
JSS Journal of Statistical Software
July 2018, Volume 85, Issue 11. doi: 10.18637/jss.v085.i11

NeuralNetTools: Visualization and Analysis Tools for
Neural Networks

Marcus W. Beck
US Environmental Protection Agency

Abstract

Supervised neural networks have been applied as a machine learning technique to
identify and predict emergent patterns among multiple variables. A common criticism of
these methods is the inability to characterize relationships among variables from a fitted
model. Although several techniques have been proposed to “illuminate the black box”,
they have not been made available in an open-source programming environment. This
article describes the NeuralNetTools package that can be used for the interpretation of
supervised neural network models created in R. Functions in the package can be used
to visualize a model using a neural network interpretation diagram, evaluate variable
importance by disaggregating the model weights, and perform a sensitivity analysis of the
response variables to changes in the input variables. Methods are provided for objects
from many of the common neural network packages in R, including caret, neuralnet, nnet,
and RSNNS. The article provides a brief overview of the theoretical foundation of neural
networks, a description of the package structure and functions, and an applied example
to provide a context for model development with NeuralNetTools. Overall, the package
provides a toolset for neural networks that complements existing quantitative techniques
for data-intensive exploration.
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1. Introduction

A common objective of data-intensive analysis is the synthesis of unstructured information
to identify patterns or trends “born from the data” (Bell, Hey, and Szalay 2009; Kelling,
Hochachka, Fink, Riedewald, Caruana, Ballard, and Hooker 2009; Michener and Jones 2012).
Analysis is primarily focused on data exploration and prediction as compared to hypothesis-
testing using domain-specific methods for scientific exploration (Kell and Oliver 2003). De-
mand for quantitative toolsets to address challenges in data-rich environments has increased

https://doi.org/10.18637/jss.v085.i11


2 NeuralNetTools: Visualization and Analysis Tools for Neural Networks

drastically with the advancement of techniques for rapid acquisition of data. Fields of research
characterized by high-throughput data (e.g., bioinformatics; Saeys, Inza, and Larrañaga 2007)
have a strong foundation in computationally-intensive methods of analysis, whereas disciplines
that have historically been limited by data quantity (e.g., field ecology; Swanson, Kosmala,
Lintott, Simpson, Smith, and Packer 2015) have also realized the importance of quantita-
tive toolsets given the development of novel techniques to acquire information. Quantitative
methods that facilitate inductive reasoning can serve a complementary role to conventional,
hypothesis-driven approaches to scientific discovery (Kell and Oliver 2003).
Statistical methods that have been used to support data exploration are numerous (Jain, Duin,
and Mao 2000; Recknagel 2006; Zuur, Ieno, and Elphick 2010). A common theme among data
intensive methods is the use of machine-learning algorithms where the primary objective is to
identify emergent patterns with minimal human intervention. Neural networks, in particular,
are designed to mimic the neuronal structure of the human brain by “learning” inherent data
structures through adaptive algorithms (Rumelhart, Hinton, and Williams 1986; Ripley 1996).
Although the conceptual model was introduced several decades ago (McCulloch and Pitts
1943), neural networks have had a central role in emerging fields focused on data exploration.
The most popular form of neural network is the feed-forward multilayer perceptron (MLP)
trained using the backpropagation algorithm (Rumelhart et al. 1986). This model is typically
used to predict the response of one or more variables given one to many explanatory variables.
The hallmark feature of the MLP is the characterization of relationships using an arbitrary
number of parameters (i.e., the hidden layer) that are chosen through iterative training with
the backpropagation algorithm. Conceptually, the MLP is a hyper-parameterized non-linear
model that can fit a smooth function to any dataset with minimal residual error (Hornik
1991).
An arbitrarily large number of parameters to fit a neural network provides obvious predictive
advantages, but complicates the extraction of model information. Diagnostic information such
as variable importance or model sensitivity are necessary aspects of exploratory data analysis
that are not easily obtained from a neural network. As such, a common criticism is that neural
networks are “black boxes” that offer minimal insight into relationships among variables (e.g.,
Paruelo and Tomasel 1997). Olden and Jackson (2002) provide a rebuttal to this concern by
describing methods to extract information about variable relationships from neural networks.
Many of these methods were previously described but not commonly used. For example,
Olden and Jackson (2002) describe the neural interpretation diagram (NID) for plotting
(Özesmi and Özesmi 1999), the Garson algorithm for variable importance (Garson 1991),
and the profile method for sensitivity analysis (Lek, Delacoste, Baran, Dimopoulos, Lauga,
and Aulagnier 1996). These quantitative tools “illuminate the black box” by disaggregating
the network parameters to characterize relationships between variables that are described by
the model. Although MLP neural networks were developed for prediction, methods described
in Olden and Jackson (2002) leverage these models to describe data signals. Increasing the
accessibility of these diagnostic tools will have value for exploratory data analysis and may
also inform causal inference.
This article describes the NeuralNetTools package (Beck 2018) for R (R Core Team 2018)
that was developed to better understand information obtained from the MLP neural network.
Functions provided by the package are those described in Olden and Jackson (2002) but have
not been previously available in an open-source programming environment. The reach of
the package is extensive in that generic functions were developed for model objects from the
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most popular neural network packages available in R. The objectives of this article are to 1)
provide an overview of the statistical foundation of the MLP network, 2) describe the theory
and application of the main functions in the NeuralNetTools package, and 3) provide an
applied example using neural networks and NeuralNetTools in data exploration. The current
released package version is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=NeuralNetTools, whereas the development version
is maintained as a GitHub repository.

2. Theoretical foundation and existing R packages
The typical MLP network is composed of multiple layers that define the transfer of information
between input and response layers. Information travels in one direction where a set of values
for variables in the input layer propagates through one or more hidden layers to the final
layer of the response variables. Hidden layers between the input and response layers are key
components of a neural network that mediate the transfer of information. Just as the input
and response layers are composed of variables or nodes, each hidden layer is composed of
nodes with weighted connections that define the strength of information flow between layers.
Bias layers connected to hidden and response layers may also be used that are analogous to
intercept terms in a standard regression model.
Training a neural network model requires identifying the optimal weights that define the
connections between the model layers. The optimal weights are those that minimize prediction
error for a test dataset that is independent of the training dataset. Training is commonly
achieved using the backpropagation algorithm described in Rumelhart et al. (1986). This
algorithm identifies the optimal weighting scheme through an iterative process where weights
are gradually changed through a forward- and backward-propagation process (Rumelhart
et al. 1986; Lek and Guégan 2000). The algorithm begins by assigning an arbitrary weighting
scheme to the connections in the network, followed by estimating the output in the response
variable through the forward-propagation of information through the network, and finally
calculating the difference between the predicted and actual value of the response. The weights
are then changed through a backpropagation step that begins by changing weights in the
output layer and then the remaining hidden layers. The process is repeated until the chosen
error function is minimized, as in standard model-fitting techniques for regression (Cheng
and Titterington 1994). A fitted MLP neural network can be represented as (Bishop 1995;
Venables and Ripley 2002):

yk = fo

(∑
h

whkfh

(∑
i

wihxi

))
, (1)

where the estimated value of the response variable yk is a sum of products between the
respective weights w for i input variables x and h hidden nodes, mediated by the activation
functions fh and fo for each hidden and output node.
Methods in NeuralNetTools were written for several R packages that can be used to create
MLP neural networks: neuralnet (Fritsch and Guenther 2016), nnet (Venables and Ripley
2002), and RSNNS (Bergmeir and Benítez 2012). Limited methods were also developed
for neural network objects created with the train function from the caret package (Kuhn
2008). Additional R packages that can create MLP neural networks include AMORE that
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implements the “TAO-robust backpropagation algorithm” for model fitting (Castejón Limas,
Ordieres Meré, González Marcos, de Pisón Ascacibar, Pernía Espinoza, Alba Elías, and Perez
Ramos 2014), FCNN4R that provides an R interface to the FCNN C++ library (Klima
2016), monmlp for networks with partial monotonicity constraints (Cannon 2017), and qrnn
for quantile regression neural networks (Cannon 2011). At the time of writing, the CRAN
download logs (Csardi 2015) showed that the R packages with methods in NeuralNetTools
included 95% of all downloads for the available MLP packages, with nnet accounting for
over 78%. As such, methods have not been included in NeuralNetTools for the remaining
packages, although further development of NeuralNetTools could include additional methods
based on popularity. Methods for each function are currently available for ‘mlp’ (RSNNS),
‘nn’ (neuralnet), ‘nnet’ (nnet), and ‘train’ (caret; only if the object also inherits from the
‘nnet’ class) objects. Additional default methods or methods for class ‘numeric’ are available
for some of the generic functions.

3. Package structure
The stable release of NeuralNetTools can be installed from CRAN and loaded as follows:

R> install.packages("NeuralNetTools")
R> library("NeuralNetTools")

NeuralNetTools includes four main functions that were developed following similar techniques
in Olden and Jackson (2002) and references therein. The functions include plotnet to plot
a neural network interpretation diagram, garson and olden to evaluate variable importance,
and lekprofile for a sensitivity analysis of neural network response to input variables. Most
of the functions require the extraction of model weights in a common format for the neural
network object classes in R. The neuralweights function can be used to retrieve model
weights for any of the model classes described above. A two-element list is returned with
the first element describing the structure of the network (number of nodes in the input,
hidden, and output layers) and the second element as a named list of model weights. The
function is used internally within the main functions but may also be useful for comparing
networks of different classes.
A common approach for data pre-processing is to normalize the input variables and to stan-
dardize the response variables (Lek and Guégan 2000; Olden and Jackson 2002). A sample
dataset that follows this format is included with NeuralNetTools. The neuraldat dataset is
a simple data.frame with 2000 rows of observations and five columns for two response vari-
ables (Y1 and Y2) and three input variables (X1, X2, and X3). The input variables are random
observations from a standard normal distribution and the response variables are linear com-
binations of the input variables with additional random components. The response variables
are also scaled from zero to one. Variables in additional datasets can be pre-processed to this
common format using the scale function from base to center and scale input variables (i.e.,
z-scores) and the rescale function from scales to scale response variables from zero to one.
The examples below use three models created from the neuraldat dataset and include ‘mlp’
(RSNNS), ‘nn’ (RSNNS), and ‘nnet’ (nnet) objects.

R> set.seed(123)
R> library("RSNNS")
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Figure 1: Examples from the plotnet function showing neural networks as a standard graphic
(1a) and using the neural interpretation diagram (1b). Labels outside of the nodes represent
variable names and labels within the nodes indicate the layer and node (I: input, H: hidden,
O: output, B: bias).

R> x <- neuraldat[, c("X1", "X2", "X3")]
R> y <- neuraldat[, "Y1"]
R> mod1 <- mlp(x, y, size = 5)
R> library("neuralnet")
R> mod2 <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)
R> library("nnet")
R> mod3 <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

3.1. Visualizing neural networks

Existing plot functions in R to view neural networks are minimal. Such tools have practical
use for visualizing network architecture and connections between layers that mediate variable
importance. To our knowledge, only the neuralnet and FCNN4R packages provide plotting
methods for MLP networks in R. Although useful for viewing the basic structure, the output
is minimal and does not include extensive options for customization.
The plotnet function in NeuralNetTools plots a neural interpretation diagram (NID; Özesmi
and Özesmi 1999) and includes several options to customize aesthetics. A NID is a modifica-
tion of the standard conceptual illustration of the MLP network that changes the thickness
and color of the weight connections based on magnitude and sign, respectively. Positive
weights between layers are shown as black lines and negative weights as gray lines. Line
thickness is proportional to the absolute magnitude of each weight (Figure 1).
A primary and skip layer network can also be plotted for ‘nnet’ models with a skip layer
connection (Figure 2). Models with skip layers include additional connections from the input
to output layers that bypass the hidden layer (Ripley 1996). The default behavior of plotnet
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Figure 2: Examples from the plotnet function showing a neural network with a separate skip
layer between the input and output layers. The skip layer (2a) and primary neural network
(2b) can be viewed separately with plotnet by using skip = TRUE or skip = FALSE.

is to plot the primary network, whereas the skip layer can be viewed separately with skip =
TRUE. If nid = TRUE, the line widths for both the primary and skip layer plots are relative
to all weights. Plotting a network with only a skip layer (i.e., no hidden layer, size = 0 in
nnet) will include bias connections to the output layer, whereas these are included only in
the primary plot if size is greater than zero.
The RSNNS package provides algorithms to prune connections or nodes in a neural network
(Bergmeir and Benítez 2012). This approach can remove connection weights between layers
or input nodes that do not contribute to the predictive performance of the network. In ad-
dition to visualizing connections in the network that are not important, connections that are
pruned can be removed in successive model fitting. This reduces the number of free param-
eters (weights) that are estimated by the model optimization algorithm, increasing the like-
lihood of convergence to an estimable numeric solution for the remaining connection weights
that minimizes prediction error (i.e., model identifiability; Ellenius and Groth 2000). Algo-
rithms inRSNNS for weight pruning include magnitude-based pruning, optimal brain damage,
and optimal brain surgeon, whereas algorithms for node pruning include skeletonization and
the non-contributing units method (Zell, Mamier, Vogt, Mache, Hübner, Döring, Herrmann,
Soyez, Schmalzl, Sommer, Hatzigeorgiou, Posselt, Schreiner, Kett, Clemente, Wieland, and
Gatter 1998). The plotnet function can plot a pruned neural network, with options to omit
or display the pruned connections (Figure 3).

R> pruneFuncParams <- list(max_pr_error_increase = 10.0,
+ pr_accepted_error = 1.0, no_of_pr_retrain_cycles = 1000,
+ min_error_to_stop = 0.01, init_matrix_value = 1e-6,
+ input_pruning = TRUE, hidden_pruning = TRUE)
R> mod <- mlp(x, y, size = 5, pruneFunc = "OptimalBrainSurgeon",
+ pruneFuncParams = pruneFuncParams)
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Figure 3: A pruned neural network from RSNNS (Bergmeir and Benítez 2012) using the “op-
timal brain surgeon” algorithm described in Zell et al. (1998). The default plotting behavior
of plotnet is to omit pruned connections (3a), whereas they can be viewed as dashed lines
by including the prune_col argument (3b).

R> plotnet(mod, rel_rsc = c(3, 8))
R> plotnet(mod, prune_col = "lightblue", rel_rsc = c(3, 8))

Note that the pruned network obtained with RSNNS and thus this plot might vary depending
on the platform used.

3.2. Evaluating variable importance

The primary benefit of visualizing a NID with plotnet is the ability to evaluate network
architecture and the variation in connections between the layers. Although useful as a general
tool, the NID can be difficult to interpret given the amount of weighted connections in most
networks. Alternative methods to quantitatively describe a neural network deconstruct the
model weights to determine variable importance, whereas similar information can only be
qualitatively inferred from plotnet. Two algorithms for evaluating variable importance are
available in NeuralNetTools: Garson’s algorithm for relative importance (Garson 1991; Goh
1995) and Olden’s connection weights algorithm (Olden, Joy, and Death 2004).
Garson’s algorithm was originally described by Garson (1991) and further modified by Goh
(1995). The garson function is an implementation of the method described in the appendix of
Goh (1995) that identifies the relative importance of each variable as an absolute magnitude.
For each input node, all weights connecting an input through the hidden layer to the response
variable are identified to return a list of all weights specific to each input variable. Summed
products of the connections for each input node are then scaled relative to all other inputs. A
value for each input node indicates relative importance as the absolute magnitude from zero
to one. The method is limited in that the direction of the response cannot be determined and
only neural networks with one hidden layer and one output node can be evaluated.
The olden function is a more flexible approach to evaluate variable importance using the
connection weights algorithm (Olden et al. 2004). This method calculates importance as
the summed product of the raw input-hidden and hidden-output connection weights between
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each input and output node. An advantage is the relative contributions of each connection
weight are maintained in both magnitude and sign. For example, connection weights that
change sign (e.g., positive to negative) between the input-hidden to hidden-output layers
would have a canceling effect, whereas garson may provide different results based on the
absolute magnitude. An additional advantage is that the olden function can evaluate neural
networks with multiple hidden layers and response variables. The importance values assigned
to each variable are also in units based on the summed product of the connection weights,
whereas garson returns importance scaled from 0 to 1.
Both functions have similar implementations and require only a model object as input. The
default output is a ggplot2 bar plot (i.e., geom_bar; Wickham 2009) that shows the relative
importance of each input variable in the model (Figure 4). The plot aesthetics are based on
internal code that can be changed using conventional syntax for ggplot2 applied to the output
object. The importance values can also be returned as a data.frame if bar_plot = FALSE.
Variable importance shown in Figure 4 is estimated for each model using:

R> garson(mod1)
R> olden(mod1)
R> garson(mod2)
R> olden(mod2)
R> garson(mod3)
R> olden(mod3)

3.3. Sensitivity analysis

An alternative approach to evaluate variable relationships in a neural network is the Lek
profile method (Lek et al. 1996; Gevrey, Dimopoulos, and Lek 2003). The profile method
differs fundamentally from the variable importance algorithms by evaluating the behavior of
response variables across different values of the input variables. The method is generic and
can be extended to any statistical model in R with a predict method. However, it is one of
few methods used to evaluate sensitivity in neural networks.
The lekprofile function evaluates the effects of input variables by returning a plot of model
predictions across the range of values for each variable. The remaining explanatory variables
are held constant when evaluating the effects of each input variable. The lekprofile function
provides two options for setting constant values of unevaluated explanatory variables. The
first option follows the original profile method by holding unevaluated variables at different
quantiles (e.g., minimum, 20th percentile, maximum; Figures 5a and 6a). This is implemented
by creating a matrix where the number of rows is the number of observations in the original
dataset and the number of columns is the number of explanatory variables. All explanatory
variables are held constant (e.g., at the median) while the variable of interest is sequenced
from its minimum to maximum. This matrix is then used to predict values of the response
variable from a fitted model object. This is repeated for each explanatory variable to obtain
all response curves. Constant values are set in lekprofile by passing one or more values
in the range 0–1 to the group_vals argument. The default holds variables at the minimum,
20th, 40th, 60th, 80th, and maximum percentiles (i.e., group_vals = c(0, 0.2, 0.4, 0.6,
0.8, 1)).
A second implementation of lekprofile is to group the unevaluated explanatory variables
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Figure 4: Variable importance for three models using Garson’s algorithm for relative im-
portance (garson, Figures 4a, 4c and 4e; Garson 1991; Goh 1995) and Olden’s connection
weights algorithm (olden, Figures 4b, 4d and 4f; Olden et al. 2004). Garson’s algorithm
shows importance as absolute values from 0–1, whereas Olden’s algorithm preserves sign and
magnitude. Importance values for Olden’s algorithm are from the summed product of model
weights and are not rescaled.

by natural groupings defined by the data. Covariance among predictors may present unlikely
scenarios if all unevaluated variables are held at the same level (e.g., high values for one
variable may be unlikely with high values for a second variable). The second option holds
unevaluated variables at means defined by natural clusters in the data (Figures 5b and 6b).
Clusters are identified using k-means clustering (kmeans from the base package stats; Hartigan
and Wong 1979) of the input variables if the argument passed to group_vals is an integer
greater than one. The centers (means) of the clusters are then used as constants for the
unevaluated variables. Beck, Wilson, Vondracek, and Hatch (2014) provide an example of
the clustering method for lekprofile by evaluating response of a lake health index to different
explanatory variables. Lake clusters were identified given covariance among variables, such
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Figure 5: Sensitivity analysis of a neural network using the Lek profile method to evaluate
the effects of explanatory variables. Figure 5a groups unevaluated explanatory variables at
quantiles (minimum, 20th, 40th, 60th, 80th, and maximum percentiles) and Figure 5b groups
by cluster means (six groups). Values at which explanatory variables are held constant for
each group are shown in Figures 6a and 6b.

that holding explanatory variables at values defined by clusters created more interpretable
response curves. Both methods return similar plots, with additional options to visualize the
groupings for unevaluated explanatory variables (Figure 6). For the latter case, group_show
= TRUE will return a stacked bar plot for each group with heights within each bar proportional
to the constant values. Sensitivity profiles were created using the standard approach based
on quantiles and using the alternative clustering method (Figure 5), including bar plots of
the relative values for unevaluated explanatory variables (Figure 6).

R> lekprofile(mod3)
R> lekprofile(mod3, group_show = TRUE)
R> lekprofile(mod3, group_vals = 6)
R> lekprofile(mod3, group_vals = 6, group_show = TRUE)

4. Applied example
Although NeuralnetTools provides several methods to extract information from a fitted neural
network, it does not provide explicit guidance for developing the initial model. A potentially
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Figure 6: Bar plots for values of unevaluated explanatory variables in each group in Figures 5a
and 5b. Figure 6a shows default quantile groupings set at the minimum, 20th, 40th, 60th,
80th, and maximum percentiles. For example, variables are held at negative values for group 1
(i.e., stacked bars with negative heights) for the minimum value, whereas group 6 holds
variables at their maximum (largest positive heights). Figure 6b shows the cluster centers for
each variable in each group. Groups in Figure 6b are random because the input variables are
from a standard normal distribution.

more challenging aspect of using MLP neural networks is understanding the effects of network
architecture on model performance, appropriate use of training and validation datasets, and
implications for the bias-variance tradeoff with model over- or under-fitting (Maier and Dandy
2000). A detailed discussion of these issues is beyond the scope of this paper, although an
example application is presented below to emphasize the importance of these considerations.
The models presented above, including the neuraldat dataset, are contrived examples to
illustrate use of the NeuralNetTools package and they do not demonstrate a comprehensive
or practical application of model development. In general, the following should be considered
during initial development (Ripley 1996; Lek and Guégan 2000; Maier and Dandy 2000):

• Initial data pre-processing to normalize inputs, standardize response, and assess influ-
ence of outliers.

• Network architecture including number of hidden layers, number of nodes in each hidden
layer, inclusion of bias or skip layers, and pruning weights or inputs.

• Separating data into training and test datasets, e.g., 2:1, 3:1, leave-one-out, etc.
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• Initial starting weights for the backpropagation algorithm.

• Criteria for stopping model training, e.g., error convergence tolerance, maximum num-
ber of iterations, minimum error on test dataset, etc.

A dataset from nycflights13 (Wickham 2017) is used to demonstrate (1) the use of the func-
tions in NeuralNetTools to gain additional insight into relationships among variables, and (2)
the effects of training conditions on model conclusions. This dataset provides information on
all flights departing New York City (i.e., JFK, LGA, or EWR) in 2013. The example uses all
flights from the UA carrier in the month of December to identify variables that potentially
influence arrival delays (arr_delay, minutes) at the destination airport. Factors potentially
related to delays are selected from the dataset and include departure delay (dep_delay, min-
utes), departure time (dep_time, hours, minutes), arrival time (arr_time, hours, minutes),
travel time between destinations (air_time, minutes), and distance flown (distance, miles).
First, the appropriate month and airline carrier are selected, all explanatory variables are
scaled and centered, and the response variable is scaled to 0–1.

R> library("nycflights13")
R> library("dplyr")
R> tomod <- filter(flights, month == 12 & carrier == "UA") %>%
+ select(arr_delay, dep_delay, dep_time, arr_time, air_time,
+ distance) %>% mutate_each(funs(scale), -arr_delay) %>%
+ mutate_each(funs(as.numeric), -arr_delay) %>%
+ mutate(arr_delay = scales::rescale(arr_delay, to = c(0, 1))) %>%
+ data.frame

Then, a standard MLP with five hidden nodes was created with the nnet package to model
the effects of selected variables on arrival delays. The entire dataset is used for the example
but separate training and validation datasets should be used in practice.

R> library("nnet")
R> mod <- nnet(arr_delay ~ ., size = 5, linout = TRUE, data = tomod,
+ trace = FALSE)

The default output is limited to structural information about the model and methods for
model predictions (see str(mod) and ?predict.nnet). Using functions from NeuralNetTools,
a more comprehensive understanding of the relationships between the variables is illustrated.

R> plotnet(mod)
R> garson(mod)
R> olden(mod)
R> lekprofile(mod, group_vals = 5)
R> lekprofile(mod, group_vals = 5, group_show = TRUE)

Figure 7 shows the information about arrival delays that can be obtained with the functions
in NeuralNetTools. The NID (7a) shows the model structure and can be used as a general
characterization of the relationships between variables. For example, most of the connection
weights from input nodes I2 and I5 are strongly negative (gray), suggesting that departure
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Figure 7: Results from a simple MLP model of arrival delay for December airline flights
versus departure delay (dep_delay), departure time (dep_time), arrival time (arr_time),
travel time between destinations (air_time), and distance flown (distance). The three
plots show the NID from plotnet (7a), variable importance with garson and olden (7b),
and sensitivity analysis with variable groupings from lekprofile (7c). Interpretations are
provided in the text.
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Figure 8: Uncertainty in variable importance estimates for three neural networks to evaluate
factors related to arrival delays for flights departing New York City. Three model types with
one, five, and ten nodes were evaluated with 100 models with different starting weights for
each type.
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time and distance traveled has an opposing relationship with arrival delays. Similarly, large
positive weights are observed for I3 and I4, suggesting arrival time and time in the air are
positively associated with arrival delays. However, interpreting individual connection weights
between layers is challenging. Figures 7b and 7c provide more quantitative descriptions using
information from both the NID and model predictions. Figure 7b shows variable importance
using the garson and olden algorithms. The garson function suggests time between des-
tinations (air_time) has the strongest relationship with arrival delays, similar to a strong
positive association shown with the olden method. However, the garson function shows
arrival time (arr_time) as the third most important variable for arrival delays, whereas this
is ranked highest by the olden function. Similar discrepancies between the two methods are
observed for other variables, which are explained below. Finally, results from the lekprofile
function (Figure 7c) confirm those in Figure 7b, with the addition of non-linear responses that
vary by different groupings of the data. Values for each variable in the different unevaluated
groups (based on clustering) show that there were no obvious patterns between groups, with
the exception being group one that generally had longer times in the air and greater distance
travelled.
A second analysis is needed to show the effects of network architecture and initial starting
weights on uncertainty in estimates of variable importance. Models with one, five, or ten hid-
den nodes and 100 separate models for each node level are created. Each model has a random
set of starting weights for the first training iteration. Importance estimates using olden are
saved for each model and combined in a single plot to show overall variable importance as
the median and 5th/95th percentiles from the 100 models for each node level.
Several conclusions from Figure 8 provide further information to interpret the trends in Fig-
ure 7. First, consistent relationships can be identified such that delays in arrival time are
negatively related to distance and positively related to departure delays and air time. That is,
flights arrived later than their scheduled time if flight time was long or if their departure was
delayed, whereas flights arrived earlier than scheduled for longer distances. No conclusions
can be made for the other variables because the bounds of uncertainty include zero. Second,
the range of importance estimates varies between the models (i.e., one node varies between
±1 and the others between ±3). This suggests that the relative importance estimates only
have relevance within each model, whereas only the rankings (e.g., least, most important)
can be compared between models. Third and most important, the level of uncertainty for
specific variables can be large between model fits for the same architecture. This suggests
that a single model can provide misleading information and therefore several models may be
required to decrease uncertainty. Additional considerations described above (e.g., criteria for
stopping training, use of training and test datasets) can also affect the interpretation of model
information and should be considered equally during model development.

5. Conclusions
TheNeuralNetTools package provides a simple approach to improve the quality of information
obtained from a feed-forward MLP neural network. Functions can be used to visualize a
neural network using a neural interpretation diagram (plotnet), evaluate variable importance
(garson, olden), and conduct a sensitivity analysis (lekprofile). Although visualizing a
neural network with plotnet is impractical for large models, the remaining functions can
simplify model complexity to identify important relationships between variables. Methods are
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available for the most frequently used CRAN packages that can create neural networks (caret,
neuralnet, nnet, RSNNS), whereas additional methods could be added based on popularity
of the remaining packages (AMORE, FCNN4R, monmlp, qrnn).
A primary objective of the package is to address the concern that supervised neural networks
are “black boxes” that provide no information about underlying relationships between vari-
ables (Paruelo and Tomasel 1997; Olden and Jackson 2002). Although neural networks are
considered relatively complex statistical models, the theoretical foundation has many par-
allels with simpler statistical techniques that provide for evaluation of variable importance
(Cheng and Titterington 1994). Moreover, the model fitting process minimizes error using a
standard objective function such that conventional techniques to evaluate model sensitivity
or performance (e.g., cross-validation) can be used with neural networks. As such, functions
in NeuralNetTools can facilitate the selection of the optimal network architecture or can be
used for post-hoc assessment.
Another important issue is determining when and how to apply neural networks given avail-
ability of alternative methods of analysis. The popularity of the MLP neural network is partly
to blame for the generalizations and misperceptions about their benefits as modeling tools
(Burke and Ignizio 1997). Perhaps an overstatement, the neural component is commonly
advertised as a mathematical representation of the network of synaptic impulses in the hu-
man brain. Additionally, several examples have shown that the MLP network may provide
comparable predictive performance as similar statistical methods (Feng and Wang 2002; Razi
and Athappilly 2005; Beck et al. 2014). A neural network should be considered a tool in
the larger toolbox of data-intensive methods that should be used after examination of the
tradeoffs between techniques, with particular emphasis on the specific needs of a dataset or
research question. Considerations for choosing a method may include power given the sample
size, expected linear or non-linear interactions between variables, distributional forms of the
response, and other relevant considerations of exploratory data analysis (Zuur et al. 2010).
NeuralNetTools provides analysis tools that can inform evaluation and selection from among
several alternative methods for exploratory data analysis.
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