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Abstract

Stochastic simulation and modeling play an important role to elucidate the fundamen-
tal mechanisms in complex biochemical networks. The parametric sensitivity analysis of
reaction networks becomes a powerful mathematical and computational tool, yielding in-
formation regarding the robustness and the identifiability of model parameters. However,
due to overwhelming computational cost, parametric sensitivity analysis is a extremely
challenging problem for stochastic models with a high-dimensional parameter space and
for which existing approaches are very slow. Here we present an information-theoretic
sensitivity analysis in path-space (ISAP) MATLAB package that simulates stochastic pro-
cesses with various algorithms and most importantly implements a gradient-free approach
to quantify the parameter sensitivities of stochastic chemical reaction network dynamics
using the pathwise Fisher information matrix (PFIM; Pantazis, Katsoulakis, and Vlachos
2013). The sparse, block-diagonal structure of the PFIM makes its computational com-
plexity scale linearly with the number of model parameters. As a result of the gradient-
free and the sparse nature of the PFIM, it is highly suitable for the sensitivity analysis
of stochastic reaction networks with a very large number of model parameters, which are
typical in the modeling and simulation of complex biochemical phenomena. Finally, the
PFIM provides a fast sensitivity screening method (Arampatzis, Katsoulakis, and Pantazis
2015) which allows it to be combined with any existing sensitivity analysis software.

Keywords: stochastic biochemical networks, parametric sensitivity analysis, high-dimensional
parameter space, pathwise Fisher information matrix, fast sensitivity screening.

1. Introduction
Complex reaction networks modeled by stochastic population dynamics defined on a graph
representing interactions (reactions) between species, are ubiquitous across many scientific
disciplines, e.g., chemistry and chemical engineering, systems biology, bioinformatics, epi-
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Event Reaction Propensity function
1 A+ 2X → 3X k1 ×A×X × (X − 1)/2
2 3X → A+ 2X k2 ×X × (X − 1)× (X − 2)/6
3 B → X k3 ×B
4 X → B k4 ×X

Table 1: Reactions and propensity functions for the Schlögl model.

demiology, game theory and time series analysis (Goutsias and Jenkinson 2013). Stochastic
simulation and modeling provide an intrinsic understanding of the interplay between complex-
ity and robustness of biochemical reaction networks and have attracted an increasing amount
of attention from the modeling, computational and statistical communities. We provide a
mathematical description of the exact stochastic simulation algorithm and its connections
with approximate models of reaction networks in Section 2. Next we use a very simple exam-
ple to introduce stochastic simulation and parametric sensitivity analysis. The robustness of a
system is a property that allows a system to maintain its functions against internal and exter-
nal perturbations. Due to its bimodality behavior, the Schlögl model (Vellela and Qian 2009)
is often considered as a good example that motivates the need for stochastic simulations. The
Schlögl model (Vellela and Qian 2009; Pantazis and Katsoulakis 2013) describes a well-mixed
chemical reaction network among three chemical species A, B and X interacting through 4
reactions governed by the corresponding propensity functions (Table 1). The concentrations
A, B are kept constant and the reaction rates k1, . . . , k4 are the parameters of the model.
Sensitivity analysis provides a mathematical tool to describe the robustness of a system to
perturbations by determining the (usually unknown) most/least sensitive directions in the
potentially high-dimensional parameter space. The eigenvalues of the proposed pathwise
Fisher information matrix (PFIM) are an approximation of the relative entropy rates (RER),
which serve as a measure of the system parameter sensitivities. As shown in Figure 1, the
most sensitive direction corresponds to the eigenvector with the eigenvalue 396 while the least
sensitive direction corresponds to the eigenvector with eigenvalue 30. To visualize the impacts
of the perturbation on different sensitive-leveled parameters towards the reaction system, we
compared the stationary distributions of the population of chemical speciesX for the following
cases: the unperturbed process, 5% of perturbation to the most sensitive parameter k1 and
5% of perturbation to least sensitive parameter k3. Figure 2 indicates that the reaction
network is more robust to perturbation on the less sensitive parameters as the stationary
distribution departs much more from the unperturbed distribution when perturbing the most
sensitive parameter comparing to the least sensitive parameter. As a result, the parameter
sensitivity analysis of complex networks can be considered as an essential mathematical and
computational tool to measure the robustness and the identifiability of model parameters
(Pantazis et al. 2013).
In recent years there has been a significant development in sensitivity analysis tools and
software packages for low-dimensional stochastic processes. Existing modeling software pack-
ages like COPASI (Hoops et al. 2006), PottersWheel (Maiwald and Timmer 2008), SensSB
(Rodriguez-Fernandez and Banga 2010) and StochSS (StochSS Org. 2013) analyze parameter
sensitivity with deterministic modeling of dynamical systems. Packages COPASI and SensSB
perform sensitivity analysis using finite-difference methods. Package PottersWheel intro-
duced mean optimal transformations (Hengl, Kreutz, Timmer, and Maiwald 2007), a non-
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Figure 1: The proposed pathwise FIM (PFIM) from the Schlögl model. A large value of the
diagonal element indicates high sensitivity of the corresponding parameter.

parametric bootstrap-based algorithm, and the profile likelihood (Raue et al. 2009) method
for sensitivity analysis. Package StochSS implements forward sensitivity analysis (Maly and
Petzold 1996; Feehery, Tolsma, and Barton 1997) for the deterministic (ODE-based) solver
based on the SUNDIAL’s CVODES solver (Hindmarsh et al. 2005). Later several stochastic
sensitivity analysis packages have been designed for stochastic systems. For example, package
SPSens (Sheppard, Rathinam, and Khammash 2013) carries out stochastic parameter sen-
sitivity analysis with several finite-difference estimators including the independent random
number method, the common random numbers method (Sheppard, Rathinam, and Kham-
mash 2012), the common reaction path (Rathinam, Sheppard, and Khammash 2010) method
and the coupled finite difference (Anderson 2012) method along with the Girsanov likelihood
ratio (Plyasunov and Arkin 2007) and the regularized pathwise derivative (Sheppard et al.
2012) method. Another software package, StochSens (Komorowski, Žurauskiene, and Stumpf
2012), is developed for stochastic sensitivity analysis using the linear noise approximation
(Komorowski, Costa, Rand, and Stumpf 2011) and Fisher information matrix.
However, for stochastic models with a high-dimensional parameter space as it is typically the
case in biochemical reaction networks, the existing sensitivity analysis approaches are often
inapplicable due to the overwhelming computational cost since they either rely primarily on
finite-difference or employ various approximation in the dynamics that are not suitable for
small population sizes. Traditional finite-difference methods break down for high-dimensional
systems due to the complexity of the systems, i.e., too many directional derivatives combined
with the high variance of each finite difference estimator (McGill, Ogunnaike, and Vlachos
2012). On the other hand, recently there has been introduced a sensitivity method (Pan-
tazis et al. 2013) which, firstly, is suitable for high-dimensional systems and, secondly, is able
to deal with the exact stochastic dynamics instead of using approximations. The pathwise
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Figure 2: The stationary distributions of the population of chemical species X for the un-
perturbed process (black solid line), process after perturbed on the most sensitive parameter
k1 (red dotted line) and process after perturbed on the least sensitive parameter k3 (green
dashed line).

sensitivity analysis method in Pantazis and Katsoulakis (2013) quantifies the loss of infor-
mation caused by parameter perturbations between time series distributions. The proposed
method is realized by employing the relative entropy rate (RER) which provides a measure
of the information loss per unit time in path space after introducing an arbitrary pertur-
bation in the parameter vector. An associated pathwise Fisher information matrix (PFIM)
which is derived as an approximation of the RER provides a gradient-free approach (i.e.,
a sensitivity analysis methodology which does not depend on the perturbation) to quantify
parameter sensitivities. The block-diagonal structure of the PFIM in reaction networks (Pan-
tazis et al. 2013) indicates its sparsity which in turn reduces the computational complexity
of the stochastic analysis using the PFIM for a K-parameter model from O(K2) to O(K).
Being a gradient-free sensitivity analysis method, this pathwise approach shows great ad-
vantage in computation speed especially when dealing with complex stochastic systems with
high-dimensional parameter space. Due to the property that both RER and PFIM rely only
on information for local dynamics rather than the equilibrium PDFs, the pathwise sensitivity
method is suitable for non-equilibrium steady state systems (i.e., systems for which we do not
know explicitly the equilibrium distribution), which is the case in most reaction networks,
driven, or externally coupled systems. Furthermore, the pathwise sensitivity method can be
also used as a computational efficient way to screen out insensitive parameters. Indeed, based
on a new sensitivity bound (11) which incorporates the variance of the quantity of interest
and the PFIM an accelerated sensitivity analysis strategy has been proposed (Arampatzis
et al. 2015).
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Here we present an information-theoretic sensitivity analysis in path-space (ISAP) MATLAB
(The MathWorks Inc. 2017) package which simulates deterministic and stochastic reaction
networks with three algorithms and primarily focuses on implementing symbolic and numer-
ical procedures to access stochastic sensitivity analysis by calculating both RER and PFIM
for chemical kinetics models as proposed in Pantazis et al. (2013). In particular, this pack-
age delivers numerical realizations of time series using an array of options (e.g., mean field
approximation/ordinary differential equation, chemical Langevin approximation and exact
stochastic simulation algorithm; Gillespie 2007) depending on the desired accuracy, available
resources and simulation regimes.
Compared to other existing software for sensitivity analysis, our package can provide efficient
sensitivity analysis on complex stochastic systems especially for those with high-dimensional
parameter space due to the sparsity and block-diagonal structure of PFIM which can improve
scalability by reducing the computation complexity from quadratic, O(K2), down to linear,
O(K), with K being the number of model parameters (Arampatzis et al. 2015). Furthermore,
our package is compatible to user-input time series data from other sources and can work with
any other sensitivity packages in a complementary manner as a sensitivity screening tool that
is cheap and efficient to implement as a first step in the sensitivity analysis using any of the
existing methods and software (Arampatzis et al. 2015). Several reaction network models
including p53, EGFR, Lotka-Volterra and yeast growth model are provided in the software
to demonstrate the applicability of the package and more examples can be found in online
databases such as the BioModels Database (Le Novère et al. 2006, http://www.ebi.ac.uk/
biomodels-main/publmodels).

2. Mathematical background

In this section we briefly introduce the mathematical background of stochastic chemical ki-
netics simulation and stochastic sensitivity analysis.

2.1. Stochastic chemical kinetics simulation

In the same mathematical context of continuous time Markov chains we can also consider
well-mixed chemical reaction networks. With these models, however, one ignores the spatial
locations of individual molecules and it is only the molecular populations for individual species
that are needed to define the dynamical model.
We consider a well-mixed chemical reaction network with N chemical species, C = {C1, . . . ,
CN}, which can interact throughM specified chemical reaction channels, R = {R1, . . . , RM},
governed by K model parameters, θ = {θ1, . . . , θK}. The state of the system at any time t ≥ 0
is denoted by a N -dimensional vector Xt = [Xt,1, . . . , Xt,N ]> where Xt,i is the population of
chemical species Ci at time t. Let ν be theN×M -dimensional stoichiometry matrix consisting
of νi,j , the stoichiometric coefficient of species Ci in reaction Rj . For each reaction j, we have a
corresponding N -dimensional stoichiometry vector νj that identifies the numbers of molecules
of every species that are produced and consumed in each instance of a reaction of type j.
Provided that the reaction network at time t is in state Xt = x, a propensity function, aθj(x),
is defined to identify the approximate probability aθj(x)dt that the jth reaction occurs in the

http://www.ebi.ac.uk/biomodels-main/publmodels
http://www.ebi.ac.uk/biomodels-main/publmodels
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time interval [t, t+ dt]. For example in mass action kinetics the propensities have the form,

aj(x) = θj × gj(x), j = 1, . . . ,M, (1)

where g is a polynomial. Other types of propensities include the Michaelis-Menten kinetics
with propensity function

aθk(x) = θk × xA
θk′ + xA

. (2)

Here we consider its simplest form, where it gives the rate for what is called a single-substrate
reaction without intermediate. It identifies the rate at which molecules of species A transform
to species B (i.e., the reaction A→ B).
Mathematically, {Xt}t∈R+ is a countable state space continuous time Markov chain (CTMC)
with transition rates, aθj(·), j = 1, . . . ,M . The clock of the jumps from a current state x to a

new state x′ = x +νj is determined by the transition rates with transition probabilities aθj (x)
aθ0(x) ,

where aθ0(x) := ∑J
j=1 a

θ
j(x) is the total rate. To fully understand the reaction network, the

initial population of all chemical species should also be given.
ISAP considers problems modeled in the framework of stochastic chemical kinetics where
the reaction networks can be decomposed to coupled systems of single directional chemical
reactions of the form:

X1 +X2→ X3 +X4,

with the corresponding propensity function, a(x), where x’s are the population of chemical
species.
The following example is a system of 2 chemical species (X1, X2) with 3 reactions:

• X1 → 2X1;

• X1 +X2 → 2X2;

• X2 → NULL;

with the 3 propensity functions aj(X) where j = 1, 2, 3:

• a1(x) = k1× x1;

• a2(x) = k2× x1 × x2;

• a3(x) = k3× x2;

which in this example (not necessary in general) follow mass-action kinetics law. According to
the coupled biochemical reaction system, the package extracts a stoichiometry matrix which
consists of the coefficients of the chemical species in the reactions and propensity functions
which determine the reaction rates. Given the stoichiometry matrix and the propensity
functions, realization of all reactions taken place in the given time period can be generated
according to any simulation algorithms chosen by the user. In our package, there are three
different available options:

• Stochastic simulation algorithm (SSA; Gillespie 2007): generates the exact, discrete-
event stochastic process.
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• Chemical Langevin equation (CLE; Gillespie 2007): generates an approximated, con-
tinuous time stochastic process governed by stochastic differential equations.

• Mean field approximation (MFA)/ordinary differential equation (ODE; Gillespie 2007):
generates an approximated, continuous time, deterministic process governed by ODEs.

Although the SSA method provides exact numerical realizations on the time evolution of a
well-stirred chemically reacting system, it requires a great amount of simulation time espe-
cially when multiscale reaction networks are studied. Many multiscale approximations of the
original SSA have been developed to accelerate the simulation algorithms. The CLE method
approximates the stochastic process by assuming that all reactions fire simultaneously on a
fixed time interval while the MFA method can be regarded as the CLE method without the
noise term (Pantazis et al. 2013).
Mean-field models for reaction networks are commonplace due to their computational effi-
ciency. Here the stochastic process is written as

X(t) = x(t) + η × ξ(t), (3)

where x(t) is the mean of the process, ξ(t) is the stochastic zero-mean part while η is the
amplitude of the stochastic term which is proportional to the inverse square root of the reac-
tant populations. As a consequence, the fluctuations of the time-evolving species populations
become vanishingly small compared to the deterministic contributions for large populations
and the deterministic term whose dynamics are governed by the ordinary differential equation
(ODE) system (Equation 4) dominates the process.

ẋi(t) =
M∑
j=1

νj,i × aθj(x(t)) , i = 1, . . . , N. (4)

The mean field approximation (Equation 4), as well as a higher order stochastic differential
equation (SDE) approximation called chemical Langevin can be readily obtained from the
stochastic dynamics.

2.2. Pathwise sensitivity analysis

The parameter sensitivities are estimated via calculating the relative entropy between time
series (or path) distributions (Pantazis and Katsoulakis 2013) which quantifies the loss of
information when assuming a perturbed distribution instead of employing the true distribu-
tion. In the stationary regime, pathwise relative entropy increases linearly in time. We refer
to Pantazis and Katsoulakis (2013) and Pantazis et al. (2013) for definitions, derivations and
properties of the information quantities discussed here. Let Qθ denote the path distribution
of the process with parameter vector θ ∈ RK . The relative entropy rate (RER; Pantazis and
Katsoulakis 2013), H(Qθ|Qθ+ε), which is the time average of the relative entropy between
path distributions, is a time independent measure of sensitivity since it measures the loss
of information per unit time in path space due to an arbitrary ε-perturbation of parameter
combinations in any direction in the parameter space. A Taylor series expansion of RER in
terms of ε reveals that RER is locally a quadratic function of the parameter perturbation
vector ε ∈ RK :

H(Qθ|Qθ+ε) = 1
2ε
>FH(Qθ)ε+ O(|ε|3). (5)
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Figure 3: The graph representation (left panel) of the dependencies between the reactions
(left column) and the model parameters (right column) as well as the corresponding block-
diagonal structure of the PFIM (right panel) of the crypt compartmental model (Smallbone
and Corfe 2014). In chemical reaction networks, reactions typically depend only on a small
subset of the parameter vector. This parametric dependence of the propensities can be directly
reflected on the PFIM. By grouping the reactions into subsets in such a way that each subset
contains the minimum number of reactions having common parameters, the PFIM becomes a
block-diagonal matrix upon rearrangement of the parameter vector (Pantazis and Katsoulakis
2013). In this example, the grouping of the 11 parameters is carried out by noting the
connected parts of the graph and that the largest dimension of the blocks is 3.

The PFIM (Pantazis and Katsoulakis 2013), FH(Qθ), contains up to third order accuracy all
the sensitivity information for the path distribution Qθ with parameter vector θ for any per-
turbation direction ε. Therefore, the computation of the PFIM is sufficient up to third order
for the evaluation of all the local sensitivities of the path distribution around the parameter
vector θ. Unlike the traditional FIM which is computed only based on the stationary distri-
bution, the PFIM gathers additional information by taking into consideration the dynamical
aspects of the process as well. Most importantly, an explicit formula for the PFIM is given
by

FH(Qθ) = Eµθ

∑
j

aθj(x)∇θ log aθj(x)∇θ log aθj(x)>
 , j = 1, . . . ,M. (6)

This explicit formula reveals that for a typical reaction network the PFIM has block-diagonal
structure upon rearrangement of the parameter vector. Moreover, PFIM is a steady state
average which only depends on the propensity functions aθj(x). Figure 3 describes the block-
diagonal structure for the dynamics of the crypt compartmental model (Smallbone and Corfe
2014). Concentrating on the PFIM estimation, since the stationary distribution, µθ, is usually
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unknown, an unbiased estimator for the PFIM (Pantazis and Katsoulakis 2013) is computed
numerically as an ergodic average. RER and the corresponding PFIM become computation-
ally feasible as they are directly computable from the propensity functions.
For biochemical reaction networks where model parameters may differ by orders of magnitude,
it is reasonable to carry out sensitivity analysis by adding perturbations which are propor-
tional to the parameter magnitude. By perturbing the logarithm of the model parameters and
using the chain rule, we obtain the logarithmically-scaled PFIM (Pantazis and Katsoulakis
2013), FH(Qlog θ) (

FH(Qlog θ)
)
k,l

= θkθl
(
FH(Qθ)

)
k,l
, k, l = 1, . . . ,K. (7)

Since the stationary distribution, µθ, is often unknown, an unbiased estimator for FIM is
given as ergodic averages (Pantazis and Katsoulakis 2013),

F̄
(n)
H = 1

T

∑
i

∆ti
∑
j

aθj(xi)∇θ log aθj(xi)∇θ log aθj(xi)>, i = 0, . . . , n− 1, j = 1, . . . ,M,

(8)
where ∆ti is an exponential random variable with parameter given by the total rate, aθ0(xi) =∑M
j=1 a

θ
j(xi), with T = ∑n

i=1 ∆ti is the total simulation time. The sequence {xi}ni=0 forms
a Markov chain with transition probabilities from state xi to state xi+1 determined by the
ratio aθj (xi)

aθ0(xi)
.

Finally, we would like to address how the PFIM can be utilized for fast parameter screening.
We refer to Arampatzis et al. (2015) for a detailed discussion. Proceeding, let us denote
by G(·) = [G1(·), . . . , GL(·)]> the vector with L state-dependent observable functions, Gl :
X→ R, l = 1, . . . , L. One typical option for the observable function is the time-average of a
function which is defined in a general setting as

Gl ({Xt}) = 1
T

∫
t
gt(Xt)dt, (9)

where the most common observable is the population of the lth species, i.e., the projection
of the state vector to the lth direction (gl(x) = xl). The sensitivity matrix of the observable
functions, S ∈ RK×L, is defined by

Sk,l = ∂

∂θk
EQθ [Gl ({Xt})] , k = 1, . . . ,K, l = 1, . . . , L. (10)

The element, Sk,l, is the sensitivity index (SI) of the lth observable with respect to the kth
parameter. For the stationary regime and time-averaged observables, a sensitivity bound for
the absolute value of the SIs can be derived either from rearranging the Cramer-Rao inequality
(Arampatzis et al. 2015) or from variational formulas (Dupuis, Katsoulakis, Pantazis, and
Plecháč 2016). Particularly, the sensitivity bound reads

|Sk,l| ≤ Cl
√
FH(Qθ)k,k, k = 1, . . . ,K, l = 1, . . . , L, (11)

where FH(Qθ) is the PFIM while Cl is a constant related only to the lth observable function,
Gl. Apparently, this inequality can be utilized as a screening tool to discard the most insen-
sitive SIs since diagonal PFIM elements with small values imply low SIs (Arampatzis et al.
2015).
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Classical sensitivity analysis approaches scale poorly in the presence of high dimensions and
many parameters. Take the mean field approximations (Equation 4) for example, where we
consider a system of N ordinary differential equations,

ẏ = f(y; θ), y(0) = y0 ∈ RN , (12)

when performing a local sensitivity analysis on the model parameters θ ∈ RK , we define
sensitivity indices measuring the impact of small parameter perturbations on the model by

sk = ∂y

∂θk
. (13)

Then, a new system of ordinary differential equations is derived and augmented with the
original system (Equation 12):

ṡk = ∂f

∂y
sk + ∂f

∂θk
, k = 1, . . . ,K. (14)

Therefore, in order to study the local sensitivity of the system of ordinary differential equa-
tions we need to solve K × N additional equations, where both K,N � 1. As a result,
to estimate parameter sensitivity, the classical sensitivity analysis approaches have to solve
an adjunct system of (K + 1)×N differential equations (i.e., the ordinary differential equa-
tion system (Equation 12) that governs the dynamics of the reaction network augmented by
the ordinary differential equations for the derivatives with respect to the parameters (Equa-
tion 14)). In comparison, the proposed pathwise sensitivity analysis approach can estimate
parameter sensitivity in a more efficient manner as it only needs to solve N differential equa-
tions (Equation 12) and calculate the unbiased estimator of PFIM (Equation 8).

3. Structure of the package
The ISAP package is implemented as a set of MATLAB functions. By taking the user-defined
biochemical reaction system, the package extracts a stoichiometry matrix which consists of
the coefficients of the chemical species in the reactions and the propensity functions which
determine the reaction rates. With the stoichiometry matrix and the propensity functions,
realizations of time series in the given time period can be generated according to different
simulation algorithms (SSA, CLE and MFA) by users’ choice.
This package provides both, simulators for various processes as well as tools for sensitivity,
robustness and identifiability of model parameters (see the schematic in Figure 4). Our
package using time-series either locally generated or externally provided by another simulator
is able to efficiently compute the unbiased estimator of both RER and PFIM (Pantazis and
Katsoulakis 2013). Furthermore, this package offers functions to extract sensitivity coefficients
from the spectral analysis of the PFIM and parameter sensitivities can be ranked accordingly.
In our package, simultaneous perturbations can be added to any subset of model parameters
to test the robustness of the system and the analysis of eigenvalues of the PFIM provides
information on the identifiability of model parameters (Pantazis et al. 2013).
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Figure 4: This is the software structure flow chart of the ISAP package. Users can generate
times series with their own model as well as the built-in examples with different simulation
algorithms (SSA, CLE and MFA). Sensitivity analysis can be performed in a computational
efficient manner on either package generated time series or user input time series from any
simulator.

4. Defining the reaction network

4.1. Create examples

In order to build an example, users need to create three .txt files and store them in the
\examples\example_name\input_files folder. The three input files include the following
information of the reaction network:

• Coupled one direction reaction functions.

• Initial populations of biochemical species.

• Reaction rate constants for all reactions.

The following three ways are possible to create input files:

• Several examples (i.e., crypt compartmental model, NSCLC model, EGFR model,
Lotka-Volterra equation, Michaelis-Menten kinetics, p53 gene network, Schlögl’s model,
and yeast model) are provided in this software.

• Users can also download examples from online databases, such as the BioModels (Le
Novère et al. 2006). Our software provides a parser function, sbml2txt.m, to convert
the downloaded .xml file to our input files using the following steps:

1. Go to BioModels Database (http://www.ebi.ac.uk/biomodels-main/publmodels)
and select the desired BioModel ID (for example BIOMD0000000520).

http://www.ebi.ac.uk/biomodels-main/publmodels
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2. Select the curated data (e.g., ‘SBML L2 V4 (curated)’ from ‘download SBML’)
and download the .xml file.

3. Use the sbml2txt.m function to create the three input files.

Note: The current version of the ISAP package is able to handle the SBML file examples
with the following features, otherwise users have to create examples manually:

– No ‘Rules’: assignment rule and rate rule.
– No ‘Functions’: abstract propensity function.
– No ‘Events’.
– Names of the parameter are distinct to each other.
– Only single compartment size is allowed.
– Parameter value must be constant.

• Users can also follow the formats in Section 4.3 to create examples (three input .txt
files: reaction functions, initial populations and reaction rate constants) manually.

Relevant functions

• sbml2txt(file, outputfile)

Description: Remove the ‘listOfModifiers’ tag from the .xml file and rewrite if nec-
essary. Load the .xml file into MATLAB and create three input files: reactions
mechanism, reaction constants and initial populations.

Inputs:
– ‘file’: Complete path of the location of .xml file.
– ‘outputfile’: Name of the output folder.

Outputs:
– ‘reactions mechanism’: Coupled one direction reaction functions.
– ‘reaction constants’: Reaction rate constants for all reactions.
– ‘initial populations’: Initial populations of biochemical species.

4.2. Create basic data structures

In order to simplify the computation, the package takes the three input files and further
generates three .txt files as below.

• ‘connectivity matrix’: associates each species with an index and represents the reac-
tion network as a matrix.

• ‘propensity functions’: extracts propensity functions from the reaction mechanism.

• ‘stoichiometry matrix’: consists of the coefficients of the chemical species in the
reactions.
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4.3. Example

Consider a reaction mechanism involving 3 reactants (X1, X2 and X3) and 3 reaction con-
stants (k1, k2 and k3).

• X1 +X2→ X3 with propensity function k1×X1×X2;

• X3→ X1 +X2 with propensity function k2×X3;

• X2→ NULL with propensity function k3×X2.

Input files:

1. reactants.txt: It lists the reactions with the propensity functions, i.e.,

• X1 +X2 = X3 ‘k1 ∗X1 ∗X2’;
• X3 = X1 +X2 ‘k2 ∗X3’;
• X2 = NULL ‘k3 ∗X2’.

2. initial_population.txt: It assigns numbers to each reactant, i.e.,

• NULL = 0;
• X1 = 100;
• X2 = 100;
• X3 = 100.

3. reaction_constants: It assigns numbers to each reactant constant, i.e.,

• k1 = 62849;
• k2 = 0.70599;
• k3 = 1.

Output files:

1. stoichiometry.txt: The stoichiometry of participating species in reactions is gener-
ated in the following format:

Stoich 1 Stoich 2 Stoich 3 Stoich 4
−1 −1 1 0
−1 −0 1 1
−1 −0 0 0

2. connectivity.txt: The connectivity is generated in the following format and shows
which species are involved in each reaction:

Connectivity 1 Connectivity 2 Connectivity 3 Connectivity 4
2 3 4 0
4 0 2 3
3 0 1 0
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3. propensities.txt: The reaction propensity functions are generated in the following
format:

• k1 ∗X1 ∗X2;
• k2 ∗X3;
• k3 ∗X2.

Relevant functions

• rxn2csm(fname)

Description: Read three files with the reactions mechanism, reaction constants and
initial populations to creates the connectivity matrix, stoichiometric matrix and
the propensity functions.

Inputs:
– ‘fname’: Directory with file name.

Outputs:
– ‘stoichiomatrix.txt’: Stoichiometry of participating species in reactions is

generated.
– ‘connectivity.txt’: Connectivity is generated.
– ‘propensities.txt’: Reaction propensity functions are generated.

• initialization_lin(rname)

Description: Initialization for simulation and sensitivity analysis. Reactions, species,
reaction rates, connectivity and initial configuration are specified. Linear-scale
sensitivity analysis is considered.

Inputs:
– ‘rname’: File name that describes the model.

Outputs:
– ‘data.M’: Number of reactions.
– ‘data.N’: Number of species.
– ‘data.K’: Number of parameters.
– ‘data.X’: Initial population of the system.
– ‘data.pX’: Chemical species pattern X(i).
– ‘data.pC’: System parameters pattern con(i).
– ‘data.theta’: Name of system parameters.
– ‘data.prop’: Cell vector with the propensity functions as MATLAB handles.
– ‘data.props’: Cell vector with the propensity functions as strings.
– ‘data.vprops’: Cell vector with the propensity functions as strings with nu-

meric coefficients.
– ‘data.m_glpf’: Matrix of the gradient of log of propensity functions.
– ‘data.cv_glpf’: Vector of the non-zero elements of the symbolic PFIM.
– ‘data.prop_index’: Index of the non-zero elements of the symbolic PFIM.



Journal of Statistical Software 15

– ‘data.con’: Value of reaction constants.
– ‘data.sname’: Name of chemical species.
– ‘data.stoichio’: Stoichiometric matrix.
– ‘data.cm_rea’: Connectivity matrix for the reactions.
– ‘data.cm_spe’: Connectivity matrix for the species.
– ‘get_rate.m’ file: Compute reaction rate for the given reaction.
– ‘get_PFIM.m’ file: Compute element of PFIM value for the given reaction.

• initialization_log(rname)

Description: Initialization for simulation and sensitivity analysis. Reactions, species,
reaction rates, connectivity and initial configuration are specified. Logarithmic-
scale sensitivity analysis is considered.

Inputs:
– ‘rname’: File name that describes the model.

Outputs:
– ‘data’: Data structure array (same as the linear case in this section).

5. Stochastic simulation
Our package provides three different ways to conduct stochastic simulation.

5.1. Stochastic simulation algorithm

A stochastic simulation algorithm generates an exact, discrete, single event, stochastic process.

Relevant functions

• reaction_ssa(data)

Description: Simulation for well-mixed reaction systems with a stochastic simulation
algorithm.

Inputs:
– ‘data’: Data structure array (defined by initialization in Section 4.3).

Outputs:
– ‘output.t’: Time vector.
– ‘output.species_ts’: The concentrations of each species at each time step.

5.2. Chemical Langevin equation

A chemical Langevin equation generates an approximated, continuous, stochastic differential
trajectories.
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Relevant functions

• reaction_cle(data)

Description: Simulation for well-mixed reaction systems with a chemical Langevin
equation.

Inputs:
– ‘data’: Data structure array (defined by initialization in Section 4.3).

Outputs:
– ‘output.t’: Time vector.
– ‘output.species_ts’: The concentrations of each species at each time step.

5.3. Mean field approximation

A mean field approximation/ordinary differential equation generates approximated, continu-
ous, deterministic differential trajectories.

Relevant functions

• reaction_mfa(data)

Description: Simulation for well-mixed reaction systems with an ordinary differential
equation.

Inputs:
– ‘data’: Data structure array (defined by initialization in Section 4.3).

Outputs:
– ‘output.t’: Time vector.
– ‘output.species_ts’: The concentrations of each species at each time step.

5.4. Interpolating simulated time series

Different simulation algorithms provide sample points from different sampling time instants.
The package can homogenize the time interval into equal partitions by interpolation and
re-sampling.

Relevant functions

• sim_rxn(data, dname, method)

Description: Simulate the reaction network. Each time series is interpolated at given
time instants and stored in .mat files.

Inputs:
– ‘data’: Data structure array (defined by initialization in Section 4.3).
– ‘dname’: Directory for interpolated simulation.
– ‘method’: Simulation algorithm (SSA, CLE or MFA).
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Outputs:
– ‘.mat’ file: Interpolated simulation data file.

6. Pathwise sensitivity analysis
Package ISAP makes stochastic sensitivity analysis flexible by providing functions to compute
the RER only, PFIM only or both.

6.1. Compute both RER and PFIM

With an input time series, package ISAP computes both, RER and PFIM, for all parameters
assuming some perturbations are added to the original parameter values.

Relevant functions

• compute_PFIM_RER(data, dname)

Description: Compute both PFIM and RER from the stored time series.
Inputs:

– ‘data’: Data structure array (defined by initialization in Section 4.3).
– ‘dname’: directory name of population data.

Outputs:
– ‘RER’: Vector of RERs corresponds to the perturbation matrix.
– ‘PFIM’: Pathwise Fisher information matrix.

6.2. Compute RER

With an input time series, package ISAP computes the relative entropy rates for all parame-
ters assuming some perturbations are added to the original parameter values.

Relevant functions

• comp_RER(X, data)

Description: Compute a vector of RERs with input time series (species population
only, no time) and perturbation matrix (each row represents a perturbation vector
to all parameters).

Inputs:
– ‘X’: Time series of the populations of chemical species.
– ‘data’: Data structure array (defined by initialization in Section 4.3).

Outputs:
– ‘RER’: Vector of RERs corresponds to the perturbation matrix.
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6.3. Compute PFIM

With an input time series, package ISAP computes the Fisher information matrix for all
parameters assuming some perturbations are added to the original parameter values.

Relevant functions

• comp_PFIM(X, data)

Description: Compute PFIM with input time series (species population only, no time).
Inputs:

– ‘X’: Time series of the populations of chemical species.
– ‘data’: Data structure array (defined by initialization in Section 4.3).

Outputs:
– ‘PFIM’: Pathwise Fisher information matrix.

7. Example problems
Several examples are included in the examples directory:

BIO520: Crypt compartmental model (3 species, 7 reactions, 11 parameters).

BIO427: Model of epidermal growth factor receptor and type 1 insulin-like growth factor
pathways in non-small cell lung cancer (NSCLC) (21 species, 22 reactions, 54 parame-
ters).

EGFR: Epidermal growth factor receptor model (23 species, 47 reactions, 50 parameters).

LotkaVolterra: The Lotka-Volterra predator-prey model (2 species, 3 reactions, 3 parame-
ters).

MichaelisMenten: Michaelis-Menten kinetics (2 species, 2 reactions, 2 parameters).

p53: Tumor protein p53 gene network (3 species, 5 reactions, 7 parameters).

Schlogl: Schlögl model (1 species, 4 reactions, 4 parameters).

yeast: Yeast model organism (7 species, 8 reactions, 8 parameters).

We shall illustrate the usefulness and flexibility of the ISAP package by analyzing two bio-
chemical reaction networks. All the input files of built-in examples are provided in the example
folder and .xml folder for replication. Moreover, we demonstrate the procedures to download
and transform examples from the BioModels Database in the first example.

7.1. Crypt compartmental model

It is widely believed that colonic crypts, millions of invaginations in the lining of the colon, are
the places where colorectal cancer first appears. The crypt compartmental approach which
accounts for populations of stem cells, differentiated cells, and transit cells helps us to model
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the development and early progression of colorectal cancer. Here we study a reaction network
model for the dynamics of the crypt compartmental model (Smallbone and Corfe 2014) which
consists of 3 cell species with interactions through 7 reactions with 11 parameters. First we will
take the crypt compartmental model, the model of the colon crypt, as an example to explain
how to download and transform examples from the BioModels Database and then introduce
the test functions in package ISAP. In general, it is easy to modify the test functions to
accommodate a user defined reaction network.

1. Create an example folder in the following directory: ‘\examples\BIO520\input_files’.

2. Go to http://www.ebi.ac.uk/biomodels-main/BIOMD0000000520.

3. Select ‘SBML S2 V4 (curated)’ from ‘download SBML’ and download the .xml file to
‘\xml_models’.

4. Set file = ’xml_models/BIOMD0000000520.xml’.

5. Set outputfile = ’examples/BIO520/input_files/BIO520’.

6. Use the sbml2txt(file, outputfile) function to create three input files.

7. Run example_methods_BIO520 and example_isap_BIO520 to do simulation and per-
form sensitivity analysis respectively.

The main components of the test functions are listed as below:

Step 1: Set the directory of the reaction network.

>> dname = 'examples/BIO520/';
>> fname = [dname 'input_files/BIO520'];

Step 2: Create auxiliary files, if necessary.

>> exCM = dir([fname '_connectivity.txt']);
>> if isempty(exCM)

rxn2csm([fname '.txt']);
end

Step 3: Create the data structure.

>> data = initialization_log(fname); % for log-scale sensitivity analysis
>> data.T = 100; % final time
>> data.NoJ = 1000000; % maximum number of jumps
>> data.NoS = 5; % number of repeated simulations
>> dt = 0.1; % sampling frequency in time
>> data.ti = dt:dt:data.T; % sampling time instants
>> data.tau = 0.05; % time-step for CLE

Step 4: Simulate the reaction network and save the species time series.

>> sim_rxn(data, [dname 'data/'], 'SSA');
>> sim_rxn(data, [dname 'data/'], 'MFA');
>> sim_rxn(data, [dname 'data/'], 'CLE');

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000520
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Figure 5: Time series from colon crypt cycle model version 0 (http://www.ebi.ac.uk/
biomodels-main/BIOMD0000000520) generated from SSA, MFA and CLE. In this example,
stochasticity plays a very important role when low values of the species occur as the MFA of
the stochastic system can be valid only when there are large numbers of molecules of each
species (Higham 2008).

Algorithm SSA MFA CLE
Time (s) 71.24 0.22 3.57

Table 2: Table of computation time with SSA, MFA and CLE.

Step 5: Plot the species of the reaction network.

>> plot_species(data, [dname 'data/X_SSA_1.mat'], [3, 1, 1], 6);
>> title('SSA');
>> plot_species(data, [dname 'data/X_MFA_1.mat'], [3, 1, 2], 6);
>> title('MFA');
>> plot_species(data, [dname 'data/X_CLE_1.mat'], [3, 1, 3], 6);
>> title('CLE');

The time series of the reaction network, see Figure 5, can be realized with SSA, MFA or CLE.
A comparison of the simulation time with different algorithms is listed in Table 2. The SSA
method requires a great amount of simulation time (71.24 seconds) to provide exact numerical
realizations of the system. Assuming that all reactions fire simultaneously on a fixed time
interval, the CLE method approximates the SSA method and accelerates the simulation time
to 3.57 seconds. Being regarded as the CLE method without the noise terms, the MFA
method provides the fastest but least accurate results in 0.22 seconds.
For the purposes of pathwise RER and PFIM calculations, we use the simulation data from
the CLE method.

Step 6: Create 10-percent perturbation vectors.

>> eps0 = 0.1;

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000520
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000520
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Figure 6: The proposed pathwise FIM (PFIM) from colon crypt cycle model version 0 (http:
//www.ebi.ac.uk/biomodels-main/BIOMD0000000520).

>> pert_vec = diag(eps0 * data.con);
>> pert_vec = [pert_vec; -pert_vec];
>> data.eps0 = eps0;
>> data.pert_vec = pert_vec;

Step 7: Compute PFIM and plot 3D PFIM.

>> PFIM = compute_PFIM_RER(data, dname);
>> figure;
>> plot_PFIM(PFIM, data);

The 3D barplot shows a block-diagonal structure of elements of the PFIM with the blocks
denoting the reaction subsets with the same parametric dependence (Pantazis et al. 2013).
The height of the bars corresponds to the values for the elements of PFIM. By visually
inspecting Figure 4, the sensitive parameters are d1, b1, c1, a1 and d2. In particular, d2 is the
most sensitive parameter. The plot demonstrates that perturbations may affect the dynamics
to those sensitive model parameters and the rest of the parameters are robust to variations.

Relevant functions

• example_methods_BIO520

Description: Simulate the crypt compartmental model reaction network with SSA,
CLE and MFA. Interpolate the simulated time series.

Outputs:
– Plot the simulation time series of all species from different algorithms side by

side.

• example_isap_BIO520

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000520
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000520
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Description: Simulate the crypt compartmental model reaction network with SSA,
CLE or MFA and interpolate the simulated time series. Add 10 percent perturba-
tion on the parameter values and conduct either linear-scale or log-scale parameter
sensitivity analysis by computing RER and PFIM.

Outputs:
– Plot 3D barplot for the elements of PFIM.
– Plot the RER computed directly and utilizing PFIM side by side with confi-

dence intervals.

7.2. NSCLC model

The second example comes from a Systems Biology approach which aims to understand the
molecular biology of the epidermal growth factor receptor (EGFR, also known as ErbB1/HER1)
and type 1 insulin-like growth factor (IGF1R) pathways in non-small cell lung cancer (NSCLC)
(Bianconi, Baldelli, Ludovini, Crinò, Flacco, and Valigi 2012). This reaction network consists
of 21 species which can interact through 22 reactions with 54 parameters.

Step 1: Set the directory of the reaction network.

dname = 'examples/BIO427/';
fname = [dname 'input_files/BIO427'];

Step 2: Create auxiliary files, if necessary.

>> exCM = dir([fname '_connectivity.txt']);
>> if isempty(exCM)

rxn2csm([fname '.txt']);
end

Step 3: Create the data structure.

>> data = initialization_log(fname); % for log-scale sensitivity analysis
>> data.T = 100; % final time
>> data.NoJ = 1000000; % maximum number of jumps
>> data.NoS = 5; % number of repeated simulations
>> dt = 0.1; % sampling frequency in time
>> data.ti = dt:dt:data.T; % sampling time instants
>> data.tau = 0.05; % time-step for CLE

We realize the processes with the mean field approximation.

Step 4: Simulate the reaction network and save the species time series.

>> sim_rxn(data, [dname 'data/'], 'MFA');

Solving the derived system of ODEs with MATLAB routine ode15s, we compute the PFIM at
the steady state regime. The associated PFIM has dimension 54 × 54. The block diagonal
structure of the PFIM (Figures 7 and 8) indicates sparsity which can be used to reduce the
computational costs.
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Figure 7: Block diagonal structure of PFIM of the NSCLC model (http://www.ebi.ac.uk/
biomodels-main/BIOMD0000000427). White space represents the zero elements of the PFIM
which indicates sparsity in PFIM. Only 5 percent of the elements of PFIM are nonzero.

Figure 8: Block diagonal structure of PFIM in log scale of the NSCLC model. Parameters
with higher values are more sensitive to perturbations. About 4.5 percent of elements of the
PFIM are greater than zero in log scale.

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000427
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000427


24 ISAP: Sensitivity Analysis of High-Dimensional Stochastic Chemical Networks

Step 5: Create 10-percent perturbation vectors.

>> eps0 = 0.1;
>> pert_vec = diag(eps0 * data.con);
>> pert_vec = [pert_vec; -pert_vec];
>> data.eps0 = eps0;
>> data.pert_vec = pert_vec;

Step 6: Compute PFIM and plot 2D PFIM.

>> PFIM = compute_PFIM_RER(data, dname);
>> figure;
>> spy(PFIM(:,:,1));

Step 7: Compute PFIM and plot 3D log PFIM.

>> PFIM = compute_PFIM_RER(data, dname);
>> lPFIM = PFIM;
>> idx = PFIM ~= 0;
>> lPFIM(idx) = log(abs(PFIM(idx)));
>> figure;
>> plot_PFIM(lPFIM, data);

8. Summary of functions
We summarize the implemented functions showing their hierarchical dependencies.

8.1. Names of the m-functions and their hierarchy

1. example_methods_{BIO520|EGFR|LotkaVolterra|MichaelisMenten|p53|Schlogl|
yeast}.m

• rxn2csm.m

• initialization_{lin|log}.m

– create_getrate_m.m
– create_getPFIM_m.m

• sim_rxn.m

– reaction_ssa.m
∗ reaction_rate.m

+ get_rate.m
∗ update_rates.m

– reaction_cle.m
– reaction_mfa.m

• plot_species.m
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2. example_isap_{BIO520|EGFR|LotkaVolterra|MichaelisMenten|p53|Schlogl|
yeast}.m

• rxn2csm.m

• initialization_{lin|log}.m

– create_getrate_m.m
– create_getPFIM_m.m

• sim_rxn.m

– reaction_ssa.m
∗ reaction_rate.m

+ get_rate.m
∗ update_rates.m

– reaction_cle.m
– reaction_mfa.m

• compute_PFIM_RER.m

– comp_PFIM.m
∗ update_PFIM.m

+ get_PFIM.m
– comp_RER.m

∗ update_RER_per.m
+ rate_eps.m

• plot_PFIM.m

• plot_RER.m

9. Conclusion
Package ISAP is a novel and extendable MATLAB package for simulation and computationally-
efficient sensitivity analysis of complex stochastic reaction networks. The wide range of ca-
pabilities and the detailed documentation make package ISAP ideal for helping the modeler
to create user-defined models and generate simulation data. By employing the RER, the
implemented sensitivity analysis approach quantifies the information loss per unit time along
different parameter perturbations between time series distributions. An associated PFIM
addresses a gradient-free approach for parametric sensitivity analysis. Compared to other
sensitivity software packages, our package provides a significant advantage in reducing the
computational cost especially for complex stochastic networks with a high-dimensional pa-
rameter space and can be used as a screening tool for insensitive parameters.
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