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Abstract

This article describes blavaan, an R package for estimating Bayesian structural equa-
tion models (SEMs) via JAGS and for summarizing the results. It also describes a novel
parameter expansion approach for estimating specific types of models with residual co-
variances, which facilitates estimation of these models in JAGS. The methodology and
software are intended to provide users with a general means of estimating Bayesian SEMs,
both classical and novel, in a straightforward fashion. Users can estimate Bayesian ver-
sions of classical SEMs with lavaan syntax, they can obtain state-of-the-art Bayesian fit
measures associated with the models, and they can export JAGS code to modify the
SEMs as desired. These features and more are illustrated by example, and the parameter
expansion approach is explained in detail.
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1. Introduction

The intent of blavaan is to implement Bayesian structural equation models (SEMs) that
harness open source MCMC samplers (in JAGS; Plummer 2003) while simplifying model
specification, summary, and extension. Bayesian SEM has received increasing attention in re-
cent years, with MCMC samplers being developed for specific priors (e.g., Lee 2007; Scheines,
Hoijtink, and Boomsma 1999), specific models being estimated in JAGS and BUGS (Lunn,
Jackson, Best, Thomas, and Spiegelhalter 2012; Lunn, Thomas, Best, and Spiegelhalter 2000),
factor analysis samplers being included in R packages bfa (Murray 2014) and MCMCpack
(Martin, Quinn, and Park 2011), and multiple samplers being implemented in Mplus (Muthén
and Asparouhov 2012). These methods have notable advantages over analogous frequentist
methods, including the facts that estimation of complex models is typically easier (e.g., Marsh,
Wen, Hau, and Nagengast 2013) and that estimates of parameter uncertainty do not rely on
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asymptotic arguments. Further, in addition to allowing for the inclusion of existing knowl-
edge into model estimates, prior distributions can be used to inform underidentified models,
to average across multiple models in a single run (e.g., Lu, Chow, and Loken 2016), and to
avoid Heywood cases (Martin and McDonald 1975).
The traditional SEM framework (e.g., Bollen 1989) assumes an n × p data matrix Y =
(y1 y2 . . . yn)> with n independent cases and p continuous manifest variables. Using the
LISREL “all y” notation (e.g., Jöreskog and Sörbom 1997), a structural equation model with
m latent variables may be represented by the equations

y = ν + Λη + ε (1)
η = α+Bη + ζ, (2)

where η is an m × 1 vector containing the latent variables; ε is a p × 1 vector of residuals;
and ζ is an m× 1 vector of residuals associated with the latent variables. Each entry in these
three vectors is independent of the others. Additionally, ν and α contain intercept parameters
for the manifest and latent variables, respectively; Λ is a matrix of factor loadings; and B
contains parameters that reflect directed paths between latent variables (with the assumption
that (I −B) is invertible).
In conventional SEMs, we assume multivariate normality of the ε and ζ vectors. In particular,

ε ∼ Np(0,Θ) (3)
ζ ∼ Nm(0,Ψ), (4)

with the latter equation implying multivariate normality of the latent variables. Taken to-
gether, the above assumptions imply that the marginal distribution of y (integrating out the
latent variables) is multivariate normal with parameters

µ = ν + Λα (5)
Σ = Λ(I −B)−1Ψ(I −B>)−1Λ> + Θ. (6)

If one is restricted to conjugate priors, then the Song and Lee (2012) or Muthén and As-
parouhov (2012) procedures are often available for simple MCMC estimation of the above
model. However, if one wishes to use general priors or to estimate novel models, then there is
the choice of implementing a custom MCMC scheme or using a general MCMC program like
BUGS, JAGS, or Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker,
Guo, Li, and Riddell 2017). These options are often time-consuming and difficult to extend to
further models. This is where blavaan is intended to be helpful: it allows for simple specifica-
tion of Bayesian SEMs while also allowing the user to extend the original model. In addition
to easing Bayesian SEM specification, the package includes a novel approach to JAGS model
estimation that allows us to handle models with correlated residuals. This approach, further
described below, builds on the work of many previous researchers: the approach of Lee (2007)
for estimating models in WinBUGS; the approach of Palomo, Dunson, and Bollen (2007) for
handling correlated residuals; and the approaches of Barnard, McCulloch, and Meng (2000)
and Muthén and Asparouhov (2012) for specifying prior distributions of covariance matrices.
Package blavaan is potentially useful for the analyst that wishes to estimate Bayesian SEMs
and for the methodologist that wishes to develop novel extensions of Bayesian SEMs. The
package is a series of bridges between several existing R packages, with the bridges being
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used to make each step of the modeling easy and flexible. Package lavaan (Rosseel 2012)
serves as the starting point and ending point in the sequence: the user specifies models via
lavaan syntax, and objects of class blavaan make use of many lavaan functions. Consequently,
writings on lavaan (e.g., Beaujean 2014; Rosseel 2012) give the user a good idea about how
to use blavaan.
Following model specification, blavaan examines the details of the specified model and con-
verts the specification to JAGS syntax. Importantly, this conversion often makes use of the
parameter expansion ideas presented below, resulting in MCMC chains that quickly converge
for many models. We employ package runjags (Denwood 2016) for sampling parameters and
summarizing the MCMC chains. Once runjags is finished, blavaan organizes summaries and
computes a variety of Bayesian fit measures.

2. Bayesian SEM
As noted above, the approach of Lee (2007; see also Song and Lee 2012) involves the use
of conjugate priors on the parameters from Equations 1 to 4. Specific priors include inverse
gamma distributions on variance parameters, inverse Wishart distributions on unrestricted
covariance matrices (typically covariances of exogenous latent variables), and normal distri-
butions on other parameters.
Importantly, Lee assumes that the manifest variable covariance matrix Θ and the endogenous
latent variable covariance matrix Ψ are diagonal. This assumption of diagonal covariance
matrices is restrictive in some applications. For example, researchers often wish to fit models
with correlated residuals, and it has been argued that such models are both necessary and
under-utilized (Cole, Ciesla, and Steiger 2007). Correlated residuals pose a difficult problem
for MCMC methods because they often result in covariance matrices with some (but not all)
off-diagonal entries equal to zero. In this situation, we cannot assign an inverse Wishart prior
to the full covariance matrix because this does not allow us to fix some off-diagonal entries to
zero. Further, if we assign a prior to each free entry of the covariance matrix and sample the
parameters separately, we can often obtain covariance matrices that are not positive definite.
This can lead to numerical problems, resulting in an inability to carry out model estimation.
Finally, it is possible to specify an equivalent model that possesses the required, diagonal
matrices. However, the setting of prior distributions can be unclear here: if the analyst
specifies prior distributions for her model of interest, then it may be cumbersome to translate
these into prior distributions for the equivalent model.
To address the issue of non-diagonal covariance matrices, Muthén and Asparouhov (2012)
implemented a random walk method that is based on work by Chib and Greenberg (1998).
This method samples free parameters of the covariance matrix via Metropolis-Hastings steps.
While the implementation is fast and efficient, it does not allow for some types of equality
constraints because parameters are updated in blocks (either all parameters in a block must
be constrained to equality, or no parameters in a block can be constrained). Further, the
method is unreliable for models involving many latent variables. Consequently, Muthén and
Asparouhov (2012) implemented three other MCMC methods that are suited to different
types of models.
In our initial work on package blavaan, we developed methodology for fitting models with
free residual covariance parameters. We sought methodology that (i) would work in JAGS,
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(ii) was reasonably fast and efficient (by JAGS standards), and (iii) allowed for satisfactory
specification of prior distributions. In the next section, we describe the resulting methodology.
The methodology can often be used to reliably estimate posterior means to the first decimal
place on the order of minutes (often, less than two minutes on desktop computers, but it also
depends on model complexity). This will never beat compiled code, but it is typically better
than alternative JAGS parameterizations that rely on multivariate distributions.

2.1. Parameter expansion

General parameter expansion approaches to Bayesian inference are described by Gelman
(2004, 2006), with applications to factor analysis models detailed by Ghosh and Dunson
(2009). Our approach here is related to that of Palomo et al. (2007), who employ phantom
latent variables (they use the term pseudo-latent variable) to simplify the estimation of mod-
els with non-diagonal Θ matrices. This results in a working model that is estimated, with
the working model parameters being transformed to the inferential model parameters from
Equations 1 and 2. The use of phantom latent variables in SEM has long been known (e.g.,
Rindskopf 1984), though the Bayesian approach involves new issues associated with prior
distribution specification. This is further described below.

Overview

Assuming v nonzero entries in the lower triangle of Θ (i.e., v residual covariances), Palomo
et al. (2007) take the inferential model residual vector ε and reparameterize it as

ε = ΛDD + ε∗

D ∼ Nv(0,ΨD)
ε∗ ∼ Np(0,Θ∗),

where ΛD is a p × v matrix with many zero entries, D is a v × 1 vector of phantom latent
variables, and ε∗ is a p × 1 residual vector. This approach is useful because, by carefully
choosing the nonzero entries of ΛD, both ΨD and Θ∗ are diagonal. This allows us to employ
an approach related to Lee (2007), avoiding high-dimensional normal distributions in favor
of univariate normals.
Under this working model parameterization, the inferential model covariance matrix Θ can
be re-obtained via

Θ = ΛDΨDΛ>D + Θ∗.

We can also handle covariances between latent variables in the same way, as necessary. As-
suming m latent variables with w covariances, we have

ζ = BEE + ζ∗

E ∼ Nw(0,ΨE)
ζ∗ ∼ Nm(0,Ψ∗),

where the original covariance matrix Ψ is re-obtained via:

Ψ = BEΨEB
>
E + Ψ∗.
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This approach to handling latent variable covariances can lead to slow convergence in models
with many (say, > 5) correlated latent variables. In these cases, we have found it better (in
JAGS) to sample the latent variables from multivariate normal distributions. Package blavaan
attempts to use multivariate normal distributions in situations where it can, reverting to the
above reparameterization only when necessary.
To choose nonzero entries of ΛD (with the same method applying to nonzero entries of BE),
we define two v × 1 vectors r and c. These vectors contain the respective row numbers
and column numbers of the nonzero, lower-triangular entries of Θ. For j = 1, . . . , v, the
nonzero entries of ΛD then occur in column j, rows rj and cj . Palomo et al. (2007) set these
nonzero entries equal to 1, which can be problematic if the covariance parameters’ posteriors
are negative or overlap with zero. This is because the only remaining free parameters are
variances, which can only be positive. Instead of 1s, we free the parameters in ΛD so that they
are functions of inferential model parameters. This is further described in the next section.
First, however, we give an example of the approach.

Example

Consider the political democracy example of Bollen (1989), which includes eleven observed
variables that are hypothesized to arise from three latent variables. The inferential structural
equation model affiliated with these data appears as a path diagram (with variance parameters
omitted) at the top of Figure 1. This model can be written in matrix form as
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Additionally, the latent residual covariance matrix Ψ is diagonal and the observed residual
covariance matrix is

Θ =



θ11
θ22

θ33
θ44 θ48

θ55 θ57 θ59
θ66 θ6,10

θ57 θ77 θ7,11
θ48 θ88

θ59 θ99 θ9,11
θ6,10 θ10,10

θ7,11 θ9,11 θ11,11


,
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where the blank entries all equal zero. The six unique, off-diagonal entries of Θ make the
model difficult to estimate via Bayesian methods.
To ease model estimation, we follow Palomo et al. (2007) in reparameterizing the model to
the working model displayed at the bottom of Figure 1. The working model is now
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+
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The covariance matrix associated with ε∗, Θ∗, is now diagonal, which makes the model easier
to estimate via MCMC. The latent variable residual, ζ, is maintained as before because its co-
variance matrix was already diagonal. In general, we only reparameterize residual covariance
matrices that are neither diagonal nor unconstrained.
As mentioned earlier, the difference between our approach and that of Palomo et al. (2007)
is that we estimate the loadings with D subscripts, whereas Palomo et al. (2007) fix these
loadings to 1. This allows us to obtain posteriors on residual covariances that overlap with
zero or that become negative, as necessary. Estimation of these loadings comes with a cost,
however, in that the prior distributions of the inferential model do not immediately trans-
late into prior distributions of the working model. This problem and a solution are further
described in the next section.

2.2. Priors on covariances

Due to the reparameterization of covariances, prior distributions on the working model pa-
rameters require care in their specification. Every inferential model covariance parameter is
potentially the product of three parameters: two representing paths from a phantom latent
variable to the variable of interest, and one precision (variance) of the phantom latent vari-
able. These three parameters also impact the inferential model variance parameters. We
carefully restrict these parameters to arrive at prior distributions that are both meaningful
and flexible.
We place univariate prior distributions on model variance and correlation parameters, with the
distributions being based on the inverse Wishart or on other prior distributions described in
the literature. This is highly related to the approach of Barnard et al. (2000), who separately
specify prior distributions on the variance and correlation parameters comprising a covariance
matrix (for an overview and related approaches, see Alvarez, Niemi, and Simpson 2014).
Our approach is also related to Muthén and Asparouhov (2012), who focus on marginal
distributions associated with the inverse Wishart. A notable difference is that we always use
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Figure 1: Political democracy path diagrams, original (top) and parameter-expanded version
(bottom). Variance parameters are omitted.
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proper prior distributions, whereas Muthén and Asparouhov (2012) often use improper prior
distributions.
To illustrate the approach, we refer to Figure 2. This figure uses path diagrams to display two
observed variables with correlated residuals (left panel) along with their parameter-expanded
representation in the working model (right panel). Our goal is to specify a sensible prior
distribution for the inferential model’s variance/covariance parameters in the left panel, using
the parameters in the right panel. The covariance of interest, θ12, has been converted to a
normal phantom latent variable with variance ψD and two directed paths, λ1 and λ2. To
implement an approach related to that of Barnard et al. (2000) in JAGS, we set

ψD = 1

λ1 =
√
|ρ12|θ11

λ2 = sign(ρ12)
√
|ρ12|θ22

θ∗11 = θ11 − |ρ12|θ11

θ∗22 = θ22 − |ρ12|θ22,

where ρ12 is the correlation associated with the covariance θ12, and sign(a) equals 1 if a > 0
and −1 otherwise.
Using this combination of parameters, we need only set prior distributions on the inferential
model parameters θ11, θ22, and ρ12, with θ12 being obtained from these parameters in the
usual way. If we want our priors to be analogous to an inverse Wishart prior with d degrees
of freedom and diagonal scale matrix S, we can set univariate priors of

θ11 ∼ IG((d− p+ 1)/2, s11/2)
θ22 ∼ IG((d− p+ 1)/2, s22/2)
ρ12 ∼ Beta(−1,1)((d− p+ 1)/2, (d− p+ 1)/2),

where Beta(−1,1) is a beta distribution with support on (−1, 1) instead of the usual (0, 1)
and p is the dimension of S (typically, the number of observed variables). These priors are
related to those used by Muthén and Asparouhov (2012), based on results from Barnard et al.
(2000). They are also the default priors for variance/correlation parameters in blavaan, with
d = (p + 1) and S = I. We refer to this parameterization option as "srs", reflecting the
fact that we are dissecting the covariance parameters into standard deviation and correlation
parameters.
Barnard et al. (2000) avoid the inverse gamma priors on the variance parameters, instead
opting for log-normal distributions on the standard deviations that they judged to be more
numerically stable. Package blavaan allows for custom priors, so that the user can employ the
log-normal or others on precisions, variances, or standard deviations (this is illustrated later).
This approach is generally advantageous because it allows for flexible specification of prior
distributions on covariance matrices, including those with fixed zeros or those where we have
different amounts of prior information on certain variance/correlation parameters within the
matrix.
While we view the "srs" approach as optimal for dealing with covariance parameters here,
there exist similar alternative approaches in JAGS. For example, we can treat the phantom
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Figure 2: Example of phantom latent variable approach to covariances.

latent variables similarly to the other latent variables in the model, assigning prior distribu-
tions in the same manner. This alternative approach, which we call "fa" (because the priors
resemble traditional factor analysis priors), involves the following default prior distributions
on the working model from Figure 2:

ψD ∼ IG(1, .5)
λ1 ∼ N(0, 104)
λ2 ∼ N(0, 104)
θ∗11 ∼ IG(1, .5)
θ∗22 ∼ IG(1, .5),

with the inferential model parameters being obtained in the usual way:

θ11 = θ∗11 + λ2
1ψD

θ22 = θ∗22 + λ2
2ψD

θ12 = λ1λ2ψD.

The main disadvantage of the "fa" approach is that the implied prior distributions on the
inferential model parameters are not of a common form. Thus, it is difficult to introduce
informative prior distributions for the inferential model variance/covariance parameters. For
example, the prior on the inferential covariance (θ12) is the product of two normal prior dis-
tributions and an inverse gamma, which can be surprisingly informative. To avoid confusion
here, we do not allow the user to directly modify the priors on the working parameters λ1, λ2,
and ψD under the "fa" approach. The priors chosen above are approximately noninformative
for most applications, and the user can further modify the exported JAGS code if he/she de-
sires. Along with the prior distribution issue, the working model parameters are not identified
by the likelihood because each inferential covariance parameter is the product of the three
working parameters. This can complicate Laplace approximation of the marginal likelihood
(which, as described below, is related to the Bayes factor), because the approximation works
best when the posterior distributions are unimodal.
In blavaan, the user is free to specify "srs" or "fa" priors for all covariance parameters in
the model. In the example section, we present a simple comparison of these two options’
relative speeds and efficiencies. Beyond these options, the package attempts to identify when
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it can sample latent variables directly from a multivariate normal distribution, which can
improve sampling efficiency. This most commonly happens when we have many exogenous
latent variables that all covary with one another. In this case, we place an inverse Wishart
prior distribution on the latent variable covariance matrix.
While we prefer the "srs" approach to covariances between observed variables, the "fa"
approach may be useful for complex models that run slowly. In these cases, it could be useful
to sacrifice precise prior specification in favor of speed.

2.3. Model fit and comparison
Package blavaan supplies a variety of statistics for model evaluation and comparison, avail-
able via the fitMeasures() function. This function is illustrated later in the examples,
and specific statistics are described in Appendix A. For model evaluation, blavaan supplies
posterior predictive checks of the model’s log-likelihood (e.g., Gelman, Carlin, Stern, and
Rubin 2004). For model comparision, it supplies a variety of statistics including the De-
viance Information Criterion (DIC; Spiegelhalter, Best, Carlin, and Van Der Linde 2002),
the (Laplace-approximated) log-Bayes factor, the Widely Applicable Information Criterion
(WAIC; Watanabe 2010), and the leave-one-out cross-validation statistic (LOO; e.g., Gelfand
1996). The latter two statistics are computed by R package loo (Vehtari, Gelman, and Gabry
2015), using output from blavaan.
Calculation of the information criteria is somewhat complicated by the fact that, during JAGS
model estimation, we condition on the latent variables ηi, i = 1, . . . , n. That is, our model
utilizes likelihoods of the form L(ϑ,ηi|yi), where ϑ is the vector of model parameters and ηi
is a vector of latent variables associated with individual i. Because the latent variables are
random effects, we must integrate them out to obtain L(ϑ|Y ), the likelihood by which model
assessment statistics are typically computed. This is easy to do for the models considered here,
because the integrated likelihood continues to be multivariate normal. However, we cannot
rely on JAGS to automatically calculate the correct likelihood, so that blavaan calculates the
likelihood separately after parameters have been sampled in JAGS.
Now that we have provided background information on the models implemented in blavaan,
the next section further describes how the package works. We then provide a series of exam-
ples.

3. Overview of blavaan
Readers familiar with lavaan will also be familiar with blavaan. The main functions are the
same as the main lavaan functions, except that they start with the letter ‘b’. For example,
confirmatory factor analysis models are estimated via bcfa() and structural equation models
are estimated via bsem(). These two functions call the more general blavaan() function with
a specific arrangement of arguments. The blavaan model specification syntax is nearly the
same as the lavaan model specification syntax, and many functions are used by both packages.
As compared to lavaan, there are a small number of new features in blavaan that are specific to
Bayesian modeling: prior distribution specification, export/use of JAGS syntax, convergence
diagnostics, and specification of initial values. We discuss these topics in the context of a
simple, one-factor confirmatory model. The model uses the Holzinger and Swineford (1939)
data included with lavaan, with code for model specification and estimation appearing below.
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R> model <- ' visual =~ x1 + x2 + x3 '
R> fit <- bcfa(model, data = HolzingerSwineford1939, jagfile = TRUE)

3.1. Prior distribution specification

Package blavaan defines a default prior distribution for each type of model parameter (see
Equations 1 and 2). These default priors can be viewed via

R> dpriors()

nu alpha lambda beta itheta
"dnorm(0,1e-3)" "dnorm(0,1e-2)" "dnorm(0,1e-2)" "dnorm(0,1e-2)" "dgamma(1,.5)"

ipsi rho ibpsi tau delta
"dgamma(1,.5)" "dbeta(1,1)" "dwish(iden,3)" "dnorm(0,.1)" "dgamma(1,.5)"

which includes a separate default prior for ten types of parameters. Default prior distributions
are placed on precisions instead of variances, so that the letter i in itheta and ipsi stands
for “inverse.” Most of these parameters correspond to notation from Equations 1 to 4, with
the exception of rho and ibpsi. The rho prior is used only for the "srs" option, as it is
for correlation parameters associated with covariances in Θ or Ψ. The ibpsi prior is used
for the covariance matrix of latent variables that are all allowed to covary with one another
(commonly, blocks of exogenous latent variables). This block prior can improve sampling
efficiency and reduce autocorrelation.
For most parameters, the user is free to declare prior distributions using any prior distribution
that is defined in JAGS. Changes to default priors can be supplied with the dp argument.
Further, the modifiers [sd] and [var] can be used to put a prior on a standard deviation or
variance parameter, instead of the corresponding precision parameter. For example,

R> fit <- bcfa(model, data = HolzingerSwineford1939,
+ dp = dpriors(nu = "dnorm(4,1)", itheta = "dunif(0,20)[sd]"))

sets the default priors for (i) the manifest variables’ intercepts to normal with mean 4 and
precision 1, and (ii) the manifest variables’ standard deviations to uniform with bounds of 0
and 20.
Priors associated with the rho and ibpsi parameters are less amenable to change. The default
rho prior is a beta(1,1) distribution with support on (−1, 1); beta distributions with other
parameter values could be used, but this distribution must be beta for now. The default prior
on blocks of precision parameters is the Wishart with identity scale matrix and degrees of
freedom equal to the dimension of the scale matrix plus one. The user cannot easily make
changes to this prior distribution via the dp argument. Changes can be made, however, by
exporting the JAGS syntax and manually editing it. This is further described in the next
section.
In addition to priors on classes of model parameters, the user may wish to set the prior of
a specific model parameter. This is accomplished by using the prior() modifier within the
model specification. For example,

R> model <- ' visual =~ x1 + prior("dnorm(1,1)")*x2 + x3 '
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sets a specific prior distribution for the loading parameter from the visual factor to x2. Priors
set in this manner (via the model syntax) take precedent over the default priors set via the
dp argument. Additionally, if one specifies a covariance parameter in the model syntax, the
prior() modifier is for the correlation associated with the covariance, as opposed to the
covariance itself. The prior should be a distribution with support on (0, 1) (typically the beta
distribution), which is automatically converted to an analogous distribution that has support
on (−1, 1).

3.2. JAGS syntax
Users may find that some desired features are not currently implemented in blavaan; such
features may be related to, e.g., the use of specific types of priors or the handling of discrete
variables. In these situations, we allow the user to export the JAGS syntax so that they can
implement new features themselves. We believe this will be especially useful for researchers
who wish to develop new types of models: these researchers can specify a traditional model
in blavaan that is related to the one that they want to implement, and they can then ob-
tain the JAGS syntax and data for the traditional model. This JAGS syntax should ease
implementation of the novel model.
To export the JAGS syntax, users can employ the jagfile argument that was used in the
bcfa command above. When jagfile is set to TRUE, the syntax will be written to the
lavExport folder; if a character string is supplied, blavaan will use the character string as
the folder name.
When the syntax is exported, two files are written within the folder. The first, sem.jag,
contains the model specification in JAGS syntax. The second, semjags.rda, is a list named
jagtrans that contains the data and initial values in JAGS format, as well as labels associated
with model parameters. These pieces can be used to run the model “manually” via, e.g.,
package rjags (Plummer 2016) or runjags (Denwood 2016). The example below illustrates
how to load the JAGS data (along with initial values and parameter labels) and estimate the
exported model via runjags.

R> load("lavExport/semjags.rda")
R> fit <- run.jags("lavExport/sem.jag", monitor = jagtrans$coefvec$jlabel,
+ data = jagtrans$data, inits = jagtrans$inits)

If the user modifies the JAGS file, then the monitor and inits arguments might require
modification (or, for automatic initial values from JAGS, the user could omit the inits
argument). The data should not require modification unless the user adds or removes observed
variables from the model.
We also note that the dimensions of the parameter vectors/matrices in the JAGS syntax
generally match the dimensions that we would expect from Equations 1 and 2, with a third
dimension being added for multiple group models. These matrix dimensions (and the specific
nonzero entries within each matrix) are obtained directly from lavaan.

3.3. Convergence diagnostics
Package blavaan offers two methods for monitoring chain convergence, specified as the "auto"
or "manual" options to the convergence argument. Regardless of which option is used, the
default number of chains is three and can be modified via the n.chains argument.
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Under "auto" convergence, chains are sampled for an initial period in order to (i) achieve
convergence as determined by the potential scale reduction factor (PSRF; Gelman and Rubin
1992) and (ii) determine the number of samples necessary to obtain precise posterior estimates.
Following this initial period, the chains are further sampled for the determined number of
iterations. This automatic assessment comes directly from the autorun.jags() function of
package runjags (Denwood 2016); see there for further detail.
Under "manual" convergence, the user can specify the desired number of adaptation, burnin,
and sample iterations via arguments of the same name (with defaults of 1,000 adaptation
iterations, 4,000 burnin iterations, and 10,000 sample iterations). Adaptation iterations are
those where samplers can modify themselves to increase sampling efficiency, whereas burnin
iterations are discarded samples obtained from “fixed” samplers (e.g., Plummer 2015). A
warning is issued if any PSRF is greater than 1.2, though some users may desire a more
stringent criterion that is closer to 1.0. Access to the parameters’ PSRF values is obtained
via

R> blavInspect(fit, "psrf")

Additionally, there is a plot method that includes the familiar time series plots, autocorre-
lation plots, and more. For example, autocorrelation plots for the first four free parameters
are obtained via

R> plot(fit, 1:4, "autocorr")

where parameter numbers correspond to the ordering of coef(fit). This plot function-
ality comes from package runjags, with plotting options being found in the help file for
plot.runjags().

3.4. Initial values

In many Bayesian SEMs, poorly-chosen initial values can lead to extremely slow convergence.
Package blavaan provides multiple options for supplying initial values that vary from chain to
chain and/or that improve chain convergence. These are obtained via the inits argument.
Under option "prior" (default), starting values are random draws from each parameter’s
prior distribution. However, to aid in convergence, loading and regression parameters are all
required to be positive and close to 1, and correlation parameters are required to be close to
zero. Under option "jags", starting values are automatically set by JAGS.
Additional options for starting values are obtained as byproducts of lavaan. For example, the
options "Mplus" and "simple" are analogous to the options for the lavaan start argument,
where the same initial values are used for all chains. Individual initial values can also be set
via the start() modifier to the lavaan syntax, and these initial values will be used for all
chains.
Finally, it is also possible to supply a full set of user-defined starting values for each chain.
This is most easily accomplished by estimating the model once in order to obtain the list of
initial values. The initial values of a fitted model can be obtained via blavInspect(); i.e.,

R> myinits <- blavInspect(fit, "inits")
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The object myinits is a list whose length equals n.chains, with each entry being another
list that contains initial values for the model’s parameter vector. It may be helpful to call
blavInspect() with the "jagnames" argument, in order to examine correspondence between
blavaan parameter names and JAGS parameter names. Finally, after editing, a call to blavaan
with the argument inits = myinits will estimate a model using the custom starting values.
Now that we have seen some features that are novel to blavaan, we will further illustrate the
package by example.

4. Applications
In the applications below, we first illustrate some general features involving prior distribution
specification and model fit measures. We then illustrate the study of measurement invariance
via Bayesian models, which involves multiple across-group parameter constraints. Finally, we
provide some advanced examples involving the direct modification of exported JAGS code
and the use of informative prior distributions.

4.1. Political democracy

We begin with the Bollen (1989) industrialization-democracy model discussed earlier in the
paper. The model specification is identical to the specification that we would use in lavaan:

R> model <- '
+ # latent variable definitions
+ ind60 =~ x1 + x2 + x3
+ dem60 =~ y1 + a*y2 + b*y3 + c*y4
+ dem65 =~ y5 + a*y6 + b*y7 + c*y8
+
+ # regressions
+ dem60 ~ ind60
+ dem65 ~ ind60 + dem60
+
+ # residual correlations
+ y1 ~~ y5
+ y2 ~~ y4 + y6
+ y3 ~~ y7
+ y4 ~~ y8
+ y6 ~~ y8
+ '
R> fit <- bsem(model, data = PoliticalDemocracy,
+ dp = dpriors(nu = "dnorm(5,1e-2)", itheta = "dlnorm(1,.1)[sd]",
+ ipsi = "dlnorm(1,.1)[sd]", rho = "dbeta(3,3)"),
+ jagcontrol = list(method = "rjparallel"))

where the latter argument, jagcontrol, allows us to sample each chain in parallel for faster
model estimation. Defaults for the number of adaptation, burnin, and drawn samples come
from package runjags; those defaults are currently 1,000, 4,000, and 10,000, respectively.
Users can modify any of these via the arguments adapt, burnin, and sample. Trace plots of



Journal of Statistical Software 15

Iteration

la
m

bd
a[

2,
1,

1]

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

6000 8000 10000 12000 14000

Iteration

la
m

bd
a[

3,
1,

1]

1.
5

2.
0

2.
5

6000 8000 10000 12000 14000

Iteration

la
m

bd
a[

5,
2,

1]

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

6000 8000 10000 12000 14000

Iteration

la
m

bd
a[

6,
2,

1]

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

6000 8000 10000 12000 14000

Figure 3: Trace plots of the first four parameters from the political democracy model.

sampled parameters can be obtained immediately; for example, the command below provides
trace plots for the first four free parameters, with the resulting plot displayed in Figure 3.

R> plot(fit, 1:4, "trace")

As described earlier in the paper, users can also control the handling of residual covariances
via the cp argument. For the particular model considered here, we compared the sampling
speed and efficiency (excluding posterior predictive checks) of the "srs" and "fa" options
using a four-core Dell Precision laptop running Ubuntu linux. We observed that the "srs"
option took 76 seconds and the "fa" option took 65 seconds, illustrating the speed advantage
of the "fa" approach. However, the ratio of effective sample sizes for the two approaches
averaged 1.49 in favor of the "srs" approach (where the average is taken across parameters),
implying that "srs" leads to more efficient sampling. In our experience, these results can vary
depending on the specific model of interest, but it generally appears that "fa" is somewhat
faster and "srs" somewhat more efficient.
Once we have sampled for the desired number of iterations, we can make use of lavaan
functions in order to summarize and study the fitted model. Users may primarily be interested
in summary(), which organizes results in a manner similar to the classical lavaan models.

R> summary(fit)
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blavaan (0.3-2) results of 10000 samples after 5000 adapt/burnin iterations

Number of observations 75

Number of missing patterns 1

Statistic MargLogLik PPP
Value -1658.937 0.525

Parameter Estimates:

Latent Variables:
Estimate Post.SD HPD.025 HPD.975 PSRF Prior

ind60 =~
x1 1.000
x2 2.253 0.158 1.966 2.553 1.022 dnorm(0,1e-2)
x3 1.850 0.166 1.526 2.176 1.004 dnorm(0,1e-2)

dem60 =~
y1 1.000
y2 (a) 1.253 0.176 0.919 1.605 1.079 dnorm(0,1e-2)
y3 (b) 1.221 0.144 0.94 1.504 1.069 dnorm(0,1e-2)
y4 (c) 1.321 0.158 1.028 1.634 1.092 dnorm(0,1e-2)

dem65 =~
y5 1.000
y6 (a) 1.253 0.176 0.919 1.605 1.079
y7 (b) 1.221 0.144 0.94 1.504 1.069
y8 (c) 1.321 0.158 1.028 1.634 1.092

Regressions:
Estimate Post.SD HPD.025 HPD.975 PSRF Prior

dem60 ~
ind60 1.418 0.408 0.624 2.227 1.004 dnorm(0,1e-2)

dem65 ~
ind60 0.540 0.262 0.031 1.06 1.121 dnorm(0,1e-2)
dem60 0.883 0.082 0.746 1.059 1.018 dnorm(0,1e-2)

Covariances:
Estimate Post.SD HPD.025 HPD.975 PSRF Prior

.y1 ~~
.y5 0.645 0.381 -0.053 1.41 1.012 dbeta(3,3)

.y2 ~~
.y4 1.486 0.728 0.136 2.961 1.002 dbeta(3,3)
.y6 2.204 0.742 0.776 3.61 1.003 dbeta(3,3)

.y3 ~~
.y7 0.796 0.640 -0.47 2.06 1.013 dbeta(3,3)

.y4 ~~
.y8 0.303 0.496 -0.636 1.277 1.007 dbeta(3,3)

.y6 ~~
.y8 1.248 0.583 0.15 2.402 1.002 dbeta(3,3)

Intercepts:
Estimate Post.SD HPD.025 HPD.975 PSRF Prior

.x1 5.059 0.078 4.905 5.216 1.001 dnorm(5,1e-2)

.x2 4.804 0.160 4.497 5.144 1.001 dnorm(5,1e-2)

.x3 3.567 0.152 3.266 3.871 1.000 dnorm(5,1e-2)

.y1 5.480 0.290 4.905 6.05 1.020 dnorm(5,1e-2)
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.y2 4.279 0.436 3.419 5.106 1.011 dnorm(5,1e-2)

.y3 6.586 0.393 5.827 7.375 1.016 dnorm(5,1e-2)

.y4 4.475 0.371 3.714 5.173 1.022 dnorm(5,1e-2)

.y5 5.154 0.295 4.551 5.723 1.016 dnorm(5,1e-2)

.y6 3.011 0.380 2.251 3.734 1.010 dnorm(5,1e-2)

.y7 6.219 0.356 5.52 6.917 1.017 dnorm(5,1e-2)

.y8 4.073 0.362 3.362 4.781 1.016 dnorm(5,1e-2)
ind60 0.000

.dem60 0.000

.dem65 0.000

Variances:
Estimate Post.SD HPD.025 HPD.975 PSRF Prior

.x1 0.094 0.023 0.048 0.138 1.012 dlnorm(1,.1)[sd]

.x2 0.096 0.077 0 0.234 1.034 dlnorm(1,.1)[sd]

.x3 0.521 0.103 0.331 0.729 1.008 dlnorm(1,.1)[sd]

.y1 2.105 0.529 1.113 3.145 1.018 dlnorm(1,.1)[sd]

.y2 8.113 1.509 5.314 11.069 1.001 dlnorm(1,.1)[sd]

.y3 5.464 1.090 3.441 7.59 1.011 dlnorm(1,.1)[sd]

.y4 3.407 0.820 1.89 5.048 1.003 dlnorm(1,.1)[sd]

.y5 2.584 0.549 1.59 3.704 1.027 dlnorm(1,.1)[sd]

.y6 5.166 0.971 3.398 7.127 1.002 dlnorm(1,.1)[sd]

.y7 3.866 0.798 2.422 5.493 1.005 dlnorm(1,.1)[sd]

.y8 3.403 0.783 1.941 4.963 1.004 dlnorm(1,.1)[sd]
ind60 0.449 0.093 0.284 0.632 1.005 dlnorm(1,.1)[sd]

.dem60 3.812 1.003 1.938 5.732 1.058 dlnorm(1,.1)[sd]

.dem65 0.152 0.198 0 0.543 1.196 dlnorm(1,.1)[sd]

While the results look similar to those that one would see in lavaan, there are a few differences
that require explanation. First, the top of the output includes two model evaluation measures:
a Laplace approximation of the marginal log-likelihood and the posterior predictive p value
(see Appendix A). Second, the “Parameter Estimates” section contains many new columns.
These are the posterior mean (Post.Mean), the posterior standard deviation (Post.SD), a 95%
highest posterior density interval (HPD.025 and HPD.975), the potential scale reduction factor
for assessing chain convergence (PSRF; Gelman and Rubin 1992), and the prior distribution
associated with each model parameter (Prior). Users can optionally obtain posterior medians,
posterior modes, and effective sample sizes (number of posterior samples drawn, adjusted for
autocorrelation). These can be obtained by supplying the logical arguments postmedian,
postmode, and neff to summary().
Finally, we can obtain various Bayesian model assessment measures via fitMeasures()

R> fitMeasures(fit)

npar logl ppp bic dic p_dic waic
39.000 -1550.509 0.525 3268.876 3174.329 36.656 3179.278
p_waic looic p_loo margloglik
38.836 3179.962 39.178 -1658.937

where, as previously mentioned, the WAIC and LOO statistics are computed with the help
of package loo. Other lavaan functions, including parameterEstimates() and parTable(),
similarly work as expected.
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4.2. Measurement invariance
Verhagen and Fox (2013; see also Verhagen, Levy, Millsap, and Fox 2016) describe the use of
Bayesian methods for studying the measurement invariance of sets of items or scales. Briefly,
measurement invariance means that the items or scales measure diverse groups of individuals
in a fair manner. For example, two individuals with the same level of mathematics ability
should receive the same score on a mathematics test (within random noise), regardless of
the individuals’ backgrounds and demographic variables. In this section, we illustrate a
Bayesian measurement invariance approach using the Holzinger and Swineford (1939) data.
This section also illustrates how we can estimate a model in blavaan using pieces of a fitted
lavaan object. This may be of interest to advanced users who would prefer to write/edit a
lavaan “parameter table” instead of using model specification syntax. Additionally, the use
of a lavaan object provides a path from Mplus to blavaan, via the mplus2lavaan() function
from lavaan.
We first fit three increasingly-restricted models to the Holzinger and Swineford (1939) data
via classical methods. This is accomplished via the lavaan cfa() function (though we could
also immediately use bcfa() here):

R> HS.model <- ' visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
R> fit1 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school")
R> fit2 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
+ group.equal = "loadings")
R> fit3 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
+ group.equal = c("loadings", "intercepts"))

The resulting objects each include a “parameter table,” which contains all model details
necessary for lavaan estimation. To fit these models via Bayesian methods, we can merely
pass the classical model’s parameter table and data to blavaan. This is accomplished via

R> bfit1 <- bcfa(parTable(fit1), data = HolzingerSwineford1939,
+ group = "school")
R> bfit2 <- bcfa(parTable(fit2), data = HolzingerSwineford1939,
+ group = "school")
R> bfit3 <- bcfa(parTable(fit3), data = HolzingerSwineford1939,
+ group = "school")

As mentioned above, we could also supply the group.equal argument directly to the bcfa()
calls.
Following model estimation, we can immediately compare the models via fitMeasures().
For example, focusing on the first two models, we obtain

R> fitMeasures(bfit1)

npar logl ppp bic dic p_dic waic
60.000 -3684.461 0.000 7710.948 7483.196 57.137 7492.991
p_waic looic p_loo margloglik
64.597 7493.319 64.761 -3937.468
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R> fitMeasures(bfit2)

npar logl ppp bic dic p_dic waic
54.000 -3687.297 0.000 7682.417 7478.802 52.104 7485.929
p_waic looic p_loo margloglik
57.184 7486.290 57.365 -3917.959

As judged by the posterior predictive p value (ppp), neither of the two models provide a good
fit to the data. In practice, we might stop our measurement invariance study there. However,
for the purpose of demonstration, we can also examine the information criteria. Based on
these, we would prefer the second model (due to the smaller DIC, WAIC, and LOOIC values).

4.3. Informative prior distributions

We have seen that blavaan allows users to specify prior distributions for individual model
parameters and for classes of model parameters. In this section, we illustrate how informative
prior distributions can be set for factor analysis parameters in the context of a specific dataset,
where priors are set based on the parameters’ interpretations.
We consider a one-factor, three-indicator model fit to a subset of data from a stereotype
threat study (Wicherts, Dolan, and Hessen 2005). The data are available in R package
psychotools (Zeileis, Strobl, Wickelmaier, Komboz, and Kopf 2018), and the model specifies
a general “ability” factor underlying three academic tests (of verbal ability, numerical ability,
and abstract reasoning). The test scores are sums of the number of items answered correctly,
so they are bounded from below at 0 and from above at 16 (verbal), 14 (numerical), and
18 (abstract reasoning). While these bounds technically violate the normality assumption of
the factor analysis model, it is customary to apply this model to test scores (especially in
the current situation, where the test scores are unimodal with modes in the middle of the
score ranges). A factor analysis model with default (non-informative) prior distributions and
automatic convergence assessment can be fit to the data via

R> library("psychotools")
R> data("StereotypeThreat")
R> st <- subset(StereotypeThreat, ethnicity == "majority")
R> model <- ' ability =~ abstract + verbal + numerical '
R> bfit <- bcfa(model, data = st, convergence = "auto")

Instead of using the default prior distributions, we can tailor prior distributions to this particu-
lar dataset by simultaneously considering the data and each model parameter’s interpretation.
First, because the test scores are all bounded, we know the maximum possible standard devi-
ation on each test (obtained if half the participants scored a 0 and half score the maximum).
These are 8 for the verbal test, 7 for the numerical test, and 9 for the abstract reasoning
test. Thus, we place uniform priors on the manifest variables’ standard deviations with lower
bounds at 0 and upper bounds at these maxima:

R> model <- c(model,
+ ' abstract ~~ prior("dunif(0,9)[sd]")*abstract
+ verbal ~~ prior("dunif(0,8)[sd]")*verbal
+ numerical ~~ prior("dunif(0,7)[sd]")*numerical ')
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Parameter
Prior λ2 λ3 θ1 θ2 θ3 ψ1 ν1 ν2 ν3
Default Est 1.1 1.58 7.9 8.43 1.49 2.06 9.84 6.97 5.43

SD 0.33 0.49 1.11 1.2 1.04 0.94 0.25 0.26 0.19
Inform. Est 1.06 1.37 7.73 8.39 2.03 2.51 9.83 6.99 5.44

SD 0.33 0.48 1.24 1.23 1.13 1.18 0.25 0.26 0.19

Table 1: Comparison of posterior means and standard deviations under default prior distri-
butions and informative prior distributions.

Next, we consider the factor variance. Because the loading associated with the abstract
reasoning test will be fixed at 1, the factor variance can be interpreted as the variability in
the abstract reasoning test that can be attributed to the ability factor. Because the three
tests were chosen to be highly correlated (and because the total standard deviation of abstract
reasoning is 9 or less), we use a uniform prior with an upper bound of 6 here. Thus, even
in the case where we observe the maximum standard deviation of 9, the factor could still
account for 2/3 of the variability in the ability test.

R> model <- c(model, ' ability ~~ prior("dunif(0,4.5)[sd]")*ability ')

Next, we consider the manifest variables’ intercept parameters, which reflect average scores on
each of the three tests. These tests are known historically to result in average scores near the
middle of the range (Wicherts et al. 2005), so our prior distributions are truncated normals
centered at the middle of each test’s range (with the truncation points at the minimum and
maximum possible scores on each test):

R> model <- c(model,
+ ' abstract ~ prior("dnorm(9,.25) T(0,18)")*1
+ verbal ~ prior("dnorm(8,.25) T(0,16)")*1
+ numerical ~ prior("dnorm(7,.25) T(0,14)")*1 ')

Finally, we consider the factor loadings. We have no knowledge that the ability factor will
influence one test more than others, so we might expect the two free loadings to be around 1
(because the fixed loading equals 1). We also expect positive loadings, because ability should
positively influence all three tests. Thus, we supply uniform(0,3) priors to the dp argument
of bcfa():

R> bfitInform <- bcfa(model, data = st,
+ dp = dpriors(lambda = "dunif(0,3)"), convergence = "auto")

The two models’ fit measures are generally similar and not shown. We compare the two
models’ posterior means and standard deviations in Table 1. The differences are unlikely to
impact substantive conclusions, but two of them are noteworthy. First, the factor variance ψ1
is larger under the model with informative priors, likely because the informative prior (uni-
form(0,4.5) on the standard deviation) placed more density on larger values of the standard
deviation. We observe a similar phenomenon with the residual variance of the numerical test
(θ3). Second, the posterior means of the loadings (λ2 and λ3) are somewhat smaller under
the informative priors. This is likely related to the larger factor variance estimates.
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model {
for(i in 1:N) {

abstract[i] ~ dt(mu[i,1], 1/theta[1,1,g[i]], df)
verbal[i] ~ dt(mu[i,2], 1/theta[2,2,g[i]], df)
numerical[i] ~ dt(mu[i,3], 1/theta[3,3,g[i]], df)

# lvs
eta[i,1] ~ dt(mu_eta[i,1], 1/psi[1,1,g[i]], df)

}

df <- 1/dfinv
dfinv ~ dunif(1/200, 1)

# mu definitions

Figure 4: Illustration of JAGS modifications necessary to implement the Zhang et al. (2014)
robust factor analysis model. The original JAGS code exported from blavaan is in black
font, with modifications and additions in green. Additional code requiring no modification
(extending below the “mu definitions” comment) is omitted.

This example could be used as the start of a larger analysis of posterior sensitivity to prior
distributions. For the purpose of automation, prior distributions could be entered directly into
the model’s parameter table (obtained via, e.g., parTable(bfit)) and the model subsequently
re-estimated, similar to what was done in the measurement invariance example.

4.4. Extensions of JAGS syntax

Finally, we provide an example involving use of the JAGS syntax to estimate novel models.
Consider the robust factor analysis model of Zhang, Li, and Liu (2014), which essentially
replaces the factor analysis model’s normal distributions with t distributions. In particular,
each factor η arises from a tdf(0, 1) distribution, and each residual εj arises from a tdf(0, ψj)
distribution. The degrees of freedom, df, is a free parameter and is shared by all the t
distributions. To our knowledge, there exists no software to readily estimate this model, and
Zhang et al. (2014) implemented their own Gibbs sampler (making use of analytic posterior
distributions under conjugate priors). Here, we show how the JAGS syntax from blavaan can
be modified to easily estimate this model. For illustration, we again apply a one-factor model
to the Wicherts et al. (2005) data from the previous section.
We begin by using blavaan to export JAGS syntax for a simple, one-factor model.

R> model <- ' ability =~ abstract + verbal + numerical '
R> bfit <- bcfa(model, data = st, jagfile = TRUE)

By default, the exported JAGS code is written to the file lavExport/sem.jag. Upon opening
that file, we must make two edits (see Figure 4). First, the normal distributions (dnorm())
are replaced with t distributions (dt()). Second, we need to specify a prior distribution for
the degrees of freedom parameter. Similar to Zhang et al. (2014), we place a flat prior on the
inverse degrees of freedom. The lower bound is nonzero to aid in convergence; this is justified
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by realizing that, as the degrees of freedom increase, the t distribution becomes the normal
distribution. Once we surpass, say, 200 degrees of freedom, we can accept that larger values
are practically equivalent to 200.
The modified syntax from Figure 4 could then be estimated manually, making use of the
exported data and adding a monitor for the df parameter. For example, if the exported
files are saved as lavExport/robustfa.jag and lavExport/robustfa.rda, the model can
be estimated via

R> load("lavExport/robustfa.rda")
R> fit <- run.jags("lavExport/robustfa.jag",
+ monitor = c(jagtrans$monitors, "df"), data = jagtrans$data,
+ inits = jagtrans$inits)

While many model extensions will be more complicated than the one considered here, this
example illustrates blavaan’s potential use for statistical researchers who are developing new
models: instead of writing JAGS syntax entirely from scratch, these researchers may use
blavaan to obtain syntax for a basic model that is similar to the desired model. In many
cases, this will simplify implementation of the desired model.

5. Conclusion

As described throughout the paper, package blavaan combines many existing tools so that it
is easy to estimate multivariate normal SEMs via open-source software. The package can be
useful to applied researchers who need an expanded set of prior distributions at their disposal,
freeing them from the need to learn the intricacies of an MCMC package. It can also be useful
to methodological researchers, freeing them from the need to code their own JAGS models
from scratch. The idea of separating model specification from MCMC coding seems generally
useful beyond SEM, and others are indeed making progress in this direction. For example,
package rstanarm (Stan Development Team 2018) allows users to estimate generalized linear
mixed models via Stan, using lme4 (Bates, Mächler, Bolker, and Walker 2015) syntax. The
coding of complex models in BUGS, JAGS, or Stan is often tedious even for experienced users,
so that progress here could improve most users’ workflows.
There are a variety of additional models that we plan to support in future versions of blavaan,
including models with latent interactions, with ordinal variables, and with mixture and multi-
level components. These models have been addressed in the literature (e.g., Asparouhov and
Muthén 2010; Song and Lee 2001, 2012), and JAGS examples for estimating specific instances
of these models is available (e.g., Cho, Preacher, and Bottge 2015; Merkle and Wang 2018).
Work remains, however, to sample from these models efficiently and to specify the models
via lavaan’s syntax. The sampling efficiency of Stan may be useful for at least some of these
models, and we plan to explore this in the future.
In summary, blavaan is currently useful for estimating many types of multivariate normal
SEMs, and the JAGS export feature allows researchers to extend the models in any fashion
desired. As additional features are added, we hope that the package keeps pace with lavaan
as an open set of tools for SEM estimation and study.
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A. Details on model assessment statistics
In the subsections below, we review the model evaluation and comparison metrics that blavaan
supplies.

Posterior predictive checks

As a measure of the model’s absolute fit, blavaan computes a posterior predictive p value
that compares observed likelihood ratio test (χ2) statistics to likelihood ratio test statistics
generated from the model’s posterior predictive distribution (also see Muthén and Asparouhov
2012; Scheines et al. 1999). The likelihood ratio test statistic is generally computed via

LRT(Y ,ϑ) = −2 logL(ϑ|Y ) + 2 logL(ϑsat|Y ),

where ϑsat is a “saturated” parameter vector that perfectly matches the observed mean and
covariance matrix.
For each posterior draw ϑs (s = 1, . . . , S), computation of the posterior predictive p value
includes four steps:

1. Compute the observed LRT statistic as LRT(Y ,ϑs).

2. Generate artificial data Y rep from the model, assuming parameter values equal to ϑs.

3. Compute the posterior predictive LRT statistic LRT(Y rep,ϑs).

4. Record whether or not LRT(Y rep,ϑs) > LRT(Y ,ϑs).

The posterior predictive p value is then the proportion of the time (out of S draws) that the
posterior predictive LRT statistic is larger than the observed LRT statistic. Values closer to
0.5 indicate a model that fits the observed data, while values closer to 0 indicate the opposite.
For use in practice, Muthén and Asparouhov (2012) use a threshold of 0.05 (analogous to a
frequentist α level) and present some evidence that, as compared to the frequentist likelihood
ratio test, the posterior predictive p is less sensitive to minor model misspecifications and
exhibits better performance at small sample sizes. On the other hand, Hoijtink and Van de
Schoot (2018) show that the posterior predictive p value misbehaves in situations involving
highly informative prior distributions (as are sometimes used for shrinkage/regularization).
They recommend a prior-posterior predictive p value that may be implemented in future
versions of blavaan.
In blavaan, the posterior predictive p value is currently impractical when there are missing
data. This is because it is impractical to compute the saturated log-likelihood in the presence
of missing data. We need to use, e.g., the EM algorithm to do this, and this needs to be
done (S + 1) times (once for the saturated likelihood of the observed data and once for the
saturated likelihood of each of the S artificial datasets). With complete data, we can more
simply calculate the saturated log-likelihood using the sample mean vector and covariance
matrix. The argument test = "none" can be supplied to blavaan in order to bypass these
slow calculations when there are missing data, and future versions may sample the missing
observations in order to avoid the issue.
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DIC

The DIC is given as
DIC = −2 logL(ϑ̂|Y ) + 2 efpDIC, (7)

where ϑ̂ is a vector of posterior parameter means (or other measure of central tendency),
L(ϑ̂|Y ) is the model’s likelihood at the posterior means, and efpDIC is the model’s effective
number of parameters, calculated as

efpDIC = 2
[
logL(ϑ̂|Y )− logL(ϑ|Y )

]
. (8)

The latter term, logL(ϑ|Y ), is obtained by calculating the log-likelihood for each posterior
sample and then averaging.
Many readers will be familiar with the automatic calculation of DIC within programs like
BUGS and JAGS. As we described above, the automatic DIC is not what users typically desire
because the likelihood conditions on the latent variables ηi. This greatly increases the effective
number of parameters and may result in poor inferences (for further discussion of this issue,
see Millar 2009). As previously mentioned, blavaan avoids the automatic DIC computation
in JAGS, calculating its own likelihoods after model parameters have been sampled.

WAIC and LOO

The WAIC and LOO are asymptotically equivalent measures that are advantageous over DIC
while also being more difficult to compute than DIC. Many computational difficulties are
overcome in developments by Vehtari, Gelman, and Gabry (2016), with their methodology
being implemented in package loo (Vehtari et al. 2015). As input, loo requires casewise log-
likelihoods associated with a set of posterior samples: logL(ϑs|yi), s = 1, . . . , S; i = 1, . . . , n.
Like DIC, both of these measures seek to characterize a model’s predictive accuracy (gener-
alizability). The definition of WAIC looks similar to that of DIC:

WAIC = −2 lppd + 2 efpWAIC,

where the first term is related to log-likelihoods of observed data and the second term involves
an effective number of parameters. Both terms now involve log-likelihoods associated with
individual observations, however, which help us estimate the model’s expected log pointwise
predictive density (a measure of predictive accuracy).
The first term, the log pointwise predictive density of the observed data (lppd), is estimated
via

lppd =
n∑
i=1

log
(

1
S

S∑
s=1

f(yi|ϑs)
)
, (9)

where S is the number of posterior draws and f(yi|ϑs) is the density of observation i with
respect to the parameters sampled at iteration s. The second term, the effective number of
parameters, is estimated via

efpWAIC =
n∑
i=1

vars(log f(yi|ϑ)),

where we compute a separate variance for each observation i across the S posterior draws.
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The LOO measure estimates the predictive density of each individual observation from a
cross-validation standpoint; that is, the predictive density when we hold out one observation
at a time and use the remaining observations to update the prior. We can use analytical
results to estimate this quantity based on the full-data posterior, removing the need to re-
estimate the posterior while sequentially holding out each observation. These results lead to
the estimate

LOO = −2
n∑
i=1

log
(∑S

s=1w
s
i f(yi|ϑs)∑S
s=1w

s
i

)
, (10)

where the wsi are importance sampling weights based on the relative magnitude of individual
i’s density function across the S posterior samples. Package loo smooths these weights via a
generalized Pareto distribution, improving the estimate.
We can also estimate the effective number of parameters under the LOO measure by com-
paring LOO to the lppd that was used in the WAIC calculation. This gives us

efpLOO = lppd + LOO/2,

where these terms come from Equations 9 and 10, respectively. Division of the latter term by
two (and addition, vs. subtraction) offsets the multiplication by−2 that occurs in Equation 10.
For further detail on all these measures, see Vehtari et al. (2016).

Bayes factor

The Bayes factor between two models is defined as the ratio of the models’ marginal likelihoods
(e.g., Kass and Raftery 1995). Candidate model 1’s marginal likelihood can be written as

f1(Y ) =
∫
f(ϑ1)f(Y |ϑ1)∂ϑ1, (11)

where ϑ1 is a vector containing candidate model 1’s free parameters (excluding the latent
variables ηi) and f() is a probability density function. The marginal likelihood of candidate
model 2 may be written in the same manner. The Bayes factor is then

BF12 = f1(Y )
f2(Y ) ,

with values greater than 1 favoring Model 1.
Because the integral from Equation 11 is generally difficult to calculate, Lewis and Raftery
(1997) describe a Laplace-Metropolis estimator of the Bayes factor (also see Raftery 1993).
This estimator relies on the Laplace approximation to integrals that involve a natural expo-
nent. Such integrals can be written as∫

exp(h(u))∂u ≈ (2π)Q/2|H∗|1/2 exp(h(u∗)),

where h() is a function of the vector u, Q is the length of u, u∗ is the value of u that
maximizes h, and H∗ is the inverse of the information matrix evaluated at u∗. As applied to
marginal likelihoods, we take h(ϑ) = log(f(ϑ)f(Y |ϑ)) so that our solution to Equation 11 is

f1(Y ) ≈ (2π)Q/2|H∗|1/2f(ϑ∗)f(Y |ϑ∗), (12)
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where ϑ∗ is a vector of posterior means (or other posterior estimate of central tendency),
obtained from the MCMC output. In package blavaan, we follow Lewis and Raftery (1997)
and compute the logarithm of this approximation for numerical stability.
The Bayes factor is sensitive to choice of prior distribution (e.g., Liu and Aitkin 2008; Van-
paemel 2010), so researchers using the Bayes factor are advised to carefully consider their
priors. Kass and Raftery (1995) provide popular rules of thumb for interpreting the log-Bayes
factor, though the extent to which these rules are meaningful in any specific application is
unclear. In general, as the log-Bayes factor increases from 0, we gain increasing support for
the first model. The Bayes factor can also be motivated as the extent to which, after observing
data, we should revise the prior odds of model 1 being correct versus model 2 being correct;
see, e.g., Kass and Raftery (1995) and Rouder, Morey, Verhagen, Province, and Wagenmakers
(2016).
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