Journal of Statistical Software

August 2018, Volume 86, Code Snippet 1. doi: 10.18637/jss.v086.c01

Rectangular Statistical Cartograms in R:
The recmap Package

Christian Panse
Swiss Federal Institute of Technology Zurich

Abstract

Cartogram drawing is a technique for showing geography-related statistical informa-
tion, such as demographic and epidemiological data. The idea is to distort a map by
resizing its regions according to a statistical parameter by keeping the map recognizable.
This article describes an R package implementing an algorithm called RecMap which
approximates every map region by a rectangle where the area corresponds to the given
statistical value (maintain zero cartographic error). The package implements the compu-
tationally intensive tasks in C++. This paper’s contribution is that it demonstrates on
real and synthetic maps how package recmap can be used, how it is implemented and
how it is used with other statistical packages.

Keywords: cartogram, spatial data analysis, geovisualization, demographics, R.

1. Introduction

The idea of generating a cartogram is to distort a map by resizing its regions according to a
given statistical parameter, but in a way that keeps the map recognizable. These so-called
cartograms or value-by-area maps may be used to visualize any geo-spatial related data, e.g.,
political, economic, or public health data. There exist several algorithms to compute so-called
contiguous cartograms. An overview on historical, hand-drawn, and computer generated
cartograms can be found in Tobler (2004) and Nusrat and Kobourov (2016).

For using contiguous cartograms, the diffusion-based method of Gastner and Newman (2004)
is available through the R packages Rcartogram and getcartr (Temple Lang 2016; Brunsdon
and Charlton 2014).

An alternative approach to contiguous cartograms is to entirely relax the map topology by
approximating each map region by basic geometric objects like rectangles or circles (Dorling
1996). Such rectangular cartograms can be generated from geolocation and statistical data.

https://doi.org/10.18637/jss.v086.c01

2 recmap: Rectangular Statistical Cartograms in R

North Michi
Dakot: lichigan
oo | . v New
New | | Massachus isetts
s = A S N
| e E Jersey
Oregon e | or
Nebraska |OWa

Indiana
o Utah Colorado Kansas lllinois . Pennsylvania
Ohio | |~
)) Oklahoma | pyansas | Kentucky
California Aizona - = Maryland n
e || o Missouri V"_ |n|a
Texas g
| Tennessee North
Carolina
T e Geowia | oin,
Florida

Figure 1: A rectangular statistical cartogram of the US election in 2004 is drawn. The
area corresponds to the number of electors. Color is indicating the outcome of the vote.
Democrats are represented by the color blue and Republicans are represented through red
coloring. Regions with low saturation, e.g., Ohio, Pennsylvania, and Florida, highlight states
with a tight outcome of the vote (also known as swing states). The election cartogram was
computed by using the original implementation of the construction heuristic RecMap MP2
introduced by Heilmann et al. (2004). Map source: US Census Bureau; election data source:
http://www.electoral-vote.com/, November 2004.

Hence, they provide a useful alternative, even if there are no boundaries available or some
statistical values are missing. First rectangular cartograms were drawn by hand following a
system of construction (Raisz 1934). Recent research publications on rectangular cartogram
drawing include Van Kreveld and Speckmann (2004, 2007); Buchin, Speckmann, and Ver-
donschot (2012) and Buchin, Eppstein, Loffler, Nollenburg, and Silveira (2016). However,
according to a recent publication, both variants of RecMap (Heilmann, Keim, Panse, and
Sips 2004) are the only rectangular cartogram algorithms that “maintain zero cartographic
error” (Nusrat and Kobourov 2016, section 5.4).

The R (R Core Team 2018) package recmap (Panse 2018) discussed in this article contains an
implementation of the RecMap (Map Partition variant 2) algorithm (Heilmann et al. 2004) to
draw maps according to given statistical parameter. A typical usage of a cartogram based vi-
sualization is demonstrated in Figure 1. Package recmap is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=recmap.

The article is organized as follows: The next section defines the input and output of the
RecMap algorithm and the objective functions. In Section 3, the usage of the recmap pack-
age using the R shell is demonstrated. Section 4 discusses major implementation details and
provides some benchmark and performance studies. Section 5 describes how two metaheuris-
tics can be used to find an optimized cartogram drawing. In Section 6, some applications are
presented. Section 7 summarizes and discuss the approach.

http://www.electoral-vote.com/
https://CRAN.R-project.org/package=recmap

Journal of Statistical Software — Code Snippets 3

2. Problem definition and objective functions

The input consists of a map represented by overlapping rectangles R = (r1,...,7,). Each
map region 7; contains:

o a tuple of (z,y) values corresponding to the (longitude, latitude) position,
 a tuple of (dz,dy) of expansion along (longitude, latitude),

« and a statistical value z.

The (z,y) coordinates represent the center of the minimal bounding boxes (MBBs). The
coordinates of the MBB are derived by adding or subtracting the (dx,dy) tuple accordingly.
A tuple (dx, dy) also defines the ratio of the corresponding map region. The statistical values
(21,...,2n) determine the desired area of each map region.

The ordering II is an index vector taken from the permutation set Perm(n).

The output is a rectangular cartogram R where the map regions are:

e non-overlapping,
e connected,
o rectangles are placed parallel to the axes.

Furthermore, for each map region the following criteria have to be satisfied:

e the area is equal to the desired area derived from the as input given statistical value z,
o the ratio, dy/dz, is preserved.
The recmap construction heuristic is a function
fiR™2 xRS x Perm(n) — R™2 x RZE?, (1)

which transforms the set of input rectangles R and a permutation II into a rectangular
cartogram

R = f(R1ID), (2)
so that important spatial constraints, in particular

o the topology of the dual graph G(R, E), defined by the overlapping input rectangles,

« the relative position of map region centers,

4 recmap: Rectangular Statistical Cartograms in R

are tried to be preserved.
If the output satisfies these criteria, the rectangular cartogram is denoted as a feasible solution.

The following equations were introduced by Keim, North, and Panse (2004, Definition 1).
The desired area A; of a map region r; is defined as

;) A(r)
A = z =5 , 3
J J Zi:l 2 ()

where the area of the rectangle r is defined by
A(r) = 4-dx-dy. (4)

The objective functions for area d 4, shape dg (ratios of the MBBs), relative position dr, and
map topology dr, are as defined and described by Heilmann et al. (2004, Equations 2—4):

da = da(R,R) (5)
= D14, - 4 (6)
7j=1
dg = dS(R,ﬁ) (7)
= > I(dy;/da;) — (dy; /dz;) (8)
j=1
dr = dT(KR,ﬁ) (9)
[EAE 4 |ENE o
|Eq U Eg| ’
dR = dR(R,ﬁ) (11)
2 n—1 n
= —F—" KT‘Z',TJ‘ -4 T, Tj 12
T 2)) (12)

Note, if Vj € {1,...,n} : A; = A; = da = 0 and if Vj € {1,...,n} : dy;/dx; = dy;/dz; =
ds = 0. n = |R| and E denotes the edges of the dual graph. dT" determines the differences
in the pseudo dual graphs. dR measures the angle differences between all pairs of rectangle
centers of the input map and output cartogram by using £(x,y) defined as follows':

L(z,y) = arctans(x,y) (13)

To find an optimal rectangular statistical cartogram out of all feasible solutions, as it will
be intended in this manuscript using recmap, the optimization problem can be expressed as
follows:

minimize a-dr+b-dp with a,b € R>g (14)
ITePerm(n) -
subject to d4 = 0,dg = 0. (15)

To find a sufficiently good solution for the optimization problem a metaheuristic, as described
in Section 5, will be applied.

Implemented using the C++ method std: :atan2 — “Computes the arc tangent of y/x using the signs of
arguments to determine the correct quadrant.” http://en.cppreference.com/w/cpp/numeric/math/atan2,
access: 2017-01-01.

http://en.cppreference.com/w/cpp/numeric/math/atan2

Journal of Statistical Software — Code Snippets
Term Description Equation
R = (r1,...,m,) overlapping input rectangles
(z,y) coordinates represent the center of a rectangle
(dz, dy) expansion along x and y axes
z statistical value of a rectangle
G(R,E) dual graph of R
11 permutation
fij desired area of a map region j 3
A(r) area of a rectangle 4
da area error 5
ds shape error 8
dr topology error 10
dr relative position error 12
L(z,y) angle between two points = and y in R? 13
f construction heuristic 1
R output / cartogram

Table 1: The table provides a glossary of the used algebraic terms.

3. The package usage

3.1. Input

The US map on the state level is often used to compare cartogram algorithms. To generate
a useful dual graph, which is a requirement of the algorithm, the input map regions have to
overlap. For the state.x77 data used in this section this can be done by correcting lines of
longitude derived from the square roots of the area values (see Figure 2 left).

R> R.version.string

[1] "R version 3.5.1 (2018-07-02)"
R> packageVersion("recmap")

[1] '0.5.37"

R> US.map <- data.frame(x = state.center$x,y = state.center$y,

+ dx = sqrt(state.area) / 2 / (0.7 * 60 * cos(state.center$y *
+ pi / 180)), dy = sqrt(state.area) / 2 / (0.7 * 60),

+ z = sqrt(state.area), name = state.name)

R> head(US.map)

X y dx dy z name
1 -86.7509 32.5901 3.209890 2.704478 227.1761 Alabama
2 -127.2500 49.2500 14.005670 9.142338 767.9564 Alaska

3 -111.6250 34.2192 4.859044 4.017906 337.5041 Arizona

6 recmap: Rectangular Statistical Cartograms in R

4 -92.2992 34.7336 3.338204 2.743370 230.4431 Arkansas
5 -119.7730 36.5341 5.902177 4.742415 398.3629 California
6 -105.5130 38.6777 4.923602 3.843727 322.8730 Colorado

Please note, in general, recmap is not transforming the geodetic datum, e.g., WGS84 or
Swissgrid. Furthermore, geospatial positions have to be mapped from the earth surface to
the plane. This transformation has to be done prior the cartogram generation. An overview
of map projection can be found in Snyder (1997). Map projections aim to optimize towards
different objectives, e.g., conformal mapping (preservation of local angles) or area mapping
(preservation of area). In cartogram publications, the map projection aspect is often ne-
glected, and conformal errors are accepted. However, studying US cartograms, a cylindrical
projection seems to be the projection of choice. The R user can find support for a wide va-
riety of adequate map projections due to using the mapproj package by Mcllroy, Brownrigg,
Minka, and Bivand (2015).

3.2. Run

The algorithm takes a data.frame object having the column names c("x", "y", "dx",
"dy", "z", "name"), here the US.map object, as input. Additional control is given by the
index order and the (dz, dy) values. The index order II defines in which order the dual graph
is explored and the (dx, dy) values define which map regions are adjacent.

R> library("recmap")
R> US.cartogram <- recmap (US.map)

3.3. Output

The recmap method returns an S3 object of class c("recmap", "data.frame") of the trans-
formed map. Additional columns in the result contain information for topology and relative
position error defined in Equations 10 and 12. The column dfn.num indicates in which order
the dual graph has been explored.

R> head(US.cartogram)

X y dx dy z name dfs.num
1 -79.27226 10.40598 3.916894 3.300161 227.1761 Alabama 23
2 -129.22283 63.71115 8.181797 5.340748 767.9564 Alaska 49
3 -126.86923 30.51915 4.819169 3.984933 337.5041 Arizona 34
4 -87.19357 10.42302 3.994415 3.282650 230.4431 Arkansas 39
5 -137.00972 33.40013 5.311325 4.267664 398.3629 California 35
6 -115.35010 62.23315 4.851078 3.787109 322.8730 Colorado 48
topology.error relpos.error relposnh.error
1 6 0.3893223 0.7694393
2 6 0.2883036 0.5287275
3 3 0.2074725 0.2355095
4 8 0.5599091 1.0584316
5 4 0.1761236 0.1878248
6 10 0.6831601 1.1107418

Journal of Statistical Software — Code Snippets

Alaska

Alaska

sssss

Novalla] UtlE i i
ia

rizdna Ve e

=
B exas ..]

Figure 2: The “usage” example, generated from the “US State Facts and Figures” data in
the datasets package, was used for drawing a rectangular map approximation. The input set
of overlapping rectangles is shown left. A feasible solution thereof generated with recmap is
on the right side. The state area, original size of the map region, is used as statistical value.

The output of the recmap function can be visualized using the S3 plot method for ‘recmap’
objects. The output of the R code snippet can be seen in Figure 2. As default the plot
method for ‘recmap’ objects places the name attribute in the center of each rectangle. The
text is scaled by using cex = dx / strwidth(name) as an argument for the text function
to avoid overplotting of the labels. However small statistical values result in small label
areas. This problem can be circumvented by using an interactive visualization, e.g., using
shiny (Chang, Cheng, Allaire, Xie, and McPherson 2016) the function hoverOpts enables the
“mouseover” feature. Please note that while the input US.map is not classified as an object
of class ‘recmap’, the plot method function for ‘recmap’ objects cannot be used through S3
method dispatch and function plot.recmap has to be explicitly called.

R> op <- par(mfrow = c(1, 2), mar = c(0, 0, 0, 0))
R> plot.recmap(US.map, col.text = "darkred")
R> plot (US.cartogram, col.text = "darkred")

A summary method implements the calculation of some metadata including the objective
functions.

R> summary (US. cartogram)

values
number of map regions 50.000000
area error 0.000000
topology error 266.000000
relative position error 0.420000
screen filling [in %] 36.893585
xmin -146.967409
Xmax -34.722706
ymin 7.105818

ymax 73.190904

8 recmap: Rectangular Statistical Cartograms in R

The S3 methods, as.recmap and as.SpatialPolygonsDataFrame, enable the exchange and
the manipulation of geographic data contained in the classes of the sp package (Pebesma and
Bivand 2005; Bivand, Pebesma, and Gémez-Rubio 2013). The following code displays how a
‘recmap’ object can be translated into a ‘SpatialPolygonsDataFrame’ object and back.

R> X <- checkerboard(8)
R> all.equal(X, as.recmap(as.SpatialPolygonsDataFrame(X)))

(1] TRUE

4. Implementation

The RecMap algorithm is implemented in C++ using features provided by the C++-11 stan-
dard. The input and output data transfer between R and the C++ ‘recmap’ class is handled
by using the Repp (Eddelbuettel and Frangois 2011) mechanism. The C++ ‘recmap’ class
itself consists of a std: :vector of map_region. A map_region contains all the (z,y, dx,dy, z)
values, a std: :vector of type int linking to its neighbor map regions, and some additional
help variables to ease the error computation. In general, the construction algorithm follows
the map partition 2 (MP2) procedure described in Heilmann et al. (2004). The local place-
ment function can place any rectangle next to another rectangle as demonstrated in Figure 3.
The current implementation starts with the original bearing « of the two map region centers
(see Figure 3 where 8 = 0). If the placement does not lead to a feasible solution, the angle
is added to a. f§ is iterating between [0, 7] with a step size of {55 and a changing sign until
a placement without overlap has been found. If no placement can be found, the algorithm
considers all adjacent placed map regions. If also in a later step during the depth-first search
(DFS) a map region cannot be placed, a non-feasible solution is accepted. This situation is
often caused because the construction algorithm is hampered by the input configuration of
the map regions. Solving this can be very compute-expensive and often the procedure leads
to a solution which will be rejected by the metaheuristic due to the low fitness value.

Furthermore, no genetic algorithm (metaheuristic) has been implemented. Here recmap will
use the GA package (Scrucca 2013) available on CRAN as demonstrated in Section 5. The
most computationally expensive part is the computation of MBB intersections which has to
be performed to achieve feasible solutions, multiple times, for each placement step. In the
package version 0.2.1 these tests were performed by iterating over each map region. All later
versions use a std: :multiset data structure and a std: : lower_bound algorithm of the C4++
standard template library (STL) to reduce the search space.

The time complexity for one recmap run is O(n?), where n is the number of regions. A DFS
run is visiting each map region only once, and therefore it has time complexity O(n). For each
map_region placement, a constant number of MBB intersection are called (max. 360). The
MBB check is implemented using a std: :multiset container, and the functions std: : insert,
std: :upper_bound, and std: :upper_bound. The time complexity for all of these functions is
reported on http://www.cplusplus.com/reference/stl as O(log(n)). However, the worst
case scenario for a range query is O(n), if and only if dz or dy cover the whole x or y range.
The boxplots in Figure 4 (left plot) show that the number of MBB intersection test calls
could be reduced by using a std::multiset data structure. For this benchmark, synthetic

http://www.cplusplus.com/reference/stl

Journal of Statistical Software — Code Snippets

fpl . RG x [—T[, T[] . R2 B0 p=-014 p=0.27

p=-0.41 p=0.55 p=-069

y return value
>

a argument

-3.14
-2.36 =0.82 p=-096 p=11
-157
-0.79
0
0.79
157
2.36

- -]

X return value

Figure 3: The rainbow colored rectangles graph the feasible positions of a local placement
function fy; to place a rectangle B around a given rectangle A of any angle o between [—, 7]
(left figure). There are special cases for quadrant I, IT, III, and IV indicated by different colors
in the graphic. On the right figure, B should be placed around A starting with an angle of 7
(this is the initial relative position in the input map). Since the rectangle cannot be placed
without overlap (indicated by red), an angle g is added.

checkerboards with map regions in the interval of [22,...,202} were generated using the
R function checkerboard. For each checkerboard size recmap was called 100 times using
different index orderings of the checkerboard input. The index order of the input records has
a direct impact how the DF'S is traversing the map. This characteristic will later be used for
the metaheuristic.

The benchmark was performed on an Apple MacBookPro Laptop having a 2.9 GHz Intel
Core i7 CPU from 2017 using only one core. The experiments were performed on MacOSX
10.13.4, Linux Debian 9 running on a 4.9.06-amd64 kernel and a Windows 10 platform. The
Linux and Windows OS instances were running as virtual machines using VirtualBox. The
middle plot in Figure 4 displays the resulting mean aggregated measured data of the three
(hardware/OS) systems using the two different implementations of the MBB intersection test.
Besides the fact that the Linux system cannot benefit from the more efficient implementation
of the MBB intersection test, the plot in the middle shows that even for an input size of
202 = 400 map regions a rectangular cartogram can be computed in less than a second.

The right plot in Figure 4 was derived from the performance study (plot in the middle).
It shows the number of rectangular cartograms which can be generated within one second
depending on the number of map regions. The gray vertical line indicates the number of the
US map regions. The ability to generate a high number of cartogram candidates in a short
time period is an important requirement for any metaheuristic as is demonstrated in the next
section.

10 recmap: Rectangular Statistical Cartograms in R

1e+00

=& + C++ STL multiset / MacOSX 10.13.4 / 2.9 GHz Intel Core i7

5000
|
-

le-01

le-02
500
L
b0 e+
o

1e+03
50
I

number of MBB intersection calls
le-03

median aggregated process time [in seconds]
\
NN\

b V2 + C++ STL list
0 + C++ STL multiset
- —~A- MacOSX 10.13.4/ 2.9 GHz Intel Core i7

- T
+ C++ STL list o ~L- Debian deb9.3 / 2.9 GHz Intel Core i7 (VM) + E E
+ C++ STL multiset A ~W- Windows 10/ 2.9 GHz Intel Core i7 (VM) +
T T T T T T T T T T T T T T T
5x5 US 10x10 15x15 20x20 5x6 US 10x10 15x15 20x20 5x5 US 10x10 15x15 20x20

5 10

number of rectangular cartograms generated per second
0

le-04

le+01
L

number of map regions number of map regions number of map regions

Figure 4: The boxplot (left) graphs the number of MBB intersection test calls for a given
checkerboard size. The graph in the middle displays the mean aggregated measured com-
putation time. The scatterplot (right) displays how many rectangular cartograms can be
generated within one second based on the board size. All y-axes are on logarithmic scale.

5. Choose a metaheuristic

The design of the RecMap algorithm is as follows: First, compute a set of feasible solutions. In
a second evaluation step, choose the best solution. In the current implementation, variations
can be introduced by changing the index order II of the input data. This order has a direct
impact on the DF'S traversal and leads to different cartogram layouts. The objective functions,
Equations 5 to 12, can be used to evaluate the result and to define a fitness function which
has to be maximized. The following R code defines the fitness function which will be used as
default.

R> recmap:::.recmap.fitness
function (idxOrder, Map, ...)
{

Cartogram <- recmap(Map[idxOrder, 1)

if (sum(Cartogram$topology.error == 100) > 0) {
return(0)

}

1/sum(Cartogram$relpos.error)

}

<environment: namespace:recmap>

Other variants of fitness functions will lead to different results as shown in Heilmann et al.
(2004, Figure 4).

Since it is not possible to compute and evaluate all permutations, which is n!, random exper-
iments are conducted. In the following section, it is demonstrated how two metaheuristics,
GRASP and GA, can be used to find an optimal layout for the rectangular statistical car-
togram.

For a visual evaluation of the metaheuristics, proposed in this section, an 8 x 8 checkerboard
will be used as input map. The map is generated using the checkerboard method.

Journal of Statistical Software — Code Snippets

R> Checkerboard <- checkerboard(8)
R> summary (Checkerboard)

values
number of map regions 64.00
area error 0.27
topology error NA
relative position error NA
screen filling [in %] 100.00
xmin 0.50
Xmax 8.50
ymin 0.50
ymax 8.50

and can be seen in Figure 5 (left). If the assumption is made, that for each vertex, the
cyclic order of edges in the contiguous cartogram remains the same as in the input map,
checkerboards provide examples of sets of map regions which do not have ideal cartogram
solutions (Keim et al. 2004, Definition 2, Lemma 1, Figure 3).

5.1. Greedy randomized adaptive search procedures

One group of optimizers that is “trivial to efficiently implement” (Feo and Resende 1995) and
can directly benefit from a parallel environment is called greedy randomized adaptive search
procedures (GRASP). The R method recmapGRASP defines a generic GRASP implementation
as described in Feo and Resende (1995, Figure 1). The recmapGRASP function generates a set
of rectangular cartograms which have different layouts caused by the random sampling. Each
cartogram is evaluated. The best candidate is saved. The following command will generate a
cartogram solution based on a GRASP metaheuristic.

R> set.seed(1)

R> res.GRASP <- recmapGRASP (Checkerboard)

R> plot(res.GRASP$Cartogram,

+ col = c("white", "white", "white", "black")[res.GRASP$Cartogram$z])

A drawing of the cartogram can be found in Figure 5 (middle).

For some types of input maps, GRASP can generate amazing results in a short time. As it can
be seen in Figure 5, for the checkerboard, GRASP is outperformed by the genetic algorithm,
introduced in the next section. The plot in Figure 6 (right) shows that the solution process
runs too fast into saturation.

5.2. Lessons learned from biological evolution

In this paragraph, a constraint-based genetic algorithm (GA) as discussed in Heilmann et al.
(2004) is used as metaheuristic. Here the construction heuristic benefits from the existence
of the GA package by Scrucca (2013). The GA configuration used for recmap was directly
derived from the traveling salesperson problem (TSP) example (Scrucca 2013, Section 4.8)
using the permutation type of the ga method. As genotype the index order II of the input

12 recmap: Rectangular Statistical Cartograms in R

map is used. The following command generates an almost perfect rectangular cartogram for
the checkerboard map having 64 map regions on the author’s laptop (MacBook Pro from
2017, 2.9 GHz Intel Core i7) within 60 seconds.

R> recmap.GA <- ga(type = "permutation", fitness = recmap:::.recmap.fitness,
+ Map = Checkerboard, min = 1, max = nrow(Checkerboard), popSize = 50,
+ maxiter = 300, maxFitness = 1.7, maxiter = 300, pmutation = 0.25)

The metaheuristic stops when a maximum number of iteration has been performed or the fit-
ness value is higher than 1.7. Having reached a fitness value of 0.342 using the recmap.fitness
function the result in Figure 5 (right) looks like an almost “optimal” solution.

The recmapGA function is a higher level wrapper function to glue the recmap construction
heuristic with the metaheuristic ga.

R> res.GA <- recmapGA(Checkerboard, popSize = 50, run = 300, maxiter = 300,
+ seed = 3)
R> summary(res.GA$Cartogram)

values
number of map regions 64.0000000
area error 0.0000000
topology error 294.0000000

relative position error 0.0500000
screen filling [in %] 65.7237172

xmin 0.4088612
Xmax 9.9656942
ymin -0.7320998
ymax 9.4571887

R> plot(res.GA$Cartogram,
+ col = c("white", "white", "white", "black")[res.GA$Cartogram$z])

The recmapGA function returns a list of the input Map, the solution of the GA, and a ‘recmap’
object containing the cartogram. The resulting cartograms using a GA can be seen in Figure 5
(right). The red line in Figure 6 (left) indicates in which order the rectangles were placed
using the DFS numbering. The red e symbol marks the first placed rectangle and the ¢ the
last one.

Figure 7 illustrates the variability in solutions, dependent on the initial seed value. The
experiment was repeated twice to demonstrate the effect that the same seed values lead to
the same permutation order II and finally to the same cartogram construction. As shown
above, the results of the recmap implementation are reproducible on the same platform.
However, due to the numerical ill-condition of the problem special care has to be taken for the
computation of the fitness value. Small differences in the fitness values on different platforms
cause error propagation through iterations of the metaheuristic and derive a different solution
sequence II and cartogram drawing.

The rectangular map approximations in Figure 8 demonstrate the continuous improvement of
the feasible solutions with an increasing number of generations using the GA as metaheuristic
for the data used in Section 3. The code below defines a weighted fitness function.

Journal of Statistical Software — Code Snippets

Figure 5: A comparison of the input map, GRASP, and GA is displayed. As input map, a 8
x 8 checkerboard (left) has been generated. The area of a black box needs to be four times as
large as the area of a white box. The cartogram in the middle proposes a solution generated
by a GRASP metaheuristic. The right cartogram graphs a solution computed by a genetic
algorithm within one minute.

[Xo]

”

o L

esssseenee
bl

o by

g — »
<] -
= .
@© -—of‘""
> 7o) I
2 S
o o esssssssesese.
c -
h=
=
4
(%] o
[<3] N
< o

-
-
Lo
—
: + Evolutionary based Genetic Algorithm (GA)
o Greedy Randomized Adaptive Search Procedures (GRASP)
I T T T I
0 20 40 60 80

elapsed time [in seconds]

Figure 6: On the checkerboard cartogram drawn on the left, the red lines trace the order of
each rectangle placement step of the construction algorithm. The right scatterplot graphs
the best fitness value computed by recmap.fitness versus the elapsed time of the two meta-
heuristics. Each e represents an iteration. The GRASP reaches the plateau after a few
iterations.

R> fitness.weighted <- function (idxOrder, Map, ...) {
+ Cartogram <- recmap (Map[idxOrder,])
if (sum(Cartogram$topology.error == 100) > 0) {

return(0)

}

+
+
+
+

13

14 recmap: Rectangular Statistical Cartograms in R

Miowaca = (1,2,3,4,5,6,7,8,9, 10, 11,12, 13, 14, 15, 16)

Mreverse = (16, 15, 14,13, 12,11, 10,9, 8, 7, 6,5,4,3,2, 1) My=(2,14,10,4,12,8,3,5,6,16,7,9, 1,13, 11, 15) N2=(13,3,8,7,1,6,9,2,15, 4,10, 14,12, 16,11,5) M3=(5,15,7,12,13,9,14,16,2,8,1,10,11,3,4,6)

Figure 7: This graphical example illustrates the variability in solutions, dependent on the
initial seed value in Ilgeeq. The left column displays forward- and reverse index orders. All
other columns show the results from duplicate seeds {1,2,3} to demonstrate that the same
seed will lead to the same index order and the identical layout of the cartogram.

S <- summary(Cartogram)

dT <- max(Cartogram$topology.error)
dR <- S[4,]

dE <- (100 - S[5, 1) / 100

1/ (c(0.2, 0.6, 0.2) J*} c(dT, dR, dE))
}
R> set.seed(2)
R> US.map.best <- recmapGA(Map = US.map, fitness = fitness.weighted,
+ maxiter = 100, maxFitness 100, popSize = 50, keepBest = TRUE,
+ pmutation = 0.35, parallel = TRUE)

+ + + + + + +

Note that the metaheuristic of the space filling quad tree (Finkel and Bentley 1974) based
RecMap MP1 variant could also be realized by using the GA package. Here, instead of a
permutation, a binary representation of decision variables has to be chosen. This can be done
by setting the type attribute of the ga function to "binary". The genotype, given as a binary
vector, is defining the split type of the quad tree data structure. A 1 is applying a vertical
split, while a O triggers a horizontal split.

6. Application

This section applies package recmap to some real world maps having numbers of map regions
of different magnitudes and different kind of topology. Beside Figures 1 and 9 the examples fo-
cus more on the demonstration of the drawing characteristics of the recmap method itself and

Fitness value

Journal of Statistical Software — Code Snippets

P —
©
S
i
<r f
<
=}
—— Best
7 ST Migang

A qte| Blwom 4.2 Mo g & \
Q | BPH T ey et
° T T T T T

0 20 40 60 80 100

Generation
Alaska [—————t——t—op [- - =

utah | oreq o —

owa

 — Cotorado Ilinois Ohio - L
E— —r—1= e
Texas e [| [

- T I—, Generation 1
dT =10
drR=0.25
dE =43

,— wa [
Alaska . _ =
- 10800 | vyurig [| s e
[RVR o | Sl gy ey | et -] =
Utah | coman = -
E Texas e -
_ e | e [] e one =
[Geteration 12
o H—dT =9
drR=0.3
dE =44
e | T)
U (T (e o | owa o

dT=9
drR=02
dE =40

Generation 50

Index order

30 40 50

20

10

Alaska

Alaska

15

40

60

Generation 6
dT=9
dR =0.39
dE =39

Generation 25
dT=9
dR=0.2
dE =40

Generation 100
dT=9
dR =0.19
dE =50

Figure 8: The plot on the top left displays the fitness value during the increasing genera-
tion of the genetic algorithm. The image plot on the top right visualizes the genotype (II)
change from one generation to the other using a gray colormap for encoding the index order.
The six phenotypes visualize the improvement of the solution with an increasing number of
generations.

16 recmap: Rectangular Statistical Cartograms in R

less on the information visualization scopes. Examples of combining cartogram drawings with
pixel visualization techniques can be found in Panse, Sips, Keim, and North (2006). Figure 13
demonstrates how ‘recmap’ objects can be transformed into ‘SpatialPolygonsDataFrame’
objects.

US state facts and figures based cartograms are displayed in Figure 9. The data
are available from the data frame state.x77. On the cartograms, two statistical data are
displayed using the area and the color of a map region. The colormap was generated by
using the heat_hcl function of the colorspace package by Zeileis, Hornik, and Murrell (2009)
(red is low; white is high). The code below is a wrapper function for the recmap and the ga
functions. A tuple of state.x77 column names is given as input.

R> recmap_state_x77 <- function(input, Map = US.map, DF = state.x77,
cm = heat_hcl(10)) {

Join map and data.frame

Map <- cbind(Map, DF, match(Map$name, row.names(DF)))

attr (Map, "Map.name") <- "U.S."

attr(Map, "Map.area") <- input$area

Filter
Map <- Map[!Map$name Jinj, c("Hawaii", "Alaska"),]

Set attribute for desired area
Map$z <- Map[, input$area]

res <- recmapGA(Map = Map, popSize = 300, maxiter = 30, run = 10)

Set attribute for the coloring
S <- Mapl[res$GA@solution[1,], input$color]
col.idx <- round((length(cm) - 1) * (S - min(S))/(max(S) - min(S))) + 1

Have fun

plot(res$Cartogram, col = cm[col.idx], col.text = "black")

legend ("bottomleft", c(paste("area:", input$area),
paste("color:", input$color)), cex = 1.5)

res
}

As input map, the US.map defined in Section 3 is used. The lines below generate the car-
tograms.

+ + + + 4+ F ++FFFHFF A FEF T

R> op <- par(mfrow = c(4, 1), mar = rep(0.25, 4), bg = "white")

R> set.seed(1)

R> recmapGA.x77 <- lapply(list(list(color = "Area", area = "Population"),
+ list(color = "HS Grad", area = "Murder"), list(color = "HS Grad",

+ area = "Income"), list(color = "Life Exp", area = "Illiteracy")),
+ recmap_state_x77)

R> par(op)

Journal of Statistical Software — Code Snippets

The fitness values versus the generations are graphed using the plot method of the ‘GA’ class.

R> op <- par(mar = c(5, 5, 3, 3), mfrow = c(4, 1))
R> res <- lapply(cartogram.x77, function(x) {

+ plot (x$GA)
+ P
R> par(op)

US population cartograms on county level showing cartograms of California, Col-
orado, Florida, New Jersey, and New York are displayed in Figure 10. The map material was
extracted from the maps package by Becker, Wilks, Brownrigg, Minka, and Deckmyn (2016)
and the population data were retrieved from the noncensus package by Ramey (2014). The
map regions were joined over the FIPS (Federal Information Processing Standard) county
codes using the counties data frame. The cartograms were generated by using the genetic
algorithm as metaheuristic.

An interactive shiny (Chang et al. 2016) web application is available by running the code
snippet below. It provides more combinations of parameter settings, attributes, and maps
drawn in Figures 5, 8, 9, and 10.

R> library("shiny")
R> recmap_shiny <- system.file("shiny-examples", package = "recmap")
R> shiny: :runApp(recmap_shiny, display.mode = "normal")

The last three application examples use the recmapGA function and the following main pa-
rameter setting: one iteration and a population size of 64. Table 2 lists other significant
operational parameters. The seed values were derived by a greedy heuristic to have a proper
starting construction sequence and thereby avoid intensive computing of the replication code
of the manuscript. In praxis, it turned out that a population size similar to the number of
map regions and the maximum number of iteration set to no more than a couple of hundred
are useful initial values.

A population cartogram of Switzerland on community (Gemeinde) level is drawn in
Figure 11. The rectangles of the original map were extracted from an ESRI shape file of the
map data Landschaftsmodelle: GG25 from the Federal Office of Topography (swisstopo) us-
ing shapefiles by Stabler (2013). The following attributes were extracted for each map region:
box, Gemeindecode, and Gemeindename. There are 2300 rectangles to place. The statistical
values (population 2013, published in 2015) were downloaded from Swiss Statistics (Region-
alportrits: Kennzahlen aller Gemeinden (je-d-21.03.01) Bundesamt fiir Statistik BFS; http:
//www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html) and joined by the
Gemeindecode attribute with the swisstopo map.

A Swiss railway passenger frequency cartogram is graphed on the bottom of Fig-
ure 12. The visualization above shows the overlapping rectangles of all 724 geo-locations
which define the pseudo dual of the map. The data were retrieved from https://data.sbb.
ch/explore/ and contain already the longitude and latitude coordinates of the railway main

http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
https://data.sbb.ch/explore/
https://data.sbb.ch/explore/

recmap: Rectangular Statistical Cartograms in R

18

a_second|

o _
o
n [0) Ha |
o N P 0
o o © ¥ Q
o 0 & d g
[o10] (o] . (0] a .~
(O] (V] [=] =] O +
~ ~ o) =] o) .
. a - a0 o — - o o o)
~ . £ . - n o . L a m
(] = « ~ + 2] — 1) 3 —
Q « Q o] — Q « (O] ﬂ ..n_Du m.. m w
g o 5 & & & B 8 9 g s 2,
= ® A o o 3 g H ® 3 O w
: . . . 2, = 8 o ooa, = - -
o, o o, o, . . . - : n w 0
© d d d < < < < < < ES >
= = = = o o T TENT) © n 0
US new jersey population 21 0.38 105 25 0.25 0.26 FALSE 562.40 4.70 x86_64 Linux
US population 48 0.41 300 14 0.25 0.12 FALSE 224.90 18.70 x86_ 64 Linux
US murder 48 0.37 300 23 0.25 0.12 FALSE 22270 31.00 =x86 64 Linux
US income 48 0.29 300 29 0.25 0.12 FALSE 210.70 41.30 x86 64 Linux
US illiteracy 48 0.40 300 15 0.25 0.12 FALSE 220.00 20.50 x86 64 Linux
UsS area 50 0.17 50 100 0.35 0.50 FALSE 179.20 27.90 =x86_64 Linux
US california population 58 0.62 290 25 0.25 0.07 FALSE 199.50 36.30 x86_64 Linux
US new york population 62 0.67 310 66 0.25 0.10 FALSE 143.70 142.40 x86_64 Linux
checkerboard 8 x 8 1:4 64 0.27 640 10 0.25 0.21 FALSE 60.60 105.60 x86_64 Linux
US colorado population 64 0.68 320 44 0.25 0.06 FALSE 166.20 84.70 x86_64 Linux
US florida population 68 044 340 28 0.25 0.10 FALSE 15790 60.30 x86_64 Linux
UK number of electorates 370 0.57 64 1 0.25 0.01 TRUE 17.10 3.70 x86 64 Linux
SBB passagier frequency 724 0.67 64 1 0.25 0.46 TRUE 6.80 9.40 =x86_64 Linux
CH population 2300 0.59 64 1 025 0.17 TRUE 0.40 151.50 x86_64 Linux

Table 2: The spreadsheet provides a summary of the statistical rectangular cartograms drawn in Figures 5, 8, 9, 10, 11, 12, and 13
ordered by the number of map regions. All listed rectangular cartograms were processed on Intel Core i5-2500 CPU @ 3.30GHz having
four cores running Debian 9 GNU/Linux.

area: Population
color: Area

calioria

area: Murder
color: HS Grad

area: Income
color: HS Grad

area: llliteracy
color: Life Exp

Journal of Statistical Software — Code Snippets 19

Fitness value

Fitness value

Fitness value

Fitness value

0.08 0.10 0.12

0.06

0.08 0.10 0.12

0.06

0.08 0.10 0.12

0.06

0.06 0.07 0.08 0.09 0.10 0.11

—— Best
o -+=- Mean
por e e b oo« Median’

T T T T T T T
2 4 6 8 10 12 14

Generation

..l

—— Best
-+ - Mean
aree e e

-
T T T T
5 10 15 20

Generation

—— Best
-+ - Mean

.o - F
ST e ety >~ = Median,

0

T T T T T
5 10 15 20 25 30

Generation

puy

= Ee=i

-+ - Mean

2=y]e - Median,|
o

T T T T T T T
10 12 14

Generation

Figure 9: Rectangular statistical cartograms using the “US State Facts and Figures” dataset
are drawn. The plots on the right column display the fitness values versus the generation of
the genetic algorithm during the optimization process.

20

]nyc County

i County

Mtat County

1

e Cor

Garfield County

Suffok County

Fitness value

Fitness value

Fitness value

Fitness value

Fitness value

0.050 0.060 0.070

0.040

0.045 0.055 0.065

0.035

0.06 0.07 0.08 0.09 0.10

0.18 0.22 0.26

0.14

0.07 008 0.09

0.06

recmap: Rectangular Statistical Cartograms in R

—— Best
S < |7 "e-Mean-,
te ~— =7 Median
T T T T T
5 10 15 20 25
Generation

<

—

P P L B

—— Best
* - Mean
+"%es Median

T
0

T T T
10 20 30

Generation

40

Generation

—— Best
P S ~ewMeai -,
- - - Median
T T T T T
5 10 15 20 25
Generation

r/‘«,__/*

—— Best
-+ - Mean
/’.""- B Y P B
T T T T T T T
0 10 20 30 40 50 60

Generation

Figure 10: US input maps (left) of California, Colorado, Florida, New Jersey, and New York
on county level were used as input to compute 2010 census population cartograms (middle;
top to bottom). On the right column, the fitness values versus the generations are displayed.

Journal of Statistical Software — Code Snippets

Basel

vvvvvvvvvvv
1=}

Zirich

Luzern

I

Bern

Tl T1

Meytin
Lausanne T b
—? . Sion
0

Genéve
E-I O]

Figure 11: A rectangular population cartogram of Switzerland is shown. Map data source:
Swiss Federal Office of Topography using Landscape Models/Boundaries GG25 (http://
www.toposhop.admin.ch/en/shop/products/landscape/gg25_1, downloaded 2016-05-01);
statistical data: Bundesamt fiir Statistik (BFS), Website Statistik Schweiz (http://www.
bfs.admin.ch/bfs/portal/de/index.html), downloaded file je-d-21.03.01.x1s (http:
//www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html) on 2016-05-26.

station and stops. The fitness function below weights the relative position error of regions
with a higher traveler frequency more than map regions with a lower travel frequency.

R> fitness.SBB <- function(idxOrder, Map, ...) {
+ Cartogram <- recmap(Map[idxOrder,])

+ if (sum(Cartogram$topology.error == 100) > 1){return (0)}
+ 1 / sum(Cartogram$z / (sqrt(sum(Cartogram$z~-2))) *

+ Cartogram$relpos.error)

+ F

The UK Brexit EU-referendum is shown as a final example in Figure 13. The UK
boundary file was downloaded from https://census.edina.ac.uk/ and joined by the col-
umn name geo_code and Area_Code with the outcome of the referendum downloaded through

21

http://www.toposhop.admin.ch/en/shop/products/landscape/gg25_1
http://www.toposhop.admin.ch/en/shop/products/landscape/gg25_1
http://www.bfs.admin.ch/bfs/portal/de/index.html
http://www.bfs.admin.ch/bfs/portal/de/index.html
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
https://census.edina.ac.uk/

22 recmap: Rectangular Statistical Cartograms in R

Bern

Thun

o D D Winterthur wil

Basel SBB Olten arau | UD

uuuuuuu st

Bern

Pl zug Zdrich HB
Luzern Chur
Thun Semanne -5
(=}
=]
uuuuuuu

Lausanne

9 ceneve

Figure 12: A Swiss railway passenger frequency cartogram is shown on the lower map. The
graphic on the top displays the overlapping rectangles of the input map. Source: http:
//sbb.ch/, 2016-05-12.

http://www.electoralcommission.org.uk/ on July 3rd. This example also demonstrates
the usage of the sp package by Bivand et al. (2013).

Through using the S3 method as.SpatialPolygonsDataFrame the ‘recmap’ instance, UK$Map,
has been transformed into a ‘SpatialPolygonsDataFrame’ object.

R> DF <- data.frame(Pct_Leave = UKMapPct_Leave, row.names = UKMapname)
R> spplot(as.SpatialPolygonsDataFrame (UK$Map, DF),

+ col.regions = diverge_hcl(16, alpha = 0.5),

+ main = "Input England/Wales/Scottland")

http://sbb.ch/
http://sbb.ch/
http://www.electoralcommission.org.uk/

Journal of Statistical Software — Code Snippets 23

Pct_Rejected

Pct_Leave Pct_Turnout

Northern 1 [| s
reland oy

Figure 13: The outcome of the UK Brexit EU-referendum is displayed. Northern Ireland was
manually added. The overlapping MBBs of the input map are displayed in the top left. On all
other plots, the region areas represent the number of the electorates. The colors are indicating
the outcome of the referendum (blue: remain/red: leave; the lower the color intensity the
closer is the outcome to 50%:50%). Other attributes represented as percentages (Pct) are
displayed using the spplot of the sp package (top right).

Copyright: Contains National Statistics data © Crown copyright and database right 2016.
Contains NRS data © Crown copyright and database right 2016. Source: NISRA: Website:
http://www.nisra.gov.uk/. Contains OS data © Crown copyright [and database right]
(2016).

http://www.nisra.gov.uk/

24 recmap: Rectangular Statistical Cartograms in R

The following code snippet applies the sp package’s summary and spplot methods after adding
the NI record.

R> DF <- rbind(data.frame(Pct_Leave = UKMapPct_Leave,

+ Pct_Turnout = UKMapPct_Turnout, Pct_Rejected = UKMapPct_Rejected,
+ row.names = UKMapname),

+ data.frame(Pct_Leave = 44.22, Pct_Turnout = 62.69, Pct_Rejected = 0.05,
+ row.names = "Northern\nIreland"))

R> UK.sp <- as.SpatialPolygonsDataFrame(add_NI(UK.recmap), DF)
R> summary (UK. sp)

Object of class SpatialPolygonsDataFrame
Coordinates:
min max
x -554449.5 1073563
y —-596291.6 1072578
Is projected: NA
proj4string : [NA]
Data attributes:

Pct_Leave Pct_Turnout Pct_Rejected
Min. :21.38 Min. :56.25 Min. :0.03000
1st Qu.:47.38 1st Qu.:70.19 1st Qu.:0.06000
Median :54.34 Median :74.30 Median :0.07000
Mean :563.29 Mean :73.69 Mean :0.07283
3rd Qu.:60.49 3rd Qu.:77.89 3rd Qu.:0.08000
Max. :75.56 Max. :83.57 Max. :0.24000

R> spplot(UK.sp, col.regions = diverge_hcl(19)[1:16], layout = c(3, 1))

7. Summary

This article introduces the CRAN recmap package which implements the RecMap MP2 algo-
rithm. This method generates rectangular statistical cartograms. Two outstanding features
of the implemented algorithm are: the areas of the map regions represent the exact statis-
tical value without any area error, and the ratios of the map regions are preserved. These
constraints are important for the correct interpretation of the geography-related statistical
data. It is evident that using these restrictions the map topology cannot be preserved. The
implementation allows the generation of rectangular statistical cartograms having less than
one hundred map regions within a few seconds with the support of a metaheuristic. The
implementation enables an interactive exploratory data analysis. All necessary steps can be
done on the R command line or by using web applications on a modern computer. It has
been demonstrated, how the drawing of the cartogram can be optimized according to a fitness
function by using a metaheuristic and benefiting from today’s multi-core hardware and R’s
parallel environment. Most promising is using a fitness function which is derived from the rel-
ative position error objective function. It should also be highlighted that the method can read
a spreadsheet containing the geographic location. It does not require any complex polygon

Journal of Statistical Software — Code Snippets 25

mesh as input. The potential of the method is shown by using real world maps covering a map
size of three orders magnitude and synthetic data (8 x 8 checkerboard). Table 2 provides an
overview of some rectangular cartogram specification drawn in this manuscript. The recmap
package is a powerful tool in the hand of data analysts, cartographers, or statisticians using
R who want to draw their own statistical rectangular cartograms.

References

Becker RA, Wilks AR, Brownrigg R, Minka TP, Deckmyn A (2016). maps: Draw Geographical
Maps. R package version 3.1.0, URL https://CRAN.R-project.org/package=maps.

Bivand RS, Pebesma E, Gémez-Rubio V (2013). Applied Spatial Data Analysis with R. 2nd
edition. Springer-Verlag. doi:10.1007/978-1-4614-7618-4.

Brunsdon C, Charlton M (2014). getcartr: Front End for Rcartogram Package. R package
version 1.01, URL https://github.com/chrisbrunsdon/getcartr.

Buchin K, Eppstein D, Loffler M, Nollenburg M, Silveira R (2016). “Adjacency-Preserving
Spatial Treemaps.” Computational Geometry, 7(1), 100-122. doi:10.20382/jocg.v7ila6.

Buchin K, Speckmann B, Verdonschot S (2012). “Evolution Strategies for Optimizing Rect-
angular Cartograms.” In N Xiao, M Kwan, MF Goodchild, S Shekhar (eds.), Geographic
Information Science. GIScience 2012, volume 7478 of Lecture Notes in Computer Science,
pp. 29-42. doi:10.1007/978-3-642-33024~-7_3.

Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2016). shiny: Web Application Framework
for R. R package version 0.13.2, URL https://CRAN.R-project.org/package=shiny.

Dorling D (1996). Area Cartograms: Their Use and Creation. 1st edition. Department of
Geography, University of Bristol, England.

Eddelbuettel D, Frangois R (2011). “Repp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.108.

Feo TA, Resende MGC (1995). “Greedy Randomized Adaptive Search Procedures.” Journal
of Global Optimization, 6(2), 109-133. doi:10.1007/bf01096763.

Finkel RA, Bentley JL (1974). “Quad Trees: A Data Structure for Retrieval on Composite
Keys.” Acta Informatica, 4(1), 1-9. doi:10.1007/b£00288933.

Gastner MT, Newman ME (2004). “Diffusion-Based Method for Producing Density-
Equalizing Maps.” Proceedings of the National Academy of Sciences of the United States of
America, 101(20), 7499-7504. doi:10.1073/pnas.0400280101.

Heilmann R, Keim DA, Panse C, Sips M (2004). “RecMap: Rectangular Map Ap-
proximations.” In IEEE Symposium on Information Visualization, pp. 33—40. doi:
10.1109/infvis.2004.57.

Keim DA, North SC, Panse C (2004). “CartoDraw: A Fast Algorithm for Generating Con-
tiguous Cartograms.” IEEE Transactions on Visualization and Computer Graphics, 10(1),
95-110. doi:10.1109/tvcg.2004.1260761.

https://CRAN.R-project.org/package=maps
https://doi.org/10.1007/978-1-4614-7618-4
https://github.com/chrisbrunsdon/getcartr
https://doi.org/10.20382/jocg.v7i1a6
https://doi.org/10.1007/978-3-642-33024-7_3
https://CRAN.R-project.org/package=shiny
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/bf01096763
https://doi.org/10.1007/bf00288933
https://doi.org/10.1073/pnas.0400280101
https://doi.org/10.1109/infvis.2004.57
https://doi.org/10.1109/infvis.2004.57
https://doi.org/10.1109/tvcg.2004.1260761

26 recmap: Rectangular Statistical Cartograms in R

Mcllroy D, Brownrigg R, Minka TP, Bivand R (2015). mapproj: Map Projections. R package
version 1.2-4, URL https://CRAN.R-project.org/package=mapproj.

Nusrat S, Kobourov S (2016). “The State of the Art in Cartograms.” Computer Graphics
Forum, 35(3), 619-642. doi:10.1111/cgf.12932.

Panse C (2018). recmap: Compute the Rectangular Statistical Cartogram. R package version
1.0.0, URL https://CRAN.R-project.org/package=recmap.

Panse C, Sips M, Keim DA, North SC (2006). “Visualization of Geo-spatial Point Sets
via Global Shape Transformation and Local Pixel Placement.” I[EEE Transactions on
Visualization and Computer Graphics, 12(5), 749-756. doi:10.1109/TVCG.2006.198.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R” R News, 5(2),
9-13. URL https://CRAN.R-project.org/doc/Rnews/.

Raisz E (1934). “The Rectangular Statistical Cartogram.” Geographical Review, 24(2), 292
296. doi:10.2307/208794.

Ramey JA (2014). noncensus: U.S. Census Regional and Demographic Data. R package
version 0.1, URL https://CRAN.R-project.org/package=noncensus.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Scrucca L (2013). “GA: A Package for Genetic Algorithms in R” Journal of Statistical
Software, 53(4), 1-37. doi:10.18637/jss.v053.104.

Snyder JP (1997). Flattening the Earth: Two Thousand Years of Map Projections. University
of Chicago Press.

Stabler B (2013). shapefiles: Read and Write ESRI Shapefiles. R package version 0.7, URL
https://CRAN.R-project.org/package=shapefiles.

Temple Lang D (2016). Rcartogram: Interface to Mark Newman’s Cartogram Software. R
package version 0.2-2, URL https://github.com/omegahat/Rcartogram.

Tobler W (2004). “Thirty Five Years of Computer Cartograms.” The Annals of the Association
of American Geographers, 94(1), 58-73. doi:10.1111/j.1467-8306.2004.09401004.x.

Van Kreveld MJ, Speckmann B (2004). “On Rectangular Cartograms.” In S Albers, T Radzik
(eds.), Algorithms — ESA 2004, volume 3221 of Lecture Notes in Computer Science, pp.
724-735. doi:10.1007/978-3-540-30140-0_64.

Van Kreveld MJ, Speckmann B (2007). “On Rectangular Cartograms.” Computational Ge-
ometry, 37(3), 175-187. doi:10.1016/j.comgeo.2006.06.002.

Zeileis A, Hornik K, Murrell P (2009). “Escaping RGBland: Selecting Colors for Statistical
Graphics.” Computational Statistics €& Data Analysis, 53(9), 3259-3270. doi:10.1016/j.
csda.2008.11.033.

https://CRAN.R-project.org/package=mapproj
https://doi.org/10.1111/cgf.12932
https://CRAN.R-project.org/package=recmap
https://doi.org/10.1109/TVCG.2006.198
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.2307/208794
https://CRAN.R-project.org/package=noncensus
https://www.R-project.org/
https://doi.org/10.18637/jss.v053.i04
https://CRAN.R-project.org/package=shapefiles
https://github.com/omegahat/Rcartogram
https://doi.org/10.1111/j.1467-8306.2004.09401004.x
https://doi.org/10.1007/978-3-540-30140-0_64
https://doi.org/10.1016/j.comgeo.2006.06.002
https://doi.org/10.1016/j.csda.2008.11.033
https://doi.org/10.1016/j.csda.2008.11.033

Journal of Statistical Software — Code Snippets

Affiliation:

Christian Panse

Functional Genomics Center Zurich UZH|ETHZ
Winterthurerstr. 190

CH-8057, Zirich, Switzerland

Telephone: +41/44/63-53912

E-mail: cp@fgcz.ethz.ch

URL: http://www.fgcz.ch/the-center/people/panse.html

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

August 2018, Volume 86, Code Snippet 1 Submitted: 2016-06-01
doi:10.18637/jss.v086.c01 Accepted: 2017-06-12

27

mailto:cp@fgcz.ethz.ch
http://www.fgcz.ch/the-center/people/panse.html
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v086.c01

	Introduction
	Problem definition and objective functions
	The package usage
	Input
	Run
	Output

	Implementation
	Choose a metaheuristic
	Greedy randomized adaptive search procedures
	Lessons learned from biological evolution

	Application
	Summary

