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Abstract

Raftery, Kárný, and Ettler (2010) introduce an estimation technique, which they refer
to as dynamic model averaging (DMA). In their application, DMA is used to predict the
output strip thickness for a cold rolling mill, where the output is measured with a time
delay. Recently, DMA has also shown to be useful in macroeconomic and financial appli-
cations. In this paper, we present the eDMA package for DMA estimation implemented
in R. The eDMA package is especially suited for practitioners in economics and finance,
where typically a large number of predictors are available. Our implementation is up to
133 times faster than a standard implementation using a single-core CPU. Thus, with the
help of this package, practitioners are able to perform DMA on a standard PC without
resorting to large computing clusters, which are not easily available to all researchers.
We demonstrate the usefulness of this package through simulation experiments and an
empirical application using quarterly US inflation data.

Keywords: dynamic model averaging, multi-core CPU, parallel computing, R, OpenMP.

1. Introduction

Modeling and forecasting economic variables such as real GDP, inflation and equity premium
is of clear importance to researchers in economics and finance. For instance, forecasting
inflation is crucial for central banks with regards to conducting optimal monetary policy.
Similarly, understanding and predicting equity premium is one of the most widely important
topics discussed in financial economics as it has great implications on portfolio choice and
risk management, see for instance Dangl and Halling (2012) among many others.
In order to obtain the best forecast possible, practitioners often try to take advantage of
the many predictors available and seek to combine the information from these predictors
in an optimal way, see Stock and Watson (1999), Stock and Watson (2008) and Groen,
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Paap, and Ravazzolo (2013) just to mention a few references. Recently, in the context of
forecasting US and UK inflation, Koop and Korobilis (2011) and Koop and Korobilis (2012)
implement a technique developed by Raftery et al. (2010), referred to as dynamic model
averaging (DMA). The original purpose of DMA introduced in Raftery et al. (2010) is more
oriented towards engineers. Particularly, their aim is to predict the output strip thickness
for a cold rolling mill, where the output is measured with a time delay. DMA consists of
many time-varying coefficient regression models formed from all possible combinations of
the predictors available to a practitioner. Moreover, besides allowing for time-variation in the
regression coefficients, interpreting inclusion probabilities of each individual model, DMA also
allows the relevant model set to change with time as well through a forgetting factor. This
way, past model performance receives relatively less weight than current model performance
and the estimation procedure adapts better to the incoming data. Koop and Korobilis (2011)
and Koop and Korobilis (2012) argue that by slightly adjusting the original framework of
Raftery et al. (2010), DMA can be useful in economic applications, especially for inflation
forecasting.1 Dangl and Halling (2012) provide further suggestions on how to improve DMA
such that it can better adapt to the patterns typically observed in economic and financial data.
The aforementioned authors, also provide a useful variance decomposition scheme using the
output from the estimation procedure. Byrne, Korobilis, and Ribeiro (2018), among others,
use the modifications proposed in Dangl and Halling (2012) to model currency exchange-
rate behavior. We must also emphasize that DMA is not solely limited to this kind of data
series and can be used in a wide range of economic applications such as, forecasting realized
volatility as well as house, oil and commodity prices.
However, from a practical point of view, designing an efficient DMA algorithm remains a
challenging issue. As we demonstrate in Section 3, DMA considers all possible combinations
of predictors and forgetting factor values at each time-period. Typically, many candidate
variables are available and, as a consequence, this poses a challenge for the computational
facilities at hand, which for many practitioners typically consist of a standard 8-core CPU. In
most cases, averaging over a relatively small number of model combinations (usually between
1000 to 3000) allows one to perform DMA using standard loops and software. However,
handling larger number of combinations can quickly become very cumbersome and imposes
technical limits on the software at hand, especially with regards to memory consumption, see
for example, Koop and Korobilis (2012). In order to deal with this issue, Onorante and Raftery
(2016) suggest a strategy that considers not the whole model space, but rather a subset of
models and dynamically optimizes the choice of models at each point in time. However,
Onorante and Raftery (2016) have to assume that models do not change too fast over time,
which is not an ideal assumption when dealing with financial and in some cases monthly
economic data. Furthermore, it is not clear to us how one can incorporate the modifications
suggested in Dangl and Halling (2012) within the framework of Onorante and Raftery (2016).
In this paper, we introduce the eDMA (Catania and Nonejad 2018) package for R (R Core
Team 2017) available from the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-project.org/package=eDMA. The package efficiently implements a DMA procedure
based on Raftery et al. (2010) and Dangl and Halling (2012). The routines in the eDMA
package are principally written in C++ using the Armadillo library of Sanderson (2010)
and then made available in R with the Rcpp and RcppArmadillo packages of Eddelbuettel,

1Specifically, Koop and Korobilis (2012) change the conditional volatility formula of Raftery et al. (2010)
arguing that the original formula is not suited for the analysis of economic data.

https://CRAN.R-project.org/package=eDMA
https://CRAN.R-project.org/package=eDMA
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François, Allaire, Ushey, Kou, Bates, and Chambers (2016a) and Eddelbuettel, François,
and Bates (2016b), respectively. Furthermore, the OpenMP API (ARB OpenMP 2008) is
used to speedup the computations when a shared memory multiple processors hardware is
available, which, nowadays, is standard for the majority of commercial laptops. However, if
the hardware does not have multiple processors, the eDMA package can still be used with the
classical sequential CPU implementation. Our aim is to provide a package that can be used by
a broad audience from different academic fields who are interested in implementing DMA in
their research and obtain quantities such as inclusion probabilities and out-of-sample forecasts
or to perform variance decomposition. Furthermore, our package enables practitioners, to
perform DMA using a large number of predictors without needing to understand and possibly
implement complex programming concepts such as “how to efficiently allocate memory”, or
“how to efficiently parallelize the computations”.
It is also worth noting that, within the R environment, the dma package of McCormick,
Raftery, and Madigan (2016) available from CRAN can be used to perform the DMA of
Raftery et al. (2010). However, dma has several weaknesses such as (i) it does not allow for
the extensions mentioned in Dangl and Halling (2012), which are important in the context
of interpreting the amount of time-variation in the regression coefficients and performing a
variance decomposition analysis, (ii) it is slow compared to the package introduced in this
paper, (iii) it requires a very large amount of RAM when executed for moderately large
applications, and (iv) it does not allow for parallel computing. We refer the reader interested
in these aspects to Section 5, where we report a comparative analysis between dma and
eDMA using simulated data. Moreover, eDMA permits us to also perform Bayesian model
averaging (BMA) and Bayesian model selection (BMS) for linear regression models with
constant coefficients implemented, for example, in the R packages BMA (Raftery, Hoeting,
Volinsky, Painter, and Yeung 2015) and BMS (Zeugner and Feldkircher 2015). At the same
time, we obtain quantities such as: posterior inclusion probabilities and average model size,
which allow us to compare DMA (as well as dynamic model selection; DMS) with BMA
(BMS) with regards to model shrinkage and the magnitude of variation in the average model
size.
The structure of this paper is as follows: Sections 2 and 3 briefly introduce DMA and its ex-
tensions. Section 4 presents the technical aspects. Section 5 provides an intuitive description
of the challenges that DMA posses from a computational point of view and proposes solu-
tions. Section 6 provides an empirical application to demonstrate the advantages of eDMA
from a practical point of view. Therefore, practitioners who are solely interested on how
to implement DMA using the eDMA package can skip Sections 2 and 3. Finally, Section 7
concludes.

2. Framework
Many forecasting applications are based on a model where the variable of interest at time t,
yt, depends on exogenous predictors and possibly lagged values of yt itself. For instance, in
panel (a) of Figure 1, we plot the quarterly US inflation rate, 1004 lnPt, where Pt denotes
the US gross domestic product implicit price deflator (GDPDEF) from 1968Q1 to 2011Q2.
We then recursively (i.e., using data up to time t) estimate an autoregressive model of order 2,
AR(2), of yt and report the sum of the autoregressive coefficients, which can be considered as
a basic measure of inflation persistence in panel (b). Our general conclusions from panels (a)–
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Figure 1: Panel (a): quarterly GDPDEF inflation from 1968Q1 to 2011Q2. Panel (b): infla-
tion persistence estimates from an AR(2) model. Panel (c): recursive OLS estimates of, θ4,
in yt = θ1 + θ2yt−1 + θ3yt−2 + θ4UNEMPt−1 + et, where et ∼ N

(
0, σ2). Panel (d): recursive

p values for the null hypothesis of θ4 = 0 at the 5% level. The gray vertical bars indicate
business cycle peaks, i.e., the point at which an economic expansion transitions to a recession,
based on National Bureau of Economic Research (NBER) business cycle dating.

(b) are: inflation is persistent and generally tends to be higher during recessions than tranquil
periods. It does not appear to follow an identical cyclical pattern either. For example, infla-
tion increases less aggressively towards the Great Recession of 2008 than the corresponding
downturns in the 1970s, 1980s or the early 2000s. Furthermore, even in this simple model,
we still observe some time-variation in the AR coefficients. We then extend the plain AR(2)
model to also include the lagged unemployment rate (UNEMP) as a regressor. This way, we
end up with a basic Philips curve. In panel (c), we report the recursive OLS estimates of
UNEMP and in panel (d), we report the recursive p values associated to the null hypothesis
that this estimate is equal to zero. Panel (d) shows that the unemployment rate in some
periods seems to be a useful predictor of inflation.
Results from panels (a)–(d) of Figure 1 suggest that two changes can potentially help to
improve the accuracy of inflation forecasts: (i) incorporating time-variation in the regression
coefficients and (ii) augmenting the AR model with exogenous predictors that can capture
information beyond that already contained in lagged values of yt. Thus, in many economic
applications, we eventually end up with a model such as:

yt = θ1t + θ2tyt−1 + θ3tyt−2 + θ4txt−1 + . . .+ θntzt−1 + εt, εt ∼ N (0, Vt) . (1)
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Obviously, n can be large and as a consequence, we may have to deal with a very large
number of model combinations. For example, if our set of models is defined by whether each
of the n potential predictors is included or excluded, then we can have as high as k = 2n
model combinations to consider, which raises substantive challenges for model selection. This
aspect is referred to as “model uncertainty”, i.e., the uncertainty that a practitioner faces
in choosing the correct combination of predictors. It is important to note, that discarding
this aspect can have severe consequences on out-of-sample results. This is due to the fact
that, simply adding additional predictors in our model without designing an optimal model
selection strategy, can deteriorate out-of-sample performance due to the bias-variance trade-
off (the additional reduction in bias afforded by including additional predictors does not offset
the increased forecast variance related to the more heavily parameterized model). Besides
model uncertainty, a practitioner also faces uncertainty regarding the nature of time-variation
in the regression coefficients, i.e., “parameter uncertainty”. Underestimating or overestimating
the magnitude of time-variation in the regression coefficients also has important consequences
as our model adapts either too slowly or too quickly to new data, generating either too rigid
or too volatile forecasts. The DMA methodology provides an optimal way to deal with these
sources of uncertainty. Moreover, it is simple, parsimonious and allows us to evaluate out-of-
sample forecasts based on a large set of model combinations in real-time (no need to condition
on the full sample at time t) without resorting to simulation.
To provide more details on the underlying mechanism of DMA, we start by assuming that
any combination of the elements on the right-hand-side of (1) can be expressed as a dynamic
linear model (DLM), see West and Harrison (1999) and Raftery et al. (2010). Particularly,
let F(i)

t denote a p × 1 vector based on a given combination of our total predictors, Ft =
(1, yt−1, yt−2, xt−1, . . . , zt−1)>. Then, we can express our ith DLM as:

yt = F(i)>
t θ

(i)
t + ε

(i)
t , ε

(i)
t ∼ N

(
0, V (i)

t

)
(2)

θ
(i)
t = θ

(i)
t−1 + η

(i)
t , η

(i)
t ∼ N

(
0,W(i)

t

)
, (3)

where the p× 1 vector of time-varying regression coefficients, θ
(i)
t =

(
θ

(i)
1t , . . . , θ

(i)
pt

)>
, evolves

according to (3) and determines the impact of F(i)
t on yt. Note, we do not assume any

systematic movements in θ
(i)
t . On the contrary, we consider changes in θ

(i)
t as unpredictable.2

The conditional variances, V (i)
t and W(i)

t , are unknown quantities associated with the obser-
vational equation, (2), and the state equation, (3). Obviously, when W(i)

t = 0 for t = 1, . . . , T ,
then θ

(i)
t is constant over time. Thus, (2)–(3) nests the specification of constant regression

coefficients. For W(i)
t 6= 0, θ

(i)
t varies according to Equation 3. However, this does not mean

that θ
(i)
t needs to change at every time period. For instance, we can easily have periods where

W(i)
t = 0 and thus θ

(i)
t = θ

(i)
t−1. Ultimately, the nature of time variation in the regression

coefficients is dependent on the data at hand.3

2See Dangl and Halling (2012) and Koop and Korobilis (2012) for a similar model specification.
3We model time-variation in θ

(i)
t through a forgetting factor, δ, see below for more details. Moreover,

we show that the recursive updating of the forgetting factor based on the predictive likelihood, avoids any
unreasonable behavior of θ

(i)
t even though, we do not specifically put any structure on θ

(i)
t . We also refer the

reader to Appendix A.3 of Dangl and Halling (2012), where it is shown that (3) outperforms the autoregressive
structured counterpart.
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In DMA, we consider a total of k = 2n − 1 possible combinations of the predictors at each
point in time while contemporaneously assuming that θ

(i)
t can evolve over time.4 DMA then

averages forecasts across the different combinations using a recursive updating scheme based
on the predictive likelihood. The predictive likelihood measures the ability of a model to
predict yt, thus making it the central quantity of interest for model evaluation. Models con-
taining important combinations of predictors receive high predictive likelihood values, which
means that they obtain relatively higher posterior weights in the averaging process. Besides
averaging, we can also use the forecasts of the model receiving the highest probability among
all model combinations considered at each point in time. In this case, we are performing
dynamic model selection (DMS), see also Koop and Korobilis (2012).
As indicated in (3), we must specify W(i)

t , i = 1, . . . , k. Obviously, this task can be very
daunting if we were to specify W(i)

t for each of the total k models. However, DMA avoids
the difficult task of specifying W(i)

t for each individual model relying on a forgetting factor,
0 < δ ≤ 1. This in turn simplifies things greatly from a practical point of view as instead
of working with many parameters, we only need to worry about δ. Now, we briefly explain
how this mechanism works. We start by defining the variables of the Kalman recursions
for the ith model as follows: (i) R(i)

t , the prediction variance of θ
(i)
t (see Equation 17 in

Appendix A at the end of paper), (ii) C(i)
t , the estimator for the covariance matrix of θ

(i)
t ,

(see Equation 19), and (iii) S(i)
t , the estimator of the observational variance. Then, using

δ, we can rewrite R(i)
t = C(i)

t−1 + W(i)
t in Appendix A as R(i)

t = δ−1C(i)
t−1, indicating that

there is a relationship between W(i)
t and δ, which is given as W(i)

t = (1− δ) /δC(i)
t−1. In

other words, the loss of information is proportional to the covariance of the state parameters,
C(i)
t . Clearly, we can control the magnitude of the shocks that impact θ

(i)
t by adjusting δ

instead of directly estimating W(i)
t . Accordingly, δ = 1 corresponds to W(i)

t = 0, which
means that θ

(i)
t equals its value at time t− 1. For δ < 1, we introduce time-variation in θ

(i)
t .

For instance, when δ = 0.99, in the context of quarterly data, observations five years ago
receive approximately 80% as much weight as last period’s observation, which corresponds to
gradual time-variation in θ

(i)
t . When δ = 0.95, observations 20 periods ago receive only about

35% as much weight as last period’s observation, suggesting that a relatively larger shock hits
the regression coefficients. Evidently, while this renders the model more flexible to adapt to
changes in the data, the increased variability in θ

(i)
t also results in higher prediction variance.

Thus, estimating (2)–(3) depends not only on the choice of the predictors in F(i)
t but also the

choice of δ.
Conditional on δ, the DMA probability of model Mi conditional on the current information
set at time t, Ft, is then defined as:

p (Mi | Ft) = p (yt |Mi,Ft−1) p (Mi | Ft−1)∑k
l=1 p (yt |Ml,Ft−1) p (Ml | Ft−1)

,

where p (yt |Mi,Ft−1) is the predictive likelihood of modelMi evaluated at yt, p (Mi | Ft−1) =
p (Mi | Ft−1)α /Σk

l=1p (Ml | Ft−1)α where 0 < α ≤ 1 is the forgetting factor for the entire
model chosen by the practitioner and p(Mi|Ft−1) is the model probability at time t− 1. The
forgetting factor parameter, α, induces time-variation in the entire model set. Clearly, the
lower the value of α, the lesser weight is given to past performance. Raftery et al. (2010) and

4The model yt = εt is not considered in the universe of models, see also Dangl and Halling (2012).
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Koop and Korobilis (2012) recommend setting α close to one. Dangl and Halling (2012), on
the other hand, fix α at 1.
Finally, we must also determine a way to model the evolution of V (i)

t , i = 1, . . . , k. Here,
we have two options, which we go into more details below, see point (c). Thus in order to
initialize the DMA recursions, a practitioner must:

(a) Consider the number of predictors. Typically, in economic applications, we use exoge-
nous variables as well as lagged values of yt as predictors. For instance, in the context
of forecasting quarterly inflation, besides considering predictors such as unemployment
and T-bill rates, Koop and Korobilis (2012) also consider the first three lags of yt as
predictors.

(b) Choose δ and α. In many applications α ∈ {0.98, 0.99, 1} works well and generally
results do not change drastically across different values of α5. On the other hand, as
previously mentioned, we often find that the choice of δ is more important. Koop and
Korobilis (2012) fix δ at {0.95, 0.98, 0.99, 1.00} and run DMA using each of these values.
They find that results differ considerably in terms of out-of-sample forecasts. Evidently,
in many economic applications, it is plausible that δ would indeed be time-varying. For
instance, it is plausible to expect that δ is relatively low in recessions or periods of
market turmoil (where there is considerable time-variation in θ

(i)
t ). Conversely, δ ought

to be close to 1.00 during tranquil periods, where basically nothing changes. Dangl
and Halling (2012) propose an elegant solution to this problem by considering a grid
of values for δ and incorporate this in the DMA setting by averaging over all possible
combinations of the predictors as well as the corresponding grid of δ. At the same
time, this strategy means that we avoid any unreasonable behavior of θ

(i)
t as δ values

incompatible with the data (and of course resulting in bad behavior on θ
(i)
t ) do not

receive a weight in the averaging process. Furthermore, this procedure can also be used
to obtain more information from the data through a variance decomposition scheme,
see below for more details.

(c) Evolution of V (i)
t : We can make things easy for conjugate analysis by assuming that

V
(i)
t = V (i) for all t. At time t = 0, we specify a Normal prior on θ

(i)
0 and an inverted-

gamma prior on V (i), i.e., V (i)|F0 ∼ IG
(

1
2 ,

1
2S

(i)
0

)
, where IG

(
v
2 ,

κ
2
)
stands for the

inverted-gamma distribution with scale, v, and shape κ, see also Prado and West (2010).
Then, the posterior of V (i) follows an IG distribution with parameters, S(i)

t , n(i)
t , where

the time t point estimate of V (i), S(i)
t , is given as

S
(i)
t = S

(i)
t−1 +

S
(i)
t−1

n
(i)
t

(
e

2(i)
t

Q
(i)
t

− 1
)
,

n
(i)
t = n

(i)
t−1 + 1, e(i)

t and Q
(i)
t are given in Appendix A and Prado and West (2010).

Clearly, S(i)
t approaches to a constant level as n(i)

t increases. More importantly, under
these assumptions, we find that, when we integrate the conditional density of yt over the
values of θ

(i)
t and V (i), the corresponding predictive density has a closed-form solution

5Recently, in the context of binary regressions, McCormick, Raftery, Madigan, and Burd (2012) suggest a
technique where one can model α as time-varying.
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given by, T
n

(i)
t

(
ŷ

(i)
t , Q

(i)
t

)
, where T

n
(i)
t

stands for the Student’s t-distribution with n(i)
t

degrees-of-freedom, mean and scale given by ŷ(i)
t = F(i)>

t a(i)
t−1 and Q(i)

t , see Appendix A
for more details.

However, in many applications, allowing for time-variation in the conditional error variance
better suits our underlying economic assumptions. Therefore, we follow Prado and West
(2010) and in a similar fashion as for W(i)

t adopt a discount factor to induce time-variation
in V (i)

t . Particularly, we do this by imposing a forgetting factor, 0 < β ≤ 1, which enters the
scale and the shape parameters of the inverted-gamma distribution, such that n(i)

t = βn
(i)
t−1+1.

This way, V (i)
t is updated according to new data and forgetting past information to reflect

changes in volatility. This approach means that, if β < 1, the time t estimate of V (i)
t is given

as:

S
(i)
t = (1− β)

t−1∑
s=0

βs

e2(i)
t−sS

(i)
t−s−1

Q
(i)
t−s

 . (4)

In other words, V (i)
t has the form of an exponentially weighted moving average (EWMA)

and older data are further discounted as time progresses. When β = 1, then we recover
V

(i)
t = V (i).6 This extension obviously requires the practitioner to also consider a value for β.

By experimenting with smaller models using simulated data, we observe that in some instances
certain combinations of δ and β result in similar estimates of the regression coefficients. For
example, in a model with a moderate degree of variation in θ

(i)
t , the values β = 0.99 and

δ = 0.94, imply similar dynamics in the regression coefficients as β = 0.95 and δ = 0.98.
This is understandable as allowing for variation in the conditional variance takes always some
dynamics from the regression coefficients, whereas more dynamics in θ

(i)
t are required in order

to compensate for the possible lack of time-variation in V (i)
t . Overall, our conclusion is that

if a practitioner chooses to fix β < 1, then it is best to fix δ close to 1, say at 0.96, which
is also the value used by Riskmetrics (1996). This way, we maintain a parsimonious model
structure and allow for time-variation in V (i)

t . More importantly, we reduce the risk of under-
(over-)estimating the true magnitude of variation in θ

(i)
t .7

3. Modified DMA
Below, we present the DMA algorithm modified to incorporate the extensions mentioned in
Section 2. Let Mi denote a model containing a specific set of predictors chosen from a set
of k = 2n − 1 candidates and δj denotes a specific forgetting factor value chosen from a pre-
specified grid of values, {δ1, . . . , δd}. The total posterior density of model Mi and forgetting
factor value δj at time t, p (Mi, δj |Ft), is then given as

p (Mi, δj |Ft) = p (Mi|δj ,Ft) p (δj |Ft) .

6We would like to thank an anonymous reviewer for this suggestion.
7We observe the same phenomena when we allow α to vary with δ. Overall, our conclusion is that it is

best to use (c) and fix α close to 0.99 for monthly and quarterly data. However, if a practitioner wishes to set
β < 1, then we generally recommend β > 0.96 and α = 0.99.
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In order to obtain p (Mi|Ft) we can use the relation

p (Mi|Ft) =
d∑
j=1

p (Mi|δj ,Ft) p (δj |Ft) . (5)

The term, p (Mi|δj ,Ft), in Equation 5 is given as

p (Mi|δj ,Ft) = p (yt|Mi, δj ,Ft−1) p (Mi|δj ,Ft−1)∑k
l=1 p (yt|Ml, δj ,Ft−1) p (Ml|δj ,Ft−1)

, (6)

where

p (Mi|δj ,Ft−1) = p (Mi|δj ,Ft−1)α∑k
l=1 p (Ml|δj ,Ft−1)α

. (7)

The second term on the right-hand side of Equation 5 is given as

p (δj |Ft) = p (yt|δj ,Ft−1) p (δj |Ft−1)∑d
l=1 p (yt|δl,Ft−1) p (δl|Ft−1)

, (8)

where

p (δj |Ft−1) = p (δj |Ft−1)α∑d
l=1 p (δl|Ft−1)α

.

Typically, p (Mi, δj |F0) = 1/(d · k) such that, initially, all model combinations and degrees of
time-variation are equally likely. Thereafter, as a new observation arrives, model probabilities
are updated using the above recursions.

3.1. Using the output from DMA

For practitioners, the most interesting output from DMA consists of:

(i) The predictive mean of yt+1 conditional on Ft, denoted by ŷt+1. This is simply an
average of each of the individual model predictive means. That is

ŷt+1 =
d∑
j=1

E
[
y

(j)
t+1|Ft

]
p (δj |Ft) , (9)

where

E
[
y

(j)
t+1|Ft

]
=

k∑
i=1

E
[
y

(j)
i,t+1|Ft

]
p (Mi|δj ,Ft) .

The formulas for the predictive density are given as

p (yt+1|Ft) =
d∑
j=1

p(y(j)
t+1|Ft)p(δj |Ft), (10)
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where

p(y(j)
t+1|Ft) =

k∑
i=1

p(y(j)
i,t+1|Ft)p(Mi|δj ,Ft).

Besides averaging over the individual predictive means/densities, we can simply choose
the predictive mean/density associated with the model with the highest posterior prob-
ability. Henceforth, we label this as dynamic model selection (DMS), see also Koop and
Korobilis (2012). When, δ, β and α are all fixed at 1, we have Bayesian model averaging
(BMA, see Raftery 1995) and Bayesian model selection (BMS) based on exact predictive
likelihood, see for instance Zeugner and Feldkircher (2015).8

(ii) Quantities such as the expected size, E [Sizet] = Σk
i=1Size(i)p (Mi|Ft), where Size(i)

corresponds to the number of predictors in model i. This quantity reveals the average
number of predictors in the DMA, see Koop and Korobilis (2012). Similarly, we can
compute the number of predictors for the model with the highest posterior probability,
(5), at each point in time, which give the optimal model size at time t.

(iii) Posterior inclusion probabilities for the predictors. That is, at each t, we calculate∑k
i=1 1(i⊂m)p (Mi|Ft), where 1(i⊂m) is an indicator function taking the value of either

0 or 1 and m, m = 1, . . . , n, is the mth predictor. We can also report the highest
posterior model probability or the sum of the top 10% model probabilities among all
model combinations after integrating out the effect of δ. This information can be used
to determine if there is a group or an individual model that obtains relatively high
posterior probability.

(iv) Posterior weighted average of δ at each point in time that is ∑d
j=1 δjp (δj |Ft), for t =

1, . . . , T .

(v) Posterior weighted average estimates of θt for DMA

E[θt|Ft] =
d∑
j=1

E[θ(j)
t |Ft]p(δj |Ft), (11)

where

E[θ(j)
t |Ft] =

k∑
i=1

E[θ(j)
i,t |Ft]p(Mi|δj ,Ft).

(vi) Variance decomposition of the data, VAR (yt+1|Ft), decomposed into:

VAR (yt+1|Ft) = Obst+1 + Coefft+1 + Modt+1 + TVPt+1, (12)

8Zeugner and Feldkircher (2015) also implement BMA using the MC3 algorithm relying on Markov chain
Monte Carlo (MCMC) techniques. However, their framework does not allow for time-variation in the regression
coefficients nor model size.
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where

Obst+1 =
d∑
j=1

[
k∑
i=1

(St|Mi, δj ,Ft) p (Mi|δj ,Ft)
]
p (δj |Ft) ,

Coefft+1 =
d∑
j=1

[
k∑
i=1

(
F>t RtFt|Mi, δj ,Ft

)
p (Mi|δj ,Ft)

]
p (δj |Ft) ,

Modt+1 =
d∑
j=1

[
k∑
i=1

(
ŷ

(j)
i,t+1 − ŷ

(j)
t+1

)2
p (Mi|δj ,Ft)

]
p (δj |Ft) ,

TVPt+1 =
d∑
j=1

(
ŷ

(j)
t+1 − ŷt+1

)2
p (δj |Ft) . (13)

The first term is the observational variance, Obs. The remaining terms are: variance
due to errors in the estimation of the coefficients, Coeff, variance due to uncertainty
with respect to the choice of the predictors, Mod, and variance due to uncertainty with
respect to the choice of the degree of time-variation in the regression coefficients, TVP,
see Dangl and Halling (2012) for more details.

4. The eDMA package for R
The eDMA package for R offers an integrated environment for practitioners in economics
and finance to perform our DMA algorithm. It is principally written in C++, exploiting the
Armadillo library of Sanderson (2010) to speed up computations. The relevant functions are
then made available in R through the Rcpp and RcppArmadillo packages of Eddelbuettel
et al. (2016a) and Eddelbuettel et al. (2016b), respectively. It also makes use of the OpenMP
API (ARB OpenMP 2008) to parallelize part of the routines needed to perform DMA. Fur-
thermore, multiple processors are automatically used if supported by the hardware, however,
as will be discussed later, the user is also free to manage the level of resources used by the
program.
The eDMA package is written using the S4 framework for object-oriented programming
(Chambers 1998), meaning that classes and methods are defined. Specifically, R users will
find common methods are available, such as plot(), show(), as.data.frame(), coef() and
residuals(), among others, in order to visualize the output of DMA and extract estimated
quantities.
The eDMA package is available from CRAN at https://CRAN.R-project.org/package=
eDMA and can be installed using the command:

R> install.packages("eDMA")

Once the package is correctly installed and loaded, the user has available the function DMA()
to perform DMA. The DMA() function then accepts a series of arguments and returns an
object of the class ‘DMA’ which comes with several methods, see Section 4.2. The arguments
the DMA() function accepts are:

https://CRAN.R-project.org/package=eDMA
https://CRAN.R-project.org/package=eDMA
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• formula: an object of class ‘formula’ (or one that can be coerced to that class); a
symbolic description of the model to be fitted. The formula should include all the
predictors one chooses to use. The inclusion of the constant term follows the usual R
practice, i.e., it is included by default and can be removed if necessary. For instance,
in order to model y ~ x, however, without the constant, we can write for example, y
~ x - 1, see help(formula). This implementation follows the common practice for R
users, see, e.g., the plm package of Croissant and Millo (2008).

• data: a ‘data.frame’ (or object coercible by as.data.frame() to a ‘data.frame’)
containing the variables in the model. If data is an object of the class ‘ts’, ‘zoo’ or
‘xts’, then the time information is used in the graphical representation of the results as
well as for the estimated quantities. The dimension of data is T × (1 + n), containing
at each row, the dependent variables yt and the predictors Ft, that is

(
yt,F>t

)
, for all

t = 1, . . . , T .9

• vDelta: a d × 1 numeric vector representing a grid for δ. Typically we choose the
following grid: {0.90, 0.91, . . . , 1.00}. By default vDelta = c(0.90, 0.95, 0.99).

• dAlpha: a numeric variable representing α in Equation 7. By default dAlpha = 0.99.

• dBeta: a numeric variable indicating the forgetting factor for the measurement variance,
see Equation 4 and Prado and West (2010, p. 132) and Beckmann and Schüssler (2014).
By default dBeta = 1.0, i.e., the observational variance is constant.

• vKeep: a numeric vector of indices representing the predictors that must be always
included in the models. The models that do not include the variables declared in vKeep
are automatically discarded. The indices must be consistent with the model description
given in formula. For instance, if the first and the fourth variable always have to
be included, then we must set vKeep = c(1, 4). Notice that the intercept (if not
removed from formula) is always in the first position. vKeep can also be a character
vector indicating the names of the predictors if these are consistent with the provided
formula. Furthermore, if vKeep = "KS" the “kitchen sink” formulation is adopted,
i.e., all the predictors are always included, see, e.g., Paye (2012). By default all the
combinations are considered, vKeep = NULL.

• bZellnerPrior: a Boolean variable indicating whether the Zellner’s prior (see Dangl
and Halling 2012) should be used for the coefficients at time t = 0. By default
bZellnerPrior = FALSE.

• dG: a numeric variable (g) equal to 100 by default. If bZellnerPrior = TRUE, then

p
(
θ

(i)
0 |F0

)
∼ N

(
0, gS(i)

0

(
F(i)>

1:T F(i)
1:T

)−1
)
, (14)

where

S
(i)
0 = 1

T − 1y>1:T

(
IT − F(i)

1:T

(
F(i)>

1:T F(i)
1:T

)−1
F(i)>

1:T

)
y1:T ,

9Recall that the inclusion of the constant term should be managed via the formula argument.
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and y1:T = (y1, . . . , yT )> and F(i)
1:T indicating the T × p design matrix according to

model i. If bZellnerPrior = FALSE, it represents the scaling factor for the covariance
matrix of the Normal prior for θ

(i)
0 , i.e., θ

(i)
0 ∼ N(0, g × I), i = 1, . . . , k, where I is

the identity matrix. We generally recommend practitioners to use the default prior, i.e.,
bZellnerPrior = FALSE, especially in the context of quarterly data, where we typically
have 200 to 300 observations. For longer time series, results tend to be similar after 100
observations.

• bParallelize: a Boolean variable indicating whether to use multiple processors to
speed up the computations. By default bParallelize = TRUE. Since the use of mul-
tiple processors is basically effortless for the user, we suggest to not change this value.
Furthermore, if the hardware does not permit parallel computations, the program will
automatically adapt to run on a single core.

• iCores: an integer indicating the number of cores to use if bParallelize = TRUE.
By default, all but one cores are used. The number of cores is guessed using the
detectCores() function from the parallel package. If complexity is judged “low” (that
is, less than 100 models), iCores has not been selected by the user (iCores = NULL),
and bParallelize = TRUE, the number of cores is subsequently reduced to 2. The
choice of the number of cores depends on the specific application, namely the length of
the time series T and the number of the predictors n. However, as detailed in Chapman,
Jost, and Van Der Pas (2008), the level of parallelization of the code should be traded off
with the increase in computational time due to threads communications. Consequently,
the user can fine-tune their application depending on their hardware by changing this
parameter. Section 5 reports details about code parallelization.

The DMA() function returns an object of the formal class ‘DMA’.10 This object contains model
information and the estimated quantities. It is organized in three slots: model, Est, data. The
slot, model, contains information about the specification used to perform DMA. Examples
are: the number of considered models and the computational time in seconds. The slot, Est,
contains the estimated quantities such as: point forecasts, predictive likelihood, posterior
inclusion probabilities of the predictors, filtered estimates11 of the regression coefficients, θt
(as in Equation 11), and so on. Finally, the slot, data, includes the data passed to the DMA()
function, organized in the vector of responses vY and a design matrix mF.

4.1. Using eDMA
After having installed eDMA, it can be easily loaded using

R> library("eDMA")

Thereafter, model estimation can be performed using the R commands reported below.
In order to illustrate how eDMA works in practice, we provide an example based on simulated
data. We also provide an application using quarterly inflation data in Section 6. We simulate
a time series of T = 500 observations from

yt = F>t θt +
√

0.1εt, εt
iid∼ N (0, 1) . (15)

10See help("class") and help("DMA-class").
11With the term “filtered estimates” we indicate estimates at time t conditional on information up to time t.
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The first four elements of θt vary according to random walks, whereas the remaining elements
in θt are equal to zero at all time periods. In other words, θt = (θ1,t, θ2,t, θ3,t, θ4,t, θ5,t, θ6,t)>
with

θk,t = θk,t−1 +
√

0.01ηk,t, ηk,t
iid∼ N (0, 1) , (16)

for k = 1, 2, 3, 4, and ηk,t |= ηj,t, for all k 6= j. The last two elements of θt are equal to
zero, that is, θ5,t = θ6,t = 0 for t = 1, . . . , T . The first element of the 6 × 1 vector, Ft, is
one, representing the constant term. The remaining elements are generated from a standard
Gaussian distribution, i.e., Ft = (1.0, x2,t, x3,t, x4,t, x5,t, x6,t)>, where xk,t

iid∼ N (0, 1) and
xk,t |= xj,t for all k 6= j. We simulate the data in this way (that is θ5,t = θ6,t = 0) to illustrate
that DMA is indeed able to identify the correct variables. In other words, the inclusion
probabilities of the last two predictors ought to be zero as they do not impact yt through Ft.
Conversely, the inclusion probabilities of the first four predictors ought to converge to 1.
This data is simulated using the SimulateDLM() function available in eDMA, details are
reported in the R documentation, see help("SimulateDLM"). We organize the data in
a ‘data.frame’ named SimData, which is included in eDMA and can be loaded into the
workspace by executing

R> data("SimData", package = "eDMA")

DMA is then performed using the function DMA() as

R> Fit <- DMA(y ~ x2 + x3 + x4 + x5 + x6, data = SimData,
+ vDelta = seq(0.9, 1.0, 0.01))

Information on the DMA procedure is available by typing:

R> Fit

------------------------------------------
- Dynamic Model Averaging -
------------------------------------------

Model Specification
T = 500
n = 6
d = 11
Alpha = 0.99
Beta = 1
Model combinations = 63
Model combinations including averaging over delta = 693
------------------------------------------
Prior : Multivariate Gaussian with mean vector 0

and covariance matrix equal to: 100 x diag(6)
------------------------------------------
The grid for delta:

Delta = 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1
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------------------------------------------

Elapsed time : 0.57 secs

Note, we specify a grid of eleven equally spaced values for δ (d = 11) ranging from 0.90 to
1.00. Furthermore, since we do not specify any value for bZellnerPrior and bParallelize,
their default values, bZellnerPrior = FALSE and bParallelize = TRUE have been used.
In order to extract the quantities estimated by DMA, the user can rely on the implemented
as.data.frame() method. The as.data.frame() method accepts two arguments: (i) an
object of the class ‘DMA’ and (ii) a character string, which, indicating the quantity to extract.
Possible values for which are:

• "vyhat": point forecasts of DMA, see Equation 9. "vyhat_DMS" for point forecast
according to DMS.

• "mincpmt": posterior inclusion probabilities of the predictors at each point in time, see
Koop and Korobilis (2012) for more details.

• "vsize": expected number of predictors (average size), see Koop and Korobilis (2012)
and point (ii) on page 10.

• "vsize_DMS": number of predictors in the model with the highest posterior model
probability, at each point in time, see Equation 5.

• "mtheta": filtered estimates of the regression coefficients for DMA, see Equation 11.

• "mpmt": posterior probability of the forgetting factors, see Equation 8.

• "vdeltahat": posterior weighted average of δ, see point (iv) on page 10 of this paper.

• "vLpdfhat": predictive log-likelihood of DMA, see Equation 10.

• "vLpdfhat_DMS": predictive log-likelihood of DMS. That is instead of averaging over
the individual predictive likelihoods, we select the predictive likelihood of the model
combination with the highest posterior probability (i.e., Equation 5) at each time period.

• "mvdec": individual components of Equation 12, see point (vi) on page 10 and Dangl
and Halling (2012) for more details. The function returns a T ×5 matrix whose columns
contain the variables.

– vobs: observational variance, Obs.
– vcoeff: variance due to errors in the estimation of the coefficients, Coeff.
– vmod: variance due to model uncertainty, Mod.
– vtvp: variance due to uncertainty with respect to the choice of the degrees of

time-variation in the regression coefficients, TVP.
– vtotal: total variance, that is vtotal = vobs + vcoeff + vmod + vtvp.

• "vhighmp_DMS": highest posterior model probability, i.e., max
i

p (Mi|Ft), t = 1, . . . , T .

• "vhighmpTop01_DMS": sum of the 10% highest posterior model probabilities.
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The additional numeric argument, iBurnPeriod, determines the length of the burn-in period,
i.e., results before t= iBurnPeriod are discarded. By default, iBurnPeriod = NULL, meaning
that no burn-in period is considered. For instance, in order to extract the posterior inclusion
probabilities of the predictors, with a burn-in period of 50 observations, we can easily run the
following command

R> PostProb <- as.data.frame(Fit, which = "mincpmt", iBurnPeriod = 50)

which returns a (T−iBurnPeriod)× 6 matrix of inclusion probabilities for the predictors at
each point in time. Final values of PostProb are printed as

R> round(tail(PostProb), 2)

(Intercept) x2 x3 x4 x5 x6
[445,] 1 1 1 1 0.06 0.03
[446,] 1 1 1 1 0.06 0.03
[447,] 1 1 1 1 0.06 0.03
[448,] 1 1 1 1 0.07 0.03
[449,] 1 1 1 1 0.07 0.03
[450,] 1 1 1 1 0.08 0.04

Furthermore, if the supplied data is a ‘ts’, ‘zoo’ or ‘xts’ object, the class membership is
automatically transferred to the output of the as.data.frame() method.
A plot() method is also available for the class ‘DMA’. Specifically, this method provides an
interactive menu in the console permitting the user to choose between a series of interesting
graphical representation of the estimated quantities. It can be straightforwardly executed
running

R> plot(Fit)

Type 1-16 or 0 to exit
1: Point forecast
2: Predictive likelihood
3: Posterior weighted average of delta
4: Posterior inclusion probabilities of the predictors
5: Posterior probabilities of the forgetting factors
6: Filtered estimates of the regression coefficients
7: Variance decomposition
8: Observational variance
9: Variance due to errors in the estimation of the coefficients, theta

10: Variance due to model uncertainty
11: Variance due to uncertainty with respect to the choice of

the degrees of time-variation in the regression coefficients
12: Expected number of predictors (average size)
13: Number of predictors (highest posterior model probability) (DMS)
14: Highest posterior model probability (DMS)
15: Point forecasts (highest posterior model probability) (DMS)
16: Predictive likelihood (highest posterior model probability) (DMS)
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Figure 2: Posterior inclusion probabilities of the predictors using simulated data.

and selecting the desired options. The additional character argument, which, can be supplied
in order to directly plot one particular quantity. Possible values for which are the same
as for the as.data.frame() method. Similar to as.data.frame(), the additional numeric
argument iBurnPeriod determines the length of the burn-in period. Typically, it takes around
30 to 50 iterations for the model to adapt to the time series given the prior. Therefore, in
almost all applications, the first 30 to 50 observations should be discarded.
The code:

R> plot(Fit, which = "mincpmt", iBurnPeriod = 50)

plots the inclusion probabilities for the predictors discarding the first 50 observations. The
outcome is reported in Figure 2. As expected, x1 to x4 quickly converge to 1 after a few
observations. Conversely, the inclusion probabilities of the last two predictors with loading
factor equal to zero, quickly converge to 0.

4.2. Additional methods for the ‘DMA’ class
The ‘DMA’ class comes with several methods for extracting and representing estimated quan-
tities. The plot(), as.data.frame() and show() methods have been previously intro-
duced, additional methods are: summary(), coef(), residuals(), inclusion.prob(), and
pred.like().
For instance, the summary method prints a summary of the estimated model directly in the
console.
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R> summary(Fit, iBurnPeriod = 50)

Call:
DMA(formula = y ~ x2 + x3 + x4 + x5 + x6 )

Residuals:
Min 1Q Median 3Q Max

-2.0445 -0.3844 0.0414 0.4398 2.3759

Coefficients:
E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]

(Intercept) 0.51 0.68 1.00 0.00
x2 -0.64 0.65 0.90 0.29
x3 2.10 1.74 0.92 0.23
x4 -1.43 1.02 0.99 0.03
x5 0.01 0.03 0.07 0.07
x6 0.00 0.01 0.06 0.04

Variance contribution (in percentage points):
vobs vcoeff vmod vtvp

64.12 34.24 1.50 0.15

Top 10% included regressors: (Intercept)

Forecast Performance:
DMA DMS

MSE 0.489 0.483
MAD 0.539 0.532
Log-predictive Likelihood -463.820 -463.076

The quantities, E[theta_t], SD[theta_t], E[P(theta_t)] and SD[P(theta_t)] represent
the means and standard deviations across the time dimension of the filtered estimates of θt,
and the inclusion probabilities after burn-in.
The last part of the summary, i.e., the part titled Forecast Performance, prints the out-
put of the BacktestDMA() function implemented in eDMA. BacktestDMA() accepts a ‘DMA’
object and returns a matrix with out-of-sample mean squared error (MSE), mean absolute
deviation (MAD) and log-predictive likelihood, computed according to DMA and DMS, see
help("BacktestDMA").
The additional methods: coef(), residuals(), inclusion.prob(), and pred.like() are
wrapper to the as.data.frame() method and focus on particular estimated quantities, for
instance:

• coef(): Returns a T ×n matrix with the filtered regressor coefficients, θt, t = 1, . . . , T .

• residuals(): Extracts the residuals of the model, i.e., yt − ŷt, t = 1, . . . , T . The addi-
tional Boolean argument standardize controls if the standardized residuals should be
returned. By default standardize = FALSE. The additional character argument, type,
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permits to choose between residuals evaluated using DMA ("DMA") or DMS ("DMS").
By default type = "DMA".

• inclusion.prob(): Extracts the inclusion probabilities of the predictors. Analogous
to as.data.frame(object, which = "mincpmt", iBurnPeriod).

• pred.like(): Extracts the predictive log-likelihood series. The additional argument
type permits to choose between predictive likelihoods evaluated using DMA and DMS.
By default type = "DMA". Similar to the above variables, pred.like() accepts an
argument iBurnPeriod.

• getLastForecast: If we extend the time series of the dependent variable of length T
(i.e., observations that we actually observe until time T ) with an NA value, resulting
in a series of length T + 1, then the DMA() function computes the point forecast and
the associated variance decomposition for the future observation at time T + 1, see
Appendix B for further details. In this case, the getLastForecast can be used to
extract the “true” out-of-sample12 forecast at time T + 1.

5. Computational challenges
Although estimation of DMA does not require resorting to simulation, in many economic
applications, performing DMA can become computationally cumbersome. As can be seen
from the set of recursions in Section 3, DMA consists of a large number of model combinations,
where a lot of the quantities must be saved for subsequent analysis. Therefore, in many cases,
DMA tends to occupy a large chunk of random-access memory (RAM). Often on a standard
PC, the system basically runs out of memory due to the large number of combinations and
the amount of information that must be saved. Therefore, it limits the use of DMA to
middle-sized data-sets. For instance, in their seminal paper, Koop and Korobilis (2012) use
DMA to forecast quarterly inflation. Thus, yt in Equation 2 is the percentage changes in the
quarterly US GDP price deflator and Ft consists of 14 exogenous predictors and three lags
of yt for a total of 17 variables. However, handling 217 combinations even in the context of
quarterly data, which at most consists of around 300 observations, reveals to be cumbersome
in their programming framework. Therefore, Koop and Korobilis (2012) choose to include
three lags of inflation in all model combinations and thus reduce the model space to 214 model
combinations. Furthermore, they do not consider a grid for different values of δ, which would
result in 214 × d combinations, making inference even more challenging.
We can argue that DMA can impose a substantial challenge for the practitioner when deal-
ing with a large number of predictors and a high number of observations. Besides dealing
with the task of transforming mathematical equations to code, handling data and estimation
issues, practitioners also have to overcome “technical/computer science related” challenges
such as how to deal with extensive memory consumption and how to use multiple cores in-
stead of a single core to speed up computation time. Although one can always improve the

12We use the term “true” out-of-sample to distinguish from the case of “pseudo” out-of-sample which corre-
sponds to the usual recursive out-of-sample forecast, where one compares the forecasts with the actual observed
values.
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Figure 3: Computational time for DMA() using simulated data. Each panel represents compu-
tation time in minutes for DMA() using different sample sizes, T , number of predictors, n, and
values of d, the number of points in the grid of δ. The values for d range between 2 and 10,
the solid line at the bottom of each subfigure is for d = 2, the one immediately above is d = 3
and so on until the last which is for d = 10. Computations are performed on a standard Intel
Core i7-4790 processor with 8 threads and 8 GB of RAM with Ubuntu 12.04 server edition.
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computational procedure by “coding smarter” or discovering ways to optimize memory allo-
cation, it seems unreasonable to expect that practitioners in economics should have extensive
knowledge of computer science concepts such as those stated above.
In this paper, we provide practical solutions to these problems. First, reduction in compu-
tation time is achieved by writing all code in C++ using the Armadillo library of Sanderson
(2010). Second, we exploit multiple processors through the OpenMP API whenever the hard-
ware is suited for that. The combination of C++ routines and parallel processing permits to
dramatically speed up the computations over the same code written in plain R.
In order to provide an intuitive example of the advantages of our package, we report a
comparison between our code and the available dma package of McCormick et al. (2016).13

Note that, the dma package is entirely written in plain R and cannot be run in parallel,
consequently, even if the algorithm we implement is slightly different from those of dma (recall
that we follow the implementation of Dangl and Halling 2012), improvement in computational
time should be principally attributed to the two aforementioned reasons.
For this experiment, since the dma package cannot operate over a grid value of δ, we fix δ at
0.95. We simulate T = {100, 500, 1000} observations from a DLM with n = {4, 6, 8, 10, 12, 14,
16} predictors and evaluate the differences in the computational time of the dma() function
in the dma package and the DMA() function in the presented eDMA package. The experiment
is performed on a standard Intel Core i7-4790 processor with 8 threads and Ubuntu 12.04
server edition.
Table 1 reports the ratio of the CPU time for different values of T and n between dma() and
DMA(). As one can note, the decrease in computational time in favor of our package is huge.
For example, for T = 500 and n = 16, dma() takes on average 20.48 minutes while DMA()
only 25.08 seconds.14 It is also worth stressing that the benefit of using eDMA does not only
concern the possibility of running moderately large applications in a reasonable time using
standard hardware, but also enables practitioners to run applications with a large number of
exogenous variables. To give an idea of the computational time a user of eDMA faces, we re-
port a second simulation study. We simulate from a DLM with T = {100, 200, . . . , 900, 1000},
n = {2, 3, . . . , 18} and run DMA() using a grid of values for δ between 0.9 and 1.0 with differ-
ent spaces d, namely d = {2, 3, . . . , 10}. Figure 3 displays the computational time in minutes
for all the combinations of T , n, and d. The lines reported in each subfigure represent the
computational time for a specific choice of d. The line at the bottom of each subfigure is for
d = 2,15 the one immediately above is for d = 3 and so on until d = 10. From Figure 3,
we can see that, when T ≤ 400, even for n = 18 and d = 10, the computational time is less
than 15 minutes. Such sample sizes are relatively common in economic applications. When
T increases, computational time increases linearly. For example, when T = 800, n = 18 and

13Clearly, results reported in this section depend on the given hardware configuration, which we have detailed
in this section as well as in the section “Computational details ” at the end of the paper. However, even if the
computational times change with the hardware configuration, the results presented in Table 1 and Figure 3
will remain qualitatively similar.

14Also note that this cannot be considered a one-to-one comparison because DMA() performs additional op-
erations (such as DMS and variance decomposition) which are not considered by dma(). It is worth mentioning
that a wrong specification of the number of cores for computational inexpensive tasks (for example, computing
the first column of Table 1 where n = 4), can result in a slower execution time of DMA() relative to dma().
This is due to the additional computational time required by parallelization, see the description of the iCores
argument at page 13.

15In this case δ can take values δ = 0.9 and δ = 1.0.
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T/n 4 6 8 10 12 14 16
100 34.5 41.4 60.7 81.6 69.5 54.5 49.8
500 47.3 54.3 92.9 82.4 70.5 49.0 54.1
1000 59.0 58.3 81.6 84.2 71.3 50.6 51.9

Table 1: Ratio of computation time between the dma() function from the dma package of
McCormick et al. (2016) and the DMA() function of the eDMA package using different values
of T and n. The ratio is computed using the average computational time taken after 10 code
evaluations using the microbenchmark package of Mersmann (2015). Computing this table
on a different configuration (Intel Xeon CPU E3-1535M v6 @ 3.10GHz with 8GB of RAM)
gives qualitatively similar results.

d = 10, the computational time is 30 minutes, which is the double of the same case with
T = 400.
The other relevant problem with DMA is the RAM usage. Specifically, if we want to store the
quantities defined in Equations 2 and 6, we need to define two arrays of dimension T × d× k.
These kind of objects are not included in the eDMA package since we rely on the Markovian
nature of the model clearly evident from Equation 2. In this respect, we keep track of the
quantities coming from Equation 6 and p (yt|Mi, δj ,Ft−1) only for two consecutive periods
during the loop over T .16 RAM usage is still efficiently performed in the eDMA package.
Indeed, the computer where we run all our simulations has only 8 GB of RAM. A formal
analysis of RAM usage with the eDMA package is hard to implement given that RAM profiling
for C++ functions wrapped in R cannot be easily performed.17 However, we find that eDMA
on a Windows 10 based system equipped with 16 GB of RAM fixing T = 300 is able to handle
4’194’304 model combinations while, for example, dma can only handle 2’097’157, i.e., half of
eDMA.

6. A DMA example: Inflation data
We use a time series of quarterly US inflation rate with exogenous predictors for illustration
and then step by step show how to obtain the posterior output. The example can be thought
of as a typical assignment for a researcher at a central bank who is interested in forecasting
inflation several quarters ahead and understand the relationship between inflation, business
cycles and perform variance decomposition.

6.1. Data

We rely on the data-set of Groen et al. (2013).18 As a measure of inflation, yt, we consider
quarterly log-changes in the gross domestic product implicit price deflator (GDPDEF) ranging
from 1960q1 to 2011q2. The number of exogenous predictors is fifteen. This number is in
accordance with typical “real-world” applications, see also Dangl and Halling (2012) and Koop
and Korobilis (2012).

16Differently, in the dma package a full T × k matrix is stored.
17This is the case also for contributed packages such as profvis (Chang and Luraschi 2017).
18The data is downloadable from http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.

727718.

http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.727718
http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.727718
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We start by loading the eDMA package and the data-set by typing:

R> library("eDMA")
R> data("USData", package = "eDMA")

The predictors are: real GDP in volume terms (ROUTP), real durable personal consump-
tion expenditures in volume terms (RCONS), real residential investment in volume terms
(RINVR), the import deflator (PIMP), the unemployment ratio (UNEMP), non-farm pay-
rolls data on employment (NFPR), housing starts (HSTS), the real spot price of oil (OIL),
the real food commodities price index (FOOD), the real raw material commodities price index
(RAW), and the M2 monetary aggregate (M2), which can reflect information on the current
stance of monetary policy and liquidity in the economy as well as spending in households.
In addition, we also use data on the term structure of interest rates approximated by means
of: the level factor (YL), the slope factor (TS) and curvature factor (CS). Finally, we proxy
inflation expectations through the one-year ahead inflation expectations that come from the
Reuters/Michigan Survey of Consumers (MS). We include the data (the GDPDEF series along
with the fifteen predictors) in the eDMA package as a ‘xts’ object of dimension 206 × 16
named USData. A glance at the GDPDEF series and the first five predictors is obtained by
typing:

R> head(round(USData[, 1:6], 2))

GDPDEF ROUTP RCONS RINVR PIMP UNEMP
1960-01-01 -1.14 1.66 0.62 0.55 -0.48 -0.56
1960-04-01 -0.77 -1.39 0.33 -1.84 -0.37 -0.49
1960-07-01 -0.71 -0.68 -0.71 -0.69 -0.16 -0.30
1960-10-01 -0.76 -2.32 -1.27 -0.07 -0.47 0.16
1961-01-01 -1.27 -0.19 -2.25 0.04 -0.32 0.49
1961-04-01 -1.16 1.24 0.23 0.03 -0.40 0.62

For most series, we follow Groen et al. (2013) and use the percentage change of the original
series in order to remove possible stochastic and deterministic trends. Exceptions are HSTS,
for which we use the logarithm of the respective levels, as well as UNEMP, YL, TS, CS and
MS, where we use the “raw” levels, see Groen et al. (2013) for more details. Finally, since
inflation is very persistent, besides these 15 predictors, we follow Groen et al. (2013) and
also include four inflation lags, yt−1, . . . , yt−4, as predictors. In eDMA, we implemented the
function, Lag(), which allows us to lag variables delivered in the form of vector or matrices.
For instance, to lag the numeric vector X of length T by one period, we simply run

R> Lag(X, 1)

which returns a numeric vector of length T containing the lagged values of X. Values that are
not available are replaced by NA.

6.2. Model estimation
We have a total of 219 = 524′288 model combinations.19 Furthermore, we let δ = {0.9, 0.91, . . .,

19Models which do not include the constant term are not considered. Note that, when vKeep = NULL, the
number of models is 2n − 1, however, when vKeep != NULL, the number of models is 2b − 1, where b = n -
length(vKeep).
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1} such that we have a total of
(
219) · 11 = 5′767′168 combinations. We set β = 0.96, a value

we generally suggest in the context of working with quarterly data, α = 0.99, g = 100,
p (Ms | F0) = 1/ (d · k), s = 1, . . . , d · k, such that initially, all models are equally likely. We
then update these model probabilities as new information arrives. As previously mentioned,
we include a constant term in all models, see also Groen et al. (2013).
In order to perform DMA using the DMA() function, we write20:

R> Fit <- DMA(GDPDEF ~ Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +
+ Lag(GDPDEF, 3) + Lag(GDPDEF, 4) + Lag(ROUTP, 1) + Lag(RCONS, 1) +
+ Lag(RINVR, 1) + Lag(PIMP, 1) + Lag(UNEMP, 1) + Lag(NFPR, 1) +
+ Lag(HSTS, 1) + Lag(M2, 1) + Lag(OIL, 1) + Lag(RAW, 1) +
+ Lag(FOOD, 1) + Lag(YL, 1) + Lag(TS, 1) + Lag(CS, 1) + Lag(MS, 1),
+ data = USData, vDelta = seq(0.90, 1.00, 0.01), vKeep = 1,
+ dBeta = 0.96, dAlpha = 0.99)

We suggest using the non-informative prior, bZellnerPrior = FALSE, which is the default.
In this way the regression coefficients are centered at 0 with a flat prior and adapt quickly
in the averaging process as new information arrives. More details on the model can be made
available by typing Fit.

R> Fit

------------------------------------------
- Dynamic Model Averaging -
------------------------------------------

Model Specification
T = 202
n = 20
d = 11
Alpha = 0.99
Beta = 0.96
Model combinations = 524288
Model combinations including averaging over delta = 5767168
------------------------------------------
Prior : Multivariate Gaussian with mean vector 0

and covariance matrix equal to: 100 x diag(20)

Variables always included : (Intercept)
------------------------------------------
The grid for delta:

Delta = 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1
------------------------------------------

Elapsed time : 1429.13 secs
20Note that this command can be computational expensive for non-OpenMP ready systems.
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As can be seen, the total estimation time of our DMA when working with more than 5’700’000
model combinations at each time period is 1429.13 seconds corresponding to around 23.8 min-
utes on an Intel Core i7-3630QM processor. A complete summary of the estimation is available
as:

R> summary(Fit, iBurnPeriod = 32)

Call:
DMA(formula = Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Lag(GDPDEF, 3) + Lag(GDPDEF, 4) +
Lag(ROUTP, 1) + Lag(RCONS, 1) +
Lag(RINVR, 1) + Lag(PIMP, 1) +
Lag(UNEMP, 1) + Lag(NFPR, 1) +
Lag(HSTS, 1) + Lag(M2, 1) +
Lag(OIL, 1) + Lag(RAW, 1) +
Lag(FOOD, 1) + Lag(YL, 1) +
Lag(TS, 1) + Lag(CS, 1) +
Lag(MS, 1) )

Residuals:
Min 1Q Median 3Q Max

-1.3948 -0.3169 -0.0073 0.2309 1.6503

Coefficients:
E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]

(Intercept) 0.08 0.16 1.00 0.00
Lag(GDPDEF, 1) 0.43 0.17 0.84 0.29
Lag(GDPDEF, 2) 0.03 0.02 0.20 0.13
Lag(GDPDEF, 3) 0.10 0.08 0.38 0.25
Lag(GDPDEF, 4) 0.10 0.05 0.42 0.21
Lag(ROUTP, 1) 0.00 0.01 0.13 0.09
Lag(RCONS, 1) 0.00 0.00 0.12 0.07
Lag(RINVR, 1) 0.01 0.02 0.13 0.07
Lag(PIMP, 1) 0.19 0.08 0.77 0.29
Lag(UNEMP, 1) -0.03 0.09 0.12 0.10
Lag(NFPR, 1) 0.02 0.02 0.20 0.16
Lag(HSTS, 1) 0.02 0.02 0.16 0.08
Lag(M2, 1) 0.01 0.01 0.16 0.08
Lag(OIL, 1) -0.02 0.05 0.22 0.23
Lag(RAW, 1) 0.00 0.01 0.11 0.07
Lag(FOOD, 1) 0.01 0.01 0.17 0.12
Lag(YL, 1) 0.20 0.34 0.25 0.29
Lag(TS, 1) 0.00 0.01 0.11 0.05
Lag(CS, 1) -0.02 0.04 0.14 0.07
Lag(MS, 1) 0.02 0.03 0.15 0.07

Variance contribution (in percentage points):
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vobs vcoeff vmod vtvp
65.70 13.21 19.93 1.16

Top 10% included regressors: (Intercept), Lag(GDPDEF, 1)

Forecast Performance:
DMA DMS

MSE 0.226 0.278
MAD 0.355 0.386
Log-predictive Likelihood -98.490 -121.752

Note that, we set burn-in to 32 (iBurnPeriod = 32) such that the start of the evaluation
period corresponds to 1969q1, see also Koop and Korobilis (2012). Below, we go into more
details with regards to how to use the output from the estimation procedure.

6.3. Using the output from eDMA
The output can be divided into two main parts: (a) full-sample, and (b) out-of-sample analy-
sis. With regards to (a), the most interesting quantities are: mincpmt, vsize, mtheta, vdeltahat,
and mvdec, see Section 4.
For instance, the inclusion probabilities of the predictors for the last part of the sample can
be printed by:

R> InclusionProb <- inclusion.prob(Fit, iBurnPeriod = 32)
R> tail(round(InclusionProb[, 1:4], 2))

(Intercept) Lag(GDPDEF, 1) Lag(GDPDEF, 2) Lag(GDPDEF, 3)
2010-01-01 1 0.99 0.48 0.71
2010-04-01 1 0.99 0.49 0.72
2010-07-01 1 0.99 0.51 0.73
2010-10-01 1 0.99 0.51 0.73
2011-01-01 1 0.99 0.51 0.73
2011-04-01 1 0.99 0.51 0.73

The above matrix shows the inclusion probabilities of: the constant and yt−1, . . . , yt−3, from
2010q1 to 2011q2. Notice that the inclusion probabilities of the constant term, (Intercept),
are always equal to 1 as every model contains this term (since we set vKeep = 1), see (iii) on
page 10 of this paper. The interested reader can examine these estimates more carefully.
In Figure 4, we report the inclusion probabilities for the more important predictors. To be
precise, any predictor where the inclusion probabilities are never above 0.2 is excluded. In
these plots, we also make evident NBER recorded recessions (shaded gray bars).21 Overall,
we observe a good amount of time-variation in these plots. The lags of inflation, except for
yt−2 all seem important. The import deflator (PIMP) also receives high posterior probability
throughout the sample. Inflation expectation (MS) and M2 receive higher probabilities to-
wards the end of the sample. Real spot price of oil (OIL) receives high inclusion probabilities

21Recession dates are included in the eDMA package and can be loaded with data("USRecessions",
package = "eDMA"), see help("USRecessions").
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Figure 4: Posterior inclusion probabilities for the most important predictors of DMA. Panels
(a), (b) and (c): first, third and fourth lags of inflation. Panel (d): import deflator (PIMP).
Panel (e): inflation expectations (MS). Panel (f): M2 monetary aggregate (M2). Panel (g):
real spot price of oil (OIL). Panel (h): level factor of the term structure (YL). We refer the
reader to Groen et al. (2013) for more details regarding the variables. The gray vertical bars
indicate business cycle peaks, i.e., the point at which an economic expansion transitions to a
recession, based on National Bureau of Economic Research (NBER) business cycle dating.

during the post Great Moderation era, whereas we observe the opposite trend for YL. In
addition to the inclusion probabilities, we also report filtered estimates of the regression co-
efficients for these predictors in Figure 5. These quantities are extracted from Fit by simply
using

R> mTheta <- coef(Fit, iBurnPeriod = 32)

Besides these variables, the output from DMA can be used to analyze the magnitude of time-
variation in the regression coefficients, "vdeltahat", which is the posterior weighted average
of δ at each point in time. We report this estimate in panel (a) of Figure 6. The analogous
plot in R can be obtained using:

R> plot(Fit, which = "vdeltahat", iBurnPeriod = 32)

There is a very intuitive relationship between δ and the business cycles. Typically, δ falls at the
onset of recessions, which fares well with the notion that relatively larger shocks hit θt in these
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Figure 5: Filtered estimates of the regression coefficients for the most important predictors
of DMA. Panels (a), (b) and (c): first, third and fourth lags of inflation. Panel (d): import
deflator (PIMP). Panel (e): inflation expectations (MS). Panel (f): M2 monetary aggregate
(M2). Panel (g): real spot price of oil (OIL). Panel (h): level factor for the terms structure
(YL). We refer the reader to Groen et al. (2013) for more details regarding the variables. The
gray vertical bars indicate business cycle peaks, i.e., the point at which an economic expansion
transitions to a recession, based on National Bureau of Economic Research (NBER) business
cycle dating.

periods. Thereafter, δ tends to rise again. Conversely, δ remains high and close to 1 during
the Great Moderation, which again fares well with the notion of relatively minor variation in
the regression coefficients in expansion periods. We can also use as.data.frame() to extract
the posterior probability of each value of δ and print them using:

R> InclusionProbDelta <- as.data.frame(Fit, which = "mpmt", iBurnPeriod = 32)
R> round(tail(InclusionProbDelta), 2)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
2010-01-01 0 0 0.01 0.01 0.01 0.02 0.05 0.10 0.21 0.31 0.27
2010-04-01 0 0 0.01 0.01 0.01 0.03 0.05 0.10 0.21 0.31 0.26
2010-07-01 0 0 0.00 0.00 0.01 0.02 0.04 0.10 0.22 0.33 0.27
2010-10-01 0 0 0.00 0.00 0.01 0.02 0.05 0.12 0.23 0.32 0.24
2011-01-01 0 0 0.00 0.00 0.01 0.02 0.05 0.12 0.23 0.31 0.24
2011-04-01 0 0 0.00 0.01 0.01 0.02 0.06 0.13 0.25 0.31 0.21
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Figure 6: Posterior output for DMA. Panel (a): posterior weighted average estimate of δ.
Panel (b): number of predictors for the model with the highest posterior probability. Panel
(c): sum of top 10% inclusion probabilities. Panel (d): observational variance. Panel (e):
variance due to errors in the estimation of the coefficients. Panel (f): variance due to model
uncertainty (Mod, solid) and variance due to uncertainty with respect to the choice of the
degrees of time-variation in the regression coefficients (TVP, red-dotted). The gray vertical
bars indicate business cycle peaks, i.e., the point at which an economic expansion transitions
to a recession, based on National Bureau of Economic Research (NBER) business cycle dating.

where the column names are the values of δ.
In panel (b) of Figure 6, we report the number of predictors contained in the model with the
highest posterior probability, p (Mi|Ft), at each point in time. This can be achieved by:

R> plot(Fit, which = "vsize_DMS", iBurnPeriod = 32)

We can also plot the expected number of predictors by replacing which = "vsize_DMS"
with which = "vsize". An interesting result from panel (b) is that, although we have 19
predictors, at each point in time the best model contains only a few predictors. We can also
use posterior model probabilities to obtain an idea of how important model averaging is. In
panel (c), we report the sum of the posterior inclusion probabilities for the top 10% of the
models (which = "vhighmpTop01_DMS"). If this number is high, then it means that relatively
few model combinations dominate, and thus obtain relatively high posterior probabilities.
Conversely, if this number is low, then no individual (or group of) model combinations receive
high probabilities, which provides evidence in favor of averaging over predictors.
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Model Description

M0
Plain AR(4) model: The constant term and yt−1, . . . , yt−4 are always included. We
set α = 1, δ = 1 and β = 1.

M1
Time-varying AR(4) model: The constant term and yt−1, . . . , yt−4 are always in-
cluded. We set α = 0.99, β = 0.96 and average over δ1, . . . , δd.

M2
DMA using yt−1, . . . , yt−4: The constant term is always included. We set α = 0.99,
β = 0.96 and average over the combinations of yt−1, . . . , yt−4 and δ1, . . . , δd.

M3

DMA using yt−1, . . . , yt−4 and the exogenous predictors: The constant term is always
included. We set α = 0.99, β = 0.96 and average over the combinations of predictors
as well as δ1, . . . , δd.

M4

DMS using yt−1, . . . , yt−4 and the exogenous predictors: The constant term is always
included. We set α = 0.99, β = 0.96 and select the model with the highest posterior
probability at each t and use it to forecast.

M5 BMA: DMA with α = 1, δ = 1 and β = 1.

M6 BMS: DMS with α = 1, δ = 1 and β = 1.

M7
Kitchen sink: The constant term, yt−1, . . . , yt−4 and all exogenous predictors are
always included. We set α = 0.99, β = 0.96 and average only over δ1, . . . , δd.

Table 2: Model specifications. The first column is the model index. The second column
provides a brief description of each individual model.

Finally, in panels (d), (e) and (f) of Figure 6, we report the variance decomposition analy-
sis (which = "mvdec"). Evidently, the dominant source of uncertainty is the observational
variance. This is not surprising as random fluctuation are expected to dominate uncertainty.
Furthermore, uncertainty regarding the degree of time-variation in the regression (TVP) is
lower in comparison. However, this is understandable as posterior probabilities of δ (see
above) favor δ = 0.98, 0.99 and 1.

6.4. Out-of-sample forecasts
An important feature of DMA is out-of-sample forecasting, see Koop and Korobilis (2011)
and Koop and Korobilis (2012). In this section, we illustrate how our package can be used to
generate forecasts.
In Table 2, we provide an overview of several alternative models. Notice that all these models
can be estimated using our package. For instance, the plain AR(4) model, (M0), can be
estimated by setting δ = 1.0, α = 1.0, β = 1.0, using the code:

R> Fit_M0 <- DMA(GDPDEF ~ Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +
+ Lag(GDPDEF, 3) + Lag(GDPDEF, 4), data = USData, vDelta = 1.00,
+ dAlpha = 1.00, vKeep = c(1, 2, 3, 4, 5), dBeta = 1.0)

where vKeep = c(1, 2, 3, 4, 5) indicates that all predictors are included.22 The same
22This is equivalent to vKeep = "KS".
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Model h = 1 h = 5
MSE PLD MSE PLD

M1 0.998 12.444 0.815 48.445
M2 0.964 14.416 0.728 64.008
M3 0.938 20.561 0.704 94.399
M4 1.155 −2.701 0.844 62.227
M5 0.985 7.234 1.138 19.368
M6 1.096 −7.543 1.308 −25.294
M7 1.839 −9.899 0.965 47.832

Table 3: Mean squared error (MSE) and log-predictive likelihood difference (PLD) of Mi,
i = 1, . . . , 7 compared toM0 for h = 1 and h = 5 quarters ahead out-of-sample forecasts.

holds for Bayesian model averaging (BMA, M5) and Bayesian model selection (BMS, M6)
by setting δ = 1.0, α = 1.0 and β = 1.0. Thus, eDMA also relates to the BMS package of
Zeugner and Feldkircher (2015) and the BMA package of Raftery et al. (2015).
We use the models to obtain one (h = 1) and five (h = 5) quarter ahead forecasts through
direct forecasting, see Marcellino, Stock, and Watson (2006).
Table 3 reports the mean squared error (MSE) and the log-predictive likelihood difference
(PLD) ofMi, i = 1, . . . , 7, overM0 (the benchmark) at h = 1 and h = 5.23

Compared to the benchmark, M1 provides gains both in terms of MSE and PLD relative
to the benchmark, especially at h = 5. By averaging over yt−1, . . . , yt−4 and accounting for
parameter instability, we obtain even more gains. DMA using lags of inflation as well as 15
additional predictors is the top performer, regardless of h. Similar to Groen et al. (2013)
the exogenous predictors contain enough information besides the lags to improve forecast
accuracy. Conversely, DMS is outperformed by the benchmark at h = 1. This result is
understandable as panel (c) in Figure 6 demonstrates that no individual model or group of
model combinations performs overwhelmingly better than the other specifications. By looking
more carefully at DMS results, we find that at h = 1, DMS produces volatile forecasts at
the start and towards the end of the sample, which explains why it is outperformed by the
benchmark. This is evident from panel (b) of Figure 6, where we observe notable changes in
the number of predictors in the optimal model at the start of the sample, towards and during
the Great Recession of 2008.
As previously mentioned, DMA (DMS) with α = δ = β = 1 corresponds to BMA (BMS).
At h = 1, compared to the benchmark model, BMA provides improvements in density and
point forecasts. Similar to DMS, BMS is outperformed by the benchmark at h = 1. At both
horizons, results confirm that accounting for model uncertainty and parameter instability lead
to out-of-sample gains.
Finally, as an alternative to these models, we can consider the kitchen sink model (the model
with all predictors, M7) where we only average over δ. Compared to M0, the kitchen sink
model does not provide any improvements at h = 1. At h = 5, we observe improvements in
density forecasts compared toM0. However, the kitchen sink model is always outperformed
by DMA.

23We recall that multi-step-ahead forecast is performed via direct forecasting as in Koop and Korobilis (2012).
For instance, the formula used for model M0 when h = 5 is GDPDEF ∼ Lag(GDPDEF, 5) + Lag(GDPDEF, 6)
+ Lag(GDPDEF, 7) + Lag(GDPDEF, 8).
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Figure 7: Accumulated PDL and the optimal number of predictors for prior sensitivity anal-
ysis. Panel (a): M1 overM0. Panel (b): M3 overM0. Panel (c): M5 overM0. Panel (d):
M7 overM0. Panels (e)–(h): number of predictors for the model with the highest posterior
probability using g = 0.1, 20, T/2, T . The gray vertical bars indicate business cycle peaks,
i.e., the point at which an economic expansion transitions to a recession, based on National
Bureau of Economic Research (NBER) business cycle dating.

6.5. Why does DMA perform well?

To investigate how quickly our techniques adapt to changes in the data, we report the accu-
mulated log-PLD for several models over the benchmark in panels (a)–(d) of Figure 7. These
can be obtained using the pred.like() method available for ‘DMA’ objects. For instance, we
create the two vectors vPL_M0 and vPL_M3 containing the log-predictive likelihoods of M0
andM3 using:

R> vPL_M0 <- pred.like(Fit_M0, iBurnPeriod = 32)
R> vPL_M3 <- pred.like(Fit, iBurnPeriod = 32)

and compute the accumulated log-PLD ofM3 overM0 as:

R> vPLD_M3.M0 <- cumsum(vPL_M3 - vPL_M0)

which is reported in panel (b) of Figure 7.
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In panels (a), (b), (c) and (d) of Figure 7 a value of zero corresponds to equal support of
both models, positive values are in support of the model of choice over M0 and negative
values show support ofM0 over the model of choice at time t. In these panels, we decompose
the effects of (i) allowing for time-variation in the regression coefficients, (ii) allowing for
model uncertainty but no time-variation in the regression coefficients and (iii) allowing for
time-variation in the regression coefficients and model uncertainty.

In panel (a), we see that the time-varying AR(4) model outperforms the benchmark through-
out the out-of-sample period. Compared to the plain AR(4) model, it takes about twenty
observations to provide compelling evidence in favor of DMA. Furthermore, we also observe
that DMA performs well in recession as well as expansion periods. Compared to BMA, the im-
provements of DMA are mostly concentrated on the onset of recessions. However, DMA also
outperforms BMA during expansion periods. Conversely the kitchen sink model is generally
outperformed by the benchmark throughout the out-of-sample, see panel (d) of Figure 7.

6.6. The choice of g

In the context of DMA, the prior hyperparameter value, g, must be specified by the prac-
titioner. Intuitively, a smaller value of g means more shrinkage around the prior mean of
θ

(i)
0 , i.e., 0. The larger is g, the more we are willing to move away from the model priors in

response to what we observe in the data. In other words, the larger the g, the more we allow
the data to speak freely. This way, we ensure that the estimation procedure quickly adapts
to the data, even at quarterly frequency, which typically consist of around 300 observations.
On the other hand, for some data-sets, it can take the estimation procedure a longer time to
adapt if we set g to relatively lower values. Thus, in such cases, DMA can initially overfit
as the average model size becomes larger than it ought to be. This effect becomes evident
by examining the average number of predictors in DMA and in most cases is also heavily
reflected in the generated forecasts, where DMA is outperformed by the benchmark.

We re-estimate DMA with g equal to 0.1, 20, T/2 and T (using bZellnerPrior = FALSE)
and observe to which extent different values of g influence out-of-sample results. Results are
reported in Table 4 and panels (e)–(h) of Figure 7. Overall, we find that results are robust
to different values of g. All g values lead to similar MSE and PLD estimates and the number
of predictors in the model with the highest posterior probabilities are also similar, see panels
(e)–(h) of Figure 7. However, we must mention that this is mainly due to the properties of
our data and the fact that bZellnerPrior = FALSE such that, contrary to bZellnerPrior
= TRUE, the observations do not affect the prior covariance matrix of θ

(i)
t , see Equation 14.

In fact, when we repeat the analysis with bZellnerPrior = TRUE, we find that DMA using
g = 0.1 and g = 20 perform much worse and are outperformed by the benchmark model. On
the other hand, as we increase g to T/2 and T , we obtain similar results to those reported in
Table 4. This result is understandable as given the scale of the prior covariance matrix under
bZellnerPrior = TRUE, prior shrinkage is much greater under g = 0.1 and g = 20.

Ultimately, it is up to the practitioner to choose g. However, our general recommendation is
to fix g = T regardless of bZellnerPrior = TRUE or FALSE and the number of observations
as it allows the data to speak freely about the underlying relations between the regressors and
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Prior MSE PLD
g = 0.1 0.967 20.186
g = 20 0.937 20.664
g = T/2 0.938 20.556
g = T 0.941 20.431

Table 4: Mean squared error (MSE) and log-predictive likelihood difference (PLD) of DMA
using the following values of g: 0.1, 20, T/2, T andM0 for h = 1.

the dependent variable. However, as previously mentioned, we recommend bZellnerPrior
= FALSE, for small data-sets.24

7. Conclusion
In this paper, we present the eDMA package for R. The purpose of eDMA is to offer an
integrated environment to easily perform DMA using the available DMA() function, which
enables practitioners to perform DMA exploiting multiple processors. Furthermore, R users
will find common methods to represent and extract estimated quantities such as plot(),
as.data.frame(), coef() and residuals().
Overall, eDMA has the following advantages: (i) it incorporates the extensions introduced
in Prado and West (2010) and Dangl and Halling (2012), which are relevant for economic
and financial applications, (ii) compared to other approaches, it performs the computations
much faster, (iii) it requires a smaller amount of RAM even in cases of moderately large
applications, and (iv) it allows for parallel computing.
In Section 5, we also detail the expected time the program takes to perform DMA under
different sample sizes, number of predictors and number of grid points. For typical economic
applications, estimation time is around 30 minutes using a standard laptop. Large applications
can still benefit from the use of eDMA even when performed on desktop or clusters, without
additional effort from the user.

Computational details
The results in this paper are obtained using R 3.2.3 with the packages: eDMA version 1.5-0
(Catania and Nonejad 2018), Rcpp version 0.12.5 (Eddelbuettel and François 2011; Eddel-
buettel et al. 2016a), RcppArmadillo version 0.7.100.3.1 (Eddelbuettel and Sanderson 2014;
Eddelbuettel et al. 2016b), xts version 0.9-7 (Ryan and Ulrich 2015), devtools version 1.1.1

24An anonymous reviewer also made a very good point regarding choosing g, which can be summarized as
follows:

(i) Choose b values of g, say g = {0.1, 20, T/2, T}. Then run DMA for each of these values and save the
predictive likelihoods p

(
y

(i)
t | Ft−1

)
, t = 1, . . . , T for i = 1, . . . , b.

(ii) Compute p
(
y

(i)
t |Ft−1

)
/Σb

i=1p
(
y

(i)
t |Ft−1

)
, t = 1, . . . , T for i = 1, . . . , b.

Thus, we can observe which value of g obtains high posterior probabilities, especially at the start of the
sample. We can then use the associated g value in the estimation procedure.
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(Wickham and Chang 2016), and microbenchmark version 1.4-2.1 (Mersmann 2015). R it-
self and all packages used are available from CRAN at https://CRAN.R-project.org/. The
package eDMA is available from CRAN at https://CRAN.R-project.org/package=eDMA/.
Computations were performed on a Genuine Intel quad core CPU i7-3630QM 2.40Ghz pro-
cessor.
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A. The mathematics of dynamic linear models
Below, we briefly outline the Kalman recursions for the ith DLM model in the model averag-
ing. We refer the reader to Prado and West (2010) for more details on the Kalman recursions.
Based on the information up to time t− 1, the prior if the state vector, θ

(i)
t , at time t follows

N
(
a(i)
t ,R

(i)
t

)
, where

a(i)
t = m(i)

t−1,

R(i)
t = C(i)

t−1 + W(i)
t . (17)

Conditional on V (i)
t , the one-step-ahead predictive mean and variance of y(i)

t follows a Normal
distribution with mean, f (i)

t , and variance, Q(i)
t , where

f
(i)
t = F(i)>

t a(i)
t ,

Q
(i)
t = F(i)>

t R(i)
t F(i)

t + V
(i)
t . (18)

Once we observe yt, we can compute the forecast error as e(i)
t = yt − f

(i)
t . The posterior

distribution for θ
(i)
t given the current information set, Ft, is then updated as

m(i)
t = a(i)

t + A(i)
t e

(i)
t ,

C(i)
t = R(i)

t −A(i)
t A(i)>

t Q
(i)
t , (19)

where A(i)
t is the adaptive coefficient vector A(i)

t = R(i)
t F(i)

t /Q
(i)
t .

B. True out-of-sample forecast
There might be cases where the practitioner desires to predict T + 1 conditional on obser-
vations until time T in a true out-of-sample fashion (i.e., without having the possibility of
backtesting the forecast since yT+1 cannot be observed). In such circumstances, the user
can substitute the future value of the dependent variable with an NA. This way, the code
treats the last observation as missing and does not perform backtesting or updating of the
coefficients. However, the estimation procedure provides us with the necessary quantities to
perform prediction. The predicted value ŷT+1 = E[yT+1|FT ] as well as the predicted variance
decomposition defined in Equation 12 can then be extracted using the getLastForecast
method available in the eDMA package. The other quantities that can be extracted, for
example via the as.data.frame method, will ignore the presence of the last NA and report
results only for the first T observations.
For example, consider the simulated data, SimData, detailed in Section 4.1

R> data("SimData", package = "eDMA")

Recall that this is a 500 × 6 dataframe simulated from the model defined in Equations 15–
16. The first column represents the dependent variable, yt, while the last five columns the
predictors xi,t for i = 2, . . . , 6 and t = 1, . . . , T = 500. Assume that we observe (or that we
have previously forecasted) the values for the predictors at time T + 1, i.e., xi,T+1 ∈ FT for
i = 2, . . . , 6, and these are x2,T+1 = −0.07, x3,T+1 = 1.61, x4,T+1 = −2.07, x5,T+1 = 0.17,
x6,T+1 = −0.80. What we need to do it is simply add a new row to the SimData dataframe
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R> newData <- c(NA, -0.07, 1.61, -2.07, 0.17, -0.80)
R> SimData <- rbind(SimData, newData)

and run DMA

R> Fit <- DMA(y ~ x2 + x3 + x4 + x5 + x6 , data = SimData,
+ vDelta = seq(0.9, 1.0, 0.01))

In order to extract the predicted value ŷT+1 = E[yT+1|FT ] and the predicted variance decom-
position, we simply run

R> getLastForecast(Fit)

$PointForecast
[1] 11.5293

$VarianceDecomposition
vtotal vobs vcoeff vmod vtvp

4.290887e-01 2.805227e-01 1.478767e-01 6.682507e-04 2.108273e-05
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