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Abstract

Clustering functional data is mostly based on the projection of the curves onto an
adequate basis and building random effects models of the basis coefficients. The param-
eters can be fitted with an EM algorithm. Alternatively, distance models based on the
coefficients are used in the literature. Similar to the case of clustering multidimensional
data, a variety of derivations of different models has been published. Although their cal-
culation procedure is similar, their implementations are very different including distinct
hyperparameters and data formats as input. This makes it difficult for the user to apply
and particularly to compare them. Furthermore, they are mostly limited to specific basis
functions. This paper aims to show the common elements between existing models in
highly cited articles, first on a theoretical basis. Later their implementation is analyzed
and it is illustrated how they could be improved and extended to a more general level. A
special consideration is given to those models designed for sparse measurements. The work
resulted in the R package funcy which was built to integrate the modified and extended
algorithms into a unique framework.
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1. Introduction

Clustering is a popular technique in statistics to find or impose a structure onto the data.
Especially when the dataset is large, similar profiles merged to a group can lead to a deeper
insight into the behavior of observations. Whereas for multidimensional data, a variety of
different models exist, the choice for functional data is limited. The first intuition is to apply
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standard methods such as k-means on the raw datasets by neglecting the time dependency
and using the L2 distance as a distance measure. Febrero-Bande and de la Fuente (2012)
apply k-means on any of several semi-metrics for functional data defined by Ferraty and
Vieu (2006). In the majority of cases though, basis functions are used as elements of the
generation process in order to reflect the continuity in the data. The projection of the curves
onto their basis functions is the core part of this process. Yao, Müller, and Wang (2005) use
the Karhunen-Loève expansion as an adequate basis, James and Sugar (2003), Jacques and
Preda (2013) and Bouveyron and Jacques (2011) use B-splines while Serban and Wasserman
(2005) project the curves onto a Fourier basis. Also wavelets can be used as projection basis
e.g., Giacofci, Lambert-Lacroix, Marot, and Picard (2013), Antoniadis, Brossat, Cugliari, and
Poggi (2013) and Ray and Mallick (2006). The curve projection is further processed by one
of various methods, for instance by building a functional mixed model (FMM). In this study,
different existing models are put into a more generalized context by analyzing their underlying
FMM. The aim of the article is to carve out the common elements of the algorithms and to
show how they could be modified and extended. The work resulted in the R (R Core Team
2017) package funcy (Yassouridis 2018) which was built to simplify their usage, improve their
comparability and to bring them to a level, where the same input leads at least to a similar
output. Therefore we constructed a framework with the aim to UNITE :

• Unify: Definition of the same input and output structure for each model.

• Name: Giving the same names for input and output parameters.

• Improve: Increasing the efficiency of the algorithms.

• T rade: Using specific methods to initialize the parameter of others.

• Extend: Extending the algorithms to more basis functions.

As some of the models are quite complex, their derivation is explained step by step, so that
the article is organized in the following way: Section 2 introduces functional data models.
Therefore, Section 2.1 gives a quick introduction to functional data leading to the functional
mixed model in Section 2.2. While no assumption regarding specific basis functions has been
made yet, Section 3 applies them to a spline and eigenbasis. To conduct the clustering task,
two techniques are introduced in Section 4. The expansion to a functional mixed mixture
model is investigated in Section 4.1. Alternatively, a distance measure based on the FMM is
introduced in Section 4.2. Section 5 gives an overview of deviations of the models existing in
the literature. Section 6 shows how the models could be modified and extended resulting in
the package funcy and Section 7 explains the usage of funcy. Finally, Section 8 closes with a
summary and an outlook.

2. Functional data for clustering

2.1. Introduction to functional data

Functional data is characterized by the following points:

• The original measurements exist on a continuous domain such as time or space.



Journal of Statistical Software 3

• Repeated measurements on the same individual exist.

• The measurements can be available on a regular equidistant, regular non-equidistant,
or on an irregular grid. Irregular or sparse means that the number and/or the location
of time measurements differs between the subjects.

• The underlying generating processes are smooth and autocorrelated.

With the assumptions from above, a measurement y at point tj can be expressed as:

y(tj) = s(tj) + ε(tj), (1)

where s(t) represents a smooth curve and ε(t) are i.i.d. random noise terms.

Basis expansion
With adequate basis functions x1(t), . . . , xp(t), s(t) can be approximated by:

s(t) =
p∑

k=1
ψkxk(t), (2)

so that in matrix notation, y evaluated on t1, . . . , tM , can be expressed as:

y = Xψ + ε. (3)

y and ε areM -dimensional vectors, ψ a p-dimensional vector andX is anM×p-dimensional
matrix. If the evaluation grid is sparse, time points can differ from one curve to the next
so that instead of t1, . . . , tM we have curve specific evaluations ti,i1 , . . . , ti,iM . Bold lower
case letters represent vectors while bold upper case letters stand for matrices in this and the
following sections.

Regularization
In the regular case, the N curves evaluated on M time points can be written as M × N -
dimensional matrix Y = (y1, . . . ,yN ) and the coefficients Ψ = (ψ1, . . . ,ψN ) can be estimated
simultaneously through the least squares approximation:

Ψ̂ = (X>X + pI)−1X>Y . (4)

with a ridge term p (Hoerl and Kennard 1970). The reconstruction of the curves follows from:

Ŷ = XΨ̂>. (5)

Any orthogonal basis can be used for this procedure. If the dataset is irregular, the coefficients
ψ̂ in (4) need to be calculated separately for each curve since X in (4) is evaluated on the
curve specific grid. For the reconstruction in (5), X can be evaluated on a different grid, e.g.,
the unique union of the time points of all curves, so that the dataset can be regularized in this
way. An alternative to the regularization by projection, is the interpolation of the data. For
a linear interpolation and two data points (tk, y(tk)), (tk+1, y(tk+1)), y(t) can be calculated
by

y(t) = y(tk)
tk+1 − t
tk+1 − tk

+ y(tk+1) t− tk
tk+1 − tk

, (6)
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on each interval (tk, tk+1) for k = 1, . . . ,M − 1.
If only few repeated and quite irregular spaced measurements are available per subject, the
regularization of the curves through (5) leads to poor results with respect to the similarity
to the original curves. Replacing (3) by a mixed effects model as explained in the following
section turned out to be the better technique.

2.2. Functional mixed models

Following Rice and Wu (2001) any functional mixed model can be written in the form of

y = Xβ +Zγ + ε, (7)

where X and Z are basis functions, β is a fixed effect, γ a random effect and ε are the
i.i.d. measurement errors with mean zero and constant variance Ξ. Furthermore E(γ) =
E(ε) = 0.
Robinson (1991) shows that if γ and ε are assumed to have variances Γσ2 and Ξσ2 with some
scalar σ, the multivariate normal distribution of γ and y can be expressed as(

γ
y

)
∼ N

((
0
0

)
,

(
Γ ΓZ>
ZΓ ZΓZ> + Ξ

)
σ2
)
, (8)

so that parameter vector γ conditioned on y has the following distribution:

(γ|y) ∼ N
(
ΓZ>(ZΓZ> + Ξ)−1y, (Γ− ΓZ>(ZΓZ> + Ξ)−1ZΓ)σ2

)
(9)

= N
(
(Z>Ξ−1Z + Γ−1)−1Z>Ξ−1y, (Z>Ξ−1Z + Γ−1)−1σ2

)
.

3. Applications to different basis functions

3.1. Application to a spline basis

Let yi be the ith realization of the total process Y = (y1, . . . ,yN ) evaluated on a possibly
irregular grid tij . If (7) is applied to a B-spline basis, then yi can be expressed as:

yi(tij ) =
p∑

k=1
β̄k b̄k(tij ) +

q∑
k=1

βikbk(tij ) + ε(tij ) ∀i ∈ 1 . . . N, j ∈ 1 . . . iM , (10)

E(yi(tij )) = µ(t) =
p∑

k=1
β̄k b̄k(tij ) ∀i ∈ 1 . . . N, j ∈ 1 . . . iM . (11)

β is the random effect with covariance Γ, B̄ the spline basis for the mean, B the basis for
a possibly different dimensional space of spline functions and ε are i.i.d. measurement errors
with mean zero and constant variance σ2. p and q are the dimension of the spaces.
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3.2. Application to an eigenbasis

Another basis with nice properties are functional principal components. The variation of the
data around the mean is explained by the first few components better than by any other
basis. After the Karhunen-Loève theorem, if y(t) is assumed to be a mean square continuous
stochastic process (lim

ε→0
E (y(t+ ε)− y(t))2 = 0) and y ∈ L2(T ), there exists an orthonormal

basis of eigenfunctions (principal components) K = (k1, k2, k3, . . . ) ∈ L2 such that each yi
can be approximated by the first p basis functions (Alexanderian 2013):

yi(tij ) = µ(tij ) +
p∑

k=1
κikkk(tij ) + ε(tij ) ∀i ∈ 1 . . . N, j ∈ 1 . . . iM . (12)

The following properties hold:

E(yi(t)) = µ(t) ∀i ∈ 1 . . . N,
G(s, t) = COV{y(s), y(t)},

〈G(·, t), kk(·)〉 = λkkk(t),
κk ∼ N (0, λk) and E(κk, κl) = 0.

〈., .〉 represents the inner product 〈f, g〉 :=
∫
T f(t)g(t) dt. ε are i.i.d. measurement errors with

mean zero and constant variance σ2. The coefficients κ are calculated by

κik = 〈yi − µ, kk〉. (13)

For sparse datasets, a vector of the pooled time points is created first and the mean and
covariance matrix are smoothed on these points. For the calculation of the coefficients and
the reconstruction of the curves, the eigenfunctions are reduced to the evaluations on the
curve specific grid. The procedure from smoothing the pooled mean up to the calculation of
the eigenbasis is demonstrated in Figure 1.
The coefficients are calculated by (13) through numeric integration. If there are many curves
for which only few measurements are available, calculating the expected values of the coeffi-
cients, as shown in the following section, is more robust.

3.3. Estimation of the parameters

Let γ be the coefficients of the basis functions (β in Section 3.1 and κ in Section 3.2). After
(9), the expected value of γ and its variance are given by:

E(γi|yi) = ΓZ>i Σ−1
Yi

(yi − µi), (14)
VAR(γi|yi) = Γ− ΓZ>i Σ−1

Yi
ZiΓ.

For Section 3.1, Γ in (14) is the covariance of the basis coefficients γ, and Zi of Equation 14
represents B evaluated on all available time points for curve i . The covariance matrix for yi,
Σyi := COV(yi(t), yi(s)) is given by Σyi = BiΓB>i + σ2Ii but σ remains to be estimated.
In Section 3.2 Γ = Λ so it is simply the diagonal matrix of the eigenvalues and Zi = K
evaluated on time points for curve i. Σyi = KiΛK>i + σ2Ii. After Chiou and Li (2007) and
Yao et al. (2005) the variance σ2 of the error terms ε can be estimated by σ̂2 = 2

T

∫ T
2

0 (V̂ (t)−
Ĉ(t, t))dt, where V̂ is a one-dimensional smoother of the variance and Ĉ is a two-dimensional
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Figure 1: Calculation of the K-L expansion. The upper plots show the smoothing of the
mean and the covariance matrix, the lower plots the calculation of the variance and the
eigenfunctions.

smoother of the covariance at time point t. The estimation in (14) substitutes the numerical
approximation of the integral (13). Yao et al. (2005) named their procedure PACE (principal
components analysis through conditional expectation).

4. The clustering procedure

4.1. Functional mixed mixture models

To define a clustering problem, we assume that each yi was generated by one of M different
processes with known probability distributions. This leads to the log-likelihood definition of
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a mixture model (Bilmes 1998):

log(L(Θ|Y )) = log
(
N∏
i=1

p(yi|Θ)
)

=
N∑
i=1

log

 M∑
j=1

αjp(yi|θj)

 . (15)

Θ represents the unknown parameter family θ = (β, γ, Ξ, Γ, σ) of model (7) and α =
(α1 . . . αM ). N is the number of observations, θj are the parameters of the jth generating
process and αj is the probability that yi is the outcome of process j. If the cluster membership
was known, (i.e., zi = k if curve i is in class k), the complete log-likelihood could be calculated:

log(L(Θ|Y ,Z)) =
N∑
i=1

log(αzipzi(yi|θzi)). (16)

Since this is not the case in unsupervised learning, the expectation of the complete log-
likelihood is built. With a current cluster configuration and estimation of the parameters
Θg−1, the expected log-likelihood with respect to Y and Θg−1 is given by:

E(log(L(Θ|Y ,Z)|Y ,Θg−1)) =
N∑
i=1

M∑
j=1

[log(αg−1
j ) + log(p(yi|θ

g−1
j ))]p(j|yi,Θg−1), (17)

where p(j|yi,Θg−1) denotes the posterior probability that observation yi is from cluster j
given the current parameter estimates Θg−1.
If θj is a random variable itself, the expected log-likelihood in (17) becomes:

N∑
i=1

M∑
j=1

[log(αg−1
j ) + log(p(yi|θ

g−1
j )) + log(p(θg−1

j ))]p(zi = j|yi,Θg−1). (18)

With an initial cluster configuration, the expectation-maximization (EM) algorithm consists
in iteratively maximizing (18) and calculating the parameters αg−1

j and θg−1
j until a conver-

gence criterion is met or the maximum iteration number g is reached. While the procedure
of the EM algorithm stays the same for all model-based algorithms, p(yi|θj) distinguishes
between the different mixture models.
In the case of (7) for example, Θ includes the random variable γ. For Ξ = I, equal Γ in all
classes, and in the hard classification case with p(j|yi,Θg−1) = zij , the complete log-likelihood
of (18) would be:

−
N∑
i=1

M∑
j=1

zij log(αj) +
N∑
i=1

M∑
j=1

zij(ni log σ2 + 1
σ2 ‖Y −Xβ −Zγ‖

2)+

N∑
i=1

(log ‖Γ‖+ γ>i Γ−1γi). (19)

4.2. Distance measure

An alternative clustering technique to the mixture model is, to define a distance measure for
the curves. The most common distance measure between continuous data is the one, induced
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by the L2 norm. If an orthogonal basis B in a Hilbert space exists, the L2 norm of y(t) can
be written as:

‖y(t)‖2 =
∑
b∈B
|〈y, b〉|2. (20)

With Parseval’s identity, the distance between two curves yi(t) and yj(t) on an interval T
becomes therefore:

D(yi(t), yj(t)) =
(∫

T
‖yi(t)− yj(t)‖2 dt

) 1
2

=

 ∞∑
k=−∞

|γik − γjk|2
 1

2

.

yi(t) and yj(t) might be available on an irregular or sparse grid only, so that the expected
distance between the curves conditioned on the available knowledge υi,υj can be defined by:

{E(D2(yi(t), yj(t))|υi,υj)}
1
2 = {E(

∞∑
k=−∞

(γik − γjk)2|υi,υj)}
1
2 (21)

= {
∞∑

k=−∞
[VAR(γik|υi) + VAR(γjk|υj) + (E(γik|υi)− E(γjk|υj))2]}

1
2 . (22)

If we assume that the data follows the mixed model in (7), the estimations in (9) can be used
for the calculation (22).

5. Existing models and algorithms
All of the following models are based on the FMM (7).

5.1. Functional mixed models and the EM algorithm

Bouveyron and Jacques (2011), James and Sugar (2003) and Jiang and Serban (2012) apply
a functional mixed model onto a p-dimensional spline basis B. For a curve belonging to class
k, the simplified model becomes:

yi = B(µk + ηi) + εi. (23)

Method "funHDDC"

Bouveyron and Jacques (2011) assume that

• η ∼ N (0,Γk),

• µk = Ukmk,

• Γk = UkAkU
>
k + Ξk, with Ak = diag(ak1, . . . , akdk

),

• εi ∼ N (0,Ξ).
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Furthermore Ξk is constructed in such way, that Q>k ΓkQk = diag(ak1, . . . , αkdk
, bk, . . . , bk).

Therefore the variance of each class k is modeled by ak1, . . . , akdk
(with dk representing the

dimension of class k) while the variance of the noise is represented by bk. Qk = [Uk,V k] is
an orthogonal matrix comprising two parts: Uk of size p × dk and V k of size p × (p − dk)
with U>k Uk = Idk

, V >k V k = Ip−dk
and U>k V k = 0.

Method "fitfclust"

In the model of James and Sugar (2003), the following assumptions are made:

• η ∼ N (0,Γ),

• µk = λ0 + Λαk,

• εi ∼ N (0, σ2I).

The first model is implemented in the R package funHDDC (Charles and Julien 2014). The
dimension of the spline spaces can differ between the classes and is optimized during the algo-
rithm. U and Q are orthogonal matrices resulting from a principal component analysis. The
covariance matrix is class specific and diagonalizable. The second model includes the curve
specific B-spline basis so that B in (23) is replaced by Bi. This allows sparse measurements
of the curves. The covariance matrix stays the same in each class but no specific structure
is imposed to it. Both models feature the reduction of the original spline space to a lower
space (dimension of µk). This allows a graphical interpretation for d ≤ 3. The parameters
including class affiliation are calculated by the EM algorithm. In the latter case, log(p(θj))
in (18) is maximized by setting Γ = 1

N

∑
E[γiγ>i |yi] in (19) and the estimation in Section 3.3

is used for the calculation.

Method "fscm"

Jiang and Serban (2012) bring spatial dependency into the game. In the original model
(23), εi are not independent any longer but follow a normal distribution with a covariance
depending on the local coordinates of yi. Additionally, p(j|yi,Θ) in (18) are not independent
any longer but depend on the neighborhood ∂i of the observation yi. Jiang and Serban (2012)
define therefore a random Markov field where p(zik = 1|z∂i) follows a Gibbs distribution. The
local dependency can be dissolved by a Karhunen-Loève expansion, so that (23) is divided
into a cluster specific temporal trend Bµk and a spatial trend Zηi:

Bµk +Zηi + εi. (24)

Thereby ηi represent the spatial random coefficients following a distribution N (0,Σs) and
Z are orthogonal basis functions retrieved from the Matérn covariance matrix of the local
coordinates of the curves.

5.2. Functional mixed models with a robust distance measure: "distclust"

The parameter estimations in Section 3.3 used as input for the truncated version of (22) lead
to the distance measure by Peng and Müller (2008):

{E(D2(yi(t), yj(t))|υi,υj)}
1
2 = tr(Γ− ΓZ>i Σ−1

yi
ZiΓ) + tr(Γ− ΓZ>j Σ−1

yj
ZjΓ)+

‖ΓZ>i (ZiΓZ>i + Ξ)−1(υi − µ) + ΓZ>j (ZjΓZ>j + Ξ)−1(υj − µ)‖22. (25)
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The original algorithm applies multidimensional scaling on this distance and clusters the
resulting independent variables by the k-means algorithm. Alternatively, the distance can
serve as immediate input of other clustering algorithms such as partitioning around medoids
or hierarchical clustering (Reynolds, Richards, de la Iglesia, and Rayward-Smith 2006).

5.3. Subspace projection: "iterSubspace"

The algorithm of Chiou and Li (2007) is the counterpart of the k-means algorithm for func-
tional data. Alternating, curves are assigned to classes and classes are calculated anew de-
pending on their assigned curves. Other than in k-means, the curves are not allocated to the
cluster with the closest centroid but each curve is projected into all eigenspaces k by:

y
(k)
i (tij) = µ(k)(tij) +

pk∑
j=1

φ
(k)
ij Φ(k)

j (tij) ∀i ∈ 1 . . . N, j ∈ 1 . . . iM , (26)

and assigned to the one according to k∗(y) = arg min
k∈{1,...,K}

D(y(t), y(k)(t)).

The method was originally implemented in MATLAB (The MathWorks Inc. 2014) and we
transferred it to R. It is designed for sparse measurements, but not based on the conditional
distance of (21).

6. The R package funcy
Not all of the described methods were available in form of executable code, and if so, they
were naturally implemented in different manners. Sometimes the algorithms were used to
introduce a new method but have their limits, e.g., when the user wants to try out other basis
functions and it is difficult to compare the different implementations, since each requires
different input parameters and input formats for the datasets. In the simplest case, the
model based implementations have many parameters in common, but only different names
for them. To overcome this problem, we created the R package funcy with the goal to UNITE.
The particular steps to achieve this goal are described in the following with small code chunks
for a better understanding. The detailed usage of funcy is explained in the next section.

6.1. Unify

The main function funcit()

In order to define the same input and output structures for the algorithms, wrapper functions
were built around each one. Method calls are therefore the same for each model by using the
function funcit() and specifying the desired method, e.g., method = "fitfclust". More
than one method can be used at a time by setting method to a vector of method names.
Parallel processing by setting parallel = TRUE is optional. The result is a list with class
‘funcyOutList‘, accessible by all kinds of generic functions such as summary(), calcTime()
or plot().
Method "funHDDC" can result in an error caused by infinite values in the eigenvalue decom-
position of the coefficient matrix Γk (see Section 5). In this case, we successively reduced the
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number of clusters by one in the wrapper function until calculation was possible. Method
"funclust" equally reduces the cluster number if the algorithm converged to a solution with
an empty cluster. Therefore the final cluster numbers are not necessarily equal between the
methods.
As an example, the genes dataset is clustered by the methods "fitfclust", "distclust"
and "fscm" with four classes.

R> library("funcy")
R> data("genes", package = "funcy")
R> dat <- genes$data
R> res <- funcit(data = dat, methods = c("fitfclust", "distclust", "fscm"),
+ k = 4)

Input formats

The input data formats for the original methods varied a lot. Especially when the dataset
is sparse, storage is not evident. funcit() allows two formats as input: A general format,
"Format1", that is applicable to regular and irregular or sparse datasets, and "Format2"
applicable to regular datasets only. In the first case, number and/or location of time points
can differ, while for regular datasets, they are the same. funcit() recognizes the format
and therefore the data regularity automatically. To switch back and forth between formats
the function formatFuncy() can be used. A third format, "Format3", was included into
formatFuncy(), consisting of a list of three matrices. One matrix Yin for the curves, one
Tin for time points and one isobs, a matrix of indices. The reason we included "Format3"
as well, is, because we found algorithms in the literature demanding for this particular input
format. The original genes dataset is saved in a matrix in "Format2" of dimension 44 × 77
(44 time measurements for 77 curves).

R> dim(dat)

[1] 44 77

It is converted to format "Format1", a long matrix consisting of three columns: curve ID,
curve evaluation and time points.

R> dat1 <- formatFuncy(dat, format = "Format1")
R> head(dat1, 6)

curveIndx yin tin
[1,] 1 -0.79346 1
[2,] 1 -0.72282 2
[3,] 1 -1.15070 3
[4,] 1 -1.25930 4
[5,] 1 -1.12930 5
[6,] 1 -1.82890 6
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6.2. Name

funcit() takes as input single standard parameters such as the dataset data and number
of clusters k. We categorized the models in Section 5 as model-based and non model-based.
Parameters, other than the standard ones (e.g., base type or dimension of the basis), that
are available for all methods, can be modified through the control class ‘funcyCtrl’. If
the clustering algorithm is model-based, ‘funcyCtrl’ is extended to ‘funcyCtrlMbc’, where
further parameters such as the convergence threshold eps for the EM algorithm, can be
specified. The control class is an optional input argument for funcit().

R> ctrl <- new("funcyCtrlMbc", baseType = "splines", dimBase = 3,
+ eps = 0.01)
R> res <- funcit(data = dat, methods = "fitfclust", k = 4,
+ funcyCtrl = ctrl)

All other method specific parameters (not standard and not in the control class) can be passed
as ... arguments to funcit(), as long as only one method is called. ‘funcyOutList’ is a list
of ‘funcyOut’ objects, one for each method. Similar as in the control class, common results for
all methods such as cluster assignment or calculation time are saved in a simple ‘funcyOut’
object. Method specific results, e.g., AIC for model-based methods are stored in extensions
to ‘funcyOut’. The dataset is saved in ‘funcyOutList’ by setting save.data to TRUE when
funcit() is invoked. Saving the data is necessary to use some of the plot functions.

6.3. Improve

Some of the original algorithms could be improved in terms of efficiency. Method "fitfclust"
is applicable to sparse datasets. Its original version required a list of three vectors consisting
of the curve ID, the time points and the measurements of all curves concatenated to vectors.
All calculation was furthermore based on this input format. But if the dataset is regular,
matrix storage is possible and matrix operations can be used instead. We re-implemented
all functions of method "fitfclust" for the regular case. As R is a vectorized language this
speeds up the calculation significantly (factor 20).
Chiou and Li (2007) used two for-loops in their algorithm "distclust" (see Section 5.3)
originally implemented in MATLAB. One for the curves and one for the subspace projection,
i.e., each curve is projected onto all subspaces and the distance is stored. Exchanging these
loops increases the system time since the subspace projection is, what makes the calculation
costly. For a regular dataset, the algorithm is then identical to the function kmPCA() in the
R package modelcf (Auder 2012).

6.4. Trade

In order to calculate the distance in Section 4.2, the parameters Γ and σ need to be estimated.
If the base type is an eigenbasis, estimation follows the procedure as explained in Section 3.3.
For base types other than the eigenbasis, we applied the EM algorithm of James and Sugar
(2003) for the functional mixture model, and set the class number to one. The double sum
in (15) reduces therefore to a single sum (α1 = 1, α2, . . . , αk = 0) and Γ and σ can be used
as input parameters for (25).
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6.5. Extend

Multiple base types

The estimation of the parameters in Section 3.3 is not restricted to a certain basis, so that
we could complete all implementations of the mixed models with new base types. We used
B-spline, exponential, Fourier, polynomial and power bases from the R package fda (Ramsay,
Wickham, Graves, and Hooker 2014). To implement the distance calculation in Section 4.2
for these base types, a singular value decomposition was applied to them, to orthogonalize
them.

Outsourcing and smoothing

For the calculation of the the scores of an eigenbasis, a smoothing technique as explained in
Section 3.2 needs to be applied to the mean and covariance matrix. Therefore, smoothing
parameters and a smoother have to be defined. Chiou and Li (2007) implement their own
smoothers sm1() and sm2() while Peng and Müller (2008) use a non-parametric regression
sm.regression() already implemented in the R package sm (Bowman and Azzalini 2014).
While sm.regression() is applied on the raw mean and covariance function in "distclust",
Chiou and Li (2007) calculate the average mean and average covariance matrix before apply-
ing their smoothers (differs only for repeated measurement). If the curves do not have many
common time points, the smoothing procedure can take very long (curves must be evaluated
on every unique point). Therefore the evaluation points should be reduced to a maximum
number. The decomposition of a stochastic process into its Karhunen-Loève expansion (see
Figure 1) was part of the original algorithms "distclust" and "iterSubspace" (Peng and
Müller 2008; Chiou and Li 2007) since both of them were based on an eigenbasis. We decided
to simplify and outsource this piece of code including the reduction of evaluation points,
so that each method can have access to it. On the other hand, by this, "distclust" and
"iterSubspace" are not restricted to an eigenbasis any longer. For the smoothing step, we
created a functional principal component control class ‘fpcCtrl’ including all necessary pa-
rameters for the K-L calculation such as smoothing technique, number of maximal evaluation
points, kernel width etc. Such as ‘funcyCtrl’, ‘fpcCtrl’ is an optional input argument for
funcit(). It is ignored if the base type is not set to "eigenbasis". As mentioned in Sec-
tion 3.3, the calculation of the coefficients by numerical integration (see (13)) leads to poor
results, if the dataset contains many observations with only few measurements. Therefore
the conditional estimation (see Section 3.3) is the better choice. We included the idea of
calculating the basis coefficients this way, so that the user can decide if they want to execute
the calculation by an integration or an estimation step. This option is again part of the
‘fpcControl’ class.

Regularization

We implemented regularization through basis projection, as introduced in Section 2.1. The
ridge term p in Equation 4 was set to 0.01 but any value would have been possible. For
interpolation, the R function approxfun was used. For evaluation outside the input point,
the points were extrapolated to the closest boundary point. The function regFuncy() per-
forms the regularization step with one of the two methods. Therefore method can be set to
"interpolate" or "project" (see Section 7 for an example of usage).
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Plotting

We provided different plots for the ‘funcyOutList’ objects which can be called by setting
the type in the function plot(). Method independent plot types are "all", "centers",
"shadow", "dist2centers". While the first two generate a multiple plot figure with one plot
for each method, the latter two refer to only one method which must be specified by select.
No specification selects the first method per default. Plot type "all" generates plots with
curves, cluster centers and the corresponding cluster labels. The clusters had been relabeled
according to the minimal L2 distance between their centers before, so that identical colors
correspond to similar clusters. Plot type "centers" limits the plots to their cluster centers.
Type "dist2centers" shows one plot of the curves for each cluster. The thickness of the lines
corresponds to the distance of the curves to their cluster centers. For the maximal distance,
the line width is close to 0 while for the minimal distance it is 1. Another plot type that
can be used is the "shadow" plot imported from package flexclust (Leisch 2006, 2010). The
shadow plot relates the distance from the curves to their closest and second closest cluster
center by a shadow value s(x). If s(x) is close to 0, the curve is very close to its cluster
center, if it is 1, the point is in the middle of its closest and second closest centers. Well
separated clusters are distinguished by many subjects with small shadow values s(x). Again,
the distance measure refers to the L2 distance. If the base type for the curve projection had
been set to an eigenbasis (see Section 7), the process of calculating the bases can be plotted.
Figure 1 for example was generated by setting the type to "fpc".
Cluster methods "fitfclust" and "fscm" provide additional plots. For method specific
plots, the plot function must be limited to the method by select = "fitfclust". Method
"fitfclust" provides confidence intervals for the clusters by setting type to "conf". Addi-
tionally discriminant functions can be plotted showing the time intervals where the highest
discrimination between the clusters occurs (James and Sugar 2003). Method "fscm" provides
the types "deviations", "locations" and "overview". The first one plots the location
of the points colored according to their spatial dependency. The darker the coloring of the
points the higher the dependency value. Type "locations" shows the original location of
the points and the configuration of the points after applying multidimensional scaling on the
the Matérn covariance matrix (see Section 5.1). The "overview" plot shows 4 plots. One
with the curve locations, one showing the clustered temporal trends, one including the overall
trend and finally the spatial dependency plot. Examples of using the method independent
and method dependent plot function are given below.

R> plot(res, type = "centers")
R> plot(res, select = "fitfclust", type = "conf")

Method Advantage Disadvantage
"fitfclust" High performance in run time

and cluster results
Predicted curves
Confidence Intervals

Same dimension for clusters

"distclust" Very fast for eigenbasis Same dimension for clusters
"iterSubspace" Varying dimensions for clusters Quite slow for irregular data

Table 1: Advantages vs. disadvantages of the clustering algorithms applicable to sparse data.
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Figure 2: Structural plot of modifications. Model specific modifications are explained in boxes
while modifications for all methods are explained in ellipses.

6.6. Summary

The ideas of UNITE are summarized in Figure 2. The graphic shows only the methods for
sparse measurements since those are the ones that we applied major modification to. The
advantages and disadvantages of each method are listed in Table 1.

7. Using funcy
We included seven clustering models into the package funcy. The first three ("fitfclust",
"distclust", "iterSubspace") are applicable to sparse datasets, while the others work ex-
clusively on regular data. The package could be an incentive to put new models for clustering
functional data into this framework, in order to clarify their methodology and to simplify their
usage. In the following we will show how funcy is used by applying functions to a simulation
example first and then to a real life dataset.

7.1. Simulated dataset

Simulating datasets

As a data example, we generated an irregular set of 100 curves evaluated on 3 to 10 time points
per curve that were derived from 5 data generating processes. A function to simulate such a
dataset is sampleFuncy(). It can generate up to 6 classes. Cluster centers are drawn randomly
from the functions in Table 2. For the generation of the curves, a normally distributed error
term was added with standard deviation sd which can be specified by the user.
The result is an object of class ‘sampleFuncy’. Data and clusters can be accessed by the
corresponding functions.

f1(x) = x2 f2(x) =
√
x f3(x) = sin(2πx) f4(x) = x3 f5(x) = −x2 f6(x) = x− 1

Table 2: Simulated cluster centers.



16 funcy: Functional Clustering Algorithms in R

R> set.seed(2705)
R> ds <- sampleFuncy(obsNr = 100, timeNrMin = 3, timeNrMax = 10, k = 5,
+ sd = 0.4, reg = FALSE)
R> dat <- Data(ds)
R> cls <- Cluster(ds)

Clustering the data
The dataset is now clustered by all methods usable for sparse datasets and a summary of the
results is printed. summary() is a print method to show the cluster proportions, Rand indices
(Hubert and Arabie 1985) and calculation times for the different models. If true cluster
membership was given as input for funcit(), the diagonal in the Rand indices matrix shows
the performance of the methods. Otherwise all diagonal elements are NAs. Each non-diagonal
entry indicates the similarity between the methods.
In our example, method "fitfclust" performs best on this dataset since its value on the
diagonal is the highest.

R> res1 <- funcit(data = dat, methods = c("fitfclust", "distclust",
+ "iterSubspace"), seed = 2804, clusters = cls, k = 5, save.data = TRUE,
+ parallel = TRUE)
R> summary(res1)

'funcyOutList' object with called algorithm(s):

fitfclust distclust iterSubspace

call:
funcit(data = dat, k = 5, methods = c("fitfclust", "distclust",

"iterSubspace"), seed = 2804, clusters = cls, parallel = TRUE,
save.data = TRUE)

Summary of the Cluster Proportions:
V1 V2 V3 V4 V5

fitfclust 0.1956 0.2197 0.3027 0.1615 0.1205
distclust 0.1900 0.1100 0.2000 0.3000 0.2000
iterSubspace 0.2100 0.1900 0.2700 0.1400 0.1900

Summary of the Rand Indices:
fitfclust distclust iterSubspace

fitfclust 0.5372 0.6299 0.4141
distclust 0.6299 0.4502 0.4972
iterSubspace 0.4141 0.4972 0.3357

Summary of the Calculation Time:
user.self sys.self elapsed user.child sys.child

fitfclust 2.404 0.192 2.657 0.024 0.004
distclust 4.228 0.108 4.360 0.000 0.000
iterSubspace 0.776 0.056 0.871 0.000 0.000
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Figure 3: Evaluation grid generated from irregular points by the function makeCommonTime().

Regularization
The dataset can be regularized by using the function regFuncy(). We use the method
"interpolate". regFuncy() implements a process where an evaluation grid is calculated
based on the dataset. To see an example for such a grid we can use the makeCommonTime()
function (Figure 3).

R> set.seed(2705)
R> makeCommonTime(dat, timeNr = 10, plot = TRUE)

[1] 0.06139613 0.15752351 0.24188641 0.32589588 0.39787798 0.48328109
[7] 0.60770791 0.72763618 0.82327586 0.95029109

For the regular dataset, further clustering algorithms become available: "fscm", "funclust"
and "funHDDC". To use the latter two, the R packages Funclustering (Soueidatt 2014) and
funHDDC (Charles and Julien 2014) must be installed first. We regularize the data and
cluster the new dataset with all available methods. A plot of the clustered data is shown in
Figure 4. Note that the class number was reduced for methods "funclust" and "funHDDC"
in this example (see Section 6.1).

R> datReg <- regFuncy(dat, method = "interpolate", plot = FALSE)
R> res2 <- funcit(data = datReg$data, regTime = datReg$time, methods = "ALL",
+ seed = 2805, clusters = cls, k = 5, save.data = TRUE, parallel = TRUE)
R> plot(res2, legendPlace = "top")

Other base types
The default base type is a B-spline basis. Let us now use a Fourier basis with 7 basis functions.
Therefore a ‘funcyCtrl’ object is defined and the original dataset is clustered with method
"fitfclust".

R> ctrl <- new("funcyCtrl", baseType = "fourier", dimBase = 7)
R> res3 <- funcit(data = dat, methods = "fitfclust", seed = 2806,
+ clusters = cls, k = 5, funcyCtrl = ctrl)
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Figure 4: Simulated data with 5 cluster centers, clustered by all available methods from funcy
with an initial class number of 5.

Alternatively we can use an eigenbasis and specify smoothing parameters for the calculation
procedure. The resulting center functions for both base types are shown in Figure 5.

R> ctrl@baseType <- "eigenbasis"
R> fpcCtrl <- new("fpcCtrl", h1Dim = 0.01, coeffsCalc = "estimate")
R> res4 <- funcit(data = dat, regTime = datReg$time, methods = "fitfclust",
+ seed = 2807, k = 5, clusters = cls, funcyCtrl = ctrl, fpcCtrl = fpcCtrl)
R> plot(res3, type = "centers")
R> plot(res4, type = "centers")

If we would like to study the distances of the curves to their centers we can take a look at the
plot type "dist2centers" . Each cluster is plotted separately. Thick lines mean that curves
lie close to the centers while thinner lines indicate, that they are further away (see Figure 6).

R> plot(res4, type = "dist2centers")

7.2. Real life dataset
As an example for a real life dataset we clustered the irregular dataset bones with the available
methods for sparse data and plotted the results. The clustered data is shown in Figure 7.

R> data("bones", package = "funcy")
R> dat <- bones$data
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Figure 5: Cluster centers for simulated data, clustered by "fitfclust" with a fourier and
eigenbasis.
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Figure 6: Separate plots for each cluster with line width corresponding to L2 distance to the
corresponding cluster center.

R> res5 <- funcit(data = dat, methods = 1:3, seed = 28, k = 2,
+ parallel = TRUE)
R> plot(res5)

To investigate the distances from the curves to their centers in this example, an alternative
to the plot type "dist2centers" is used – the "shadow" plot (see Figure 8). We see, that
"fitfclust" separates the curves the best. As a last example we want to use the spatial
cluster algorithm "fscm" and apply it to the dataset lowflow. The dataset consists of 82
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gauges in Upper Austria where stream flow minima were measured over 33 winters (1976–
2008). For the lowflow data we have a data and a location matrix where the coordinates of
the measuring points are stored.

R> data("lowflow", package = "funcy")

We choose the algorithm "fscm" since it is applicable to spatial dependent data. As spatial
input parameter we need to pass the location matrix.

R> res6 <- funcit(data = lowflow$data, location = lowflow$location,
+ methods = "fscm", seed = 2809, k = 5)

Once we have clustered the data, we can plot the result with the method-specific plot-type
"overview". We get a plot of the location colored according to their clusters, the separate
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Figure 7: The 2 clusters of the bones data with center curves clustered by methods
"fitfclust", "distclust" and "iterSubspace".
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Figure 8: Shadow plots for the clustered bones data with methods "fitfclust",
"distclust" and "iterSubspace". The first plot separates the curves the best since shadow
values are close to zero for most points and close to 1 for only few.



Journal of Statistical Software 21

●
●

● ●

●

●
●

●

●

●

●
● ●

●●●
●

●

● ●

●
●

●

●
●● ● ●

●●

● ● ●

●●

● ●

●
●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

● ●

400000 450000 500000

42
00

00
46

00
00

50
00

00
54

00
00

location[, 1]

Cluster location

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
1.

0

x

Temporal cluster trends

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5

Temp + Overall

●
●

● ●

●

●
●

●

●

●

●
● ●

●●●
●

●

● ●

●
●

●

●
●● ● ●

●●

● ● ●

●●

● ●

●
●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

● ●

400000 450000 500000

42
00

00
46

00
00

50
00

00
54

00
00

y

Spatial dependency

1
0.75
0.5

0.25
0

o
o
o
o
o
o

overall trend
cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

Figure 9: The type = "overview" plot of the clustered lowflow data with method "fscm".
From left to right, curve locations with cluster assignments, temporal cluster trends, overall
plus temporal cluster trends and the spatial dependency plot.

temporal and overall cluster trends, the final cluster centers and a spatial plot (see Figure 9).
The spatial cluster plot indicates where spatial dependency is low and high, ranging from
yellow to blue.

R> plot(res6, type = "overview")

8. Summary
As in the multidimensional case, there is no single, best method for functional data. Dozens
of models exist in the literature and it is neither easy to find the appropriate one for a specific
dataset, nor to use it. Nevertheless, a structure can be imposed to them because most methods
are based on the projection of the curves to certain basis functions and building a functional
mixed model (FMM). The article showed how existing algorithms in the literature, that seem
very different at first sight, actually do quite similar things. Therefore they were broken down
to their core part, the functional mixed model. With this knowledge in mind, the methods
could be modified, extended and combined. This led to a greater efficiency and flexibility
in the clustering procedure. The R package funcy was built with the goal to UNITE all of
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the introduced models and is available on the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=funcy. For example, each algorithm was put
inside a wrapper function so that all control parameters for the FMM have the same names.
To account for irregular datasets, two different formats can be used as input for the models
and they were extended to different basis functions. To compare the algorithms, generic
functions such as calcTime() for the calculation time or randIndex() showing the Rand
indices between all pairs of methods, were implemented. We hope that this work leads to
a greater flexibility, comparability and finally to more robust results, since the user is not
restricted to one solution any longer.

9. Future work

Model selection

The package funcy does not contain a method to find the best number of clusters. However,
it could help to find a good one by trying out different cluster numbers for more than one
algorithm and using the one, where they show the most agreement. Nevertheless similar
methods might lead to high Rand indices although the cluster number was set to a false num-
ber. The model-based algorithms "fitfclust", "funclust", "funHDDC" and "waveclust"
provide the AIC and BIC which could be used for model selection. In our experiences they
were not very reliable since they led to a wrong number of clusters in many cases. A structural
study evaluating indicators such as the Rand indices between the methods or the AICs for
different cluster numbers could be helpful. Finding the right number of clusters remains an
open question up to now.

PACE

As mentioned in Section 5.3, the principal components analysis through conditional expecta-
tion (PACE) was originally implemented in MATLAB. We had built an interface in form of the
R package funcyOctave so that we could use it for the regularization of sparse datasets. How-
ever funcyOctave depends on RcppOctave which has meanwhile been removed from CRAN.
Implementing the complete code of PACE in R would be useful and lead to the platform-
independent integration into funcy. We leave this for future work.
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