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Abstract

Microsoft Excel has some functionality in terms of basic statistics; however it lacks
distribution functions built around the studentized range (Q). The developed Excel add-
in introduces two new user-defined functions, QDISTG and QINVG, based on the studentized
range Q-distribution that expands the functionality of Excel for statistical analysis. A
workbook example, demonstrating the Tukey, S-N-K, and REGWQ tests, has also been
included. Compared with other options available, the method is fast with low error rates.
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1. Introduction

Researchers in most fields of science are often faced with comparing means obtained with
various treatments. The statistical analysis using multiple comparison procedures (MCPs)
is often carried out by statistical software packages that are less suitable for data storage
and manipulation. While Microsoft Excel offers excellent data storage and manipulation, it
provides few built-in methods for statistical data analysis. Excel’s Analysis ToolPak add-in
provides basic analysis of variance (single factor and two-factor) and also provides t-tests
for two sample means. The availability of Excel functions such as FDIST, FINV, TDIST, and
TINV for the F - and t-distributions allows for some capability to conduct simple multiple
comparison procedures such as Fisher’s least significant difference test. However, the lack
of Excel support for the studentized range (Q) distribution does not allow for the Tukey
honest significant difference, Student-Newman-Keuls (S-N-K), or Ryan-Einot-Gabriel-Welsch
Q (REGWQ) tests to be carried out.
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1.1. Brief overview of multiple comparison procedures

Comparisons of means of groups receiving different treatments often begin with a simple
analysis of variance (ANOVA) followed by post-hoc analysis or MCP to determine which
means are statistically different. The methods by which these tests are performed differ
depending on factors such as planned versus unplanned comparisons, comparisons between
groups of the same or different sizes, comparisons of groups with or without equal variances,
and parametric versus stepwise comparisons. However, a common denominator is the use
of statistical distributions such as the F -, t-, or Q-distributions. A comprehensive review of
different methods was performed by Day and Quinn (1989) who described, provided equations
for, and evaluated many of the commonly used methods. It should be noted that Day and
Quinn recommended MCP methods that use the Q-distribution such as the Tukey, Ryan’s
Q (here expanded to REGWQ), and Games-Howell tests. As formulas for this distribution
are not available in Excel, an add-in was constructed to provide the feature. As part of this
manuscript, we also constructed an Excel workbook to demonstrate the use of the add-in with
the Tukey, S-N-K, and REGWQ tests. Within this manuscript, we will use the term α to
represent the upper percentile of the studentized range distribution; α is typically in the range
of 0.1 to 0.01 in comparisons. We will use r to denote the total number of groups compared
and v (or df in the VBA code) to denote the degrees of freedom within groups (available in
the standard single factor ANOVA table). It should be noted that many statistical tables
of the studentized range quantiles use one minus α (often denoted by p) to identify a table.
However, as the upper percentile (α) is used in several other Excel functions (e.g., FINV and
TINV), α was chosen as parameter for the user-defined formulas.

1.2. Methods for obtaining Q values and probabilities

As with many statistical properties related to distributions, statistical tables based on studen-
tized ranges have long been part of statistical text books (Walpole and Myers 1989; Snedecor
and Cochran 1967) but they tend to be limited to a few probabilities (e.g., p = 0.95, α = 0.05).
For an extensive set of Q tables, the reader is directed to Harter (1960).
Lund and Lund (1983) developed a numerical integration algorithm (AS 190) that could be
used to estimateQ values for α values of 0.10–0.01 and also included a rough estimate algebraic
algorithm (AS 190.2) for α values of 0.20–0.05. Copenhaver and Holland (1988) developed an
algorithm in Fortran using Gauss-Legrendre quadrature that was later implemented in Pascal
by Ferreira, Demetrio, Manly, and Machado (2007). It is the same algorithm used by the
R environment for statistical computing and graphics (R Core Team 2018, C source code is
freely available) and other statistical software packages. It is likely also the algorithm used
by of the Excel add-in RealStats-2007, which is freely available (Zaiontz 2016). This last
algorithm is computationally intensive.
The method described within this manuscript takes a different approach. It uses a method
to calculate Q values proposed by Gleason (1998; 1999) that built on relationships between
Student t quantiles and studentized range quantiles. Using this method, Gleason (1999)
transformed traditional studentized range tables (Q tables) to a new set of tables (one for each
probability). Each table listed four constants (a1, a2, a3, a4) for each degree of freedom (v).
These constants could be used in a fourth-order polynomial with the parameter r to calculate
the value of Q(α, r, v). Eight tables (corresponding to eight probabilities 0.50, 0.75, 0.90,
0.95, 0.975, 0.99, 0.995, and 0.999) were created by Gleason (see example in Figure 1) and,
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Figure 1: Table of fourth order polynomial constants by Gleason (1999) for calculation of Q
values. The above example is for p = 0.95, α = 0.05. Entries for some values of v have been
deleted for brevity. The last value of v is listed as 100,000,000; in the typical text book table
it is listed with an infinity symbol.

while not all possible values of v and α were included, details were provided for interpolation
mechanisms (Gleason 1999). Even accurate extrapolation was deemed possible: at least to
α = 0.0001 and r = 200, and the approach was included in the statistical software program
Stata (Gleason 1998). The method by Gleason has also been written in Python with an
expanded set of polynomial constants (Lew 2011). Briefly, the method used by Gleason and
in this add-in to calculate Q values was:

1. If r = 2, set y = 1 and goto step 12.

2. Select two data lines from all eight Gleason tables corresponding to v’s higher and lower
(vhigh, vlow) than the desired v. Each line will have four a constants.

3. If r = 3, calculate an adjustment term (Adj) as recommended by Gleason. For detailed
equations, please consult Gleason (1999).

4. Calculate y2
low and y2

high for each of the eight α values using the appropriate four
constants (a1, a2, a3, a4) and any adjustment due to r = 3. y2

low/high = (1 + a1·
LOG(1 − r) + a2 · [LOG(1 − r)]2 + a3 · [LOG(1 − r)]3 + a4 · [LOG(1 − r)]4 + Adj)2. Note
that LOG is an VBA function for the natural logarithm.

5. Interpolate y2 from y2
low and y2

high and take the square root to find y for the desired
v. This will yield eight y-values, one for each α. y2 = y2

low + (1/v − 1/vlow) · (y2
high −

y2
low)/(1/vhigh − 1/vlow).

6. Calculate x-values as x = −1/[1 + 1.5·NORMINV(1 − α/2, 0, 1)]. NORMINV is an Excel
function corresponding to the Zp-function by Gleason (1999). This will yield eight
x-values, one for each α.
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7. Calculate z-values as z = LOG(y + r/v). This will yield eight z-values, one for each α.

8. Assume that the variable z is dependent on x through a 2nd order polynomial, z =
m1 +m2 · x+m3 · x2, or a 4th order polynomial for higher accuracy if 0.5 < α < 0.001.
Gleason (1999) only used 2nd order.

9. Find the values of the constants (m1,m2, etc.) in the polynomial through matrix alge-
bra.

10. Calculate x-value for the desired α (see step 6) and use the polynomial (see step 8) to
find its z-value.

11. From the z-value, calculate the y-value from relationship in step 7.

12. Calculate the final Q value as Q = y·SQR(2)·TINV(α, v). Note that SQR is a VBA function
and TINV is an Excel function.

The method of obtaining the probability (or α value) for a specific Q value with given r
and v was not given by Gleason (1998; 1999). For this manuscript, an iterative process
was developed based on a false position bracketing iterative interpolation technique for fast
guaranteed convergence (Chapra and Canale 1985). Also, as Gleason reported that his method
could be used to extrapolate to α values lower than 0.001, we extrapolated calculations to
include α = 0.0001, 0.00001, and 0.000001. This allowed for an expanded range when seeking
probabilities for a given Q. The following procedure was used:

1. If r = 2, set α = TDIST(QVal/SQR(2), v, 2) and stop. Note that TDIST is an Excel
function.

2. Follow steps 2–9 in the previous section. Only use 2nd order polynomial in step 8.

10. Define three additional α values equal to 0.0001, 0.00001, and 0.000001.

11. For each of the additional α values, calculate a temporary x-value and use the polyno-
mial (see steps 8 and 9) to find a temporary z-value.

12. From the z-value, calculate the y-value (equation in step 7) for each of the three addi-
tional α values.

13. Calculate w-values as w = y·SQR(2)·TINV(α, v). This will yield eleven w-values, one for
each α. Note that the w-values are the same as Q values, one for each α.

14. Find the α values that bracket the sought α based on the desired Q value and w-values.

15. Use false position bracketing iterative interpolation technique to find α corresponding
to the desired Q value with an acceptable error of 0.1%.

1.3. Creating algorithms and an add-in in Excel
The Excel add-in was created using the Microsoft Excel 2013 built-in VisualBasics module. In
addition to a small subroutine for loading Gleason tables into string variables, the functions
QINVG and QDISTG were created as user-defined functions. They were so named to differentiate
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them from the user-defined functions (QINV and QDIST) in the Excel add-in RealStats-2007
(Zaiontz 2016) and to recognize Gleason’s contribution to this work (Gleason 1998, 1999).
The code of the add-in is provided as part of this manuscript and has been annotated to
correspond to the step-by-step methods listed above. After the code had been entered and
tested, the spreadsheet was saved as an Excel 97–2003 add-in (*.xla).

1.4. User installation
The process of installation and activation of add-ins for Microsoft Excel is covered in Excel’s
help files with slight differences between Excel versions. Examples for the add-in installation
process for Excel 2007 and earlier have also been published by Buttrey (2009). The add-in
presented within this manuscript has been tested for Excel versions 2003 through 2013.

2. Code verification, accuracy, and limitations
To verify that the QINVG user-defined function performed as expected, a limited set of con-
ditions is presented here. To correspond to standard tables, QINVG(α = 0.05, r = 5, 10, 20,
v = 1(1)20, 24, 30, 40, 60, 120, 99,999,999), where 1(1)20 is shorthand for 1, 2, 3, 4, 5, etc.
to 20, was evaluated and compared to statistical tables (Harter 1960). The values were also
generated by the R environment for statistical computing and graphics, version 3.3.0 (R Core
Team 2018), using the following code:

R> QTable <- expand.grid(df = c(1:20, 24, 30, 40, 60, 120, Inf),
+ groups = c(5, 10, 20), alpha = 0.05)
R> QTable$QVal <- qtukey(1 - QTable$alpha, QTable$groups, QTable$df)
R> QTable

To test the α interpolation capability, QINVG(α = 0.2, r = 5, 10, 20, v = 1(1)20, 24, 30, 40,
60, 120, 99,999,999) was evaluated with the QXLA add-in and with R using the following
code:

R> QTable <- expand.grid(df = c(1:20, 24, 30, 40, 60, 120, Inf),
+ groups = c(5, 10, 20), alpha = 0.20)
R> QTable$QVal <- qtukey(1 - QTable$alpha, QTable$groups, QTable$df)
R> QTable

As is noted, there is very good agreement with only minor deviations from expected values
(Figure 2). The R implementation failed to provide Q values for v = 1, something also noted
by Gleason (1999). Some of the Q values may have little practical use in MCPs where it
would be unusual if v < r in Q(α, r, v).
To verify that the QDISTG user-defined function performed as expected, QDISTG(QVal =
4(1)10, r = 5, 10, 20, v = 40) was evaluated with the QXLA add-in and with R using
the following code:

R> ATable <- expand.grid(df = 40, qvalue = seq(4, 10, by = 1),
+ groups = c(5, 10, 20))
R> ATable$AVal <- 1 - ptukey(ATable$qvalue, ATable$groups, ATable$df)
R> ATable
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Figure 2: Verification table for QINVG(α = 0.05, r = 5, 10, 20, v = 1(1)20, 24, 30, 40, 60, 120,
99,999,999), QINVG(α = 0.2, r = 5, 10, 20, v = 1(1)20, 24, 30, 40, 60, 120, 99,999,999), and
QDISTG(QVal = 4(1)10, r = 5, 10, 20, v = 40).

In this case (see Figure 2), the QDISTG function was unable to calculate a value for α with Q =
10 when r was 5 and 10. This is due to the fact that the estimated α was outside the limits
of the add-in. Currently, the lowest α value that can be calculated by QDISTG is 0.000001.
The limitations of the QXLA add-in are as follows:

• α values used by QINVG should ideally be between 0.5 and 0.001 but can be used for
α < 0.001 without major concerns (Gleason 1999). The code automatically allows for
this.

• α values calculated by QDISTG must be between 0.5 and 0.000001. Between 0.5 and
0.001, it uses the method by Gleason (1999) and was extended by extrapolation to
0.000001. Outside this range, a value #VALUE will be displayed in the cell. It would
be possible to extend the range by further extrapolation but Gleason (1998) does not
recommend extrapolation on the other side of the range, above α = 0.5.

• v used by QINVG and QDISTG can be an integer between 1 and 99,999,999. It would be
possible to extend the range further in the code. Outside this range, a value #VALUE
will be displayed in the cell.

• r used by QINVG and QDISTG should ideally be an integer between 2 and 100. However,
higher values will automatically be extrapolated and will not return an error value.
According to Gleason (1998) extrapolation is feasible (and accurate) to r = 200.
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Figure 3: Spreadsheet with example implementing the REGWQ test for four treatment groups
using the user-defined function QINVG(α, r, v). The green sections indicate user input sections
which contain the raw data (cells B16:G36) and the desired α (cell F2). Other sheets in the
downloadable workbook demonstrate S-N-K and Tukey tests.

3. Worked MCP example
Day and Quinn (1989), in their review of different MCPs, provide an example also used
here. They presented four groups (A1, A2, NB, and S) that represented different treatments
with five replicates in each group. Figure 3 is a depiction of a spreadsheet which uses the
add-in and allows the user to enter data in the highlighted green sections. The workbook
automatically constructs the basic single factor ANOVA table, performs the Tukey test, the
stepwise REGWQ and S-N-K tests, and determines which mean belongs to which grouping
(cells B15:G15). The Q values calculated by the add-in are in agreement with those listed by
Day and Quinn (1989). The result from the REGWQ test shows that the means of groups A1
and A2 are significantly different from the other two but not from each other, and likewise
for the means of the other two groups. The workbook is available for download and uses the
QXLA add-in code. It should be noted that the workbook contains the VBA code for QINVG
and QDISTG and can therefore function without installing the add-in.

4. Conclusions

• A subroutine and user-defined functions, QINVG(α, r, v) and QDISTG(QVal, r, v), of the
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upper quantiles and the upper percentiles for the studentized range were successfully
implemented in an Excel add-in using VBA programming.

• As indicated by Gleason (1999), the method “sacrifices some exactness for speed and
simplicity.” However, its easy programming, fast execution, and wide range of usability
makes it an attractive option in Excel.

• Its efficiency was demonstrated by Lew (2011) who stated that R completed a data set
of 1,216,000 points in 45 min using the qtukey function, which uses the algorithm by
Copenhaver and Holland (1988), while a Python program using the Gleason method
took 181 seconds (Lew 2011).

• The efficiency was also tested as part of this work against the Excel add-in RealStats-
2007 (Zaiontz 2016), which took 115 sec to complete the calculation of 78 Q values (α =
0.05, r = 5, 10, 20, v = 1(1)20, 24, 30, 40, 60, 120, 99,999,999) compared with < 1 sec
with the QXLA add-in.

• The user-functions allow for an expanded use of Excel in data analysis.
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