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Abstract

In patient-centered outcomes research, it is essential to assess the heterogeneity of
treatment effects (HTE) when making health care decisions for an individual patient or a
group of patients. Nevertheless, it remains challenging to evaluate HTE based on infor-
mation collected from clinical studies that are often designed and conducted to evaluate
the efficacy of a treatment for the overall population. The Bayesian framework offers a
principled and flexible approach to estimate and compare treatment effects across sub-
groups of patients defined by their characteristics. In this paper, we describe the package
beanz which facilitates the conduct of Bayesian analysis of HTE by allowing users to
explore a wide range of Bayesian HTE analysis models and produce posterior inferences
about HTE. The package beanz also provides a web-based graphical user interface (GUI)
for users to conduct the Bayesian analysis of HTE in an interactive and user-friendly
manner. With the GUI feature, package beanz can also be used by analysts not familiar
with the R environment. We demonstrate package beanz using data from a randomized
controlled trial on angiotensin converting enzyme inhibitor for treating congestive heart
failure (N = 2569).

Keywords: Bayesian analysis, HTE, GUI, patient-centered outcomes research, R, shiny, Stan,
subgroup analysis, web-based Bayesian analysis.

1. Introduction
Clinical trials typically evaluate the efficacy of a medical intervention based on its overall
treatment effect, the average benefit or harm the enrolled patients will achieve. However,
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individuals respond to medical interventions in different ways. Even for a treatment that
is effective on average, some individuals may derive substantial benefit; some little benefit;
others could actually be harmed. Thus, understanding this heterogeneity of treatment effect
(HTE) is critical in evaluating how well a treatment can be expected to work for an individual
patient. Such understanding is especially important in patient-centered outcomes research
(PCOR) that aims to help patients and stakeholders make informed personalized health care
decisions (Varadhan, Segal, Boyd, Wu, and Weiss 2013).
Although the importance of understanding HTE is obvious, reliable identification of HTE is
challenging. Ideally, we would like to be able to estimate individual treatment effects (ITE).
However, ITE estimation is not feasible because it is impossible to observe the outcomes of
both the treatment and control for the same individual. This is the fundamental problem
of causal inference (Holland 1986). Consequently, subgroup analysis is commonly used to
evaluate HTE, but it is challenging due to the need to specify the groups and control for
multiplicity in a low-information context.
The Bayesian approach provides a principled way to formulate treatment effect heterogeneity
across patient characteristics. The approach includes a prior distribution that allows expres-
sion of optimism, skepticism or agnosticism concerning the differences in treatment effect.
The Bayesian approach also allows a great deal of flexibility in making inferences on a vari-
ety of questions such as “what is the probability that women derive more benefit from the
treatment than men?” A frequentist approach, on the other hand, would ask: “what is the
probability of observing a difference in treatment effect between men and women, if in truth
there were no difference?” This way of framing the question implies a premature dichotomiza-
tion: the treatment effect is either the same in men and women or it is not, based on arbitrary
conventions (e.g., the significance level is 0.05). While the Bayesian approach is principled
and flexible, there are several challenges in conducting Bayesian HTE analysis, including the
need to specify prior distributions, little guidance, and the lack of easy-to-use software to
implement the HTE models.
There are a few software packages for subgroup analysis available for the statistical software
environment R (R Core Team 2018) on the Comprehensive R Archive Network (CRAN), most
of which implement frequentist methods. Package quint (Dusseldorp, Doove, and van Meche-
len 2015) applies a tree-based clustering method for inducing subgroups that are involved
in qualitative treatment-subgroup interactions. Package subgroup (Schou and Marschner
2014) considers order statistics-based measures to evaluate the magnitude and the nature of
the variation in treatment effects and provides non-inferential visual aids. Package FINDIt
(Egami, Ratkovic, and Imai 2018) applies machine learning methods to identify subsets of
the population who benefit or are harmed by a treatment and to select the most or least
efficacious treatment from many alternative treatments. Package DSBayes (Varadhan and
Yao 2014) implements the Bayesian Dixon and Simon model (Dixon and Simon 1991) for
subgroup analysis. To the best of our knowledge, there is no statistical software package for
comprehensive Bayesian HTE analysis, let alone one with a graphical user interface (GUI).
To this end, we describe the R package beanz (Wang, Varadhan, and Trustees of Columbia
University 2018) that facilitates conducting Bayesian HTE analysis. The package gives users
the ability to explore a wide range of Bayesian HTE analysis models and obtain posterior
inferences related to HTE. Specifically, we develop a web-based GUI for package beanz that
allows users to apply functions in package beanz in an interactive and user-friendly manner.
With the GUI feature, package beanz can also be used by analysts not familiar with the R
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environment. Package beanz is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=beanz.
In this paper, we use the data from the SOLVD trial (SOLVD Investigators et al. 1991) for the
demonstration of package beanz. SOLVD was a randomized, double-blind, placebo-controlled
study evaluating the efficacy of the drug Enalapril compared to placebo on mortality and
hospitalization in patients with congestive heart failure (CHF). From 1986 to 1989, a total of
2569 patients with CHF and ejection fraction ≤ 0.35 were enrolled and randomly assigned to
the Enalapril arm or the placebo arm in a 1:1 randomization ratio. At the end of the study,
735 patients had died or were hospitalized in the placebo group as compared with 613 in the
Enalapril group. The overall treatment effect on mortality was statistically significant with
log-rank test p value < 0.0001. The SOLVD protocol pre-specified examination of subgroup
effects for clinically important baseline factors. For the current demonstration we focus on
baseline covariates sodium level, usage of vasodilators other than angiotensin-converting-
enzyme inhibitors, and ejection fraction.
We emphasize that subgroup analysis are mainly exploratory, unless they were pre-specified
in the study protocol at the design stage (Assmann, Pocock, Enos, and Kasten 2000; Pocock,
Assmann, Enos, and Kasten 2002; Jones, Ohlssen, Neuenschwander, Racine, and Branson
2011). Moreover, although the software makes it easy to conduct sophisticated Bayesian
modeling for subgroup analysis, there are intricate issues involved in such modeling. Chiefly,
specifying the prior distribution for parameters in the model is challenging, and there is no
automatic method that will handle all situations. In Henderson, Louis, Wang, and Varadhan
(2016), we discussed the issue of prior selection and sensitivity analysis for Bayesian subgroup
analysis in greater detail.
The reminder of the paper is organized as follows. In Section 2, we introduce the Bayesian
HTE analysis models implemented in package beanz. In Section 3, we demonstrate the
beanz package, used in the R interactive mode, with a comprehensive example using data
from SOLVD. In Section 4, we describe the details of the GUI of package beanz, including
its architecture and user manual. We revisit the SOLVD example to illustrate the GUI of
package beanz in Section 5. Section 6 is devoted to the discussion.

2. Probability models

2.1. Notation

Consider a randomized two-arm clinical trial. For patient i, let Yi denote the response and Zi
denote treatment arm assignment (Zi ∈ {0, 1}). For subgroup analysis, assume there are P
baseline covariates of interest, X1, X2, . . . , XP , that are binary, ordinal with numerical values,
or nominal. If a covariate is ordinal with character labels, then we assume the covariate can be
re-coded with numerical values. For j = 1, . . . , P , assume Xj ∈ {xj,1, . . . , xj,nj} with nj ≥ 2.
If Xj is binary or ordinal with numerical values, xj,k (k = 1, . . . , nj) denotes the value of the
k-th level of Xj . If Xj is a nominal variable, xj,k denotes the vector of dummy variables with
dimension nj − 1 that corresponds to the k-th level of Xj . For example, if Xj is patients’
race with three levels: “white”, “black” and “other”, we may have xj,1 = (0, 0) for “white”,
xj,2 = (0, 1) for “black” and xj,1 = (1, 0) for “other”.

https://CRAN.R-project.org/package=beanz
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Let
Ω =

{
(X1, . . . , XP ) : Xj ∈ {xj,1, . . . , xj,nj} for j = 1, . . . , P

}
denote the collection of subgroups defined by X1, . . . , XP .
Let Gi ∈ Ω denote the subgroup for patient i, and Xg = (Xg,1, . . . , Xg,P ) be the covariates
for subgroup G = g. Let θ∗g denote the treatment effect in subgroup G = g. Note that θ∗g
may be measured on different scales. For example, if the response is continuous, θ∗g may be
measured as the mean difference by

θ∗g = E(Y |Z = 1, G = g)− E(Y |Z = 0, G = g).

If the response is binary, θ∗g may be measured as the odds ratio by

θ∗g = P(Y = 1|Z = 1, G = g)
P(Y = 0|Z = 1, G = g)

P(Y = 0|Z = 0, G = g)
P(Y = 1|Z = 0, G = g) .

If the response is time-to-event, θ∗g may be measured as the hazard ratio by

θ∗g = λ1,g
λ0,g

,

where λz,g is the hazard rate of arm Z = z in subgroup G = g.
We define θg = h(θ∗g) where h is a link function that allows the support of θg to be unrestricted.
For example, we may let h be the identity link function for the mean difference of continuous
responses and let h be the log link function for the odds ratio of binary and hazard ratio of
time-to-event responses.
Lastly, we let θ̂g be the estimated θg with σ̂2

g the estimated variance associated with θ̂g.

2.2. Bayesian models

We consider the subgroup modeling strategy and selection of Bayesian hierarchical models
suggested by Jones et al. (2011). First, assume that the estimated treatment effect θ̂g in
subgroup G = g approximately follows a normal distribution,

θ̂g|θg, σ2
g ∼ N(θg, σ2

g). (1)

Next, we consider assigning an informative prior to σg. For example, we can let

log σg|σ̂g,∆ ∼ N(log σ̂g,∆). (2)

Alternatively, we may let

log σg|σ̂g,∆ ∼ Unif(log σ̂g −∆, log σ̂g + ∆). (3)

In both cases, ∆ is a non-negative parameter specified by the user. These priors are “centered”
at the point estimate of the variance σ̂g corresponding to θ̂g. They account for the uncertainty
in σ̂g by means of ∆. Note that in Jones et al. (2011), σ̂g was assumed known, which is
equivalent to setting ∆ = 0, and assuming θ̂g|θg ∼ N(θg, σ̂2

g).
Next, we consider a set of models together with the priors for parameters in θg. These models
are listed in the following.
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No subgroup effect model:
θg = µ,

µ ∼ N(0, B),
(4)

where B is large in relation to the magnitude of the treatment effect size so that the prior for
µ is essentially non-informative.
Note. This model assumes that patients in all the subgroups are common with similar char-
acteristics. That is, all the subgroups are statistically identical with regard to the treatment
effect and there is no subgroup effect. Information about treatment effects can be directly
combined from all subgroups for inference.

Full stratification model:
θg = µg,

µg ∼ N(0, B).
(5)

Note. The subgroups are fully distinguished from each other with regard to the treatment
effect. There is no information about treatment effects shared between any subgroups.

Simple regression model:

θg = µ+
P∑
j=1

X>g,jγj ,

µ ∼ N(0, B),
γj ∼ N(0,1C), j = 1, . . . , P,

(6)

where C is large in relation to the magnitude of γ so that the priors for γ are essentially
non-informative.
Note. When Xj is nominal, Xg,j and γj are vectors with dimension nj − 1 and 1 is the
(nj − 1)× (nj − 1) identity matrix. Otherwise, Xg,j and γj are scalars and 1 is equal to the
scalar 1. Unless otherwise specified, the same notation and modeling strategy also apply to
the following models: Dixon and Simon model (7), simple regression and shrinkage model (9)
and extended Dixon and Simon model (10).
The model introduces a first-order, linear regression structure for θg. This model takes into
account the information that the subgroups are formulated based on the set of baseline co-
variates X1, . . . , XP . The coefficients γj ’s are shared among subgroups, i.e., these coefficients
are assumed to arise from the same distribution. Information about treatment effects are
shared between subgroups with similar baseline covariates through these coefficients.

Dixon and Simon model (Dixon and Simon 1991):

θg = µ+
P∑
j=1

X>g,jγj ,

µ ∼ N(0, B),
γj ∼ N(0,1ω2),
ω ∼ Half-N(D),

(7)

where Half-N denotes the Half-normal distribution with variance D. By definition, when
ω′ ∼ N(0, D), ω = |ω′| follows a Half-N(D) distribution.
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Note. This model assumes that the coefficients γj ’s are shared across the subgroups, which
allows information about the treatment effect to be shared between the subgroups. This
model has exactly the same structure as the simple regression model (6). However, the simple
regression model assumes that all the γj ’s are independent, whereas this model allows them
to be shared across the subgroups, leading to shrinkage of the subgroup-specific treatment
effects towards each other.

Basic shrinkage model:
θg = µ+ φg,

µ ∼ N(0, B),
φg ∼ N(0, ω2),
ω ∼ Half-N(D).

(8)

Note. Here, φg denotes a random subgroup effect for subgroup G = g and, directly estimated
subgroup treatment effects are shrunken towards the overall mean µ. This approach assumes
all subgroups are similar with regards to the treatment effect.

Simple regression and shrinkage model:

θg = µ+
P∑
j=1

X>g,jγj + φg,

µ ∼ N(0, B),
γj ∼ N(0,1C), j = 1, . . . , P,
φg ∼ N(0, ω2),
ω ∼ Half-N(D).

(9)

Note. This model combines basic regression with shrinkage, with a linear regression structure
and a random effect term. Direct estimates are shrunken towards the regression surface.

Extended Dixon and Simon model (Jones et al. 2011):

θg = µ+
P∑
k=1

∑
j∈ξ(k)

X>ξ(k),jγ
(k)
j ,

µ ∼ N(0, B),

γ
(k)
j ∼ N(0,1ω2

k), k = 1, . . . , P, j ∈ ξ(k),

ωk ∼ Half-N(D),

(10)

where ξ(k) denotes the set of k-th order interaction terms among X1, . . . , XP and Xξ(k),j

denotes the j-th element in ξ(k). The dimension of γ(k)
j and 1 is the same as Xξ(k),j .

Note. This approach extends the Dixon and Simon model (7) by introducing the higher-order
interactions and sharing the interaction effects of the same order. The model may be highly
sensitive to the choices of priors for ωk when k is large.

2.3. Inference
Treatment effect evaluation and treatment effect comparison among subgroups are based on
the posterior distribution p(θg|θ̂g, σ̂2

g ,∆).
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3. The beanz package

3.1. Installation

The beanz package is available from CRAN at http://CRAN.R-project.org/package=beanz.
To install and load package beanz, type the following in R:

R> install.packages("beanz")
R> library("beanz")

The major functions provided in package beanz are listed in Table 1.

3.2. Data format

There are two types of data structures that package beanz recognizes:

• Patient level raw data. Each row represents a patient with covariates that define the
subgroup to which the patient belongs, treatment indicator and outcome. The outcome
can be binary, continuous, or time to event.

• Summary treatment effect data. Each row represents a subgroup with covariates that
define the subgroup, estimated treatment effect in the subgroup and variance for the
estimation.

Package beanz provides dataset solvd.sub from the SOLVD trial as an example of patient
level raw data. Table 2 reports the frequency of the covariates in solvd.sub.

Function Description
bzGetSubgrpRaw Get subgroup treatment effect estimation and variance for subject

level data.
bzCallStan Call Bayesian models for HTE analysis.
bzSummary Present the posterior subgroup treatment effects using table,

density plots and forest plots.bzPlot
bzForest
bzSummaryComp Present the difference in the posterior treatment effects between

subgroups using table, density plots and forest plots.bzPlotComp
bzForestComp
bzPredSubgrp Get the predictive distribution of the subgroup treatment effects.
bzRptTbl Overall summary of Bayesian HTE analysis.
bzShiny Run package beanz using web-based GUI.

Table 1: Major functions in package beanz.

http://CRAN.R-project.org/package=beanz
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No. (%) of patients
Covariates Level Enalapril Placebo

Sodium (mmol/liter) ≤ 141 0 914 (72) 907 (72)
> 141 1 355 (28) 359 (28)

Vasodilator No 0 581 (46) 545 (43)
Yes 1 688 (54) 721 (57)

Ejection fraction (%) ≤ 29 0 879 (69) 865 (68)
> 29 1 390 (31) 401 (32)

Table 2: Baseline covariates frequencies in dataset solvd.sub.

R> head(solvd.sub)

trt y censor lvef sodium any.vasodilator.use
1 0 803.01 1 0 1 0
2 0 829.01 0 1 1 1
3 0 1577.01 0 0 0 1
4 1 1476.01 0 0 0 0
5 0 224.01 1 0 1 0
6 1 1168.01 0 1 0 1

If patient level raw data is provided, package beanz provides function bzGetSubgrpRaw for
estimating subgroup effects for each subgroup. The return value from bzGetSubgrpRaw is a
data frame with the format of summary treatment effect data.
For continuous and binary response data, bzGetSubgrpRaw calls glm with model

g(Y |Z = z,G = g) = µg + θgz, (11)

where g(·) is the identity or logit link function. For time to event data, package beanz calls
the coxph function in package survival (Therneau 2017) with proportional hazard model

λ(t|Z = z,G = g) = λ0(t) exp(θgz). (12)

The model parameter estimation θ̂g and the associated variance σ̂2
g are further used in the

Bayesian HTE analysis.

R> subgrp.effect <- bzGetSubgrpRaw(solvd.sub, var.resp = "y",
+ var.trt = "trt", var.cov = c("lvef", "sodium", "any.vasodilator.use"),
+ var.censor = "censor", resptype = "survival")
R> subgrp.effect

Subgroup lvef sodium any.vasodilator.use Estimate Variance N
1 1 0 0 0 -0.37783038 0.01212786 562
2 2 0 0 1 -0.34655336 0.01004499 695
3 3 0 1 0 -0.79235451 0.03939983 237
4 4 0 1 1 -0.39334304 0.02969421 250
5 5 1 0 0 0.06776454 0.04629163 223
6 6 1 0 1 -0.23655764 0.02400353 341
7 7 1 1 0 0.15435495 0.10365396 104
8 8 1 1 1 0.05947290 0.07761840 123
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3.3. Bayesian analysis

For Bayesian inference, the function bzCallStan calls the sampling function in package rstan
(Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell
2017) to draw MCMC samples for Bayesian models introduced in Section 2. The parameter
mdls allows the following modeling options: "nse" for no subgroup effect model, "fs" for full
stratification model, "sr" for simple regression model, "ds" for Dixon and Simon model, "bs"
for basic shrinkage model, "srs" for simple regression with shrinkage model and "eds" for
extended Dixon and Simon model. Note that the results obtained are platform-dependent and
will thus vary slightly for different platforms.
Priors of the parameters in the Bayesian models are passed to the function bzCallStan
by parameter par.pri as a vector. The return value is a list object of class ‘beanz.stan’
containing the name of the Bayesian HTE model, raw rstan results, the posterior sample
matrix, the posterior samples of the subgroup treatment effects (θg), the deviance information
criterion (DIC, Spiegelhalter, Best, Carlin, and Van Der Linde 2002) and the leave-one-out
cross-validation information criteria (LOOIC, Vehtari, Gelman, and Gabry 2017).
We consider the simple regression model in the following example:

R> var.cov <- c("lvef", "sodium", "any.vasodilator.use")
R> var.estvar <- c("Estimate", "Variance")
R> rst.sr <- bzCallStan(mdls = "sr", dat.sub = subgrp.effect,
+ var.estvar = var.estvar, var.cov = var.cov, par.pri = c(B = 1000,
+ C = 1000), chains = 4, iter = 4000, warmup = 2000)

SAMPLING FOR MODEL 'sr' NOW (CHAIN 1).

Gradient evaluation took 3.1e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.31 seconds.
Adjust your expectations accordingly!

Chain 1, Iteration: 1 / 4000 [ 0%] (Warmup)
Chain 1, Iteration: 400 / 4000 [ 10%] (Warmup)
Chain 1, Iteration: 800 / 4000 [ 20%] (Warmup)
Chain 1, Iteration: 1200 / 4000 [ 30%] (Warmup)
Chain 1, Iteration: 1600 / 4000 [ 40%] (Warmup)
Chain 1, Iteration: 2000 / 4000 [ 50%] (Warmup)
Chain 1, Iteration: 2001 / 4000 [ 50%] (Sampling)
Chain 1, Iteration: 2400 / 4000 [ 60%] (Sampling)
Chain 1, Iteration: 2800 / 4000 [ 70%] (Sampling)
Chain 1, Iteration: 3200 / 4000 [ 80%] (Sampling)
Chain 1, Iteration: 3600 / 4000 [ 90%] (Sampling)
Chain 1, Iteration: 4000 / 4000 [100%] (Sampling)

Elapsed Time: 0.183723 seconds (Warm-up)
0.10574 seconds (Sampling)
0.289463 seconds (Total)

[... ]
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The function bzSummary creates a data frame with the summary of the posterior subgroup
treatment effects. The summary statistics include the posterior mean, standard deviation
(SD), 2.5% (Q025), 25% (Q25), Median, 75% (Q75), 97.5% (Q975) quantiles of the treatment
effect in each selected subgroup and the posterior probability that the subgroup treatment
effect is less than a given cut off value (ProbLT0), which can be specified by parameter cut.
The following example shows the posterior subgroup treatment effect summary table for the
simple regression model.

R> tbl.sub <- bzSummary(rst.sr, digits = 2, cut = 0)
R> tbl.sub

Subgroup Mean SD Q025 Q25 Median Q75 Q975 ProbLT0
1 Subgroup 1 -0.4 0.09 -0.59 -0.46 -0.4 -0.34 -0.21 1
2 Subgroup 2 -0.38 0.09 -0.56 -0.44 -0.38 -0.32 -0.21 1
3 Subgroup 3 -0.49 0.13 -0.74 -0.57 -0.48 -0.4 -0.24 1
4 Subgroup 4 -0.47 0.12 -0.71 -0.55 -0.47 -0.38 -0.22 1
5 Subgroup 5 -0.06 0.13 -0.33 -0.15 -0.06 0.03 0.2 0.68
6 Subgroup 6 -0.04 0.12 -0.28 -0.12 -0.04 0.04 0.19 0.64
7 Subgroup 7 -0.15 0.16 -0.47 -0.26 -0.14 -0.04 0.17 0.82
8 Subgroup 8 -0.13 0.15 -0.41 -0.23 -0.13 -0.03 0.16 0.81

The package beanz also provides functions bzPlot and bzForest to present the posterior
densities and forest plots (Lewis and Clarke 2001), respectively, for the posterior subgroup
treatment effects (Figure 1).

R> bzPlot(rst.sr)
R> bzForest(rst.sr)

The beanz package provides functions for treatment effect comparisons between subgroup.
The function bzSummaryComp creates a data frame with the summary of the posterior subgroup
treatment effect differences between subgroups. The parameter sel.grps allows to select
specific subgroups for the comparison.

R> tbl.sub <- bzSummaryComp(rst.sr, sel.grps = 1:3, digits = 2, cut = 0)
R> tbl.sub

Comparison Mean SD Q025 Q25 Median Q75 Q975 ProbLT0
1 Subgroup 2-1 0.02 0.13 -0.23 -0.07 0.02 0.11 0.27 0.44
2 Subgroup 3-1 -0.09 0.16 -0.4 -0.19 -0.09 0.02 0.22 0.71
3 Subgroup 3-2 -0.1 0.16 -0.41 -0.21 -0.1 0 0.2 0.75

The functions bzPlotComp and bzForestComp present the posterior densities and forest plots,
respectively, for the posterior subgroup treatment effect differences (Figure 2).

R> bzPlotComp(rst.sr, sel.grps = 1:3)
R> bzForestComp(rst.sr, sel.grps = 1:3)
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Figure 1: Posterior density and forest plot of the subgroup treatment effect from the simple
regression model.
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Figure 2: Posterior density and forest plot of the subgroup treatment effect differences of
subgroups 1–3 from the simple regression model.

3.4. Model selection

We consider the basic shrinkage model and compare its LOOIC with the simple regression
model.

R> rst.bs <- bzCallStan(mdls = "bs", dat.sub = subgrp.effect,
+ var.estvar = var.estvar, var.cov = var.cov,
+ par.pri = c(B = 1000, D = 1), chains = 4, iter = 4000, warmup = 2000)
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R> rst.bs$looic$looic

[1] 3.426074

R> rst.sr$looic$looic

[1] 4.530313

Thus, the LOOIC is smaller for the basic shrinkage model, which indicates that the basic
shrinkage model may fit the data better than the simple regression model. Further comparison
between the models can be done following the suggestions in Vehtari et al. (2017).
The package beanz provides function bzRptTbl to generate the summary posterior subgroup
treatment effect table from the model with the smallest LOOIC:

R> lst.rst <- list(sr = rst.sr, bs = rst.bs)
R> tbl.summary <- bzRptTbl(lst.rst, dat.sub = subgrp.effect,
+ var.cov = c("lvef", "sodium", "any.vasodilator.use"))
R> tbl.summary

Model Subgroup lvef sodium any.vasodilator.use Mean
Subgroup 1 Basic shrinkage 1 0 0 0 -0.352
Subgroup 2 Basic shrinkage 2 0 0 1 -0.333
Subgroup 3 Basic shrinkage 3 0 1 0 -0.518
Subgroup 4 Basic shrinkage 4 0 1 1 -0.345
Subgroup 5 Basic shrinkage 5 1 0 0 -0.141
Subgroup 6 Basic shrinkage 6 1 0 1 -0.267
Subgroup 7 Basic shrinkage 7 1 1 0 -0.167
Subgroup 8 Basic shrinkage 8 1 1 1 -0.180

SD Prob < 0
Subgroup 1 0.096 1.000
Subgroup 2 0.086 1.000
Subgroup 3 0.185 1.000
Subgroup 4 0.130 0.994
Subgroup 5 0.183 0.780
Subgroup 6 0.122 0.978
Subgroup 7 0.215 0.793
Subgroup 8 0.191 0.832

3.5. Gail-Simon qualitative interaction test

Qualitative interaction is a type of treatment effect heterogeneity, where one or more of the
subgroups have a treatment effect in the opposite direction relative to the overall treatment
effect. It is critically important to detect such interactions, if they are present. Package beanz
provides the frequentist Gail-Simon qualitative interaction test (Gail and Simon 1985) for
examining qualitative interactions by function bzGailSimon. The Gail-Simon test examines
the null hypothesis that all the subgroup treatment contrasts lie within the positive orthant
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O+ = {Gg : θg ≥ d} or in the negative orthant, O− = {Gg : θg ≤ −d}, where d ≥ 0 denotes
the threshold for clinically meaningful qualitative interaction.
The Gail-Simon test is to reject the null of no qualitative interaction if both of the following
conditions are met: ∑

g

I(θ̂g > d) (θ̂g − d)2/σ̂2
g > c, (13)

∑
g

I(θ̂g < −d) (θ̂g + d)2/σ̂2
g > c. (14)

The critical value c is calculated such that when Ω ⊂ O− or Ω ⊂ O+, the probability that
both Equations 13 and 14 hold is no greater than the significance level α.

R> gs.pval <- with(subgrp.effect, bzGailSimon(Estimate, sqrt(Variance)))
R> gs.pval

[1] 0.9191656

The Gail-Simon test p value is 0.9192, which shows that there is no significant qualitative
interactions in the SOLVD data.

4. The beanz GUI

4.1. Overall architecture

The beanz GUI is web-based and developed in R using the shiny (Chang, Cheng, Allaire,
Xie, and McPherson 2017) web application framework. Figure 3 shows the architecture of
the beanz GUI.
The GUI can be accessed within R using the function bzShiny:

R> bzShiny()

The function bzShiny calls runApp function in package shiny. To stop the GUI application,
one may click the Exit button on the main title banner.
Alternatively, an online version of the beanz GUI is available at https://olssol.shinyapps.
io/beanz/.

4.2. Tabpanel description

The main tabpanels that can be accessed through the menubar in the beanz GUI include
Start, Upload Data, Subgroup Specification, Configuration, Bayesian Analysis, Toolbox
and Report. The details of each panel are given as follows:

Start panel:
The Start panel serves as an introduction page for the software. The sections on this panel
include:

https://olssol.shinyapps.io/beanz/
https://olssol.shinyapps.io/beanz/
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Web Browser Shiny Server STAN

User Data

Final Report

Statistical Model 
Selection and 
Configuration

Conduct 
Bayesian 
Analysis

Generate Result 
Tables and 

Figures

Result 
Presentation

Figure 3: Architecture of the beanz GUI.

• What does beanz do?
Presents the background introduction to package beanz and the basic steps of using the
software.

• What does beanz need?
Explains the different formats of the data files that package beanz accepts.

• What does beanz provide?
Introduces the results generated with an package beanz analysis.

• Warnings
Warnings that emphasize that subgroup analysis are mostly exploratory and sensitivity
analysis are necessary to evaluate the robustness of the findings with regards to different
prior choices.

Upload Data panel:
The Upload Data panel provides an interface for users to upload the data to be analyzed.
The sections and items within each section on this panel include:

• Upload Data

Choose File Clicking the Browse... button will load local data files in csv
or plain text format.

Data Format Summary treatment effect data or patient level raw data.

Separator Field separating character.
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Quote Quoting character.

Other There are two additional options:
Header. Checkbox indicating if the first line of the file contains
the names of the columns.
Show Data. Checkbox indicating whether to present the uploaded
data in the Review Data section on this panel.

• Try An Example
Clicking the Try it button will load the example SOLVD Patient level raw data
dataset. Details of the example dataset are also given in this section.

• Review Data
Presents the uploaded dataset in a table view.

Subgroup Specification panel:
The Subgroup Specification panel is designed to identify the columns from the uploaded
dataset for formulating subgroups. This panel is only available after a data file has been
successfully uploaded. The sections and items within each section on this panel include:

• Select Variables

Treatment Effect
Estimates

Dropdown list for specifying the column for treatment effect esti-
mation. Only available for summary treatment effect data.

Treatment Effect
Variance

Dropdown list for specifying the column for the variance asso-
ciated with the treatment effect estimation. Only available for
summary treatment effect data.

Treatment Dropdown list for specifying the column for treatment. Only avail-
able for patient level raw data.

Response Dropdown list for specifying the column for response. Only avail-
able for patient level raw data.

Censoring Dropdown list for specifying the column for censoring. Only avail-
able for patient level raw data with response that is time to event
with treatment effect measured by log hazard ratio.

Type of Response Radio buttons for specifying the type of response data. The types
include continuous, binary with treatment effect measured by log
odds ratio and time to event with treatment effect measured by log
hazard ratio. Only available for patient level raw data.

Covariates Checkboxes for specifying columns for the covariates. The covari-
ates should be binary, ordinal with numerical values, or nominal.
It is strongly recommended that the user specifies numerical values
for ordinal variables. Otherwise, ordinal variables with character
levels are converted to integers starting from 1 by the software.



16 beanz: Bayesian Analysis of Heterogeneous Treatment Effects in R

Nominal Covariates Checkboxes for specifying columns that are nominal covariates.
Only available if there are categorical covariates that contain more
than two levels.
Ordinal and nominal covariates are modeled differently in the sim-
ple regression model, simple regression shrinkage model, Dixon
and Simon model and extended Dixon and Simon model. See Sec-
tion 2.2 for more details.

Get Subgroups Button for generating subgroups based on the column specifica-
tions. A specification validation check will be first conducted. If
there are errors in the specifications, error messages will be shown
in this section.

• Subgroups
Provides a table view of the subgroups. Each row represents a subgroup and the columns
include covariates, treatment effect estimation and the variance associated with the treat-
ment effect estimation.

Configuration panel:
The Configuration panel contains options for Bayesian model priors, MCMC sampling and
results presentation. The sections and items within each section on this panel include:

• Statistical Models and Priors
Checkboxes for selecting the Bayesian models to include in the analysis. Note that the
no subgroup effect model is always included.
For each model, numeric inputs are provided for specifying the parameters in the priors.
See Section 2 for details of the priors.

• Prior Of Variance

Prior of log SD Choose normal distribution or uniform distribution as the prior
distribution for log σ. See Section 2 for details.

Uncertainty of log
SD

Numeric input for specifying parameter ∆.

• MCMC Parameters

Number of
iterations

Stan parameter specifying how many iterations including burn-in
for posterior sampling.

Number of burn-in Stan parameter specifying how many burn-in for posterior sam-
pling.

Number of thinning Stan parameter specifying the period for saving posterior samples.

Number of Chains Stan parameter specifying the number of MCMC chains for sam-
pling.
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Random seed Stan parameter for random number generation.

Number of cores Stan parameter for the number of cores for parallel computation.

Rhat Warning Threshold for generating warnings of problematic convergence
based on the Gelman and Rubin potential scale reduction statistic
Rhat (Gelman and Rubin 1992) in the Stan posterior samples.

Initial Step-size Stan parameters that affect the MCMC convergence.

Target Metropolis
Acceptance Rate

Stan parameters that affect the MCMC convergence.

• Display Parameters

Cut off for
treatment effects

The subgroup treatment effect result tables will present the prob-
ability that the subgroup effect is less than this cut off value.

Cut off for
comparison

The treatment effect comparison between subgroups result tables
will present the probability that the subgroup treatment effect
difference is less than this cut off value.

Digits Integer indicating the number of decimal places in the result ta-
bles.

Maximum subgroups
for comparison
plots

When the number of subgroups is large, the treatment effect com-
parison density plots will not be presented. This integer specifies
the maximum number of subgroups for the plot to display.

Organize results Different ways to present the analysis results:
By results. In the results, each row represents a statistical model.
The columns include treatment effect, subgroup comparison and
Stan diagnosis.
By model. In the results, each column represents a statistical
model. The rows include treatment effect, subgroup comparison
and Stan diagnosis.

Transformation Checkbox indicating if the treatment effect should be measured
by log-odds ratio or odds ratio. Only effective for patient level
raw data and time to event with treatment effect measured by log
hazard ratio.

Reference Checkbox indicating whether the results from the no subgroup
effect model should be included in the result tables and figures for
the other models as a reference.

Select subgroups
to display

A table for selecting a subset of subgroups to be included in the
result presentation. The selected subgroups are highlighted in the
table.
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Bayesian Analysis panel:
The Bayesian Analysis panel allows users to conduct the Bayesian analysis by clicking the
Conduct Bayesian Analysis button and presents the analysis results following the display
configurations on the Configuration panel. This panel is only available after subgroups have
been successfully specified.
The sections and items within each section on this panel include:

• Effect

Table Presents the posterior mean, standard deviation, 2.5%, 25%, 50%,
75%, 97.5% quantiles of the treatment effect in each selected
subgroup (see Select subgroups to display) and the posterior
probability that the subgroup treatment effect is less than a given
cut off value (see Cut off for treatment effects).

Density Presents the posterior density plots of the subgroup treatment
effects for the selected subgroups.

Forest plot Presents the posterior forest plots of the subgroup treatment ef-
fects for the selected subgroups.

Predictive plot Presents the posterior predictive distribution of the median, stan-
dard deviation, minimum and maximum of the subgroup treat-
ment effects and compare them to the observed statistics.

• Comparison

Table Presents the posterior mean, standard deviation, 2.5%, 25%, 50%,
75%, 97.5% quantiles of the treatment effect difference in each
pairwise comparison of the selected subgroups and the posterior
probability that the subgroup treatment effect difference is less
than a given cut off value (see Cut off for comparison).

Density Presents the posterior density plots of the treatment effect differ-
ence for each pairwise comparison of the selected subgroups.

Forest plot Presents the posterior forest plots of the treatment effect difference
for each pairwise comparison of the selected subgroups.

• Stan Diagnosis

Raw output Presents the outputs from Stan.

Information
criteria

Presents the deviance information criterion (DIC) and the leave-
one-out cross-validation information criterion (LOOIC).

Trace plot Presents trace plots of the posterior samples for evaluating the
convergence of the Monte-Carlo sampling chains.
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Rhat Presents the distribution of the Rhat statistics and lists the pa-
rameters with possible convergence issues based on the Rhat warn-
ing threshold (see Rhat warning).

Toolbox panel:
The Toolbox panel provides tools that implement frequentist methods for the evaluation of
HTE. The sections on this panel include:

• ANOINT
By clicking the Conduct Analysis button, package beanz conducts frequentist sub-
group analysis using the anoint package and presents the outputs generated in R in this
section. The details of package anoint can be found in Varadhan and Kovalchik (2015).
This section is only available for patient level raw data and when subgroups have been
successfully formulated.

• Gail-Simon Test for Qualitative Interactions
Provides the p value for the Gail-Simon test for qualitative interactions. See Section 3.5
for details.
Clinically meaningful threshold allows the user to specify the threshold for defining
the positive and negative orthants.

Report panel:
The Report panel presents a summary of the Bayesian analysis results and provides a link
for downloading a final report. This panel is only available after the Bayesian analysis has
been successfully conducted. The sections on this panel include:

• Summary
Presents a summary result table for the selected subgroups. The table contains columns
of covariates, treatment effect posterior mean and standard deviation, and the posterior
probability that the treatment effect is smaller than a cut off value. The results are
generated by the Bayesian model with the smallest LOOIC with the given set of priors.

• Download the analysis report
The final report can be downloaded by clicking the Download button. The available
document formats for the report include PDF, HTML and Word.

5. Demonstration of beanz GUI
We demonstrate the beanz GUI using the SOLVD clinical trial data in this section.

Step 1. We first upload the patient-level SOLVD data file to package beanz from the Upload
Data panel (Figure 4). One can also load the data from package beanz by clicking the
Try it button.



20 beanz: Bayesian Analysis of Heterogeneous Treatment Effects in R

Figure 4: Upload data.

Figure 5: Subgroup specification.
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Figure 6: Configuration of model selection.

Step 2. Next, on the Subgroup Specification panel we first select the Type of response to
be time-to-event. We then specify the columns for Treatment, Response and Censoring
and then include the baseline covariates sodium, vasodilator and LVEF indicators. By
clicking the Get Subgroups button, package beanz checks the validity of the subgroup
specification, estimates the treatment effect that is measured by log hazard ratio for each
subgroup and reports them in the Subgroups section on this panel (Figure 5).

We can see that there are a total of 8 subgroups. The subgroup with ejection fraction
> 29%, sodium > 141 and no vasodilator (subgroup 7) shows the least Enalapril drug
effect with θ̂7 = 0.15.

Step 3. After the subgroups are formulated, on the Configuration panel, for this demon-
stration, we select the Simple regression and the Basic shrinkage models with their
default priors (B = 1000, C = 1000, D = 1) for the Bayesian analysis (Figure 6). We use
the default MCMC parameters: 4000 iterations, 2000 burn-ins and 2 thinning iterations.
We choose the normal distribution with ∆ = 0 for log σg. We require 4 MCMC chains
and set the target Metropolis acceptance rate to be 0.95. Lastly, we set the random seed
for Stan to be 1000. For reporting results, we set the cut off value for subgroup treatment
effects to be 0 to report the posterior probability that the log hazard ratio is smaller than
0. We use the default value 0 for the cut off value for subgroup treatment effect differ-
ences. We also set the format of the result tables with default value 3 digits. We choose
the By model option that organizes results with each column presenting a model. Lastly,
we choose the Display no subgroup effect outcome option to present the results from
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Figure 7: Configuration of MCMC parameters.

Figure 8: Bayesian HTE analysis: basic shrinkage model subgroup treatment effects.
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Figure 9: Bayesian HTE analysis: density plot of subgroup treatment effects from the basic
shrinkage model.

No subgroup effect model as a reference (Figure 7).

Step 4. Next, we move to the Bayesian Analysis panel. A progress bar will appear indi-
cating the progress of the Stan analysis after clicking the Conduct Bayesian Analysis
button. When the analysis is completed, the results will be presented according to the
configuration options from the Configuration panel.

Figures 8–10 present the subgroup treatment effect table, density plot and forest plot
for the Basic shrinkage model with the given priors. We observe that the overall
Enalapril effect is significant if we assume that there is no subgroup effect. With the
Basic shrinkage model, the subgroups with ejection fraction ≤ 29% (subgroups 1–4) are
all showing strong evidence for the Enalapril effect. Nonetheless, for all the subgroups
with ejection fraction > 29% (subgroups 5–8), there is not sufficient evidence to show that
the Enalapril is superior to the placebo.

Figure 11 presents the results of the posterior predictive check by comparing the posterior
distributions of median, standard deviation, minimum and maximum of the subgroup
treatment effect with the observed statistics. The check shows that there are no major
systematic discrepancies between the posterior predictive distributions and the observed
data.

As a comparison, Figure 12 presents the subgroup treatment effect forest plot for the
Simple regression model. The results from the Simple regression model are similar
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Figure 10: Bayesian HTE analysis: forest plot of subgroup treatment effects from the basic
shrinkage model.

Figure 11: Bayesian HTE analysis: posterior predictive checks for the basic shrinkage model.
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Figure 12: Bayesian HTE analysis: forest plot of subgroup treatment effects from the simple
regression model.

to the Basic shrinkage model: significant Enalapril effects are only observed in subgroups
1–4.
Next, for patients with sodium ≤ 141 and no vasodilator, we evaluate the treatment effect
difference between the subgroups with ejection fraction ≤ 29% (subgroup 1) and > 29%
(subgroup 5). Figure 13 shows how to select the subgroups of interest in the Display
parameter section on the Configuration panel. Figure 14 presents the comparison forest
plot based on the Basic shrinkage model. We observe evidence that suggests there may
exist treatment by ejection fraction interaction: the Enalapril drug seems to be more
effective for the patients with ejection fraction ≤ 29%, sodium ≤ 141 and no vasodilator,
compared to the patients with ejection fraction > 29%, sodium ≤ 141 and no vasodilator,
but the difference is not significant.

Step 5. At the end, on the Report panel, a summary result table is provided based on the
model with the smallest LOOIC. The analysis report can be downloaded as a PDF, HTML,
or Word document (Figure 15).
The report contains sections Data Summary, Subgroup Definition, Analysis Results
for each selected model, and Summary. Figure 16 shows the contents page of an example
report.
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Figure 13: Configuration: select a subset of subgroups for analysis result presentation.

Figure 14: Bayesian HTE analysis: difference between treatment effects of subgroups 1 and
5 from the basic shrinkage model.
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Figure 15: Report panel.

Figure 16: Report contents page example.
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6. Discussion
In this era of precision medicine, it is not sufficient to evaluate the efficacy of a medical
intervention based only on its average treatment effect. It is critical to be able to better
understand the nature and sources of heterogeneity in treatment effects in order to help
patients and stakeholders make informed health care decisions.
The Bayesian approach offers a principled and flexible way for evaluating the differences in
treatment effects across patient characteristics. It is a formal approach to combine evidence
from the study at hand with external information or subjective beliefs to answer decision-
driven questions from the varied perspectives of different stakeholders.
A major impediment to the conduct of Bayesian subgroup analysis is the lack of user-friendly
software. We attempt to solve this problem by providing, for the first time, an R package
software tool with web-based GUI, which makes it easy to carry out Bayesian subgroup
analysis. Our software readily facilitates integral aspects of a Bayesian analysis including
prior specification, model specification (choosing from a suite of models), control of MCMC
simulation settings, visualization of posterior densities, tabular presentation of numerical
summaries, and report generation.
We also provide a toolbox for conducting frequentist analysis via fitting regression models
with interactions between treatment and baseline covariates, by linking to the R package
anoint, which provides an extensive array of subgroup analysis techniques and interaction
models. The toolbox also provides a likelihood ratio test for detecting qualitative interactions
(Gail and Simon 1985).
For Bayesian analysis, specifying a prior distribution is challenging. There is no default
method that will handle all situations. In the absence of prior (empirical) information, we
recommend low-information priors, ones that provide support for a broad range of values.
Even here care is needed, especially with respect to the scale of a parameter. For example,
a N(0, 10000) can be either low information or high information depending on the scale
of the regressor and consequently the slope. Similarly, a Uniform(0, 10) prior for a sampling
standard deviation can be either low or high information depending on the measurement scale.
Specifically, Neuenschwander, Capkun-Niggli, Branson, and Spiegelhalter (2010) introduced a
prior maximum sample size concept that can be used to quantify the information level in such
priors. We recommend careful attention to these issues. If empirical information is available,
we recommend summarizing it by a probability distribution, for example the normalized
likelihood, or if the estimate and standard error (SE) are given, by N(estimate, c2×SE2),
with c > 1, a “power prior” penalizing to reflect that the external data are not completely
exchangeable with the current data. If the analyst also determined that the external data
were biased relative to the current study, a N(estimate + offset, c2×SE2) prior can be used.
Potential bias can also be captured by selecting an appropriate value for c. For all important
analyses, we recommend sensitivity analyses relative to these very explicit analytic choices.
Given the exploratory nature of the subgroup analysis, it is important to evaluate whether
a particular Bayesian model provides a good fit to the data (Gelman 2003; Rubin et al.
1984). The software currently provides LOOIC and DIC criteria that can be the basis for
comparing the goodness-of-fit. The software also provides posterior predictive checks for
checking if the modeled summaries of subgroup-specific treatment effects such as the median,
minimum, maximum, and standard deviation are consistent with the corresponding observed
data summaries. Other techniques such as cross-validation may also be considered for this
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task. We plan to include this in a future version of the software.
A potential limitation of the models represented in our software is that the subgroup treatment
effects are assumed to follow a normal distribution. For certain scenarios such as analysis of
rare events, the normal approximation may not be appropriate (Jones et al. 2011). Neverthe-
less, maximum likelihood estimates with large information will be approximately normal at
least in some scale for most cases. Moreover, the normal approximation allows for relatively
straightforward interpretation of the models considered for the mean of θ̂g. In practice, one
can transform for improved normality although such transformation may move the analysis
away from the clinically relevant scale. This is the first release of the software; we plan to
include other distributions in subsequent versions of the software.
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