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Abstract

Randomization in clinical trials is the key design technique to ensure the comparability
of treatment groups. Although there exist a large number of software products which
assist the researcher to implement randomization, no tool which would cover a wide range
of procedures and allow the comparative evaluation of the procedures under practical
restrictions has been proposed in the literature so far.

The R package randomizeR addresses this need. The paper includes a detailed de-
scription of the randomizeR package that serves as a tutorial for the generation of ran-
domization sequences and the assessment of randomization procedures.

Keywords: clinical trial, restricted randomization, selection bias, chronological bias, R.

1. Introduction

Randomization is a design technique to ensure the comparability of treatment groups in clin-
ical trials by introducing a deliberate element of chance. Armitage (1982) states the three
main goals that are supposed to be achieved by randomization. First, it tends to balance
known and unknown covariates and, thus, to produce structural equality of the treatment
groups. Second, by ensuring effective blinding of treatment allocations from investigators and
patients, randomization helps to avoid bias caused by the selection of patients. Finally, ran-
domization contributes to the internal validity of a trial that provides the basis for statistical
inference. The importance of randomization for clinical trials was first noted in the 1940s by
Sir A. Bradford Hill (see Chalmers 1999) who realized that successful blinding of treatment
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allocations was impossible without randomization. Since that time, regulators have advo-
cated the use of randomization in their guidelines (see for example ICH E9 1998) and several
different randomization procedures have been proposed in the literature. It has been noticed
that different randomization procedures behave differently, e.g., concerning their susceptibil-
ity to bias and their potential to control power and type-I-error probability. An overview
containing the latest developments can be found in Rosenberger and Lachin (2016).
Despite the importance of randomization in the context of clinical trials, the novelties of the
last decades have hardly found their way into clinical practice. Berger, Bejleri, and Agnor
(2016) remark that clinicians stick with randomization procedures that are easily available,
although their poor properties have been widely discussed and better alternatives have been
proposed. Notably, the most suitable randomization procedure may depend on the clinical
context. For example, when block randomization is used, Tamm and Hilgers (2014) advocate
small block sizes to control chronological bias, while Kennes, Cramer, Hilgers, and Heussen
(2011) show that larger blocks are better to control selection bias.
The choice of an adequate randomization procedure is crucial to achieve favorable proper-
ties such as control of power and type-I-error rate, especially for small sample sizes where
asymptotic assumptions do not hold. However, no software package exists that assists the
user in choosing a randomization procedure based on scientifically sound criteria, as we
revealed in a literature review (see Appendix A). The R package randomizeR (Schindler,
Uschner, Hilgers, and Heussen 2018) addresses this need. It combines the assessment of
randomization procedures on the basis of scientifically sound criteria with the generation of
randomization lists for clinical trials, creation of randomization protocols, extensive documen-
tation and an open source license. In addition, it contains fifteen randomization procedures.
Package randomizeR is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=randomizeR. Existing software tools such as the
blockrand package by Snow (2013) implement only a very limited number of randomization
procedures. The special class of response-adaptive randomization procedures is not included
in randomizeR, but has currently been implemented for trials with time-to-event outcome in
the MATLAB (The MathWorks Inc. 2017) package RARtool by Ryeznik, Sverdlov, and Wong
(2015).
This article gives a detailed description of the randomizeR package. It is organized as follows.
Section 2 presents the background for assessing the properties of randomization procedures
such as susceptibility to bias with references to existing literature. Particularly, the random-
ization procedures are presented in Section 2.3. Section 3 shows how randomizeR implements
the methods from the background chapter. Particularly, Section 3.2 provides a tutorial for the
generation of randomization lists with randomizeR, and Section 3.3 illustrates the assessment
of randomization procedures with respect to the different types of bias and other criteria.

2. Assessing the properties of randomization procedures

2.1. Notation and model

We consider the case of a two armed clinical trial with parallel group design and total sample
size N . Let A and B be treatments that influence a continuous outcome Y . A randomiza-
tion procedure M is a probability distribution on the space Ω = {0, 1}N . A randomization
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sequence is an element t ∈ Ω, where ti = 1 if patient i is allocated to treatment A and ti = 0
otherwise. Let T = (T1, . . . , TN ) denote a random variable with probability distribution M
taking values in Ω. Throughout the paper, let the outcome yi of patient i = 1, . . . , N be the
realization of a normally distributed random variable

Yi ∼ N (µA · Ti + µB · (1− Ti), σ2) (1)

with group expectations µA, µB and equal but unknown variance σ2 > 0. The outcome yi

is called response. Higher values of the response are regarded as better. We test the null
hypothesis that the expectation of the experimental treatment A does not differ from the
expectation of the control treatment B against the two-sided alternative

H0 : µA = µB vs. H1 : µA 6= µB. (2)

When the response Yi of patient i is influenced by an unobserved quantity bi, we call bi bias
of the ith patient. Bias includes selection bias or chronological bias, or both, as proposed in
Section 2.2. We investigate how the randomization procedures manage the misspecification
of the model

Yi ∼ N (µA · Ti + µB · (1− Ti) + bi, σ
2) (3)

with bi the fixed bias of patient i.

2.2. Criteria for the assessment

The potential of a randomization procedure to control the impact of bias on the study results
along with other exemplary criteria for the choice of a randomization procedure are summa-
rized in this section. The assessment of the impact of bias is important if the form of the bias
is unknown or the bias is unobserved.

Susceptibility to chronological bias

Changes in study environment, e.g., increased diagnostic potential, may impact the response
to treatment over time. Unobserved time trends lead to a bias of the estimator of the treat-
ment effect, for which Matts and McHugh (1978) used the term chronological bias. Chronolog-
ical bias is a special case of accidental bias as introduced by Efron (1971). Efron investigated
the effects of covariates that have been (unintentionally) ignored in the model. Although the
underlying trend could in theory be included in the model, the bias is often unobserved, or the
exact form is unknown. Furthermore, especially in small population groups, it is challenging
to use models with many explanatory variables. Rosenkranz (2011) measured the impact of
chronological bias by the distortion of the type-I-error rate of the t test when the responses
are influenced by a trend τ(i, ϑ):

Yi ∼ N (µA · Ti + µB · (1− Ti) + τ(i, ϑ), σ2). (4)

The parameter ϑ denotes the strength of the time trend. Tamm and Hilgers (2014) proposed
three shapes of trend that are summarized in Table 1. For the step trend, they introduce an
index 1 ≤ n0 ≤ N where the trend function τ(i, ϑ) jumps from zero to ϑ. Hence, the function
1{i≥n0} yields the value one if i ≥ n0 and zero if i < n0. The function log denotes the natural
logarithm.
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Trend Shape

Linear τ(i, ϑ) = i · ϑ
Logarithmic τ(i, ϑ) = log( i

N ) · ϑ
Step τ(i, ϑ) = 1{i≥n0} · ϑ, n0 ∈ {1, . . . , N}

Table 1: The three types of time trend included in randomizeR.

Susceptibility to selection bias
Sir A. Bradford Hill was the first to adopt randomization in clinical trials (see Chalmers
1999). His aim was to ensure effective blinding and to avoid bias due to the conscious
or unconscious selection of patients to treatment groups, the so-called selection bias. We
consider two measures for selection bias proposed in the literature, the expected number of
correct guesses and the influence of selection bias on the test decision.
The expected number of correct guesses was introduced by Blackwell and Hodges (1957).
They assume that, based on past treatment assignments, the investigator consciously or
unconsciously guesses the next treatment based on the past assignments. Suppose the inves-
tigator guesses that patient i > 1 will receive treatment g(t, i) ∈ {A,B} based on the previous
assignments (t1, . . . , ti−1). The correct guesses of a randomization sequence is the number of
assignments the investigator guesses correctly:

CG(t) = |{i ∈ {1, . . . , N} : g(t, i) = ti}|. (5)

Two guessing strategies were investigated by Blackwell and Hodges (1957). Under the conver-
gence strategy (CS), the investigator assumes that the next patient is assigned to the group
that has so far been assigned less. Under the divergence strategy (DS) the experimenter
assumes that the next patient is assigned to the treatment that has so far been observed more
often. At the beginning of the trial and when there is a tie, the investigator guesses the next
allocation at random.
The expected number of correct guesses E(CG(t)) reflects the predictability of a sequence
t ∈ Ω. The overall predictability of a randomization procedure M is given by the average
proportion of correct guesses:

avpCGM := 1
N
· EM(E(CG(t))). (6)

Proschan (1994) proposed to measure the influence of selection bias on the test decision when
the responses are biased as a result of selecting the patients following the convergence strategy:

Yi ∼ N (µA · Ti + µB · (1− Ti)− sign(Di) · η, σ2), (7)

where Di := Di(T ) =
∑i

j=1 Tj −
∑i

j=1(1 − Tj) denotes the imbalance of a randomization
sequence, sign(x) denotes the sign function, and η denotes the selection effect. Tamm, Cramer,
Kennes, and Heussen (2012) demonstrated the impact of selection bias for different values of
the selection effect η.

Balancing behavior
According to ICH E9 (1998), it is desirable for a randomization procedure to balance the
group sizes throughout the trial as well as at the end of the trial, while avoiding predictability.
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Imbalance Formula
Final DN

Absolute final |DN |
Maximal maxi=1,...,N |Di|

Loss D2
N

N

Table 2: Imbalance measures implemented in randomizeR.
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Figure 1: Random walk of the randomization sequences of CR.

Table 2 summarizes the measures for the imbalance that have been proposed in the literature
(see for example Atkinson 2014). According to Lachin (1988) imbalance may cause decreased
power of the statistical test in case of continuous endpoint and homoscedasticity.

2.3. Randomization procedures

Randomization procedures can be described in terms of a restricted or unrestricted random
walk (see Proschan 1994). The restrictions imposed on the random walk lead to different
randomization procedures. In this section, we give a short overview about the randomization
procedures that are implemented in randomizeR. For a comprehensive overview we refer to
Rosenberger and Lachin (2016).
Complete randomization (CR) is equivalent to tossing a fair coin for the allocation of each
patient. CR leads to 2N equi-probable sequences where N denotes the total sample size.
Figure 1 shows a randomization sequence produced by a CR in heavy black, along with all
possible sequences in light gray.
Using random allocation rule (RAR), patients are allocated by drawing N times without
replacement from an urn consisting of N/2 balls for each treatment. RAR produces

( N
N/2
)

equi-probable sequences that all attain final balance.



6 randomizeR: Randomization for Clinical Trials

Permuted block randomization (PBR) with block constellation bc = (k1, . . . , km) balances the
allocations in the blocks of length k1, . . . , km. For each block j = 1, . . . ,m, an urn is filled
with kj/2 balls for each of the two treatments, and kj balls are drawn without replacement
from the urn. PBR leads to

∏m
j=1

( kj

kj/2
)
equi-probable sequences that attain balance after

each block, particularly at the end.
Permuted block randomization with random block constellation (RPBR) is similar to PBR,
but the block constellation bc is sampled at random from the set of given block lengths rb.
RPBR permits two variations (Heussen 2004; Rosenberger and Lachin 2016): The entries
kj of bc can either be drawn uniformly with replacement from rb until

∑
kj ≥ N , or be

conditioned to achieve final balance, namely
∑
kj = N .

The truncated binomial design (TBD) consists of tossing a fair coin for the allocation of
patients until N/2 heads or tails have occurred. The remaining patients are allocated deter-
ministically to the opposite group. TBD results in sequences that attain final balance but
are not equi-probable. TBD admits the same number of sequences as RAR. As an extension,
TBD can be conducted in blocks similar to PBR, or similar to RPBR with random block
constellation (RTBD).
The maximal procedure (MP) was proposed by Berger, Ivanova, and Knoll (2003). MP gives
equal probability to all sequences that attain final balance and do not exceed a pre-specified
maximum tolerated imbalance mti ∈ N. Always when the imbalance boundary is reached,
i.e., |Di| = mti, a deterministic assignment is made to the underrepresented group in order
to reduce the imbalance.
The big stick design (BSD) introduced by Soares and Wu (1983) consists of tossing a fair coin
until the imbalance |Di| reaches a maximum tolerated imbalance mti ∈ N.
In Efron’s biased coin design (EBC; see Efron 1971), a biased coin is tossed for the next
allocation in order to reduce the imbalance with probability 0.5 ≤ p ≤ 1. When the groups
are balanced, a fair coin is tossed.
Chen (1999) proposed a biased coin design with imbalance tolerance (CHEN) that combines
BSD and EBC. When the groups are balanced, a fair coin is tossed for the allocation of
patients. Otherwise, a biased coin with probability 0.5 ≤ p ≤ 1 is tossed until reaching an
imbalance boundary mti ∈ N. When the imbalance boundary is reached, a deterministic
assignment is made in order to reduce the imbalance.
The accelerated biased coin design (ABCD) proposed by Antognini and Giovagnoli (2004)
uses the toss of a biased coin for the allocation of patients. The probability pi = p(Di−1, a)
for allocating the ith patient to the experimental group depends on the imbalance Di−1
and an acceleration parameter a > 0. The acceleration parameter exponentially weights the
imbalance and thus determines the degree of randomness of the design.
The Bayesian biased coin design (BBCD) proposed under the name “dominant biased coin
design” by Antognini and Zagoraiou (2014) is similar to ABCD. Here, the probability pi of
allocating the ith patient to the experimental group depends on the acceleration parameter
a > 0 and the ratio NA(i− 1)/NB(i− 1) where NA(i− 1) and NB(i− 1) are the numbers of
patients in groups A and B respectively after allocating i− 1 patients.
Wei’s urn design (UD) consists of N draws of an urn whose composition is updated after
each draw. Before allocating the first patient, the urn contains an initial number (ini ≥ 0) of
balls of different colors for each treatment. For the allocation of a patient, a ball is drawn,
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the color is noted, and replaced along with an additional number (add ≥ 0) of balls of the
opposite color.
The generalized biased coin design (GBCD) was developed by Smith (1984) to extend various
designs. A biased coin is tossed for the allocation of patients, where probability of allocating
the next patient to the experimental group depends on NA(i− 1) and NB(i− 1) as well as a
balancing parameter ρ ≥ 0.
The Hadamard randomization (HADA) proposed by Bailey and Nelson (2003) uses the rows
of a special Hadamard matrix H ∈ {0, 1}11×12 for the allocation of patients. Rows from H
are sampled until the number of allocations reaches the planned sample size N .
Table 3 in the next section shows how the presented randomization procedures can be used
in randomizeR.

2.4. Implementation
The assessment of a randomization procedure is based on a set of allocation sequences. Some
of the assessment criteria, for example type-I-error or power, depend on a response, while
others, e.g., correct guesses, are independent of a response. There are two different options
to generate a set of allocation sequences depending on the sample size N , and two different
methods to calculate the response based assessment criteria:

Complete or simulated reference set: In case of N ≤ 24, it is possible to generate the
set of all possible allocation sequences {0, 1}N , assess the eligibility of an allocation
sequence and, independently, calculate the associated probabilities for the allocation
sequences by the randomization algorithm. This results in the complete set of the
sequences. The function getAllSeq provides this functionality, see Section 3.2.
In case of N > 24, the complete set cannot be calculated in reasonable time. Instead, a
number r of allocation sequences is generated undergoing the randomization algorithm
of the particular randomization procedure. The function genSeq provides this function-
ality, see Section 3.2. Formally, the relative frequencies of the allocation sequences can
be used to estimate the true probabilities of allocation sequences. Note therefore that,
in a simulation, the relative frequency of a randomization sequence is used. This results
in the simulated set of the sequences. The simulated set can also be applied in case of
smaller sample sizes, and procedures where the exact approach is not available in the
literature, i.e., block randomization with random block constellation and Hadamard
randomization.

Exact or simulated response based assessment criteria: The susceptibility of a ran-
domization procedure to bias can be measured as the distortion of the type-I- or type-
II-error probability. The exact method computes the distribution of the exact rejection
probabilities. For each randomization sequence in the reference set, the rejection proba-
bility of Student’s t test is calculated using the knowledge on the bi from Equation 3 (see
Langer 2014, Chapter 4). The simulation method simulates a response vector for each
allocation sequence in the reference set according to Equation 3 and derives a test deci-
sion of Student’s t test. The type-I- or type-II-error rate is computed as the proportion
of falsely rejected test decisions. This method was used for example by Proschan (1994).
Section 3.3 shows how the exact and simulated type-I- and type-II-error probabilities
can be assessed with randomizeR.
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Any combination of the above methods can be used. For example, a simulated reference set
can be used to assess the distribution of the exact rejection probabilities. The combination
of simulated error rate with simulated reference set is usually used in the literature. For
small sample sizes, the combination of exact reference set with distribution of exact error
probabilities yields most accurate results.
All sampling algorithms use R’s standard random number generator, the Mersenne-Twister
(R Core Team 2018).

3. The randomizeR package

3.1. Overview

The randomizeR package covers two closely connected purposes: the generation of random-
ization sequences and the assessment of randomization procedures according to the afore-
mentioned criteria. The previous section was dedicated to introducing the basic terms and
literature from the field. In the present section, we show how randomizeR addresses these
purposes. The current version 1.3 of randomizeR is based on R 3.3.0. It can be loaded in an
R session via:

R> library("randomizeR")

All the main components of randomizeR are implemented using the S4 object oriented system.

3.2. Generating randomization sequences

There are two main purposes for the generation of randomization sequences. The first pur-
pose is the generation of a single sequence for the allocation of patients in a clinical trial.
The second purpose is the generation of multiple sequences in order to assess the properties
of a randomization procedure. Both purposes can be regarded as functions that use the ran-
domization procedure itself as basis for their behavior. They are therefore implemented as
methods that take an object representing the randomization procedure as input.

Representing randomization procedures

randomizeR implements randomization procedures as subclasses of the ‘randPar’ class. For
example, an object representing complete randomization (CR) with sample size N = 10 is
generated by

R> N <- 10
R> (params <- crPar(N))

Object of class "crPar"

design = CR
N = 10
groups = A B
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Randomization procedure Constructor function Parameters
Complete randomization (CR) crPar(N) N sample size

Random allocation rule (RAR) rarPar(N) N sample size

Permuted block randomization
pbrPar(bc) bc block constellation(PBR)

Rand. permuted block
rpbrPar(N, rb)

N sample size
randomization (RPBR) rb random block lengths

Truncated binomial design (TBD) tbdPar(bc) bc block constellation

Rand. truncated binomial design
rtbdPar(N, rb)

N sample size
(RTBD) rb random block lengths

Maximal procedure (MP) mpPar(N, mti)
N sample size
mti max. tolerated imbalance

Big stick design (BSD) bsdPar(N, mti)
N sample size
mti max. tolerated imbalance

Efron’s biased coin design (EBC) ebcPar(N, p)
N sample size
p biased coin probability

Chen’s design (CHEN) chenPar(N, mti, p)
N sample size
mti max. tolerated imbalance
p biased coin probability

Generalized biased coin design
gbcdPar(N, rho)

N sample size
(GBCD) rho balance factor

Adjustable biased coin design
abcdPar(N, a)

N sample size
(ABCD) a balance factor

Bayesian biased coin design
bbcdPar(N, a)

N sample size
(BBCD) a balance factor

Wei’s urn design (UD) udPar(N, ini, add)
N sample size
ini initial urn composition
add adjustment in each step

Hadamard randomization
hadaPar(N) N sample size(HADA)

Table 3: Randomization procedures included in randomizeR.

The function crPar is a so-called constructor function, namely a function that generates an
object of the class ‘crPar’ and prepares it for use. The object params then contains all
the information about the randomization procedure. Table 3 summarizes the constructor
functions for the randomization procedures described in Section 2.3. In randomizeR an
overview over the implemented randomization procedures is shown by calling ?randPar.
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Generation of a single sequence
We can use the function genSeq to generate a single randomization sequence for a particular
clinical trial. It takes an object representing a randomization procedure as input and generates
a sequence at random using this procedure. For example, the following code generates a
randomization sequence using complete Randomization with sample size N = 10 as above:

R> params <- crPar(N)
R> (rs <- genSeq(params))

Object of class "rCrSeq"

design = CR
seed = 808898100
N = 10
groups = A B

The sequence M:

1 B A A A B A B A A A

To ensure the reproducibility of the results and to enhance the reporting of the randomization
procedure, the function genSeq saves all the information that was used for the generation of
the randomization sequence in the object rs along with the randomization sequence itself.
In order to obtain the randomization sequence stored in the object rs, we can use the function
getRandList:

R> getRandList(rs)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "B" "A" "A" "A" "B" "A" "B" "A" "A" "A"

The randomization sequence and the other information stored in the object rs can conve-
niently be saved to a CSV file by using the saveRand function:

R> saveRand(rs, file = "myRandList.csv")

Figure 1 in Section 2.3 shows the random walk of the randomization sequence rs. This figure
can be generated using the function plotSeq in randomizeR:

R> plotSeq(rs, plotAllSeq = TRUE)

The function genSeq can generate randomization sequences for all randomization procedures
from Table 3. The function genSeq has a method for each randomization procedure. For all
randomization procedures, its output is an object of a class extending the class ‘randSeq’.

Generation of a set of sequences
Randomization procedures can be assessed based on the set of sequences they produce (see
Section 2.4). randomizeR provides two ways to generate multiple randomization sequences
from a specific procedure.
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For small sample sizes N ≤ 24, we can use the function getAllSeq to generate the complete
set of randomization sequences. It takes an object representing a randomization procedure
as input and calculates the complete set of randomization sequences of that procedure. For
example, in the above case of complete randomization with sample size N = 10, we run the
statement

R> (allSeqs <- getAllSeq(params))

Object of class "crSeq"

design = CR
N = 10
groups = A B

The first 3 of 1024 sequences of M:

1 A A A A A A A A A A
2 B A A A A A A A A A
3 A B A A A A A A A A
...

to get the complete set of 210 = 1024 sequences. Note that the function getAllSeq does
not support the random block designs RPBR and RTBD or the Hadamard randomization,
because no suitable algorithms have been established in the literature.
In those cases where the enumeration of the complete set of sequences is computationally
intensive or algorithmically not feasible, the function genSeq can be used to generate a sim-
ulated reference set. For example for sample size N = 50 and complete randomization, a
simulated reference set of size r = 10, 000 is generated by

R> N <- 50
R> params <- crPar(N)
R> (randomSeqs <- genSeq(params, r = 10000))

Object of class "rCrSeq"

design = CR
seed = 1034131350
N = 50
groups = A B

The first 3 of 10000 sequences of M:

1 B A A A B A A A A B ...
2 B A A A B A A B B B ...
3 B B B B A B A A B B ...
...
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The parameter seed can be passed to genSeq to ensure the reproducibility of the results.
As genSeq samples randomization sequences with replacement and with the true probability
of occurrence of the randomization procedure represented by params, the result may contain
duplicates. More probable sequences will occur more frequently.
randomizeR provides the function getProb for the computation of the true probability of oc-
currence randomization of sequences. getProb takes any object that inherits from ‘randSeq’:

R> p <- getProb(allSeqs)
R> head(data.frame(Sequences = myPaste(getRandList(allSeqs)),
+ Probability = round(p, 6)))

Sequences Probability
1 AAAAAAAAAA 0.000977
2 BAAAAAAAAA 0.000977
3 ABAAAAAAAA 0.000977
4 BBAAAAAAAA 0.000977
5 AABAAAAAAA 0.000977
6 BABAAAAAAA 0.000977

If applied to an object resulting from getAllSeq, the resulting probabilities will always sum up
to one. In contrary, if applied to objects resulting from genSeq, the sum of the probabilities
will not equal one, because typically, the set of sampled sequences is only a subset of the
complete set of sequences. Note therefore that, in a simulation, the sampled frequency of
a randomization sequence is used instead of its true probability of occurrence. Due to the
nature of the sampling algorithms, the sampled frequencies converge to the true probabilities
if the sample is large enough.

3.3. Assessing randomization procedures

Most of the assessment criteria in Section 2.2 depend on the assumption of normally dis-
tributed responses according to Equation 1. Assume that both treatments have equal expec-
tations µA = µB = 0 and variances σA = σB = 1. Then we can use the function normEndp
representing the normal endpoint to pass these assumptions to randomizeR by setting

R> muA <- muB <- 0
R> sigmaA <- sigmaB <- 1
R> normalEndpoint <- normEndp(mu = c(muA, muB), sigma = c(sigmaA, sigmaB))

The class ‘endpoint’ provides flexibility for the extension to other endpoints. Currently, only
normal endpoints are available.
randomizeR implements the criteria for the evaluation of randomization procedures as sub-
classes of the class ‘issue’. For example, an object representing the exact rejection probability
in the presence of chronological bias due to linear time trend that has a strength of ϑ = 1, is
generated by

R> (cb <- chronBias(type = "linT", theta = 1, method = "exact"))
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Criterion Constructor function Parameters

Chronological bias chronBias(type, theta, method)
type of trend
theta strength of trend
method of assessment

Selection bias selBias(type, eta, method)
type of guessing strategy
eta selection effect
method of assessment

Correct guesses corGuess(type) type of guessing strategy

Imbalance imbal(type) type of imbalance

Combined bias combineBias(selBias, chronBias)
‘selBias’ object
‘chronBias’ object

Power loss due to
setPower(d, method)

d detectable effect
imbalance method of assessment

Table 4: Criteria for the assessment.

Object of class "chronBias"

TYPE = linT
THETA = 1
METHOD = exact
ALPHA = 0.05

The parameter method indicates whether the exact distribution of the type-I-error rate should
be calculated or whether the test decision should be simulated by generating responses that are
influenced by the trend (method = "sim"). The function chronBias is a constructor function
for objects of the class ‘chronBias’. The object cb contains all the information about the
bias. Table 4 summarizes the constructor functions for all the criteria of assessment presented
in Section 2.2. In randomizeR an overview over the implemented assessment criteria is shown
by calling ?issues.

Assessment of a randomization procedure

The randomizeR package includes the function assess to evaluate the behavior of a random-
ization procedure with respect to one or more of the criteria from Section 2.2.
For example, if we want to evaluate the behavior of the big stick design with sample size
N = 12 and imbalance tolerance mti = 2 with respect to chronological bias, selection bias,
and power loss given a difference in group means d = 1.796, we may call:

R> N <- 12
R> mti <- 2
R> bsdSeq <- getAllSeq(bsdPar(N, mti))
R> d <- 1.796
R> sb <- selBias("CS", eta = d/4, method = "exact")
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R> cb <- chronBias("linT", theta = 1/N, method = "exact")
R> pw <- setPower(d, method = "exact")

The function assess yields the true rejection probability for each criterion and each random-
ization sequence.

R> (Assessment <-assess(bsdSeq, sb, cb, pw, endp = normalEndpoint))

Assessment of a randomization procedure

design = BSD(2)
N = 12
K = 2
groups = A B

The first 3 rows of 972 rows of D:

Sequence Probability P(rej)(CS) P(rej)(linT) power(exact)
1 BBABABABA ... 0.004 0.045 0.072 0.789
2 BABBABABA ... 0.002 0.042 0.066 0.789
3 ABBBABABA ... 0.002 0.039 0.062 0.789
...

In the case of the big stick design with sample size N = 12 and maximum tolerated imbalance
mti = 2, there are 972 possible sequences. The first column of the assessment corresponds to
the randomization sequence and the second to the probability of occurrence of the sequence.
The following columns correspond to the criteria sb, cb and pw passed to assess. The
notation P(rej)(type) refers to the probability of rejection in the presence of the given type
of bias. The column power(exact) gives the exact power of each randomization sequence.
Any number of assessment criteria can be passed to assess. For the criteria imbal and
corGuess the endpoint endp is not relevant and can be omitted.
The summary of the assessment shows the important characteristics of the distribution of the
allocation sequences such as mean, standard deviation, minimum, maximum and the quantiles
for each criterion:

R> summary(Assessment)

P(rej)(CS) P(rej)(linT) power(exact)
mean 0.056 0.046 0.795
sd 0.013 0.006 0.006
max 0.109 0.072 0.800
min 0.034 0.042 0.789
x05 0.037 0.042 0.789
x25 0.048 0.042 0.789
x50 0.054 0.044 0.789
x75 0.062 0.048 0.800
x95 0.079 0.058 0.800
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For example, the five percent quantile x05 of the probability of rejection in the presence of a
linear time trend linT is 0.042. Note that, until now, only the mean value of each criterion
has been studied in the literature.

Comparison of randomization procedures
randomizeR provides the function compare for the comparison of several randomization pro-
cedures with respect to one of the criteria from Section 2.2. For example, assume we are in
the same setting as above (N = 12) and want to compare the big stick design, the maximal
procedure with mti = 2 and the permuted block randomization with block size four with
respect to their susceptibility to selection bias. We can partly recycle the previous code and
set the parameters for the other randomization procedures we want to compare:

R> mpSeq <- getAllSeq(mpPar(N, mti))
R> bc <- rep(4, N/4)
R> pbrSeq <- getAllSeq(pbrPar(bc))

Then the following code compares the aforementioned procedures with respect to selection
bias:

R> (Comparison <- compare(sb, bsdSeq, mpSeq, pbrSeq, endp = normalEndpoint))

Comparison for P(rej)(CS)

BSD.2. MP.2. PBR.4.
mean 0.056 0.072 0.082
sd 0.013 0.015 0.015
max 0.109 0.109 0.109
min 0.034 0.040 0.050
x05 0.037 0.050 0.061
x25 0.048 0.061 0.072
x50 0.054 0.072 0.079
x75 0.062 0.079 0.099
x95 0.079 0.100 0.103

The distribution of a criterion for a particular randomization procedure can be visualized and
compared between different randomization procedures via a boxplot (Figure 2b) or a violin
plot (Figure 2a):

R> plot(Comparison)
R> plot(Comparison, y = "boxplot")

For the generation of the boxplot and the violin plot, we used the functions geom_boxplot
and geom_violin of the R package ggplot2 proposed by Wickham (2009).

4. Summary and further research
randomizeR is an R package that facilitates the generation of randomization lists for a large
number of randomization procedures and makes the assessment of randomization procedures
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Figure 2: Comparative visualization of the distribution of the type-I-error probability under
the influence of unobserved selection bias for BSD(2), MP(2) and PBR(4).

with respect to various criteria possible. The package currently implements fifteen random-
ization procedures and six criteria for the assessment of the procedures. It assists researchers
at the design stage of a clinical trial by letting the choice of a randomization procedure and
the implementation of the design go hand in hand.
We are working towards extending randomizeR in various directions. The object oriented
approach makes it easy to add new randomization procedures and assessment criteria. A
unified assessment criterion may be included to uniformly judge the suitability of a random-
ization procedure based on various criteria. The models may be extended to other endpoints
such as time-to-event data, or to more than two treatment groups. Finally, randomization
tests may be implemented to enable randomization based inference independent of parametric
assumptions.
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A. Review of software tools
We conducted a Google search with the keywords “+randomization +software clinical trial”,
“+randomization +service clinical trial” and “+randomization +package clinical trial” that
yielded a total of 310 results including many duplicates. We only considered software that
provided access over the World Wide Web, e.g., via download or via a browser-based web
application. We refer to these software packages as “tools”. Results that required getting in
touch with the authors in order to access the tool were excluded. We also excluded tools that
only included response- and covariate-adaptive randomization procedures. Fifteen software
tools were left from the initial 310 results. Clearly, not all software tools on the World Wide
Web were identified in this search, but we are confident that we captured a substantial part.
The results of this software review are shown in Table 5. We used the following criteria and
abbreviations for the evaluation:

Number of available procedures (No). The number of restricted randomization proce-
dures supported by the software tool.

Documentation (Doc). The type of documentation provided by the software tool, such as
manuals for the end user (u), technical documentation of codes and algorithms including
references to relevant literature (t), or no documentation freely available on the website
(x).

Protocol. The randomization protocol with the details of the randomization procedure and
randomization sequence can be saved to a file (y/n).

Assessment and comparison (A&C). Randomization procedures can be assessed and
compared with respect to criteria from the literature (y/n).

License. The license the tool is published under: open source license (o), proprietary but
available free of charge (pf), proprietary and commercial (pc), or proprietary and com-
mercial, but a light version is available free of charge (pc/pf).

Platform. The computing requirements necessary to run the software tool.

The most striking result from Table 5 is the low number of randomization procedures sup-
ported in the available software tools. Twelve out of fifteen tools provide only one or two
randomization procedures. In most cases, these are permuted block randomization or com-
plete randomization. None of the tools provide more than four randomization procedures.
Despite being crucial for statisticians as well as clinical trialists, the state of the available doc-
umentation is poor. Only three software tools implement detailed technical documentation,
while seven of the remaining tools provide manuals for the end user. However, both types
of documentation are needed in order to ensure the correct usage and functionality of the
tools. The other five tools did not provide or reference any documentation on their website.
Without documentation on the method used to generate the random allocation sequence,
the type of randomization and details of any restriction as recommended by the CONSORT
2010 Statement (Schulz, Altman, and Moher 2010), the possible effects of bias on the data
cannot be assessed, and the validity of the trial can be compromised. Only four tools pro-
vided the functionality to generate and save a protocol of the randomization that includes
this information.
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One of the investigated software tools allowed the assessment of the implemented random-
ization procedure. Namely, it allows the assessment of the average amount of final imbalance
using permuted block randomization with random block sizes by simulation. The remaining
tools do not implement any type of assessment or comparison of randomization procedures,
making it hard for the user to choose a randomization procedure based on objective criteria.
Another important point for the availability of a tool is its license. Only four of the investi-
gated software tools were published under an open source license. The remaining eleven tools
are proprietary and therefore restrict the inspection, modification and redistribution of the
program code, which results in tools that are a black box for their users. In addition, three
of the proprietary tools provide only a commercial version and might not be accessible to all
potential users.
Lastly, five of the tools rely on a specific operating system. Only the web-applications, the R
packages and the Stata (StataCorp 2017) module have the advantage of running independent
of the operating system. Clearly, less system requirements lead to better availability for a
larger variety of users.
In conclusion, none of the existing software tools combines a large number of randomiza-
tion procedures with extensive documentation, availability of randomization protocols and
assessment of randomization procedures as well as accessibility via an open source license and
cross-platform availability.
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