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Abstract

Applications in biotechnology such as gene expression analysis and image processing
have led to a tremendous development of statistical methods with emphasis on reliable
solutions to severely underdetermined systems. Furthermore, interpretations of such so-
lutions are of importance, meaning that the surplus of inputs has been reduced to a
concise model. At the core of this development are methods which augment the standard
linear models for regression, classification and decomposition such that sparse solutions
are obtained. This toolbox aims at making public available carefully implemented and
well-tested variants of the most popular of such methods for the MATLAB program-
ming environment. These methods consist of easy-to-read yet efficient implementations
of various coefficient-path following algorithms and implementations of sparse principal
component analysis and sparse discriminant analysis which are not available in MATLAB.
The toolbox builds on code made public in 2005 and which has since been used in several
studies.

Keywords: least angle regression, LASSO, elastic net, sparse principal component analysis,
sparse discriminant analysis, MATLAB.

1. Introduction
The introduction of the least angle regression (LAR) method for regularized/sparse regression
(Efron, Hastie, Johnstone, and Tibshirani 2004) marked the starting point of a series of
important contributions to the statistical computing community with the following common
properties:
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• Solutions are obtained sequentially along a path of gradually changing amounts of reg-
ularization. This paper focuses on methods where the method coefficients are piecewise
linear functions of the regularization parameter, and where algorithms proceed by find-
ing the next piecewise linear breakpoint.

• For sufficient amounts of l1 regularization, solutions are sparse, i.e., some of the coeffi-
cients of the model are exactly zero, leading to more compact models which are easier
to interpret.

• Methods are efficient, meaning they perform on a par with competing statistical meth-
ods when performance is measured on a test data set.

Examples of contributions are Zou and Hastie (2005), Zou, Hastie, and Tibshirani (2006),
Rosset and Zhu (2007), Hastie, Rosset, Tibshirani, and Zhu (2004), Park and Hastie (2007),
Friedman, Hastie, and Tibshirani (2010), of which the first three are detailed in this paper.
The methods cover regression (the LASSO and the elastic net with ridge regression as a special
case), classification (sparse discriminant analysis (SDA) with penalized linear discriminant
analysis as a special case), and unsupervised modeling (sparse principal component analysis,
SPCA). The goal of this paper is to provide reference MATLAB (The MathWorks Inc. 2017)
implementations of these basic regularization-path oriented methods.
Currently there are no built-in implementations of least angle regression, SPCA or SDA in
MATLAB. MATLAB includes an implementation of the LASSO and elastic net in the Statistics
and Machine Learning Toolbox, but both are based on coordinate descent optimization instead
of coordinate path tracking which is at the heart of the least angle regression method. The
R package glmnet (Friedman et al. 2010) provides methods to work with generalized linear
models via penalized maximum likelihood. The glmnet (Qian, Hastie, Friedman, Tibshirani,
and Simon 2014) package is also available in MATLAB. This includes the LASSO and the
elastic net, but both in R and MATLAB the optimization is done via coordinate descent. An
implementation of least angle regression is available in the R package lars (Hastie and Efron
2013). There exist several isolated implementations of least angle regression online. There is
one such implementation on the MATLAB Central File Exchange (Kim 2009).
There exist various problem formulations of SPCA. There exist several stand-alone imple-
mentations online. One such implementation, containing 8 problem formulations, is provided
alongside (Richtárik, Takáč, and Ahipaşaoğlu 2012). An isolated MATLAB implementation
can be found on the MATLAB Central File Exchange (Alsahaf 2015).
For SDA there also exist various problem formulations. Some of these options are implemented
in R (Mai, Yang, and Zou in press, 2015; Witten 2015; Witten and Tibshirani 2011). Note
that the same implementation as in the SpaSM toolbox is also available in the R package
sparseLDA (Clemmensen and Kuhn 2016).
Currently the SpaSM toolbox is the only comprehensive toolbox for MATLAB that provides a
variety of sparse methods based on least angle regression. We also present previously unpub-
lished developments of the algorithm for sparse principal component analysis, and provide
some evidence that performance is only slightly lowered (in terms of variance explained), while
the computational complexity is significantly lowered. The implementation strikes a balance
between performance and readability, making this toolbox a good starting point for learning
the details of the methods. For this reason, the code is written as pure MATLAB scripts
which closely follow the algorithms provided here. All methods have been fully described and
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validated in their respective publications; despite this we provide terse but relatively complete
derivations of each algorithm such that the paper can be read and the algorithms understood
without having all references at hand.
The rest of the paper is structured as follows. Section 3 gives a short overview of the methods
and files presented in the toolbox. Section 4 gives a concise derivation of the methods and
pseudo code for the algorithms is provided. Section 5 is a short tutorial on how to apply
the functions from the toolbox, interpret the command line output and a description of the
input/output to the functions. The examples are shown on simulated data sets and all the
examples can be found in the toolbox, with the appropriate seeds to generate the simulated
data sets. Section 6 shows methods from the toolbox used on two real world data sets, one
regarding Diabetes data and the second on shape data from human silhouettes.

2. Related work
Here we summarize some of the recent advances in sparse methods that are not included in
the package. We point the reader to relevant software available and how it can be accessed
from MATLAB.

Sparse regression. The Dantzig selector by Candes and Tao (2007) is similar to the LASSO
in the sense that it performs regression and model selection. The main difference from the
LASSO is in the way the optimization problem is formulated. The l1 norm of the regression
coefficients is minimized under constrains on the residuals. This can be formulated as a linear
program. The main results also include bounds on the errors of the regression coefficients
that are non-asymptotic. An implementation of the Dantzig selector can be found in the R
package flare (Li, Zhao, Wang, Yuan, and Liu 2014) in the function slim.
Zou (2006) derives the necessary conditions for the LASSO variable selection to be consistent.
He then proposes a new version of the LASSO called the adaptive LASSO. The modification of
the traditional LASSO consists of adding weights to the regression coefficients in the penalty
term, corresponding to the inverse of the OLS solution. An additional parameter γ is also
added as the exponent of the weights for further tuning. It is proved that this method is
consistent in variable selection and has the oracle-property, meaning that it performs as well
as if the true underlying model was given in advance. This approach only works in the p < n
case, but one can use the ridge solution instead of the OLS solution to provide weights for
the penalty term in the case of collinearity or the p > n case. The drawback is that cross-
validation must be performed over two parameters in the p < n case, and three parameters
in the p > n case. This method is implemented in the R package parcor (Kraemer, Schaefer,
and Boulesteix 2009) in the function adalasso.
Scaled sparse linear regression by Sun and Zhang (2012) gives a general approach to regression
and penalization, with special focus on the LASSO. The idea is to estimate the parameters in
the model and the noise level. By estimating the noise level, the penalization parameter can be
adjusted in successive iterations of the algorithm. The parameter controlling the penalization
thus becomes data dependent. Oracle inequalities are proved for prediction, estimation of
noise level and regression coefficients. An implementation can be found in the R package
scalreg (Sun 2013), the method can be used with the function scalreg.
For generalized linear models one can apply an l1 norm regularizer via the R packages glmnet
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(Friedman et al. 2010) and penalized (Goeman 2010). The main difference between the
packages is the optimization of the likelihood functions. The glmnet package uses cyclical
coordinate descent, while the penalized package uses a combination of gradient ascent and
the Newton-Raphson algorithm. The glmnet package is also available for MATLAB (Qian
et al. 2014).
A couple of R packages are available for general non-convex penalty functions. The plus
package (Zhang 2010) has two main components for its MC+ algorithm, namely a minimax
concave penalty and penalized linear unbiased selection, which provides unbiased estimates
of parameters and variable selection. The ncvreg package (Breheny and Huang 2011) also
handles non-convex penalty functions but the optimization is done with coordinate descent.

Sparse graphical models. Sparse graphical models concern the estimation of edge weights
in a graph where the nodes correspond to variables. Variables are connected in the graph if
they are conditionally dependent. To achieve this one estimates a sparse inverse covariance
matrix of a multivariate normal distribution from data. If an entry in the inverse covariance
matrix is non-zero, then the corresponding variables are conditionally dependent. One of the
variables could be a response variable, and thus these models can be used to model conditional
dependence of the response to the predictors, like in traditional linear models.
In Meinshausen and Bühlmann (2006), the authors present a method to estimate the sparse
inverse covariance matrix via neighborhood selection with the LASSO. They build the co-
variance matrix by using the LASSO on each variable separately. They show promising
computational results. They also show that they get consistent estimation of the edges in the
graph by controlling the probability of falsely joining some distinct connectivity components
of the graph. An implementation is available in the R package spaceExt (He 2011) in the
function glasso.miss.
Friedman, Hastie, and Tibshirani (2008) estimate the sparse inverse covariance matrix by
starting with a blockwise coordinate descent approach and then solve the exact problem with
a LASSO penalty using coordinate descent, instead of solving for each variable independently
like Meinshausen and Bühlmann (2006). The method is implemented in the R package glasso
(Friedman, Hastie, and Tibshirani 2014) via the function glasso.
Cai, Liu, and Luo (2011) propose a method (CLIME) where they use constrained l1 mini-
mization to estimate the sparse covariance matrix. They also show some generic results on
the rate of convergence for different types of tails of population distributions. The problem
can be solved with linear programming. An implementation is available in the R package
fastclime (Pang, Qi, Liu, and Vanderbei 2016) via the function fastclime.selector.

Sparse quadratic discriminant analysis. Le and Hastie (2014) present a class of rules
spanning from QDA to naïve Bayes through a path of sparse graphical models. The authors
use a group LASSO penalty, which imposes sparsity on the same elements in all the K within
class precision matrices, where K is the number of classes. The authors claim that the
estimates of interactions from their method are easier to interpret than other classifiers that
regularize QDA. The authors do not provide software.

Other implementations in MATLAB. Liu, Ji, Ye et al. (2009) present a MATLAB pack-
age called SLEP (sparse learning with efficient projections). They provide some MATLAB
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implementations for efficient computation of lasso variants using optimization based on effi-
cient Euclidean projections.

2.1. Calling R code from MATLAB

For comparisons, or to complement the methods in this toolbox, the R software packages
referenced in the previous section can be run from within the MATLAB environment. There
are a few ways to achieve this.
The most straight-forward approach is to write a separate R script and run it in batch mode
with a system command in MATLAB. One way to achieve this from MATLAB would be:

>> system('R CMD BATCH rScript output');

The output from the R script (rScript) is written in the file output. The user then needs
to load the results into MATLAB.
More generic approaches are also available, like the MATLAB R-link package available on the
MATLAB Central File Exchange (Henson 2013). This solution only works on the Windows
operating system and allows one to copy data back and forth from MATLAB and R.

3. In the toolbox
The toolbox consists of a series of MATLAB (The MathWorks Inc. 2017) scripts and functions
to build and apply various statistical models for both supervised and unsupervised analyses.
Below are listings of each method, file, subfunction and utility.

3.1. Methods

Forward selection: A variant of stepwise regression in which variables are included one-
by-one based on their correlation with the current residual vector. Provides a baseline
algorithm for other sparse methods for regression in this toolbox.

Least angle regression: Provides a more gentle version of the classical approach of forward
selection regression. The algorithm is the basis for all other methods in the toolbox.
The method is also an interesting statistical method in its own right.

LASSO: This method adds l1 (1-norm) regularization to ordinary least squares regression,
yielding solutions which are sparse in terms of the regression coefficients. This may lead
to efficient suppression of noise and aids in interpretation.

Elastic net: Combining the algorithmic ideas of least angle regression, the computational
benefits of ridge regression and the tendency towards sparse solutions of the LASSO,
this versatile method is applicable for many data sets, also when the number of pre-
dictor variables far exceeds the number of observations. The corresponding LARS-EN
algorithm is used in the implementation of the following two algorithms.

Sparse principal component analysis: Principal component analysis is a powerful tool
for compacting a data set and for recovering latent structures in data, but solutions are
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difficult to interpret as they involve all the original predictor variables. Sparse principal
component analysis approximates the behavior of regular principal component analysis
but models each component as a linear combination of a subset of the original variables.

Sparse linear discriminant analysis: Linear discriminant analysis is a standard tool for
classification of observations into one of two or more groups. Further, the data can be
visualized along the obtained discriminative directions. As with principal component
analysis, these directions are combinations of all predictor variables. Sparse discriminant
analysis reduces this to a subset of variables which may improve performance as well
interpretability.

3.2. Files

forwardselection.m A baseline algorithm for variable selection. Based on the algorithm in
lar.m.

lar.m An implementation of the LARS algorithm for least angle regression described by
Efron et al. (2004).

lasso.m The LASSO method of Tibshirani (1996), implemented using a combination of the
algorithms of Efron et al. (2004) and Rosset and Zhu (2007).

elasticnet.m The elastic net algorithm of Zou and Hastie (2005), with elements from Rosset
and Zhu (2007).

spca.m The sparse principal component algorithm based on the work by Zou et al. (2006),
with modification described below.

slda.m The sparse discriminant analysis of Clemmensen, Hastie, Witten, and Ersbøll (2011).

3.3. Sub-functions and utilities

larsen.m The actual implementation of the elastic net algorithm. The functions lasso.m,
elasticnet.m, spca.m and slda.m depend on this function; however it is not intended
for direct use.

chol_insert.m Update of the Cholesky factorization of X>X + δI. Used in lar.m and
larsen.m.

chol_delete.m Downdate of the above Cholesky factorization. Used in larsen.m.

center.m Convenience function for centering (removing the mean observation) a data matrix
or response vector.

normalize.m Convenience function for centering and normalizing a data matrix or response
matrix such that variables have unit Euclidean length.
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Algorithm 1 Forward selection.
1: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}.
2: Initialize the coefficient vector β(0) = 0.
3: for k ∈ {0 . . . p− 1} do
4: Find the variable which is maximally correlated with the current residual i =

arg maxi∈I x>i (y−Xβ(k)).
5: Move i from I to A.
6: Update the active set coefficients β(k+1)

A = (X>AXA)−1X>Ay.
7: end for
8: Output the series of coefficients B = [β(0) . . . β(p)].

4. Methods and algorithms

This section presents the principles behind each method in the toolbox, and outlines their
algorithms. The basic building block is the LARS-EN algorithm (Zou and Hastie 2005)
which encompasses regression via ordinary least squares, ridge regression, the LASSO and
the elastic net. These are based on the linear model y = Xβ + ε where y (n × 1) is the
observed response variable, X (n × p) is the data matrix where the ith column represents
the ith predictor variable, β (p × 1) is the set of model coefficients which determines the
load on each predictor variable, and ε are the residual errors. Unless stated otherwise, y
is assumed centered and X is assumed centered and normalized such that each variable has
zero mean and unit Euclidean length. A sparse method for regression estimates a coefficient
vector β with many zero elements, giving an estimate ŷ of y which is a linear combination of
a subset of available variables in X. Sparse solutions may be preferred to full counterparts if
the latent linear model can be assumed to be sparse, or when interpretation of the results is
important. The set A denotes the indices in β corresponding to non-zero elements; we refer
to this as the active set. The set I is called the inactive set and denotes the complement of
A. We use these sets also to denote submatrices such as the (n× |A|) matrix XA, consisting
of the columns (variables) of X corresponding to the indices in A. All algorithms proceed in
iterations and we indicate iteration number by a parenthesized superscript number, e.g., β̂(k)

for the regression coefficients calculated in the kth iteration. It is further convenient to define
an operator min+(·) which finds the smallest strictly positive value of the (vector-valued)
input.
The methods for regression described below proceed in an iterative manner, adding or sub-
tracting variables in the model in each step. The methods start with the trivial constant
model, then move towards the full representation which corresponds to ordinary least squares
regression or ridge regression, depending on the type of regularization. To put the presenta-
tion of these algorithms into perspective, we begin with a quick review of one of the simplest
algorithms of this kind.
In forward selection, a variant of stepwise regression, variables are added one-by-one until
some goodness-of-fit criterion is fulfilled. The next variable to include in this scheme can
be chosen based on a number of criteria. The methods in this toolbox generally pick the
variable that has the highest absolute correlation with the current residual vector. To fix the
terminology and to give a simple baseline algorithm we state a forward selection algorithm in
Algorithm 1.
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In this algorithm, we move to the least squares solution using all currently active variables
in each step. This approach is known as a greedy method. The following sections cover less
greedy variations on the forward selection scheme which result in algorithms with generally
better performance and which are able to handle more difficult data sets.

4.1. Least angle regression
Least angle regression (LAR) is a regression method that provides a more gentle version of
forward selection. Conceptually, LAR modifies Algorithm 1 on only one account. Instead of
choosing a step size which yields the (partial) least squares solution in each step, we shorten
the step length such that we stop when any inactive variable becomes equally important as
the active variables in terms of correlation with the residual vector. That variable is then
included in the active set and a new direction is calculated. Recall that all active variables
are uncorrelated with the residual vector at the least squares solution, the step length will
therefore always be as short or shorter at the point where we find the next active variable to
include than that of the least squares solution.
The algorithm starts with the empty set of active variables. The correlation between each
variable and the response is measured, and the variable with the highest correlation becomes
the first variable included into the model. The first direction is then towards the least squares
solution using this single active variable. Walking along this direction, the angles between
the variables and the residual vector are measured. Along this walk, the angles will change;
in particular, the correlation between the residual vector and the active variable will shrink
linearly towards 0. At some stage before this point, another variable will obtain the same
correlation with respect to the residual vector as the active variable. The walk stops and the
new variable is added to the active set. The new direction of the walk is towards the least
squares solution of the two active variables, and so on. After p steps, the full least squares
solution will be reached.
The LAR algorithm is efficient since there is a closed form solution for the step length at each
stage. Denoting the model estimate of y at iteration k by ŷ(k) and the least squares solution
including the newly added active variable ŷ(k+1)

OLS , the walk from ŷ(k) towards ŷ(k+1)
OLS can be

formulated (1 − γ)ŷ(k) + γŷ(k+1)
OLS where 0 ≤ γ ≤ 1. Estimating ŷ(k+1), the position where

the next active variable is to be added, then amounts to estimating γ. We seek the smallest
positive γ where correlations become equal, that is

x>i∈I(y− (1− γ)ŷ(k) − γŷ(k+1)
OLS ) = x>j∈A(y− (1− γ)ŷ(k) − γŷ(k+1)

OLS ).

Solving this expression for γ, we get

γ = (xi − xj)>(y− ŷ(k))
(xi − xj)>(ŷ(k+1)

OLS − ŷ(k))
= (xi − xj)>ε

(xi − xj)>d ,

where d = ŷ(k+1)
OLS − ŷ(k) is the direction of the walk, and j ∈ A. Now, d is the orthogonal

projection of ε onto the plane spanned by the variables in A, therefore we have x>j ε =
x>j d ≡ c, representing the angle at the current breakpoint ŷ(k). Furthermore, the sign of the
correlation between variables is irrelevant. Therefore, we have

γ = min
i∈I

+
{

x>i ε− c
x>i d− c

,
x>i ε + c

x>i d + c

}
, 0 < γ ≤ 1,
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Algorithm 2 Least angle regression.
1: Initialize the coefficient vector β(0) = 0 and the fitted vector ŷ(0) = 0,
2: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}.
3: for k = 0 to p− 2 do
4: Update the residual ε = y− ŷ(k).
5: Find the maximal correlation c = maxi∈I |x>i ε|.
6: Move variable corresponding to c from I to A.
7: Calculate the least squares solution β(k+1)

OLS = (X>AXA)−1X>Ay.
8: Calculate the current direction d = XAβ(k+1)

OLS − ŷ(k).

9: Calculate the step length γ = min+
i∈I

{
x>i ε−c
x>i d−c ,

x>i ε+c
x>i d+c

}
, 0 < γ ≤ 1.

10: Update regression coefficients β(k+1) = (1− γ)β(k) + γβ
(k+1)
OLS .

11: Update the fitted vector ŷ(k+1) = ŷ(k) + γd.
12: end for
13: Let β(p) be the full least squares solution β(p) = (X>X)−1X>y.
14: Output the series of coefficients B = [β(0) . . . β(p)].

where the two terms are for correlations/angles of equal and opposite sign respectively. The
coefficients at this next step are given by

β(k+1) = (1− γ)β(k) + γβ
(k+1)
OLS .

Given these key pieces of the LAR algorithm, we state the entire procedure in Algorithm 2.
Each step of Algorithm 2 adds a covariate to the model until the full least squares solution
is reached. It is natural to parameterize this process by the size s(β) of the coefficients at
each step as well as in-between steps of the algorithm. The algorithm returns the following
parametrization,

s(β) = ‖β‖1 =
p∑
i=1
|βi|. (1)

Picking a suitable model for a particular analysis thus means selecting a suitable value of
s(β) ∈ (0, ‖βOLS‖1). Cross-validation or an independent validation data set are obvious
choices for this purpose, however, the algorithm provides information which substitutes or
complements this process.

Degrees of freedom: Efron et al. (2004) showed that the number of degrees of freedom
at each step of the LAR algorithm is well approximated by the number of non-zero
elements of β. The algorithm therefore returns the following sequence,

df (k)
LAR = |A| = k, k = 0 . . . p.

Mallow’s Cp: Given the above measure of the number of degrees of freedom, we can calculate
a number of model selection criteria. Mallow’s Cp measure is defined as (Zou, Hastie,
and Tibshirani 2007)

C(k)
p = 1

σ2
ε

‖y−Xβ(k)‖2 − n+ 2df (k).
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Akaike’s information criterion: Akaike’s information criterion is similar to Mallow’s Cp
and is defined as

AIC (k) = ‖y−Xβ(k)‖2 + 2σ2
εdf (k).

Bayesian information criterion: The Bayesian information criterion tends to choose a
sparser model than both AIC and Cp and is defined as

BIC (k) = ‖y−Xβ(k)‖2 + log(n)σ2
εdf (k).

The latter three criteria can be used to pick a suitable model, typically indicated by the
smallest value of each criterion. Alternatively, one can choose the sparsest model for which
more complex models lead to scant improvements in the relevant model selection criterion.
The measure σ2

ε represents the residual variance of a low-bias model which is here defined as

σ2
ε = 1

n
‖y−X†y‖2,

where X† is the Moore-Penrose pseudo-inverse of X, equivalent to a ridge regression solution
arg min ‖y−Xβ‖2 +λ‖β‖2 in the limit λ→ 0. Note that in cases where p > n, this measure of
the residual variance will be zero which in effect turns the information criteria defined above
into a measure of training error only. We therefore recommend using these criteria for model
selection only in cases where n is well above p.
The key computational burden of Algorithm 2 lies in Step 7 where the OLS solution involving
the variables in A is calculated. Two techniques are used to alleviate this. For problems where
n is at least ten times larger than p, we calculate the full Gram matrix X>X once and use
the submatrix X>AXA to find β(k+1)

OLS , thus avoiding an O(|A|2n) matrix multiplication. When
p > 1000, this method is not preferred since the memory footprint of the resulting p×p Gram
matrix may pose a problem. In cases where 10n < p, or when a pre-computed Gram matrix
is impractical, we maintain a matrix R of the Cholesky factorization of the current Gram
(sub)matrix X>AXA such that R>R = X>AXA. As variables join the active set, R can be
updated with low computational cost. The conditions chosen for selecting between the two
methods are not exact, but we have gathered evidence through simulation studies that they
work well on most standard computers.
In practice one frequently has a notion of the sparsity of the desired solution when running
Algorithm 2. To avoid unnecessary computations, the algorithm can be stopped prematurely,
either when the active set reaches a certain size, or when the l1 norm of the coefficients in
β(k) exceeds a preset threshold. Optionally, the algorithm stores and returns the solution
fulfilling the specified sparsity criterion only in order to save computer resources. This direct
controlling of sparsity is a clear advantage over the coordinate descent method, where the
number of non-zero parameters in the model cannot be specified directly.

4.2. The LASSO

The LASSO (Tibshirani 1996) represents the most basic augmentation of the ordinary least
squares solution which implements coefficient shrinkage and selection. The sum of squared
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residuals loss function L(β̂(λ)) is combined with a penalty function J(β̂(λ)) based on the l1
norm as,

β̂(λ) = arg min
β
L(β̂(λ)) + λJ(β̂(λ)) = arg min

β
‖y−Xβ‖2 + λ‖β‖1. (2)

The l1 penalty will promote sparse solutions. This means that as λ is increased, elements of
β̂(λ) will become exactly zero. Due to the non-differentiability of the penalty function, there
are no closed-form solutions to Equation 2. A number of algorithms have been proposed
(e.g., Fu 1998; Osborne, Presnell, and Turlach 2000; Friedman et al. 2010) including the
quadratic programming approach on an expanded space of variables outlined in the original
LASSO paper of Tibshirani (1996). The algorithm presented here is due to Rosset and Zhu
(2007) who derived a sufficient condition for piecewise linear coefficient paths on which they
based several LASSO-type methods. The LASSO algorithm described here is a special case
of their work. Efron et al. (2004) arrived at an equivalent algorithm by showing that a small
modification to the least angle algorithm yields LASSO solutions.
The goal of this section is to derive an expression for how the solutions of Equation 2 change
with λ. The solution set β̂(λ) will hit a non-differentiability point when coefficients either
go from non-zero to zero (join I), or the other way around (join A). Assume first that we
are in a region of values of λ where variables are neither joining nor leaving A. The normal
equations to Equation 2 around λ and around a nearby point λ+ ε are then

−2X>A(y−XAβ̂A(λ)) + λ · sign(β̂A(λ)) = 0 (3)
−2X>A(y−XAβ̂A(λ+ ε)) + (λ+ ε) · sign(β̂A(λ+ ε)) = 0. (4)

We now write Equation 4 as a first order Taylor expansion around β̂(λ). The general form of
a multivariate Taylor expansion of f(x) around a is

f(x) =
∞∑
k=0

∇(k)f(a)
k! (x− a)k = f(a) +∇f(a)(x− a) + 1

2∇
2f(a)(x− a)2 + . . . .

We have,

f(β̂(λ)) = −2X>A(y−XAβ̂A(λ)) + (λ+ ε) · sign(β̂A(λ))
∇f(β̂(λ)) = 2X>AXA

∇(k)f(β̂(λ)) = 0 for k = 2 . . .∞.

The complete expansion of Equation 4 becomes

−2X>A(y−XAβ̂A(λ)) + (λ+ ε) · sign(β̂A(λ)) + 2X>AXA
(
β̂A(λ+ ε)− β̂A(λ)

)
= 0.

Using Equation 3, we can rearrange this expression to

β̂A(λ+ ε)− β̂A(λ)
ε

= −(2X>AXA)−1sign(β̂A(λ)), (5)

which approaches ∇β̂(λ) as ε → 0 (using ∇β̂I(λ) = 0). This is a constant function which
means that the coefficient paths between events (changes to A and I) are piecewise linear,
similarly to least angle regression.
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Now that an expression for the change in β̂(λ) between events has been established, we focus
on finding the values of λ for which changes to A and I take place. It is beneficial here to
consider Equation 2 on an expanded set of β-values, chosen such that βj = β+

j + β−j where
β+
j ≥ 0 and β−j ≥ 0, ∀j,

arg min
β+,β−

‖y−X(β+ − β−)‖2 + λ‖(β+ + β−)‖1 = L(β̂(λ)) + λ‖(β+ + β−)‖1 (6)

such that β+
j ≥ 0, β−j ≥ 0,∀j.

This formulation of the LASSO is differentiable, at the price of having to deal with twice as
many variables. The Lagrange primal function is

L(β̂(λ)) + λ‖(β+ + β−)‖1 −
p∑
j=1

λ+
j β

+
j −

p∑
j=1

λ−j β
−
j , λ+

j ≥ 0, λ−j ≥ 0, ∀j, (7)

where we have introduced the Lagrange multipliers λ+
j and λ−j . The Karush-Kuhn-Tucker

conditions are

(∇L(β))j + λ− λ+
j = 0 (8)

−(∇L(β))j + λ− λ−j = 0 (9)
λ+
j β

+
j = 0 (10)

λ−j β
−
j = 0. (11)

From these conditions, a number of useful properties arise. First, we note that setting λ = 0
indeed gives us (using Equations 8 and 9) ∇L(β) = 0 as expected. For positive values of λ
we have,

β+
j > 0+⇒ +λ+

j = 0⇒ ∇L(β) = −λ⇒ λ−j > 0⇒ β−j = 0 (12)
β−j > 0+⇒ +λ−j = 0⇒ ∇L(β) = λ⇒ λ+

j > 0⇒ β+
j = 0. (13)

Elements in A have either β+
j > 0 or β−j > 0, but cannot both be non-zero. That is,

|(∇L(β))j | = λ, j ∈ A (14)
|(∇L(β))j | ≤ λ, j ∈ I.

We are seeking the value of γ > 0 for which a variable in I joins A or vice versa. We have
arrived at the following conditions,

j ∈ A → I : β̂
(k)
j + γ∇β̂(k)

j = 0, j ∈ A (15)

j ∈ I → A : |(∇L(β̂(k) + γ∇β̂(k)))i| = |(∇L(β̂(k) + γ∇β̂(k)))j |, j ∈ A, i ∈ I. (16)

The first of these expressions defines the distances {γ} at which active variables hit zero and
join I. The second expression defines the distances at which inactive variables violate the
second condition in Equation 14 and thus must join A. Note that any element in A can be
chosen to calculate the RHS of Equation 16, they all equal λ. The smallest value γmin of the
distances {γ} is where the next event will happen. The coefficients can now be updated by

β̂(k+1) = β̂(k) + γmin∇β̂(k). (17)
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Algorithm 3 LASSO (Rosset and Zhu 2007).

1: Initialize β(0) = 0, A = arg maxj |x>j y|, ∇β̂(0)
A = −sign(x>Ay), ∇β̂(0)

I = 0, k = 0.
2: while I 6= ∅ do
3: γj = min+

j∈A −β
(k)
j /∇β̂(k)

j

4: γi = min+
i∈I {

(xi+xj)>(y−Xβ̂(k))
(xi+xj)>(X∇β̂(k)) ,

(xi−xj)>(y−Xβ̂(k))
(xi−xj)>(X∇β̂(k)) }, where j is any index in A

5: γ = min{γj , γi}
6: if γ = γj then
7: Move j from A to I.
8: else
9: Move i from I to A.

10: end if
11: β̂(k+1) = β̂(k) + γ∇β̂(k)

12: ∇β̂(k+1)
A = −(2X>AXA)−1 · sign(β̂(k+1)

A )
13: k = k + 1
14: end while
15: Output the series of coefficients B = [β(0) . . . β(k)].

We have arrived at Algorithm 3 for the LASSO.
One of the benefits with this particular algorithm is that the coefficient path can be parame-
terized either in terms of ‖β̂(k)‖1, the size of the penalty at iteration k, or the regularization
parameter λ. The latter is seldom explicitly specified in path-following algorithms but here,
the first identity in Equation 14 provides a way of directly calculating λ as a function of β̂,

λ = 2|x>j∈A(y−Xβ̂)|. (18)

Any element in A will do for this calculation. To minimize the risk of numerical problems,
we calculate this value for all elements in A and pick the median.
If asked for, the algorithm returns the same information as Algorithm 2. The LASSO solution
path can be parameterized either in terms of s(β) (cf., Equation 1), or in terms of λ which
also can be interpreted as a function of β, cf., Equation 18. Zou et al. (2007) show that an
unbiased estimate of the degrees of freedom of a particular LASSO solution is given by |A|,
the number of non-zero components of β. Given this estimate, the various model selection
criteria can be calculated as outlined in Section 4.1.
We use the same Gram matrix or Cholesky updating scheme as described in Section 4.1. As
variables leave the active set, the Cholesky factorization R>R = X>AXA is downdated by
removing the contribution to R which is due to the dropped variable.

4.3. The elastic net

Ridge regression (Hoerl and Kennard 1970) represents an effective way of shrinking the OLS
coefficients towards zero. The l1 penalty of the LASSO is replaced with an l2 penalty,

β̂(δ) = arg min
β
‖y−Xβ‖2 + δ‖β‖2, (19)
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which leads to the closed form solution

β̂(δ) = (X>X + δI)−1X>y. (20)

Although similar in formulation, ridge regression and the LASSO have important differences.
The l2 penalty of ridge regression leads to a shrinkage of the regression coefficients, much like
the l1 penalty of the LASSO, but coefficients are not forced to be exactly zero for finite values
of δ. However, a benefit of ridge regression is that a unique solution is available, also when
the data matrix X is rank deficient, e.g., when there are more predictors than observations
(p > n). This is seen in Equation 20; the addition of a sufficiently large constant value along
the diagonal of the Gram matrix X>X ensures full rank (Petersen and Pedersen 2008). The
LASSO algorithm (Algorithm 3) is terminated when the active set size |A| becomes larger
than p since the matrix X>AXA in Step 12 is no longer invertible.
Elastic net regression (Zou and Hastie 2005) combines the virtues of ridge regression and the
LASSO by considering solutions penalized by both an l2 and an l1 term,

β̂(λ, δ) = arg min
β
‖y−Xβ‖2 + δ‖β‖2 + λ‖β‖1, (21)

thus bridging the gap between the LASSO (δ = 0) and ridge regression (λ = 0). The l2
penalty ensures a unique solution also when p > n and the l1 penalty offers variable selection
via a sparse vector of coefficients β̂. Moreover, the l2 penalty leads to a grouping effect (Zou
and Hastie 2005), a term that alludes to the characteristic that highly correlated predictors
tend to have similar regression coefficients for nonzero δ. Note however that this does in
general not mean that highly correlated variables are included into the active set in groups
along the regularization path.
We can use the LASSO algorithm to obtain the full regularization path of elastic net solutions.
To see this, we first note that ridge regression solutions can be obtained by solving an ordinary
least squares problem with an augmented set of observations,

X̃ =
[

X√
δIp

]
, ỹ =

[
y
0

]
. (22)

Expanding the equation β̂ = (X̃>X̃)−1X̃>ỹ gives the ridge solution in Equation 20. For a
fixed value of δ, Algorithm 3 offers solutions for all relevant values of λ. Selecting suitable
values for the regularization parameters typically involves selecting the best value of λ for a
discrete set of values of δ. Thus, the algorithm must be run for each value of δ.
If p>n, the augmented data matrix in Equation 22 has size (n+ p)× p, implying a system of
equations that may be prohibitively large. Remarkably, it turns out that we can do without
explicitly forming these augmented matrices, mainly due to the fact that any multiplications
with ỹ effectively voids the contribution of the additional rows in X̃ since the corresponding
rows of ỹ are zero. Other computations are dot products between vectors with additional
elements in I and vectors with additional elements in A. Since these never coincide (I = Ac),
these additional elements do not contribute to the result. The partial OLS solution calculated
in Step 12 must however take into account the additional rows X. When this equation is solved
using a pre-computed Gram matrix, we simply supply the augmented Gram matrix X>X+δI.
When the Cholesky approach is used, it is straight-forward to take an additional parameter
δ into account such that the Cholesky factorization of X>X + δI is obtained. Except for
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these alterations to Step 12, the algorithm is run as usual. The LASSO and the elastic net
therefore use the same underlying function (larsen.m) which takes the additional parameter
δ used in Step 12. For LASSO solutions δ is simply set to zero.
Zou and Hastie (2005) argue and provide some evidence that the double shrinkage introduced
by the l1 and l2 penalty has an unfortunate effect on prediction accuracy. They propose to
compensate for this by multiplying the solutions B by a factor (1 + δ), and refer to the
unadjusted solutions as the naïve elastic net. In some cases, the naïve solution is preferred,
which consequently i obtained either by calling larsen.m directly or by dividing the elastic
net solutions by (1 + δ).
The elastic net algorithm outputs the same model selection criteria as the LAR and LASSO
algorithms. Computationally, the difference lies in the estimation of the number of degrees
of freedom and the residual variance σ2

ε . For non-zero δ, the corresponding ridge regression
solution is used as a low-bias model in the estimation of the latter. Zou (2005) shows that an
unbiased estimate of the number of degrees of freedom of elastic net solutions can be obtained
by

tr
(
XA(X>AXA + δI)−1X>A

)
,

which we solve efficiently using a singular value decomposition of XA.

4.4. Sparse principal component analysis

Principal component analysis (PCA) is a linear transformation S = XL of a mean-zero
data matrix X where the loading vectors (columns) of L provide an orthonormal basis which
successively maximizes the variance of the projected data in S, where the principal components
(columns) of S are uncorrelated, see, e.g., Hastie, Tibshirani, and Friedman (2009). PCA is
optimal in the sense that no linear transformation can produce a more compact representation
of data given K <p basis vectors. The successive maximization of variance means that the
first few principal components are usually sufficient to accurately describe the data. However,
each principal component is a linear combination of all variables in X and is therefore difficult
to interpret and assign a meaningful label. To alleviate this, sparse PCA (SPCA) aims
at upholding some or all of the properties of PCA – successive maximization of variance,
independence of the loading vectors and uncorrelated principal components – while enforcing
sparsity of the loading vectors such that each principal component is a linear combination of
only a few of the original variables.
The algorithm for computing sparse loading vectors used in this toolbox is detailed in Zou
et al. (2006), and uses the elastic net in a regression-like framework for PCA. In the spirit of
this paper, we start by formulating regular PCA as the solution to a regression problem, and
then add suitable constraints to obtain sparse solutions.
Viewing PCA from a compression standpoint, the objective is to find the rank-K subspace
projection AA> such that A>A = I (A is p×K) which reconstructs a data point x as well
as possible. This amounts to the following criterion,

arg min
A
‖X−XAA>‖2F , such that A>A = I.

The solution is readily available via a singular value decomposition; let X = UDV>, and set
A = V.



16 SpaSM: Sparse Statistical Modeling in MATLAB

Zou et al. (2006) show that this criterion can be relaxed into the following l2-penalized for-
mulation,

arg min
A,B
‖X−XAB>‖2F + δ‖B‖2F , such that A>A = I,

where B is p×K and ‖B‖2F =
∑K
k=1 ‖βk‖22. After normalization such that each column of B

has unit length, the optimal solution is A = B = V, the loading matrix of PCA, irrespective
of the choice of δ. The role of the ridge penalty on B is to provide unique solutions also when
p > n, in which case δ must be non-zero. Since the loading vectors in B are orthogonal, we
can estimate them sequentially by

arg min
αk,βk

‖X−Xβkα>k ‖2F + δ‖βk‖22, subject to A>k Ak = I, (23)

where Ak denotes the matrix [α1 . . . αk]. Aiming at an algorithm for computing a sparse
matrix of loadings, we will now state an alternating algorithm for optimizing the above
criterion for αk and βk. For this purpose, we have the following result.

Lemma 1 Assume α>k αk = 1 and fix αk, X and Y. Then, the problems

arg min
βk

‖Y−Xβkα>k ‖2F , arg min
βk

‖Yαk −Xβk‖22

have the same minimizer β̂k = (X>X)−1X>Yαk.

This result (with Y = X and adding the l2 penalty) shows that for fixed αk, the optimal βk
is given by β̂k = (X>X + δI)−1X>Xαk. If we instead fix βk, the optimal αk is given by the
following result.

Lemma 2 Let A(k−1) with A>(k−1)A(k−1) = I be the (p × k − 1) matrix containing the first
k − 1 columns of A. The “fix βk, solve for αk”-problem can then be formulated as,

α̂k = arg min
αk
‖X−Xβkα>k ‖2F subject to α>k αk = 1, α>k A(k−1) = 0. (24)

Let s =
(
I−A(k−1)A>(k−1)

)
X>Xβk. Then, α̂k = s/

√
s>s.

Appendices B.1 and B.2 contain proofs of the above results. If applied alternately until
convergence for each principal component, we end up with the full PCA solution. This
convergence is assured since penalization (23) is convex and each alternating step leads to a
lower function value.
Turning to the problem of estimating sparse principal components (a sparse loading matrix),
an l1 penalty is added to the formulation in Equation 23.

{α̂k, β̂k} = arg min
αk,βk

‖X−Xβkα>k ‖2F + δ‖βk‖22 + λ‖βk‖1, subject to A>k Ak = I. (25)

Using the alternating approach defined above to optimize this criterion, we see that α̂k is esti-
mated as before, while β̂k is turned from a ridge regression problem into an elastic net problem.
As before the response vector is Xαk. We arrive at Algorithm 4 for computing sparse princi-
pal components. This algorithm also handles the case where the l2 regularization parameter
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Algorithm 4 SPCA (Zou et al. 2006).
1: Let K < p be the number of sparse principal loading vectors to estimate.
2: Let A be the (p×K) matrix consisting of the K first ordinary principal loading vectors.
3: for k = 1, . . . ,K do
4: while sparse loading vector βk has not converged do
5: if δ =∞ then
6: Soft-thresholding: βk =

(
|X>Xαk| − λ

)
+

sign(X>Xαk).
7: else
8: Solve the elastic net problem βk = arg minβ ‖Xαk −Xβ‖2 + δ‖β‖2 + λ‖β‖1.
9: end if

10: Normalize to unit length: βk = βk/
√
β>k βk.

11: Update kth column of projection matrix A: αk = (I−A(k−1)A>(k−1))X
>Xβk.

12: Normalize to unit length: αk = αk/
√
α>k αk.

13: end while
14: end for
15: Output the coefficients B = [β1 . . . βK ].

δ is set to infinity. The elastic net estimation of βk then turns into a soft-thresholding rule as
described in Zou et al. (2006). This leads to a computational advantage, which is why this
option is popular for very high-dimensional data arising from, e.g., image or gene expression
data. It is our experience that this option also provides better solutions (in terms of explained
variance for a fixed level of sparsity) in such cases.
Note that this algorithm is no longer convex, and may converge to local minima.
Since this is the first account of this sequential SPCA algorithm we give preliminary results of
its performance and discuss advantages in relation to the previously proposed simultaneous
approach (Zou et al. 2006).
A clear advantage of sequential estimation of components comes from running the algorithm
once to estimate k components, and once to estimate k + l components. The sequential
approach will yield the exact same first k components in both cases whereas the simultaneous
algorithm gives different results for all components.
Both algorithms are initialized with a matrix A equal to the loading matrix of regular PCA.
The corresponding scores are ordered from high to low variance. The simultaneous approach
often strays far from this initial solution and yields an arbitrary ordering in terms of variance
of its components. In Sjöstrand, Stegmann, and Larsen (2006) we discuss several ways of
establishing a sensible ordering of oblique components. The sequential algorithm is more
likely to produce components of decreasing variance, and we have therefore chosen to return
the components as-is, in order of computation.
The sequential approach transforms one large non-convex optimization problem into several
small ones. Convergence rates for each such problem are typically orders of magnitude higher
than that of the simultaneous approach. To verify this, we conducted an experiment on a
synthetic data set of 600 observations, created from 200 observations each of three sparse
components with added Gaussian noise. The total number of variables in the data set ranged
from 10 to 1500 with increments of 10, and we ran the sequential and simultaneous algorithms
once for each choice of p. We extracted three sparse principal components and compared com-
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Figure 1: The figure on the left shows computation time for a data set with 600 observations
and increasing dimensionality; 25 non-zero loadings were extracted. The sequential SPCA
algorithm is faster by a factor 15–100. The figure on the right shows total adjusted variance
for three components for the same data set. The sequential algorithm pays a small penalty
for the one component at a time approach.

putation times and total adjusted variance. Figure 1 shows the results. The simultaneous
algorithm was forced to give up after 1000 iterations, which occurred in a large proportion of
runs. This is visible in the figure as a marked line of maximal computation times. Computa-
tion times for the sequential algorithm were lower by a factor 15–100 and with no premature
terminations. The sequential algorithm is more restrictive than its sequential counterpart
since previous components are fixed when estimating the next component. In our experience,
one pays a small price in terms of variance for this restriction; this is shown in the right plot
in Figure 1. We have not yet encountered a case were this reduction is significant.

4.5. Sparse linear discriminant analysis

Linear discriminant analysis (LDA) estimates orthogonal directions βk in which observations
xi belonging to one of K classes are most separated. Separation is measured as the between-
class variance σ2

b in relation to the within-class variance σ2
w of the projected data Xβk. Class-

belongings are dummy-encoded in a (n × K) matrix Y where element (i, j) is 1 if the ith
observation belongs to the jth class, else 0. Further, the matrix Dπ = 1

nY>Y is a diagonal
matrix of class prior probabilities based on their frequency in Y. Given these definitions,
the matrix of class centroids is given by M = 1

nD−1
π Y>X, the total covariance matrix is

Σ = 1
nX>X, the between-class covariance matrix is Σb = M>DπM = 1

nX>Y(Y>Y)−1Y>X,
and the within-class covariance matrix is Σw = Σ − Σb = 1

nX>(I −Y(Y>Y)−1Y>)X. The
cost function to optimize for the kth direction is,

arg max
βk

β>k Σbβk subject to β>k Σwβk = 1, β>k Σwβl = 0, ∀l < k. (26)

Standard differentiation leads to a an eigenvalue problem with respect to the matrix Σ−1
w Σb,

which yields the full set of solutions B = {βk}. Classification of a new observation x is
performed by finding the closest centroid in the derived space defined by B.
LDA relies on the assumptions that (1) the data is normally distributed and (2) all classes
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have equal covariances. Although these assumptions are seldom met exactly, LDA often has
as good or better performance compared to more flexible alternatives. This is in part due to
the robustness of a method with few parameters to estimate. As with ordinary least squares in
regression, there are situations where the inverse of the Gram matrix X>X – which turns up
in the estimation of regression coefficients as well as the estimation of Σ−1

w – has high variance
or is computationally infeasible. Similarly to ridge regression (cf., Section 4.3) the covariance
matrix (or equivalently, the Gram matrix) may be replaced by a regularized variant Σ + δΩ.
If Ω is a positive definite matrix, then there exists a large-enough positive value of δ such that
Σ+δΩ is positive definite (Petersen and Pedersen 2008). Application of this approach to LDA
leads to penalized (linear) discriminant analysis (PDA; Hastie, Buja, and Tibshirani 1995);
the estimate of Σw is simply replaced by Σw + δΩ, otherwise the calculation and application
proceeds as before. In the remainder of this section, we will use Ω = I which shrinks the
solutions towards those obtained by assuming a spherical common covariance matrix.
An alternative route to the solutions B of LDA/PDA is via optimal scoring (Hastie, Tibshi-
rani, and Buja 1994). The PDA optimal scoring criterion is

arg min
Θ,B
‖YΘ−XB‖2F + δ‖B‖2F subject to Θ>DπΘ = I. (27)

The matrix Θ is a scoring matrix, orthogonal in Dπ, which assigns a multiple to each column
(class) in Y. This transformation of the dummy encodings circumvents problematic situations
which otherwise make a regression approach to classification difficult (Hastie et al. 2009). As
shown in detail in Hastie et al. (1995) and more succinctly in Hastie et al. (1994), the optimal
solutions B are equivalent, up to a diagonal scaling matrix, to those obtained by PDA using
the penalized within-class covariance matrix Σw + δ

nI. Differentiation, first with respect to
B and then with respect to Θ gives the standard solution; first compute a multivariate ridge
regression of X on Y yielding regression coefficients B̃ = (X>X + δI)−1X>Y. Θ is then
obtained by an eigenanalysis of the matrix ŶY, where Ŷ = XB̃. The final directions B are
obtained in a last step by B = B̃Θ.
Similarly to the treatment of the PCA penalization (23), we can estimate the directions βk
sequentially since they are orthogonal. The estimation of the kth direction involves solving

arg min
θk,βk

‖Yθk −Xβk‖22 + δ‖βk‖22 subject to Θ>k DπΘk = I, (28)

where Θk contains the k first columns of Θ. We will now describe an alternating algorithm
which replaces the eigenanalysis-based recipe in the previous paragraph. This algorithm
then naturally extends to sparse discriminant analysis, where the ridge regression estimate
is replaced by an elastic net estimate. In line with Section 4.4, we first state the following
lemma.

Lemma 3 Let Θ(k−1) with Θ>(k−1)DπΘ(k−1) = I be the (p× k− 1) matrix containing the first
k − 1 columns of Θ. The “fix βk, solve for θk”-problem can then be formulated as,

θ̂k = arg min
θk

‖Yθk −Xβk‖22 subject to θ>k Dπθk = 1, θ>k DπΘ(k−1) = 0. (29)

Let s =
(
I−Θ(k−1)Θ>(k−1)Dπ

)
D−1
π Y>Xβk. Then, α̂k = s/

√
s>Dπs.

Proof Appendix B.2 gives a proof for Lemma 2; the proof for this lemma is equivalent,
except the trivial addition of Dπ. The solution to this lemma is also given – sans proof – in
Clemmensen et al. (2011).
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Algorithm 5 SLDA (Clemmensen et al. 2011).
1: Let Q be the number of classes and K < Q the number of discriminative directions.
2: Initialize Y an n×Q matrix of indicator variables with Yi∈classjj = 1, Dπ = 1

nY>Y, and
Θ = I(Q×K).

3: for k = 1, . . . ,K do
4: while sparse discriminative direction βk has not converged do
5: Solve the elastic net problem βk = arg minβ ‖Yθk −Xβ‖2 + δ‖β‖2 + δ‖β‖1.
6: Update kth column of Θ: θk = (I−Θ(k−1)Θ>(k−1)Dπ)D−1

π Y>Xβk.

7: Normalize to unit length: θk = θk/
√
θ>k Dπθk.

8: end while
9: end for

10: Output the coefficients B = [β1 . . . βK ].

The “fix θk, solve for βk” problem is solved by the ridge regression estimate βk = (X>X +
δI)−1X>Yθk.

We initialize Θ to the size (K × K) identity matrix. The directions are then obtained se-
quentially by alternating the estimation of βk and θk until convergence. Convergence to a
global optimum for each direction is guaranteed by the convexity of the cost function and its
constraints and since each alteration is guaranteed to lower the cost.

With this algorithm in place, it is now straight-forward to extend it to include an l1 penalty
which promotes directions βk which are sparse. This means that the space B in which the
classification is carried out, consists of a subset of the available variables. As with all sparse
methods, the possible benefits are ease of interpretation and (non-linear) suppression of noise.
The l1, l2-regularized criterion is,

{θ̂k, β̂k} = arg min
θk,βk

‖Yθk −Xβk‖22 + δ‖βk‖22 + δk‖βk‖1 subject to Θ>k DπΘk = I, (30)

which turns the ridge regression estimation of βk from penalization (28) into an elastic net
estimate. The resulting algorithm for sparse discriminant analysis is stated in Algorithm 5.

The normalization in Step 7 helps to avoid multiplicative drift towards the trivial solution
where θk = 0 and βk = 0. To avoid additive drift we also require

∑
i(Dπθk)i = 0, i.e.,

that θk is zero-mean in Dπ. In previous treatments of optimal scoring (see, e.g., Clem-
mensen et al. 2011), the columns of Θ are explicitly forced to be orthogonal to a vector of
ones. However, it turns out that Step 6 implicitly guarantees this since Dπθk = Y>Xβk −
DπΘ(k−1)Θ>(k−1)DπD−1

π Y>Xβk. The first term is clearly mean-zero since X is centered. The
second term is mean-zero if DπΘ(k−1)Θ>(k−1)DπD−1

π is mean zero. DπΘ(k−1)Θ>(k−1)Dπ is the
outer product of two mean-zero matrices and results in a mean-zero matrix. Multiplying this
with the diagonal matrix D−1

π does not change this property.

To allow for a more flexible model of the density of each class one may model each class as
a mixture of Gaussian distributions. Clemmensen et al. (2011) describe an extension of the
described algorithm which implements this.
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5. Using the SpaSM toolbox
This section gives a brief overview of usage of the SpaSM toolbox. The examples covered can
all be found in the source code. Issuing the command help nameOfFunction yields a detailed
overview of the input and output to the functions, where nameOfFunction is a function in
the toolbox, e.g., forwardselection.
After the code has been downloaded1 one can add the path to the SpaSM directory in MATLAB
to access the functions and scripts. The examples contain random generated data sets, the
code for generating the data sets is also included in the examples.
A streamlined version of the examples is contained in the file demo.m. This includes the code
to generate the data sets with appropriate seeds and all figures.
Most of the examples should work without issues in Octave (Eaton, Bateman, Hauberg, and
Wehbring 2017). One needs to first install and load the statistics package.

5.1. Forward selection usage example

The example is contained in the file example_forwardselection.m. First a simulated data
set is generated and pre-processed. This data set is referred to as simulated data 1. The code
for generating the data set and the appropriate seed for the random number generator are
inside the file.
The data set is described as follows. A set of six correlated mean zero predictors are generated
from a multivariate random distribution. The covariance matrix has values of 1 in the diagonal
and 0.6 in the off-diagonal entries. The response is generated as a linear combination of the
first three predictors and i.i.d. Gaussian noise with standard deviation 2. The predictors are
then centered and scaled to unit Euclidean length and the response is centered. The forward
selection algorithm is then run with the following command:

>> [beta info] = forwardselection(X, y, 0, true, true);

Step Added Active set size
1 2 1
2 3 2
3 1 3
4 6 4
5 4 5
6 5 6

The inputs are the predictors variables X, the response variable y, a scalar STOP (which
triggers early stopping if non-zero), a Boolean variable STOREPATH (which stores the values
of the coefficients in the model estimated in each iteration) and a Boolean variable VERBOSE
(which if false suppresses output to the command line).
The output to the command line shows what happened in each iteration, i.e., which variable
was added and the size of the active set. The beta in the output is a matrix containing the
coefficients in the model. Column i contains the parameters found in iteration i.

1The code is available at http://www.imm.dtu.dk/projects/spasm/ or as supplementary material.

http://www.imm.dtu.dk/projects/spasm/
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>> beta

beta =

0 0 0 9.4249 10.4411 10.2215 10.4525
0 26.5885 16.2983 12.4341 13.3253 12.5398 12.5018
0 0 15.2383 12.0823 13.2119 13.0880 13.4359
0 0 0 0 0 2.6190 2.9017
0 0 0 0 0 0 -1.2487
0 0 0 0 -3.5534 -4.6301 -4.3471

The info variable in the output is a struct containing values for information criteria (see
Section 4.1), degrees of freedom, steps and relative size of coefficients compared to a low bias
model.

>> info

info =

steps: 6
df: [0 1 2 3 4 5 6]
Cp: [241.363 51.658 19.405 8.533 9.012 10.182 12.000]

AIC: [1.2588e+03 559.269 440.327 400.236 402.003 406.317 413.022]
BIC: [1.2588e+03 568.876 459.542 429.057 440.431 454.353 470.664]

s: [0 0.592 0.703 0.756 0.903 0.960 1.000]

Now we can find the best fitted model according to the AIC :

>> [bestAIC bestIdx] = min(info.AIC);
>> best_s = info.s(bestIdx);

This is a model containing variables 1, 2 and 3. All information criteria select the right model.
Figure 2 shows how the values of the coefficients in the models change over the iterations.

5.2. Least angle regression usage example

We continue to use simulated data set 1 as for the forward selection algorithm. The example
is contained in example_lar.m. We call the LAR algorithm with the following command:

>> [beta info] = lar(X, y, 0, true, true);

Step Added Active set size
1 2 1
2 3 2
3 1 3
4 4 4
5 6 5
6 5 6
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Figure 2: Value of parameters in models changing through the iterations of the forward
selection algorithm on simulated data set 1. The x-axis shows the relative size of the parameter
vector β compared to a low bias model. The dotted red vertical line indicates the model
selected by AIC .

The input/output to the function and the output to the command line is virtually the same
as for the forward selection algorithm. The beta matrix in the output is:

>> beta

beta =

0 0 0 8.2840 8.8654 9.6638 10.4525
0 1.0599 4.5161 11.4756 11.8199 12.2437 12.5018
0 0 3.4562 11.0381 11.5741 12.4654 13.4359
0 0 0 0 0.6168 1.7956 2.9017
0 0 0 0 0 0 -1.2487
0 0 0 0 0 -2.7259 -4.3471

Note that the model in the fourth column has the same parameters non-zero as in the forward
selection algorithm. The values of the parameters are not the same and that is due to the
fact that a new variable is added to the active set when it becomes equally important as an
inactive variable.
The info struct holds the same information as for the forward selection algorithm. The
output is:

>> info

info =

steps: 6
df: [0 1 2 3 4 5 6]
Cp: [241.363 228.383 145.532 10.570 10.709 10.609 12.000]

AIC: [1.2588e+03 1.2110e+03 905.449 407.747 408.262 407.894 413.022]
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Figure 3: Value of parameters in models changing through the iterations of the LAR algorithm
on simulated data set 1. The x-axis shows the relative size of the parameter vector β compared
to a low bias model. The dotted red vertical line indicates the model selected by AIC .

BIC: [1.2588e+03 1.2206e+03 924.663 436.568 446.690 455.929 470.664]
s: [0 0.024 0.178 0.686 0.732 0.866 1.000]

The first and last values of the information criteria are the same as for the forward selection but
note that the intermediate values are quite different due to the different step sizes. Figure 3
shows a similar evolution of the parameters through the iterations as can be seen in Figure 2
for the forward selection algorithm. Note that the magnitude of the parameters of the selected
model is relatively smaller than the one from forward selection.

5.3. The LASSO usage example

Again we use simulated data set 1 to try out the LASSO algorithm. The example is contained
in the file example_lasso.m. The command and command line output are the following:

>> [beta info] = lasso(X, y, 0, true, true);

Step Added Dropped Active set size
1 2 1
2 3 2
3 1 3
4 4 4
5 6 5
6 5 6

The only noticeable difference is the extra column named Dropped. In this example no variable
is dropped from the active set, but that happens when a parameter value crosses zero. The
input to the lasso function is the same as for lar. The values of beta and info are the
same, since non of the active variables becomes zero throughout the iterations as can be seen
in Figure 3.
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Figure 4: Value of parameters in models changing through the iterations of the elastic net
algorithm on simulated data set 2. The x-axis shows the relative size of the parameter vector
β compared to a low bias model.

5.4. The elastic net usage example
The elastic net can handle data sets with more variables than observations, given that the
regularization parameter for the l2 norm of the parameters is strictly positive. Here we create
another simulated data set. We refer to this data set as simulated data set 2.
The data set is created as follows. We generate 30 observations of 40 variables. The predictors
are sampled from a multivariate normal distribution with a similar covariance matrix as the
simulated data set 1. The response is again a linear combination of the first three variables
and i.i.d. Gaussian noise with standard deviation 0.5.
The example is contained in example_elasticnet.m. The algorithm is called as follows:

>> delta = 1e-3;
>> [beta info] = elasticnet(X, y, delta, 0, true, true);

Step Added Dropped Active set size
1 1 1
2 3 2
3 2 3
4 26 4
5 9 5
6 31 6
...

Here delta is the regularization parameter for the l2 norm. The additional output to the
command line is omitted here. The values of the coefficients in the models through the
iterations can be seen in Figure 4.

5.5. Sparse principal component analysis usage example
To demonstrate the usage of SPCA we generate another simulated data set with 1500 ob-
servations and 500 variables. This data set is referred to as simulated data set 3. First we



26 SpaSM: Sparse Statistical Modeling in MATLAB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

Noiseless data

pc1
pc2
pc3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6
Data + noise

Figure 5: The figure on the left shows the three generated components, each consisting of 500
values. The figure on the right shows 5 noisy versions of each of the three components from
simulated data set 3.
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Figure 6: The figure on the left shows the results obtained by SPCA on simulated data set
3. The figure on the right shows the results from PCA.

generate 3 principal components and add i.i.d. Gaussian noise to them to generate 500 noisy
versions of each. The three components can be seen without noise in Figure 5 on the left,
and all the data with the noise is on the right. Note that each components has at least half
the values equal to zero or close to zero. Code to generate simulated data set 3 with the
appropriate seed can be found in the corresponding file example_spca.m. The data is stored
in a matrix X.
To run the method we need to supply a few parameters. The parameters and call to the
function in MATLAB are the following:

>> K = 3;
>> delta = inf;
>> stop = -[250 125 100];
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>> maxiter = 3000;
>> convCriterion = 1e-9;
>> verbose = true;
>> [SL SD] = spca(X, [], K, delta, stop, maxiter, convCriterion, verbose);

The second argument can be the Gram matrix, otherwise the empty matrix is supplied. When
the stop variable is negative, the absolute value is the number of desired non-zero values in
each component. This is an advantage to other algorithms, where sparsity cannot directly be
specified. The results compared to traditional PCA can be seen in Figure 6.

5.6. Sparse linear discriminant analysis usage example

To demonstrate the usage of SLDA we create yet another simulated data set, referred to as
simulated data set 4. The training part of the data set consists of three classes with 100
observations from each class with 150 variables, the test part of the data set is identically
sampled and of the same size. The data is generated from a multivariate normal distribution.
The mean for the first class has the first ten variables as 0.6 and the rest as zero. The mean
for the second class has variables 11–20 as 0.6 and the rest as zero and the third mean has
variables 21–30 as 0.6 and the rest as zero. The classes have the same covariance matrix
where there are 1s in the diagonal and a value of 0.6 in the off diagonal entries. The example
is contained in the file example_slda.m. We can now run the algorithm with the following
command:

>> [B theta] = slda(X, Y, delta, stop, Q, maxiter, tol, true);

Estimating direction 1
Iteration: 10, convergence criterion: 0.025816
Iteration: 20, convergence criterion: 2.7872e-06
Iteration: 22, convergence criterion: 5.1135e-07

Estimating direction 2
Iteration: 3, convergence criterion: 6.019e-30

The parameters for the function call are similar to the ones for SPCA. The parameter Q is
the number of desired discriminative directions, in this case 2. The output consists of B, the
regression parameters, and theta, the optimal scores.
We can now project the data onto the columns spanned by B and perform LDA. The training
error is is 3.0% and test error is 5.3%. When we compare this to doing LDA on the raw data
we get a training error of 1.0% and test error of 12.0%.

6. Example studies
The following examples elaborate on the differences of some of the algorithms presented in
the SpaSM toolbox on real data sets. The first example demonstrates the difference of the
LAR and LASSO algorithms, where the path of one of the coefficients crosses zero through
the iterations. The second example demonstrates the difference of using PCA and SPCA
on a shape data set consisting of male and female silhouettes. SPCA provides more local
deviations from the mean which are easier to interpret.
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Figure 7: Coefficient paths for LAR and LASSO on the Diabetes data set. The red dotted
line shows the model selected by AIC , which in this case is the same model for both. Note
that variable 7 is the only one that changes sign. In the LASSO algorithm it is removed from
the active set when this happens and then it re-enters in the next iteration.
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6.1. Regression on the Diabetes data

To demonstrate the difference of the LASSO and the LAR algorithm we decided to use the
Diabetes data set2, see Efron et al. (2004). This data set is well known in the literature and
it has one variable in it which changes sign through the iterations of LAR. This is what we
need to demonstrate the difference between the two methods. The example is contained in
the file example_LarLasso.m.
The data set includes 10 predictors, 1 response and 442 observations. The data set contains
measurements on diabetic patients and the response is a quantitative measure of disease
progression 1 year after the baseline.
The coefficient paths for the two methods can be seen in Figure 7. The plots are identical
except for the fact that in the LASSO algorithm a variable is removed from the active set
when it becomes zero.

6.2. PCA and SPCA on Silhouette data

This shape data set consists of silhouettes of 20 male and 19 female adults and was first
presented in Thodberg and Olafsdottir (2003). Each silhouette consists of 65 points in 2D
giving a total of 130 variables for each observation. The data has been aligned with Pro-
crustes analysis prior to using the SpaSM toolbox. The example is contained in the file
example_spca_silDat.m.
Running PCA shows that the first three components explain 82.9% of the variation in the
data. Three components from SPCA with 40 non-zero variables each explain 65.27% of the
variation in the data. The results can be seen in Figure 8.
The components obtained by PCA yield variation all over the silhouette. SPCA extracts the
variables that explain most of the variation with the restriction that some of them need to
be zero. These sparse components yield more local deformations on the silhouette, which are
easier to interpret and to compare visually.

7. Collaboration and verification
We use tools and principles from software engineering in the development of this toolbox.
A server-based repository (Apache Subversion, SVN; Apache Software Foundation 2011) al-
lows toolbox authors to download (update in SVN terms) the latest toolbox snapshot, apply
changes and then upload (commit) to the server when finished. Simultaneous editing of files
is also possible where overlapping changes are merged in an intuitive way when committing
changes back to the repository.
In software engineering continuous integration refers to the practice of committing small
changes often to the repository, rather than scarce large updates. This keeps the effort
required to merge changes from different authors to a minimum. To further improve the
quality and effectiveness of the development, we employ unit testing. In parallel with the
development of each toolbox entity, we develop several test scripts, each testing the one part
(unit) of the code. As an example, one test file asserts (using the MATLAB assert command)
that the elastic net with λ = δ = 0 equals the ordinary least squares solution. Although we

2Available at https://web.stanford.edu/~hastie/Papers/LARS/diabetes.data.

https://web.stanford.edu/~hastie/Papers/LARS/diabetes.data
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Figure 8: PCA and SPCA on the Silhouette data set. The top row shows deviations in the
directions of the first three components from PCA and the second row shows them for the
components obtained by SPCA. The red curve represents the mean shape, the green one
represents −2 standard deviations from the mean and the blue +2 standard deviations from
the mean.
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Unit Test Acceptance criterion
LAR Make sure the full LAR model is equal to the

ordinary least squares model.
Results are equal.

LAR Make sure LAR and LASSO are equal in cases
where no variables are dropped in the LASSO.

Results are equal.

LAR Profile code on n >> p and p >> n data sets. Code has no apparent
bottlenecks.

LASSO Make sure the full LASSO model is equal to the
ordinary least squares model.

Results are equal.

LASSO Run with a data set with orthogonal predictor
variables. Compare to soft-thresholding. Cf.,
Appendix A.

Results are equal.

LASSO Profile code on n >> p and p >> n data sets. Code has no apparent
bottlenecks.

Elastic net Make sure the full elastic net model is equal to
the corresponding ridge regression model.

Results are equal.

Elastic net Run with a data set with orthogonal predictor
variables. Compare to soft-thresholding.

Results are equal.

Elastic net Compare results with running LASSO with an
elastic net-style augmented data matrix.

Results are equal.

Elastic net Profile code on n >> p and p >> n data sets. Code has no apparent
bottlenecks.

SPCA Compare the full SCPA model with that of a reg-
ular PCA. Try different values of δ.

Results are equal regard-
less of the value of δ.

SPCA Profile code on n >> p and p >> n data sets. Code has no apparent
bottlenecks.

SLDA Assert that the resulting optimal scores Z = Yθ
are orthogonal.

Z>Z/n = I.

SLDA Compare the results of SLDA with no l1 con-
straint to ridge regression on the matrix Yθ.

Results are equal.

SLDA Compare the results of SLDA with no l1 con-
straint to penalized discriminant analysis (LDA
using the within-class covariance matrix ΣW +
δ
nI).

Results are equal.

SLDA Profile code on n >> p and p >> n data sets. Code has no apparent
bottlenecks.

chol_insert Compare updates of the Cholesky factorization
to a direct Cholesky factorization of the corre-
sponding matrices.

Results are equal.

chol_delete Compare downdates of the Cholesky factoriza-
tion to a direct Cholesky factorization of the cor-
responding matrices.

Results are equal.

Table 1: Toolbox unit tests.
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currently have no automated procedure, we aim to run all such unit test files each time
changes are uploaded to the repository. In this way, we get a strong indication to whether
the new code is working as expected, and that uploaded changes did not break code that was
working in an earlier version of the toolbox. Table 1 lists all relevant unit tests.
Other means of verification we have used are code walkthrough, a line-by-line inspection of
finished code, and deployment of beta releases of the toolbox.
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36 SpaSM: Sparse Statistical Modeling in MATLAB

A. Sparse regression with orthogonal predictors
Several methods have simple closed-form solutions in cases where the predictor variables are
orthogonal and have Euclidean length 1. Often, the estimation can be split into p separate
problems, one for each βi. We will quickly review how this works for the LASSO, the treatment
is similar for the elastic net and LAR. We use this property for testing purposes, cf., Table 1.

‖y−Xβ‖2 + λ‖β‖1 ⇐⇒ ‖y− xiβi‖2 + λ|βi|,∀i.

Optimizing the expression for a single β̂i involves taking first derivatives and setting to zero,

−2x>i (y− xiβi) + λ · sign(βi) = 0, i ∈ A.

Using x>i y = βOLS
i and x>i xi = 1 we have,

−2βOLS
i + 2βi + λ · sign(βi) = 0, i ∈ A.

For sufficiently large values of λ, βi will shrink to exactly zero. For any other value of λ, βi
will agree in sign with βOLS

i . Therefore, we have,

βi = sign(βOLS
i )

(
|βOLS
i | − λ

2

)+
,∀i,

where (·)+ denotes the hinge function max(·, 0).

B. Proofs

B.1. Proof of Lemma 1

Using tr(AB) = tr(BA), tr(A + B) = tr(A) + tr(B) and α>k αk = 1 we have,

‖X−Xβkα>k ‖2F = tr
(
X>X + αkβ

>
k X>Xβkα>k − 2X>Xβkα>k

)
= tr(X>X) + tr(Xβkα>k αkβ>k X>)− 2α>k X>Xβk
= tr(X>X) + tr(Xβkβ>k X>)− 2α>k X>Xβk
= tr(X>X) + β>k X>Xβk − 2α>k X>Xβk,

which clearly has the same minimizing βk as

‖Xαk −Xβk‖22 = α>k X>Xαk + β>k X>Xβk − 2α>k X>Xβk.

Differentiation of any of the expressions gives β̂k = (X>X)−1X>(Xαk). This proof is also
detailed in a slightly different context by Zou et al. (2006).

B.2. Proof of Lemma 2

Incorporating the constraints into the cost function in Equation 24 using Lagrange multipliers
λ (length k − 1 vector) and γ (scalar) the problem becomes

arg min
αk

tr
[
αkβ

>
k X>Xβkα>k − 2αkβ>k X>X + X>X

]
+ α>k A(k−1)λ+ γ(α>k αk − 1).
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Differentiating and setting to zero, and solving for αk leads to

α̂k = 1
β>k X>Xβk + γ

[
X>Xβk −

1
2A(k−1)λ

]
,

or equivalently,

α̂k = 1
β

[
X>Xβk −A(k−1)α

]
. (31)

The orthogonality constraints give

A>(k−1)α̂k = 0⇔ 1
β

[
A>(k−1)X

>Xβk − α
]

= 0⇔ α = A>(k−1)X
>Xβk.

Inserting this expression for α into Equation 31 and simplifying gives

α̂k = 1
β

(
I−A(k−1)A>(k−1)

)
X>Xβk ≡

1
β

s.

Finally, the constraint α>k αk = 1 gives β =
√

s>s such that α̂k = s/
√

s>s. In practice, we
first calculate s and then normalize this vector to unit length.
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