr)
imply different marginal outcome distributions. The mcglm package implements three set of
variance functions. To deal with continuous outcomes the power variance function ϑ(·; pr) =
µpr

r provides a flexible family of models, since it describes the Tweedie family of distributions
that has as special cases the Gaussian (p = 0), Gamma (p = 2) and inverse Gaussian (p = 3)
distributions (Jørgensen 1987, 1997). For handling binary, binomial or proportional data
the extended binomial variance function defined by ϑ(·; pr) = µpr1

r (1 − µr)pr2 may be used.
Finally, for modeling count outcomes the mcglm package implements the Poisson-Tweedie
dispersion function (Jørgensen and Kokonendji 2016), i.e., ϑ(·; p) = µ + τµp, where τ is the
dispersion parameter. Note that, since the dispersion parameter appears only in the second
term, the covariance within outcomes takes the special form in Equation 1. The Poisson-
Tweedie family of distributions provides a rich class of models to deal with count outcomes,
since many important distributions appear as special cases, examples include the Hermite
(p = 0), Neyman Type A (p = 1), negative binomial (p = 2) and Poisson-inverse Gaussian
(p = 3) distributions.
We highlight that the dispersion function introduced by Jørgensen and Kokonendji (2016) is
not a variance function in the sense of Jørgensen (1997), however, for practical data analysis
both are completely analogous. In this paper we adopt the term variance function for both for
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simplicity. It is justified, since in general all features attributed to variance functions extend
easily to dispersion functions in our framework.
The power parameter p is important in the context of McGLMs, since for all variance functions
discussed it is an index which distinguishes between important distributions. The algorithm
we shall present in Section 3 allows us to estimate the power parameter, which works as an
automatic distribution selection. It is important to highlight that given the second-moment
specification of McGLMs the estimation of the power parameters requires that the mean
vector varies, i.e., requires the presence of significant covariates in the linear predictor. The
information for estimation of the power parameter comes from the relationship between the
mean and variance, thus an enough variation in the mean vector is necessary for estimation
of the power parameter.
The dispersion matrix Ω(τ r) describes the part of the covariance within outcomes that does
not depend on the mean structure. Based on the ideas of Anderson (1973) and Pourahmadi
(2000), Bonat and Jørgensen (2016) proposed to model the dispersion matrix using a matrix
linear predictor combined with a covariance link function, i.e.,

h(Ω(τ r)) = τr0Zr0 + · · ·+ τrDZrD, (2)

where h() is the covariance link function, Zrd with d = 0, . . . , D are known matrices reflecting
the covariance structure within the response variable r, and τ r = (τr0, . . . , τrD) is a (D+1)×1
parameter vector. The mcglm package implements three covariance link functions, namely,
the identity, inverse and exponential-matrix (Chiu, Leonard, and Tsui 1996).
An important feature of the McGLMs framework is that, whereas the regression parameter
estimators depend relatively little on the form of the covariance structure, this is not so for the
standard errors of the regression parameter estimators, which depend directly on the choice
of covariance structure.
McGLMs are defined by three functions, namely, link, variance and covariance functions and
a linear predictor and a matrix linear predictor for each response variable. Thus, there is
no loss of generality to discuss the specification of the matrix linear predictor for the one
response variable case. Demidenko (2013) showed that the covariance structure induced by
the orthodox Gaussian linear mixed model is a linear covariance matrix, i.e., has the form
of Equation 2. In this sense, McGLMs can been seen as an extension of Gaussian linear
mixed models for handling non-Gaussian data. Furthermore, popular approaches to deal
with longitudinal auto-correlated data, as the compound symmetry, moving average and first
order auto-regressive approaches, are also covariance linear models. In what follows we discuss
some of the possibilities for the specification of the matrix linear predictor in the context of
longitudinal and spatial data analysis.
Often in the context of longitudinal data analysis the outcomes are collected for a set of
independent groups or unit samples at multiple follow-up times. Bonat et al. (2017) discussed
the analysis of multivariate longitudinal count models using McGLMs and following their
notation, denote ygo an observation o = 1, . . . , Og within the group g = 1, . . . , G and let yg

denote the Og-dimensional vector of measurements from the gth group. The response variable
vector is given by Y = (y1, . . . ,yG)>. Let Ag denote an Og × E design matrix composed of
the values of E known covariates available to model the covariance structure. Furthermore,
let Ag,·e denote the eth column of the matrix Ag. The main effect of the covariate e and
the interaction effect between the covariates e and e′ are included in the covariance model
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through the symmetric matrices

Ae
g = Ag,·eA

>
g,·e and Aee′

g = Ag,·eA
>
g,·e′ +Ag,·e′A>g,·e,

respectively. The matrices Ae
g and Aee′

g are group specific. To obtain the components of the
matrix linear predictor for the entire response variable vector Y , we assume independent
groups. Thus, the components of the matrix linear predictor that measure the effect of the
eth covariate and the interaction effect are respectively given by

Ze = Bdiag(Ae
1, . . . , A

e
G) and Zee′ = Bdiag(Aee′

1 , . . . , Aee′
G ), (3)

where as before the operator Bdiag() denotes a block diagonal matrix. The matrices Ze

and Zee′ can be included as the Zd’s components in the matrix linear predictor, see Equa-
tion 2. These structures can be combined with any of the three covariance link functions
available in the mcglm package. In particular, the combination with the identity covariance
link function provides a straightforward extension of Gaussian linear mixed models to deal
with non-Gaussian data. Note that these simple structures provide a way to introduce the
effects of continuous and categorical covariates in the covariance model in a linear mixed
models fashion. These structures can be easily constructed in R using the function mc_mixed
of the mcglm package.
The compound symmetry or exchangeable structure is a popular choice in the analysis of
repeated measures data, it is defined by a linear combination of an identity and a matrix of
ones, i.e., for a particular group with three observations the matrix linear predictor is given
by

Ωg(τ ) = τ0

1 0 0
0 1 0
0 0 1

+ τ1

1 1 1
1 1 1
1 1 1

 .
Note that, when the design matrix Ag contains the intercept, the first term Ag,·1A

>
g,·1 cor-

responds to a matrix of ones, that combined with an identity matrix (mc_id) results in the
compound symmetry model.
The moving average model of order p MA(p) is also a linear covariance model. The com-
ponents of the matrix linear predictor associated with the MA(1) and MA(2) structures are
given respectively by

A1 =

0 1 0
1 0 1
0 1 0

 and A2 =

0 0 1
0 0 0
1 0 0

 ,
the components of these models can be created in R using the function mc_ma of the mcglm
package. For longitudinal data analysis, we can use the inverse of the Euclidean distance or
any other measure of distance between pairs of observations as a component of the matrix
linear predictor, for example

A1 =

 0 1/d12 1/d13
1/d12 0 1/d23
1/d13 1/d23 0

 ,
where dij denotes the distance between the observations at time i and j. See, for example
the function mc_dist for more details.
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In the Bayesian context Gaussian Markov random fields (GMRF; Rue and Held 2005) are
often employed for the analysis of times series and areal data. These models specify the
precision matrix (i.e., the inverse of the covariance matrix) in the following way

Ω−1
r (τ0, ρ) = τ(D − ρW ), (4)

whereW is a neighborhood matrix and D is a diagonal matrix with the number of neighbors
in the main diagonal. The model is parameterized by the precision τ and auto-correlation
parameter ρ. The matrices D and W can model space, time and space-time interaction in
a straightforward way, by using different neighborhood matrices. It is easy to see, that the
model in Equation 4 is a linear covariance model using the inverse covariance link function,
i.e.,

Ω−1
r (τ ) = τ0D + τ1W ,

where τ0 = τ and τ1 = −τρ. In the Bayesian context, it is common to fix the auto-correlation
parameter ρ at the value 1, which is the so-called intrinsic conditional auto-regressive model.
For times series and longitudinal data the neighborhood structure is naturally specified by
the time structure. For spatial data the function tri2nb of the spdep package (Bivand and
Piras 2015; Bivand 2017) can be used to create the neighborhood matrix based on a vector
of spatial coordinates. The functions mc_rw and mc_car provided by the mcglm package
help to build the components of the matrix linear predictor associated with these models.
Furthermore, the structures can be combined to deal with space-temporal data, see Bonat
and Jørgensen (2016, Example 3).
Some additional fields for application of McGLMs include additive genetic models. Hadfield
and Nakagawa (2010) showed that virtually all models used in the fields of quantitative
genetic and phylogenetic in the Gaussian case are special specifications of the matrix linear
predictor involving different types of known matrices, such as the additive genetic relatedness
matrix. Examples include the phylogenetic meta-analysis, the taxonomic mixed model and
the traditional animal models. In that case, the R package nadiv (Wolak 2012) can be useful
for creating the components of the matrix linear predictor associated with these models.
Furthermore, these components can easily be incorporated in the mcglm package, as for
example in Bonat (2017). The analysis of twin and family data can be done and extended by
a suitable specification of the matrix linear predictor (Rabe-Hesketh, Skrondal, and Gjessing
2008).

3. Estimation and inference
McGLMs are fitted based on the estimating function approach described in detail by Bonat
and Jørgensen (2016) and Jørgensen and Knudsen (2004). In this section we present a gen-
eral overview of the algorithm and the asymptotic distribution of the estimating function
estimators. The second-moment assumptions of McGLMs motivate us to divide the set
of parameters into two subsets θ = (β>,λ>)>. In this notation β = (β>1 , . . . ,β>R)> and
λ = (ρ1, . . . , ρR(R−1)/2, p1, . . . , pR, τ

>
1 , . . . , τ

>
R)> denote a K × 1 and Q × 1 vector of all re-

gression and dispersion parameters, respectively.
Let Y = (Y >1 , . . . ,Y >R)> and M = (µ>1 , . . . ,µ>R)> denote the NR × 1 stacked vector of the
response variable matrix YN×R and expected values matrix MN×R by columns, respectively.



8 mcglm: Multiple Response Variables Regression Models in R

The quasi-score function (Liang and Zeger 1986) was adopted for the regression parameters

ψβ(β,λ) = D>C−1(Y −M),

where D = ∇βM is an NR×K matrix, and ∇β denotes the gradient operator. The K ×K
sensitivity and variability matrices of ψβ are respectively given by

Sβ = E(∇βψβ) = −D>C−1D and Vβ = VAR(ψβ) = D>C−1D.

The Pearson estimating function, defined by the components

ψλi
(β,λ) = tr(Wλi

(r>r −C)) for i = 1, . . . , Q,

where Wλi
= −∂C−1/∂λi and r = Y −M, was adopted for the dispersion parameters.

The entry (i, j) of the Q×Q sensitivity matrix of ψλ is given by,

Sλij
= E

(
∂

∂λi
ψλj

)
= −tr

(
Wλi

CWλj
C
)
.

The entry (i, j) of the Q×Q variability matrix of ψλ is given by

Vλij
= Cov(ψλi

, ψλj
) = 2tr(Wλi

CWλj
C) +

NR∑
l=1

k
(4)
l (Wλi

)ll(Wλj
)ll,

where k(4)
l denotes the fourth cumulant of Yl, for which we use the empirical version.

To take into account the covariance between the vectors β and λ, Bonat and Jørgensen (2016)
computed the cross-sensitivity and cross-variability matrices. Denote these quantities by Sλβ,
Sβλ and Vλβ, respectively. For details see Bonat and Jørgensen (2016, Section 3).
The joint sensitivity and variability matrices of ψβ and ψλ are given by

Sθ =
(

Sβ Sβλ
Sλβ Sλ

)
and Vθ =

(
Vβ V>λβ
Vλβ Vλ

)
.

Let θ̂ = (β̂>, λ̂>)> be the estimating function estimator of θ. Then the asymptotic distribu-
tion of θ̂ is

θ̂ ∼ N(θ, J−1
θ ),

where J−1
θ is the inverse of the Godambe information matrix,

J−1
θ = S−1

θ VθS−>θ ,

where S−>θ = (S−1
θ )>.

The modified chaser algorithm proposed by Jørgensen and Knudsen (2004) is employed to
solve the system of equations ψβ = 0 and ψλ = 0, defined by

β(i+1) = β(i) − S−1
β ψβ(β(i),λ(i)),

λ(i+1) = λ(i) − αS−1
λ ψλ(β(i+1),λ(i)). (5)



Journal of Statistical Software 9

In the mcglm package, we introduce the extra tuning constant α to control the step length.
Note that the modified chaser algorithm uses the insensitivity property (Jørgensen and Knud-
sen 2004), which allows us to use two separate equations to update β and λ. Bonat and
Jørgensen (2016) also proposed the reciprocal likelihood algorithm that replaces the second
equation in Equation 5 by

λ(i+1) = λ(i) − [αψλ(β(i+1),λ(i))>ψλ(β(i+1),λ(i))V−1
λ Sλ + Sλ]−1ψλ(β(i+1),λ(i)),

where again we introduce the tuning constant α to control the step length. The mcglm
package implements both the modified chaser and reciprocal likelihood algorithms as well as
allows the user to control the step length through the argument alpha (see Section 5). The
mcglm package also implements the bias-correction term proposed by Jørgensen and Knudsen
(2004). Details about how to compute the derivatives in the weight matrices required in the
Pearson estimating function can be found in Bonat and Jørgensen (2016).

4. Measures of goodness-of-fit
Model selection is an important issue in almost any practical data analysis. A common
problem is variable selection in regression: given a large group of covariates (including some
higher order terms), one needs to select a subset to be included in the regression model. To
face this problem, Stoklosa, Gibb, and Warton (2014) in the context of generalized estimating
equations (GEE) proposed the score information criterion (SIC) to be used with forward
selection algorithms in the cases where we have a large number of covariates to compose
the linear predictor. Bonat et al. (2017) extended the SIC to select the components of the
matrix linear predictor. The SIC is based on the score statistics. This makes the use of
this criterion convenient, since it can be computed for all candidate models without actually
fitting them. In this section, we describe the SIC with the emphasis placed on the selection
of the components of the matrix linear predictor. It is straightforward to apply the same
arguments for the selection of the components of the linear predictor.
Suppose without loss of generality that r = 1 and that the power parameter is fixed. In that
case, the vector of dispersion parameters simplifies to λ = τ . For a given mean structure,
suppose that the parameter vector τ can be partitioned as τ = (τ>1 , τ>2 )>, whose dimensions
are (Q−s)×1 and s×1, respectively. The Pearson estimating function ψλ and its sensitivity
and variability matrices, can also be partitioned to ψλ(β, τ ) = (ψλ1(β, τ 1)>, ψλ2(β, τ 2)>)>,

Sλ =
(

Sλ11 Sλ12

Sλ21 Sλ22

)
and Vλ =

(
Vλ11 Vλ12

Vλ21 Vλ22

)
,

respectively. The null hypothesis H0 is τ 2 = 0. Let τ̃ = (τ̂>1 ,0>)> be the vector of Pearson
estimates under H0. Note that only the base model containing τ̂ 1 parameters has to be
fitted. In practical situations, this model can contain only a simple intercept. The Pearson
estimating function takes the form

ψλ(β, τ̃ ) = (ψ>λ1(β, τ̃ ), ψ>λ2(β, τ̃ ))> = (0>, ψ>λ2(β, τ̃ ))>.

The generalized score statistic is given by

Tλ2(β, τ̃ ) = ψ>λ2(β, τ̃ )VAR(ψλ2(β, τ̃ ))−1ψλ2(β, τ̃ ), (6)
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where

VAR(ψλ2(β, τ̃ )) = Vλ22 − Sλ21S−1
λ11

Vλ12 −Vλ12S−1
λ11

Sλ12 + Sλ21S−1
λ11

Vλ11S−1
λ11

Sλ12

is the variance of the sub-vector ψλ2(β, τ̃ ). Under the null hypothesis, Tλ2(β, τ̃ ) has a chi-
square distribution with s degrees of freedom. In practice, all quantities in Equation 6 are
evaluated at the Pearson estimates under the null hypothesis. If H0 were true, then ψλ2(β, τ̃ ),
that is the Pearson estimating function for τ 2, would be close to zero when evaluated under
the null. Large values of Tλ2(β, τ̃ ) would argue against H0. The main idea behind the SIC is
to use Equation 6 as a quadratic approximation to the log-likelihood ratio statistic. The SIC
is defined by

SIC(1)(β, τ ) = −Tλ2(β, τ̃ ) + δ|τ |.

Note that this criterion is a function of τ̃ only, thus only the base model needs to be fitted.
The SIC can be combined with the Wald statistic in a stepwise procedure, as described in
Bonat et al. (2017). The mcglm package implements the SIC for selection of the linear and
matrix linear predictors components, by the functions mc_sic and mc_sic_covariance. The
user can use the penalty δ = 2, as it is analogous to the Akaike information criterion. It is
also possible to use δ = log(N) to have an analogous to the Bayesian information criterion
or any other penalty specified by the user.
The SIC is an important tool to assist with the selection of the linear and matrix linear
predictors components, but it is less useful for comparing models fitted using different link,
variance or covariance functions. Furthermore, the application of the SIC to compare non-
nested models can be difficult, because of the requirement to have a base model for comparison.
Thus, it is useful to have measures of goodness-of-fit similar to the Akaike information criterion
in the context of likelihood analysis.
Carey and Wang (2011) proposed the Gaussian pseudo log-likelihood (plogLik) given by

plogLik(θ) = −NR2 log(2π)− 1
2 log |Ĉ| − (Y − M̂)>Ĉ−1(Y − M̂),

where NR is the total number of observations, M̂ and Ĉ denote the estimated vector of
expected values and covariance matrix, respectively.
We combined three penalty terms with the Gaussian pseudo log-likelihood in order to have
analogs to the Akaike, Bayesian and Kullback-Leibler information criterion. Thus, the pseudo
Akaike information criterion (pAIC) is given by

pAIC(θ) = 2(P +Q)− 2plogLik(θ),

where P is the number of regression parameters, andQ is the number of dispersion parameters.
Similarly, the pseudo Bayesian information criterion (pBIC) is obtained by

pBIC(θ) = logNR(P +Q)− 2plogLik(θ).

Finally, the pseudo Kullback-Leibler information criterion (pKLIC) is given by

pKLIC(θ) = 2tr(S−1
θ Vθ)− 2plogLik(θ),

where Sθ and Vθ are the joint sensitivity and variability matrices defined in Section 3. These
measures of goodness-of-fit are implemented in the mcglm package and can be accessed to-
gether using the function gof or individually by the functions indicated in brackets.
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5. Implementation in R
The main function of the mcglm package is mcglm() which allows to fit multivariate covariance
generalized linear models using quasi-score and Pearson estimating functions. The synopsis
of the mcglm() function is:

mcglm(linear_pred, matrix_pred, link, variance, covariance, offset, Ntrial,
power_fixed, data, control_initial = "automatic", contrasts = NULL,
control_algorithm = list())

The argument linear_pred specifies the linear predictor for each response variable using a
list of ‘formula’ objects. For example, in a bivariate case with response variables y1 and y2
and a covariate x1, the linear_pred argument is specified as linear_pred = c(y1 ~ x1,
y2 ~ x1). Similarly, the argument matrix_pred specifies the matrix linear predictor for each
response variable, but now using a list of known matrices. The mcglm package provides some
pre-specified covariance structures (see Section 2), but the users can use any symmetric matrix
as a component of the matrix linear predictor. Consider a simple longitudinal structure with
two unit samples (id) and two replications (time) as follows:

R> data <- data.frame("id" = gl(2, 2), "time" = rep(1:2, 2))

The components of the matrix linear predictor, for example, for a moving average first order
model MA(1) are given by:

R> Z0 <- mc_id(data)
R> Z1 <- mc_ma(id = "id", time = "time", data = data, order = 1)

In this way, for the bivariate case considered above the matrix_pred argument is specified
by:

R> matrix_pred <- list(c(Z0, Z1), c(Z0, Z1))

The arguments link, variance and covariance specify, respectively, the link, variance and
covariance link functions, for each response variable. The following link functions are im-
plemented in the mcglm package: "logit", "probit", "cauchit", "cloglog", "loglog",
"identity", "log", "sqrt" and "inverse". For the variance functions the options are:
"constant", "tweedie", "binomialP", "binomialPQ" and "poisson_tweedie". Finally, the
mcglm package implements three covariance link functions, namely, "identity", "inverse"
and "expm" (exponential-matrix). For the bivariate case under consideration, the specification
can be as follows:

R> link <- c("log", "logit")
R> variance <- c("poisson_tweedie", "binomialP")
R> covariance <- c("identity", "inverse")

In that case, we are using for the first response variable the logarithm, Poisson-Tweedie and
identity functions as the link, variance and covariance functions. Similarly, for the second re-
sponse variable the logit, binomial and inverse are the link, variance and covariance functions.
This specification is suitable, for example, for the mix of count and binomial outcomes.
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Functions Description
print() Simple printed display of model features.
summary() Standard regression output.
fitted() Fitted values for observed data.
residuals() Pearson, raw and standardized residuals.
coef() Coefficient estimates.
vcov() Variance-covariance matrix of coefficient estimates.
confint() Confidence intervals.
anova() Analysis of variance tables for fitted models.
plot() Diagnostic plots of Pearson residuals and algorithm check.

Table 1: Methods available for objects of class ‘mcglm’.

The users can specify an offset for continuous or count data as well as the number of trials
for binomial data through the arguments offset and Ntrial, respectively. In our bivariate
case, suppose we have an offset available for the count response variable and also the number
of trials for the binomial response variable. The specification of the arguments offset and
Ntrial should be as follows:

R> Ntrial <- list(NULL, data$Ntrial)
R> offset <- list(data$offset, NULL)

For variance functions that depend on a power parameter, the users can either fix it using
power_fixed = TRUE or estimate it using power_fixed = FALSE. For more than one response
variable the usage extends easily to power_fixed = c(TRUE, FALSE), where we fix the power
parameter for the first response variable while estimating it for the second one. The value of
the power parameter is fixed at the initial value supplied to the argument control_initial.
If no initial values are supplied the function mc_initial_values is called. For the power
parameters the automatic initial values are 1 for all variance functions. For more details,
see ?mc_initial_values. The data set is supplied through the argument data. The argu-
ment contrast is passed to the model.matrix function for specifying different contrasts for
categorical covariates.
The argument control_algorithm should be a named list controlling features of the fitting
algorithm. The options are: correct, a logical indicating if the corrected Pearson estimating
function should be used; max_iter, the maximum number of iterations; tol, the conver-
gence tolerance; method, a string indicating which algorithm should be used, i.e., modified
chaser ("chaser") or reciprocal likelihood ("rc"). The tuning constant is specified by the op-
tion tuning. This should in general be a number smaller than 1. Finally, the logical verbose
specifies if the trace of the algorithm iterations should be printed.
The returned fitted model object of class ‘mcglm’ is a list that contains, among others, the
estimating function estimates, the sensitivity and the variability matrices. A set of standard
methods is available to extract information from the fitted model, see Table 5. Most of the
functions and methods use a standard syntax as implemented in other R packages oriented
towards regression analysis.
The mcglm package implements some extra features and facilities useful for data analysis.
For repeated measures and longitudinal data analysis the bias-corrected and robust standard
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errors for regression parameters presented by Nuamah, Qu, and Amini (1996) are avail-
able through the functions mc_bias_corrected_std and mc_robust_std. The measures of
goodness-of-fit discussed in Section 4 are available in the function gof. The selection of the
components of linear and matrix linear predictors can be done using the functions mc_sic
and mc_sic_covariance. Finally, conditional hypothesis tests can be performed with the
function mc_conditional_test.

6. Examples
In this section, the usage of the mcglm package is illustrated with six worked examples covering
various forms of dependent and multivariate data frequently arising in real applications.

6.1. Gaussian mixed models

The first example corresponds to Gaussian mixed models. We use the sleepstudy data set
available in the lme4 package. The data set contains the average reaction time per day for
subjects in a sleep deprivation study. On day 0 the subjects had their normal amount of
sleep. Starting that night they were restricted to three hours of sleep per night. The response
variable is the average reaction time on a series of tests given each day to each subject.
The analysis goal is to understand how sleep deprivation affects the average reaction times.
The dependence structure is introduced by observations taken for the same subject (repeated
measures) and on sequential days (longitudinal). The analysis using the lme4 package is given
by:

R> library("lme4")
R> data("sleepstudy", package = "lme4")
R> fit1.lme4 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy,
+ REML = FALSE)

Note that the fitted model has random intercepts and slopes associated with the covariate
Days. The argument REML = FALSE indicates that we are using the maximum likelihood
method instead of the restricted maximum likelihood method for estimation.
The marginal specification of this model can be fitted by the mcglm package. The first step
is to specify the linear predictor.

R> form_ex1 <- Reaction ~ Days

The second step corresponds to building the components of the matrix linear predictor. Note
that in that case we have to take into account the repeated measures effect (subject) as well
as the effect of the covariate Days and perhaps the interaction term (correlation between the
random intercept and slope) in a mixed models fashion, see Equation 3. The components of
the matrix linear predictor are obtained by:

R> library("mcglm")
R> Z_ex1 <- mc_mixed(~ 0 + Subject / Days, data = sleepstudy)

We also include an intercept matrix corresponding to the residual variance.
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R> Z0_ex1 <- mc_id(sleepstudy)

Finally, we fit the model.

R> fit_ex1 <- mcglm(linear_pred = c(form_ex1),
+ matrix_pred = list(resp = c(Z0_ex1, Z_ex1)),
+ control_algorithm = list(correct = FALSE), data = sleepstudy)

In order to have estimates comparable with the ones obtained by the lme4 package we are
using the option correct = FALSE that corresponds in the Gaussian case to the maximum
likelihood method.

R> summary(fit_ex1)

Call: Reaction ~ Days

Link function: identity
Variance function: constant
Covariance function: identity
Regression:

Estimates Std.error Z value
(Intercept) 251.40510 6.632277 37.9063
Days 10.46729 1.502237 6.9678

Dispersion:
Estimates Std.error Z value

1 654.94103 70.62388 9.2736486
2 565.51537 264.67950 2.1366044
3 32.68220 13.55974 2.4102375
4 11.05543 42.94762 0.2574166

Algorithm: chaser
Correction: FALSE
Number iterations: 3

The summary() output presents the formula of the linear predictor, the link, the variance
and the covariance functions specified for fitting the model. The parameter estimates are
presented in two separate sets, Regression and Dispersion, with their associated standard
errors and Z statistics. Finally, the fitting algorithm, if the bias correction term was used or
not and the number of iterations required to reach convergence are shown.
We can compare the results obtained by the mcglm and lme4 packages using the maximized
value of the log-likelihood function.

R> logLik(fit1.lme4)

'log Lik.' -875.9697 (df=6)

R> plogLik(fit_ex1)
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Pseudo log Lik. -875.97 (df=6)

The two packages provide virtually the same estimates for regression and dispersion pa-
rameters. However, the standard errors associated with the dispersion parameters (variance
components) from the mcglm package are in general larger than the ones obtained by the lme4
package. This is due to the robust specification of McGLMs and the use of a not fully efficient
estimating function for estimation of the dispersion parameters. The interested reader can
obtain these quantities using the coef function.
We now turn to the selection of the matrix linear predictor components using the SIC as
presented in Section 4. In this case, we have four components to compose the matrix linear
predictor. The initial or basic model can be the one assuming independent observations:

R> fit0_ex1 <- mcglm(linear_pred = c(form_ex1),
+ matrix_pred = list(resp = c(Z0_ex1)),
+ control_algorithm = list(correct = FALSE), data = sleepstudy)

The components of the matrix linear predictor associated with the two main effects are
obtained by:

R> Z.sic <- list("Z1" = Z_ex1[[1]], "Z2" = Z_ex1[[2]])

Computing the SIC for these components is performed by:

R> mc_sic_covariance(fit0_ex1, scope = Z.sic, idx = c(1, 2),
+ data = sleepstudy, response = 1)

SIC df df_total Tu Chisq
1 -264.7654 1 2 268.7654 3.841459
2 -285.8309 1 2 289.8309 3.841459

The SIC values indicate that both components should be included in the model (SIC < 0).
Thus,

R> fit1_ex1 <- mcglm(linear_pred = c(form_ex1),
+ matrix_pred = list(resp = c(Z0_ex1, Z.sic)),
+ control_algorithm = list(correct = FALSE), data = sleepstudy)

Now, we compute the SIC for the interaction term.

R> Z3_ex1 <- list("Z3" = Z_ex1[[3]])
R> mc_sic_covariance(fit1_ex1, scope = Z3_ex1, idx = c(1), response = 1)

SIC df df_total Tu Chisq
1 7.938022 1 4 0.06197811 3.841459

The SIC shows that the interaction effect is not required, which agrees with the first fitted
model (fit_ex1) where the interaction effect is not significant.
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6.2. Longitudinal data analysis

The second example regards a fairly common longitudinal data analysis. We use the dietox
data set available in package geepack. The analysis goal is to investigate the effect of dietary
copper (Cu) and vitamin E (Evit) in diets containing 6% rapeseed oil on the performance
status of growing pigs. In this application, for composing the linear predictor we have three
covariates Evit, Cu and Time. We consider interaction terms up to the second order between
the three main effects. In order to select the components of the linear predictor we are
going to use the SIC. The longitudinal or repeated measures structure is introduced by the
observations taken for the same animal. Thus, the matrix linear predictor is composed of an
identity matrix combined with a compound symmetry structure, see Section 2.

R> data("dietox", package = "geepack")
R> Z0_ex2 <- mc_id(dietox)
R> Z1_ex2 <- mc_mixed(~ 0 + Pig, data = dietox)

To start the selection of the components of the linear predictor, we fit a simple intercept
model, but also consider the repeated measures structure.

R> fit0_ex2 <- mcglm(linear_pred = c(Weight ~ 1),
+ matrix_pred = list(resp = c(Z0_ex2, Z1_ex2)), data = dietox)

The candidate terms to enter into the linear predictor are:

R> scope <- c("poly(Time, 2)", "Evit", "Cu", "Evit * poly(Time, 2)",
+ "Cu * poly(Time, 2)", "Evit * Cu")

Now, we compute the SIC for all candidate terms. In that case, we decide to use the penalty
log(N) to have an analog to the Bayesian information criterion.

R> N <- dim(dietox)[1]
R> mc_sic(fit0_ex2, scope = scope, data = dietox, response = 1,
+ penalty = log(N))

SIC Covariates df df_total Tu Chisq
1 -687.30632 poly(Time, 2) 2 3 707.318622 5.991465
2 17.17333 Evit 2 3 2.838969 5.991465
3 17.96460 Cu 2 3 2.047695 5.991465
4 -650.74637 Evit * poly(Time, 2) 8 9 710.783268 15.507313
5 -649.52533 Cu * poly(Time, 2) 8 9 709.562228 15.507313
6 54.68074 Evit * Cu 8 9 5.356152 15.507313

Clearly, the first term to be included in the model is the one associated with the Time trend.

R> fit1_ex2 <- mcglm(linear_pred = c(Weight ~ poly(Time, 2)),
+ matrix_pred = list(resp = c(Z0_ex2, Z1_ex2)), data = dietox)

Updating the candidate terms and computing the SIC are performed using:
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Figure 1: Pearson residuals against fitted values for models using constant (A) and Tweedie
(B) variance functions.

R> scope <- c("Evit", "Cu", "Evit * poly(Time, 2)", "Cu * poly(Time, 2)",
+ "Evit * Cu")
R> mc_sic(fit1_ex2, scope = scope, data = dietox, response = 1,
+ penalty = log(N))

SIC Covariates df df_total Tu Chisq
1 30.21801 Evit 2 5 3.135819 5.991465
2 31.12764 Cu 2 5 2.226191 5.991465
3 39.70085 Evit * poly(Time, 2) 6 9 20.336051 12.591587
4 53.96472 Cu * poly(Time, 2) 6 9 6.072174 12.591587
5 67.59189 Evit * Cu 8 11 5.786537 15.507313

The SIC values show that the other terms are not required. Thus, we reached the final model.
Figure 1(A) hints at the presence of variance heterogeneity. It indicates that a more general
variance function, such as the Tweedie variance function can provide a better fit.

R> fit2_ex2 <- mcglm(linear_pred = c(Weight ~ poly(Time, 2)),
+ link = "log", variance = "tweedie", power_fixed = FALSE,
+ control_algorithm = list(tuning = 0.85),
+ matrix_pred = list(resp = c(Z0_ex2, Z1_ex2)), data = dietox)

The results in Figure 1(B) show that the tweedie variance function eases the variance het-
erogeneity detected in Figure 1(A). We can also use the measures of goodness-of-fit to decide
about the best fit.

R> rbind(gof(fit1_ex2), gof(fit2_ex2))
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plogLik Df pAIC pKLIC pBIC
1 -2134.58 5 4279.16 4387.053 4302.514
2 -2041.61 6 4095.22 4214.939 4123.245

The measures of goodness-of-fit employed show that the model using the "tweedie" variance
function provides the best fit for the dietox data set. In general the estimation of the power
parameter inflates the standard errors associated with the dispersion parameter estimates.
Thus, we suggest to use a conditional hypothesis test where the value of the power parameter
is fixed at its estimate instead of the orthodox marginal test. For the dietox data the results
of the marginal test for the dispersion parameter estimates associated with the repeated mea-
sures structure indicate that this effect is not significant. On the other hand, the conditional
test shows that the repeated measures effect is significant as expected. The marginal test is
obtained using:

R> summary(fit2_ex2, verbose = TRUE, print = "Dispersion")

Dispersion:
Estimates Std.error Z value

1 0.1143034 0.06409703 1.783286
2 0.6759078 0.39697332 1.702653

Algorithm: chaser
Correction: TRUE
Number iterations: 8

The conditional test is obtained with:

R> mc_conditional_test(fit2_ex2,
+ parameters = c("power11", "tau11", "tau12"), test = 2:3, fixed = 1)

Estimates Std.error Z.value
1 0.1143034 0.02996828 3.814144
2 0.6759078 0.11439159 5.908720

6.3. Spatial areal data analysis
This example regards the malaria prevalence in children recorded at 65 villages in Gambia.
We follow Masarotto and Varin (2017) who consider the aggregated data at village level. The
data set is available in the gcmr package. The response variable is the number of sampled
children with malaria in each village. Possible covariates include the frequency of sampled
children who regularly sleep under a bed-net in each village (netuse). A measure of vegetation
greenness in the immediate vicinity of the village (green) and an indicator variable denoting
the presence or absence of a health center in the village (phd). Following Masarotto and Varin
(2017) we specify the following linear predictor using:

R> library("spdep")
R> data("malaria", package = "gcmr")
R> malaria$Y <- malaria$cases / malaria$size
R> form_ex3 <- Y ~ netuse + I(green / 100) + phc
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In this example the response variable is binomial, thus we first compute the proportion of
children with malaria in each village. To model the spatial effect, we apply the conditional
auto-regressive model, see Equation 4.

R> list_neigh <- tri2nb(coords = malaria[, 1:2])
R> Z_ex3 <- mc_car(list_neigh = list_neigh)

The following call of the mcglm function fits the spatial model. This model is then summarized:

R> fit1_ex3 <- mcglm(linear_pred = c(form_ex3), matrix_pred = list(Z_ex3),
+ link = "logit", variance = "binomialP", covariance = "inverse",
+ control_algorithm = list(verbose = FALSE, max_iter = 100,
+ tuning = 0.1, method = "rc"), Ntrial = list(malaria$size),
+ data = malaria)
R> summary(fit1_ex3)

Call: Y ~ netuse + I(green / 100) + phc

Link function: logit
Variance function: binomialP
Covariance function: inverse
Regression:

Estimates Std.error Z value
(Intercept) -1.2974098 0.9301458 -1.394846
netuse -0.9862835 0.2909367 -3.390028
I(green / 100) 3.2369222 1.7879445 1.810415
phc -0.3449150 0.1827457 -1.887404

Dispersion:
Estimates Std.error Z value

1 0.05421655 0.01018959 5.320778
2 0.04141227 0.01448750 2.858483

Algorithm: rc
Correction: TRUE
Number iterations: 23

Note that in this example we are using the reciprocal likelihood algorithm (method = "rc")
and the tuning constant (tuning = 0.1). Since, we have a binomial response variable, we
specify the logit and binomialP as the link and variance functions, respectively. Finally,
to obtain the conditional auto-regressive model we are using the inverse covariance link
function. Concerning the covariate effects only the covariate netuse shows a significant effect.
The components of the matrix linear predictor show a significant spatial effect. The function
mc_compute_rho computes the spatial auto-correlation estimates based on a fitted model.

R> mc_compute_rho(fit1_ex3)

rho std Conf.Min Conf.Max
1 0.7638308 0.1883931 0.3945871 1.133074
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An alternative model is obtained by using the inverse of the Euclidean distance combined
with the exponential-matrix covariance link function.

R> Z0_ex3 <- mc_id(malaria)
R> Z1_ex3 <- as.matrix(1 / dist(malaria[, 1:2] / 1000, upper = TRUE,
+ diag = TRUE))
R> Z1_ex3 <- list("Z1" = Z1_ex3)
R> fit2_ex3 <- mcglm(linear_pred = c(form_ex3),
+ matrix_pred = list(c(Z0_ex3, Z1_ex3)), link = "logit",
+ variance = "binomialP", covariance = "expm",
+ Ntrial = list(malaria$size), data = malaria)

We compare the fitted models using the measures of goodness-of fit presented in Section 4.

R> rbind(gof(fit1_ex3), gof(fit2_ex3))

plogLik Df pAIC pKLIC pBIC
1 23.64 6 -35.28 -31.03616 -22.23368
2 23.84 6 -35.68 -34.19290 -22.63368

In that case, the model using the inverse of the Euclidean distance and the expm covariance
link function provides a fit slightly better than the conditional auto-regressive model.

6.4. Mixed response variables
The experiment analyzed in this section was carried out in a vegetation house with soybeans.
The experiment has two plants by plot with three levels of the factor corresponding to amount
of water in the soil (water) and five levels of potassium fertilization (pot). The plots were
arranged in five blocks (block). Three response variables are of the interest, namely, grain
yield, number of seeds and number of viable peas per plant. This experiment is particularly
interesting because we have three response variables of mixed types, i.e., grain yield is a
continuous outcome while number of seeds and number of viable peas per plant are examples
of count and binomial response variables, respectively. The data set is available in the mcglm
package. We started this data analysis by fitting three independent models.

R> data("soya", package = "mcglm")
R> form.grain <- grain ~ block + water * pot
R> form.seed <- seeds ~ block + water * pot
R> soya$viablepeasP <- soya$viablepeas / soya$totalpeas
R> form.peas <- viablepeasP ~ block + water * pot
R> Z0_ex4 <- mc_id(soya)
R> fit.grain <- mcglm(linear_pred = c(form.grain),
+ matrix_pred = list(Z0_ex4), data = soya)
R> fit.seed <- mcglm(linear_pred = c(form.seed), matrix_pred = list(Z0_ex4),
+ link = c("log"), variance = c("tweedie"), power_fixed = TRUE,
+ data = soya)
R> fit.peas <- mcglm(linear_pred = c(form.peas), matrix_pred = list(Z0_ex4),
+ link = "logit", variance = "binomialP", Ntrial = list(soya$totalpeas),
+ data = soya)
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Now, we can easily fit the multivariate model and compare the results.

R> fit.joint <- mcglm(linear_pred = c(form.grain, form.seed, form.peas),
+ matrix_pred = list(Z0_ex4, Z0_ex4, Z0_ex4), link = c("identity",
+ "log", "logit"), variance = c("constant", "tweedie", "binomialP"),
+ Ntrial = list(NULL, NULL, soya$totalpeas), data = soya)
R> rbind(gof(list(fit.grain, fit.seed, fit.peas)), gof(fit.joint))

plogLik Df pAIC pKLIC pBIC
1 -339.54 60 799.08 833.0493 1004.0460
2 -319.73 63 765.46 847.7463 980.6743

The function gof allows to compute the measures of goodness-of-fit combining one response
variable models, assuming that the correlation between the response variables is zero. In that
case, the multivariate model provides a better fit than the one response variable models, at
least judging by the plogLik, pAIC and pBIC values. The pKLIC tends to strongly penalize
models with extra correlation parameters. Thus, we do not recommend to use this measure
to compare covariance structures with different number of parameters. On the other hand,
the pKLIC is a good choice for comparing covariance structures with a similar number of
parameters, as shown in the example in Section 6.3.
The summary output of the model is similar to the one for the one response variable model
already presented. The extra feature shown for the multivariate model is the correlation
matrix between response variables.

R> summary(fit.joint, verbose = TRUE, print = "Correlation")

Correlation matrix:
Parameters Estimates Std.error Z value

1 rho12 0.63767011 0.1417184 4.4995591
2 rho13 0.07034904 0.1156794 0.6081377
3 rho23 0.08882875 0.1152445 0.7707851

Algorithm: chaser
Correction: TRUE
Number iterations: 10

Furthermore, in this data analysis where a large number of regression coefficients are esti-
mated including interaction effects, the anova function is a convenient way to check the effect
significance.

R> anova(fit.joint)

Wald test for fixed effects
Call: grain ~ block + water * pot

Covariate Chi.Square Df p.value
1 blockII 23.9952 4 0.0001
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2 water50 4.0222 2 0.1338
3 pot30 107.3124 4 0.0000
4 water50:pot30 51.0550 8 0.0000

Call: seeds ~ block + water * pot

Covariate Chi.Square Df p.value
1 blockII 19.5163 4 0.0006
2 water50 6.6050 2 0.0368
3 pot30 32.1902 4 0.0000
4 water50:pot30 21.3563 8 0.0063

Call: viablepeasP ~ block + water * pot

Covariate Chi.Square Df p.value
1 blockII 7.4417 4 0.1143
2 water50 8.8128 2 0.0122
3 pot30 119.2957 4 0.0000
4 water50:pot30 33.6562 8 0.0000

6.5. Bivariate repeated measures models for count data

In this section we consider the bivariate longitudinal count data analyzed in Bonat et al.
(2017) concerning data of animals hunted in the village of Basile Fang, Bioko Norte Province,
Bioko Island, Equatorial Guinea. Monthly numbers of blue duikers (BD) and other small
animals (OT) shot or snared were collected for a random sample of 52 commercial hunters
from August 2010 to September 2013. Covariates available to compose the linear predictors
include: ALT, a factor with five levels indicating the altitude where the animal was caught;
SEX, a factor with two levels (Female and Male); METHOD, a factor with two levels (Firearm
and Snare) and MONTH. The number of hunting days per month is also available in variable
OFFSET and should be used as an offset in the models. Here, we present a simplified analysis
considering only the repeated measures structure introduced by the observations taken for
the same hunter and month (variable HUNTER.MONTH). For a more detailed description of the
data and complete analysis we refer to Grande-Vega, Farfán, Ondo, and Fa (2016) and Bonat
et al. (2017).
Following Bonat et al. (2017) the linear predictors for BD and OT are specified by:

R> data("Hunting", package = "mcglm")
R> form.OT <- OT ~ METHOD * ALT + SEX + ALT * poly(MONTH, 4)
R> form.BD <- BD ~ METHOD * ALT + SEX + ALT * poly(MONTH, 3)

The matrix linear predictor is specified by a linear combination between an identity and a
compound symmetry matrix for the HUNTER.MONTH effect.

R> Z0_ex5 <- mc_id(Hunting)
R> Z1_ex5 <- mc_mixed(~ 0 + HUNTER.MONTH, data = Hunting)
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Finally, we fit the bivariate model using the poisson_tweedie variance function.

R> fit1_ex5 <- mcglm(linear_pred = c(form.BD, form.OT),
+ matrix_pred = list(c(Z0_ex5, Z1_ex5), c(Z0_ex5, Z1_ex5)),
+ link = c("log", "log"), variance = c("poisson_tweedie",
+ "poisson_tweedie"), power_fixed = c(FALSE, FALSE),
+ offset = list(log(Hunting$OFFSET), log(Hunting$OFFSET)),
+ control_algorithm = list(max_iter = 200, verbose = FALSE),
+ data = Hunting)

We assess the significance of the regression coefficients using the anova function.

R> anova(fit1_ex5)

Wald test for fixed effects
Call: BD ~ METHOD * ALT + SEX + ALT * poly(MONTH, 3)

Covariate Chi.Square Df p.value
1 METHODTrampa 3.8902 1 0.0486
2 ALT2 162.0670 4 0.0000
3 SEXMale 401.4957 1 0.0000
4 poly(MONTH, 3)1 32.3174 3 0.0000
5 METHODTrampa:ALT2 63.2427 4 0.0000
6 ALT2:poly(MONTH, 3)1 71.2614 12 0.0000

Call: OT ~ METHOD * ALT + SEX + ALT * poly(MONTH, 4)

Covariate Chi.Square Df p.value
1 METHODTrampa 1.1885 1 0.2756
2 ALT2 158.9866 4 0.0000
3 SEXMale 67.5059 1 0.0000
4 poly(MONTH, 4)1 7.4804 4 0.1126
5 METHODTrampa:ALT2 32.6643 4 0.0000
6 ALT2:poly(MONTH, 4)1 100.8068 16 0.0000

The power, dispersion and correlation parameter estimates are provided by the summary.

R> summary(fit1_ex5, print = c("power", "Dispersion", "Correlation"))

Power:
Estimates Std.error Z value

1 1.460708 0.1653851 8.832164

Dispersion:
Estimates Std.error Z value

1 0.1116979 0.0527109 2.119067
2 0.4577956 0.1386405 3.302034
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Power:
Estimates Std.error Z value

1 1.799323 0.2482945 7.246727

Dispersion:
Estimates Std.error Z value

1 0.2052374 0.11454898 1.791700
2 0.5166482 0.09456719 5.463292

Correlation matrix:
Parameters Estimates Std.error Z value

1 rho12 -0.06845904 0.02904716 -2.356824

Algorithm: chaser
Correction: TRUE
Number iterations: 113

The results show that the Pólya-Aepli (p = 1.5) and negative binomial (p = 2) distributions
can be suggested to the response variables BD and OT, respectively. The dispersion structures
show the significance of the repeated measures structure for both response variables. The
correlation between response variables is weak, but still significantly different from 0.

6.6. Multivariate Tweedie models for spatial areal data
The last example analyzes the spatial distribution of soil chemistry properties measured on a
regular grid with 10× 25 points spaced by 5 meters. Three continuous response variables are
of interest, namely, calcium (CA), magnesium (MG) and potassium (PT) contents. Covariates
include the spatial coordinates (COORD.X and COORD.Y), soil pH at water (PHWATER) and the
portions of sand (SAND), silt (SILT) and clay (CLAY). The original data set is available in the
geoR package (Ribeiro Jr and Diggle 2016). The simplified version used here is available in
the mcglm package.
We model the covariance structure within response variables by combining the tweedie vari-
ance function and the conditional auto-regressive model (see Equation 4). The linear and
matrix linear predictors for each response variable are specified as follows:

R> data("soil", package = "mcglm")
R> form.ca <- CA ~ COORD.X * COORD.Y + SAND + SILT + CLAY + PHWATER
R> form.mg <- MG ~ COORD.X * COORD.Y + SAND + SILT + CLAY + PHWATER
R> form.k <- K ~ COORD.X * COORD.Y + SAND + SILT + CLAY + PHWATER
R> list_neigh <- tri2nb(coords = soil[, 1:2])
R> Z_ex6 <- mc_car(list_neigh = list_neigh)

The estimation of multivariate models is a complex computational task. The choice of good
initial values in general helps to reach convergence. A simple strategy to get good initial values
consists of fitting separate models for each response variable and then use their estimates as
initial values for the multivariate model. In this data analysis, we follow this strategy as
shown by the code below.
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R> fit.ca <- mcglm(linear_pred = c(form.ca), matrix_pred = list(Z_ex6),
+ link = "log", variance = "tweedie", covariance = "inverse",
+ power_fixed = FALSE, data = soil,
+ control_algorithm = list(max_iter = 500, tuning = 0.1))
R> fit.mg <- mcglm(linear_pred = c(form.mg), matrix_pred = list(Z_ex6),
+ link = "log", variance = "tweedie", covariance = "inverse",
+ power_fixed = FALSE, data = soil,
+ control_algorithm = list(max_iter = 500, tuning = 0.05))
R> fit.k <- mcglm(linear_pred = c(form.k), matrix_pred = list(Z_ex6),
+ link = "log", variance = "tweedie", covariance = "inverse",
+ power_fixed = FALSE, data = soil,
+ control_algorithm = list(max_iter = 500, tuning = 0.05))

The initial values for the mcglm function are supplied through a named list, with elements for
the regression, power, tau and correlation parameters.

R> ini <- list()
R> ini$regression <- list("CA" = coef(fit.ca, type = "beta")$Estimates,
+ "MG" = coef(fit.mg, type = "beta")$Estimates,
+ "K" = coef(fit.k, type = "beta")$Estimates)
R> ini$power <- list("CA" = coef(fit.ca, type = "power")$Estimates,
+ "MG" = coef(fit.mg, type = "power")$Estimates,
+ "K" = coef(fit.k, type = "power")$Estimates)
R> ini$tau <- list("CA" = coef(fit.ca, type = "tau")$Estimates,
+ "MG" = coef(fit.mg, type = "tau")$Estimates,
+ "K" = coef(fit.k, type = "tau")$Estimates)
R> ini$rho <- c(0, 0, 0)

In the following the multivariate Tweedie model is fitted.

R> fit_ex6 <- mcglm(linear_pred = c(form.ca, form.mg, form.k),
+ matrix_pred = list(Z_ex6, Z_ex6, Z_ex6), link = c("log", "log", "log"),
+ variance = c("tweedie", "tweedie", "tweedie"),
+ covariance = c("inverse", "inverse", "inverse"),
+ power_fixed = c(FALSE, FALSE, FALSE), control_initial = ini,
+ data = soil, control_algorithm = list(max_iter = 100))

The users can summarize the model using the summary function or extract parameter esti-
mates using the coef function as well as use all methods available in the mcglm package for
analyzing the model results. In particular, for this application the functions mc_compute_rho
and mc_conditional_test are tailored tools to compute the spatial auto-correlation and per-
form conditional hypotheses tests for the dispersion parameters associated with the spatial
structure.

7. Discussion
This article described the R implementation of multivariate covariance generalized linear mod-
els in the mcglm package. The discussed examples illustrate the capability of the package
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to deal with various types of data and dependence structures. The models are fitted by
an estimating function approach combining quasi-score and Pearson estimating functions for
estimation of the regression and dispersion parameters, respectively. The main technical ad-
vantage of this approach is the simplicity of the fitting method, which amounts to finding the
root for a set of non-linear equations. In this direction, we presented the modified chaser and
reciprocal likelihood methods. A careful choice of initial values is required for both methods.
The fitting process while relying on a simple Newton scoring algorithm also involves com-
putational demanding tasks such as the Cholesky decomposition and multiplication of large
matrices. Thus, in the case of large data sets, consisting of several thousands of observations,
and models involving many components in the matrix linear predictor, the computational
cost may prevent routine use of the mcglm package.

The package was designed to take full advantage of the modular specification of the models
using a glm style interface. The output of the functions is provided in a way that is easy to
interpret for people familiar with standard lm(), glm() or gam() output. Furthermore, a set of
methods and auxiliary functions are available for analyzing the model results. The covariance
structure within response variable is modeled by combining a matrix linear predictor and a
covariance link function. A set of functions for constructing the components of the matrix
linear predictor is made available. Furthermore, the users can easily extend the package with
new components.

The estimation of the power parameter is, in general, a difficult task. The estimation of the
power parameter is particularly challenging when the distribution of the response variable is
symmetric for continuous data using the Tweedie variance function. The power parameter is
an index that distinguishes between some well known distributions such as the Gamma and
inverse Gaussian. All these distributions can provide a good fit for symmetric data. Thus,
we do not have enough information in the data to distinguish between these distributions.
Therefore, we suggest opting for the simplest possibility i.e., the Gaussian model. Similarly,
for count data using the Poisson-Tweedie dispersion function the estimation of the dispersion
and power parameters are difficult for equidispersed count data. In such a case the dispersion
parameter in the Poisson-Tweedie dispersion function should be zero, which in turn is a value
close to the border of the parameter space. Therefore, we suggest again opting for the simplest
possibility i.e., the Poisson model obtained by using the Tweedie variance function with power
parameter fixed at 1.

Possible topics for further investigation and extensions include facilities for censored data in
survival analysis and other special types of data and improvements regarding the residual
analysis. In particular, the investigation of how the McGLMs framework can be used to deal
with multivariate spatio-temporal data is an interesting topic. Further possible extensions
could cover the incorporation of penalized splines in the mean and covariance structures, and
the use of regularization for high dimensional data, which would have important applica-
tions in genetics. Also of interest would be the construction of new estimating functions to
deal with data that are not missing at random and to make prediction using the best linear
unbiased predictor (BLUP). Further points worth investigation would be a thorough com-
parison of the McGLMs framework with more established statistical modeling frameworks
such as GEE (generalized estimating equations) models, Gaussian copula regression models,
hierarchical generalized linear models and other.
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