
JSS Journal of Statistical Software
August 2018, Volume 86, Code Snippet 1. doi: 10.18637/jss.v086.c01

Rectangular Statistical Cartograms in R:
The recmap Package

Christian Panse
Swiss Federal Institute of Technology Zurich

Abstract

Cartogram drawing is a technique for showing geography-related statistical informa-
tion, such as demographic and epidemiological data. The idea is to distort a map by
resizing its regions according to a statistical parameter by keeping the map recognizable.
This article describes an R package implementing an algorithm called RecMap which
approximates every map region by a rectangle where the area corresponds to the given
statistical value (maintain zero cartographic error). The package implements the compu-
tationally intensive tasks in C++. This paper’s contribution is that it demonstrates on
real and synthetic maps how package recmap can be used, how it is implemented and
how it is used with other statistical packages.

Keywords: cartogram, spatial data analysis, geovisualization, demographics, R.

1. Introduction
The idea of generating a cartogram is to distort a map by resizing its regions according to a
given statistical parameter, but in a way that keeps the map recognizable. These so-called
cartograms or value-by-area maps may be used to visualize any geo-spatial related data, e.g.,
political, economic, or public health data. There exist several algorithms to compute so-called
contiguous cartograms. An overview on historical, hand-drawn, and computer generated
cartograms can be found in Tobler (2004) and Nusrat and Kobourov (2016).
For using contiguous cartograms, the diffusion-based method of Gastner and Newman (2004)
is available through the R packages Rcartogram and getcartr (Temple Lang 2016; Brunsdon
and Charlton 2014).
An alternative approach to contiguous cartograms is to entirely relax the map topology by
approximating each map region by basic geometric objects like rectangles or circles (Dorling
1996). Such rectangular cartograms can be generated from geolocation and statistical data.

https://doi.org/10.18637/jss.v086.c01

2 recmap: Rectangular Statistical Cartograms in R

Alabama

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

D.C.

Florida

Georgia

Idaho

Illinois
Indiana

Iowa

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts
Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New
Hampshire

New
Jersey

New
Mexico

New
York

North
Carolina

North
Dakota

Ohio
Oklahoma

Oregon

Pennsylvania

Rhode
Island

South
Carolina

South
Dakota

Tennessee

Texas

Utah

Vermont

Virginia

Washington

West
Virginia

Wisconsin

Wyoming

Michigan

Figure 1: A rectangular statistical cartogram of the US election in 2004 is drawn. The
area corresponds to the number of electors. Color is indicating the outcome of the vote.
Democrats are represented by the color blue and Republicans are represented through red
coloring. Regions with low saturation, e.g., Ohio, Pennsylvania, and Florida, highlight states
with a tight outcome of the vote (also known as swing states). The election cartogram was
computed by using the original implementation of the construction heuristic RecMap MP2
introduced by Heilmann et al. (2004). Map source: US Census Bureau; election data source:
http://www.electoral-vote.com/, November 2004.

Hence, they provide a useful alternative, even if there are no boundaries available or some
statistical values are missing. First rectangular cartograms were drawn by hand following a
system of construction (Raisz 1934). Recent research publications on rectangular cartogram
drawing include Van Kreveld and Speckmann (2004, 2007); Buchin, Speckmann, and Ver-
donschot (2012) and Buchin, Eppstein, Löffler, Nöllenburg, and Silveira (2016). However,
according to a recent publication, both variants of RecMap (Heilmann, Keim, Panse, and
Sips 2004) are the only rectangular cartogram algorithms that “maintain zero cartographic
error” (Nusrat and Kobourov 2016, section 5.4).
The R (R Core Team 2018) package recmap (Panse 2018) discussed in this article contains an
implementation of the RecMap (Map Partition variant 2) algorithm (Heilmann et al. 2004) to
draw maps according to given statistical parameter. A typical usage of a cartogram based vi-
sualization is demonstrated in Figure 1. Package recmap is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=recmap.
The article is organized as follows: The next section defines the input and output of the
RecMap algorithm and the objective functions. In Section 3, the usage of the recmap pack-
age using the R shell is demonstrated. Section 4 discusses major implementation details and
provides some benchmark and performance studies. Section 5 describes how two metaheuris-
tics can be used to find an optimized cartogram drawing. In Section 6, some applications are
presented. Section 7 summarizes and discuss the approach.

http://www.electoral-vote.com/
https://CRAN.R-project.org/package=recmap

Journal of Statistical Software – Code Snippets 3

2. Problem definition and objective functions

The input consists of a map represented by overlapping rectangles R = (r1, . . . , rn). Each
map region rj contains:

• a tuple of (x, y) values corresponding to the (longitude, latitude) position,

• a tuple of (dx, dy) of expansion along (longitude, latitude),

• and a statistical value z.

The (x, y) coordinates represent the center of the minimal bounding boxes (MBBs). The
coordinates of the MBB are derived by adding or subtracting the (dx, dy) tuple accordingly.
A tuple (dx, dy) also defines the ratio of the corresponding map region. The statistical values
(z1, . . . , zn) determine the desired area of each map region.
The ordering Π is an index vector taken from the permutation set Perm(n).

The output is a rectangular cartogram R where the map regions are:

• non-overlapping,

• connected,

• rectangles are placed parallel to the axes.

Furthermore, for each map region the following criteria have to be satisfied:

• the area is equal to the desired area derived from the as input given statistical value z,

• the ratio, dy/dx, is preserved.

The recmap construction heuristic is a function

f : Rn×2 × Rn×3
>0 × Perm(n) → Rn×2 × Rn×2

>0 , (1)

which transforms the set of input rectangles R and a permutation Π into a rectangular
cartogram

R = f(R,Π), (2)

so that important spatial constraints, in particular

• the topology of the dual graph G(R, E), defined by the overlapping input rectangles,

• the relative position of map region centers,

4 recmap: Rectangular Statistical Cartograms in R

are tried to be preserved.
If the output satisfies these criteria, the rectangular cartogram is denoted as a feasible solution.
The following equations were introduced by Keim, North, and Panse (2004, Definition 1).
The desired area Ãj of a map region rj is defined as

Ãj = zj ·
∑n
i=1A(ri)∑n
i=1 zi

, (3)

where the area of the rectangle r is defined by

A(r) = 4 · dx · dy. (4)

The objective functions for area dA, shape dS (ratios of the MBBs), relative position dR, and
map topology dT , are as defined and described by Heilmann et al. (2004, Equations 2–4):

dA = dA(R,R) (5)

=
n∑
j=1
|Aj − Ãj | (6)

dS = dS(R,R) (7)

=
n∑
j=1
|(dyj/dxj)− (dyj/dxj)| (8)

dT = dT (R,R) (9)

= |Ea\Ea|+ |Ea\Ea|
|Ea ∪ Ea|

, (10)

dR = dR(R,R) (11)

= 2
n · (n− 1) ·

n−1∑
i=1

n∑
j=i+1

|](ri, rj︸ ︷︷ ︸
∈R

)−](r̃i, r̃j︸ ︷︷ ︸
∈R

)| (12)

Note, if ∀j ∈ {1, . . . , n} : Aj = Ãj ⇒ dA = 0 and if ∀j ∈ {1, . . . , n} : dyj/dxj = dyj/dxj ⇒
dS = 0. n = |R| and E denotes the edges of the dual graph. dT determines the differences
in the pseudo dual graphs. dR measures the angle differences between all pairs of rectangle
centers of the input map and output cartogram by using](x, y) defined as follows1:

](x, y) = arctan2(x, y) (13)

To find an optimal rectangular statistical cartogram out of all feasible solutions, as it will
be intended in this manuscript using recmap, the optimization problem can be expressed as
follows:

minimize
Π∈Perm(n)

a · dR + b · dT with a, b ∈ R≥0 (14)

subject to dA = 0, dS = 0. (15)

To find a sufficiently good solution for the optimization problem a metaheuristic, as described
in Section 5, will be applied.

1Implemented using the C++ method std::atan2 – “Computes the arc tangent of y/x using the signs of
arguments to determine the correct quadrant.” http://en.cppreference.com/w/cpp/numeric/math/atan2,
access: 2017-01-01.

http://en.cppreference.com/w/cpp/numeric/math/atan2

Journal of Statistical Software – Code Snippets 5

Term Description Equation
R = (r1, . . . , rn) overlapping input rectangles
(x, y) coordinates represent the center of a rectangle
(dx, dy) expansion along x and y axes
z statistical value of a rectangle
G(R, E) dual graph of R
Π permutation
Ãj desired area of a map region j 3
A(r) area of a rectangle 4
dA area error 5
dS shape error 8
dT topology error 10
dR relative position error 12
](x, y) angle between two points x and y in R2 13
f construction heuristic 1
R output / cartogram 2

Table 1: The table provides a glossary of the used algebraic terms.

3. The package usage

3.1. Input

The US map on the state level is often used to compare cartogram algorithms. To generate
a useful dual graph, which is a requirement of the algorithm, the input map regions have to
overlap. For the state.x77 data used in this section this can be done by correcting lines of
longitude derived from the square roots of the area values (see Figure 2 left).

R> R.version.string

[1] "R version 3.5.1 (2018-07-02)"

R> packageVersion("recmap")

[1] '0.5.37'

R> US.map <- data.frame(x = state.center$x,y = state.center$y,
+ dx = sqrt(state.area) / 2 / (0.7 * 60 * cos(state.center$y *
+ pi / 180)), dy = sqrt(state.area) / 2 / (0.7 * 60),
+ z = sqrt(state.area), name = state.name)
R> head(US.map)

x y dx dy z name
1 -86.7509 32.5901 3.209890 2.704478 227.1761 Alabama
2 -127.2500 49.2500 14.005670 9.142338 767.9564 Alaska
3 -111.6250 34.2192 4.859044 4.017906 337.5041 Arizona

6 recmap: Rectangular Statistical Cartograms in R

4 -92.2992 34.7336 3.338204 2.743370 230.4431 Arkansas
5 -119.7730 36.5341 5.902177 4.742415 398.3629 California
6 -105.5130 38.6777 4.923602 3.843727 322.8730 Colorado

Please note, in general, recmap is not transforming the geodetic datum, e.g., WGS84 or
Swissgrid. Furthermore, geospatial positions have to be mapped from the earth surface to
the plane. This transformation has to be done prior the cartogram generation. An overview
of map projection can be found in Snyder (1997). Map projections aim to optimize towards
different objectives, e.g., conformal mapping (preservation of local angles) or area mapping
(preservation of area). In cartogram publications, the map projection aspect is often ne-
glected, and conformal errors are accepted. However, studying US cartograms, a cylindrical
projection seems to be the projection of choice. The R user can find support for a wide va-
riety of adequate map projections due to using the mapproj package by McIlroy, Brownrigg,
Minka, and Bivand (2015).

3.2. Run
The algorithm takes a data.frame object having the column names c("x", "y", "dx",
"dy", "z", "name"), here the US.map object, as input. Additional control is given by the
index order and the (dx, dy) values. The index order Π defines in which order the dual graph
is explored and the (dx, dy) values define which map regions are adjacent.

R> library("recmap")
R> US.cartogram <- recmap(US.map)

3.3. Output
The recmap method returns an S3 object of class c("recmap", "data.frame") of the trans-
formed map. Additional columns in the result contain information for topology and relative
position error defined in Equations 10 and 12. The column dfn.num indicates in which order
the dual graph has been explored.

R> head(US.cartogram)

x y dx dy z name dfs.num
1 -79.27226 10.40598 3.916894 3.300161 227.1761 Alabama 23
2 -129.22283 63.71115 8.181797 5.340748 767.9564 Alaska 49
3 -126.86923 30.51915 4.819169 3.984933 337.5041 Arizona 34
4 -87.19357 10.42302 3.994415 3.282650 230.4431 Arkansas 39
5 -137.00972 33.40013 5.311325 4.267664 398.3629 California 35
6 -115.35010 62.23315 4.851078 3.787109 322.8730 Colorado 48

topology.error relpos.error relposnh.error
1 6 0.3893223 0.7694393
2 6 0.2883036 0.5287275
3 3 0.2074725 0.2355095
4 8 0.5599091 1.0584316
5 4 0.1761236 0.1878248
6 10 0.6831601 1.1107418

Journal of Statistical Software – Code Snippets 7

Alabama

Alaska

Arizona Arkansas

California

Colorado

Connecticut

Delaware

Florida

Georgia
Hawaii

Idaho

IllinoisIndiana

Iowa

Kansas
Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

Oregon

Pennsylvania

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

Alabama

Alaska

Arizona

Arkansas

California

Colorado

ConnecticutDelaware

Florida

Georgia

Hawaii

Idaho

Illinois
Indiana

Iowa

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

Oregon

Pennsylvania

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

Figure 2: The “usage” example, generated from the “US State Facts and Figures” data in
the datasets package, was used for drawing a rectangular map approximation. The input set
of overlapping rectangles is shown left. A feasible solution thereof generated with recmap is
on the right side. The state area, original size of the map region, is used as statistical value.

The output of the recmap function can be visualized using the S3 plot method for ‘recmap’
objects. The output of the R code snippet can be seen in Figure 2. As default the plot
method for ‘recmap’ objects places the name attribute in the center of each rectangle. The
text is scaled by using cex = dx / strwidth(name) as an argument for the text function
to avoid overplotting of the labels. However small statistical values result in small label
areas. This problem can be circumvented by using an interactive visualization, e.g., using
shiny (Chang, Cheng, Allaire, Xie, and McPherson 2016) the function hoverOpts enables the
“mouseover” feature. Please note that while the input US.map is not classified as an object
of class ‘recmap’, the plot method function for ‘recmap’ objects cannot be used through S3
method dispatch and function plot.recmap has to be explicitly called.

R> op <- par(mfrow = c(1, 2), mar = c(0, 0, 0, 0))
R> plot.recmap(US.map, col.text = "darkred")
R> plot(US.cartogram, col.text = "darkred")

A summary method implements the calculation of some metadata including the objective
functions.

R> summary(US.cartogram)

values
number of map regions 50.000000
area error 0.000000
topology error 266.000000
relative position error 0.420000
screen filling [in %] 36.893585
xmin -146.967409
xmax -34.722706
ymin 7.105818
ymax 73.190904

8 recmap: Rectangular Statistical Cartograms in R

The S3 methods, as.recmap and as.SpatialPolygonsDataFrame, enable the exchange and
the manipulation of geographic data contained in the classes of the sp package (Pebesma and
Bivand 2005; Bivand, Pebesma, and Gómez-Rubio 2013). The following code displays how a
‘recmap’ object can be translated into a ‘SpatialPolygonsDataFrame’ object and back.

R> X <- checkerboard(8)
R> all.equal(X, as.recmap(as.SpatialPolygonsDataFrame(X)))

[1] TRUE

4. Implementation
The RecMap algorithm is implemented in C++ using features provided by the C++-11 stan-
dard. The input and output data transfer between R and the C++ ‘recmap’ class is handled
by using the Rcpp (Eddelbuettel and François 2011) mechanism. The C++ ‘recmap’ class
itself consists of a std::vector of map_region. A map_region contains all the (x, y, dx, dy, z)
values, a std::vector of type int linking to its neighbor map regions, and some additional
help variables to ease the error computation. In general, the construction algorithm follows
the map partition 2 (MP2) procedure described in Heilmann et al. (2004). The local place-
ment function can place any rectangle next to another rectangle as demonstrated in Figure 3.
The current implementation starts with the original bearing α of the two map region centers
(see Figure 3 where β = 0). If the placement does not lead to a feasible solution, the angle β
is added to α. β is iterating between [0, π] with a step size of π

180 and a changing sign until
a placement without overlap has been found. If no placement can be found, the algorithm
considers all adjacent placed map regions. If also in a later step during the depth-first search
(DFS) a map region cannot be placed, a non-feasible solution is accepted. This situation is
often caused because the construction algorithm is hampered by the input configuration of
the map regions. Solving this can be very compute-expensive and often the procedure leads
to a solution which will be rejected by the metaheuristic due to the low fitness value.
Furthermore, no genetic algorithm (metaheuristic) has been implemented. Here recmap will
use the GA package (Scrucca 2013) available on CRAN as demonstrated in Section 5. The
most computationally expensive part is the computation of MBB intersections which has to
be performed to achieve feasible solutions, multiple times, for each placement step. In the
package version 0.2.1 these tests were performed by iterating over each map region. All later
versions use a std::multiset data structure and a std::lower_bound algorithm of the C++
standard template library (STL) to reduce the search space.
The time complexity for one recmap run is O(n2), where n is the number of regions. A DFS
run is visiting each map region only once, and therefore it has time complexity O(n). For each
map_region placement, a constant number of MBB intersection are called (max. 360). The
MBB check is implemented using a std::multiset container, and the functions std::insert,
std::upper_bound, and std::upper_bound. The time complexity for all of these functions is
reported on http://www.cplusplus.com/reference/stl as O(log(n)). However, the worst
case scenario for a range query is O(n), if and only if dx or dy cover the whole x or y range.
The boxplots in Figure 4 (left plot) show that the number of MBB intersection test calls
could be reduced by using a std::multiset data structure. For this benchmark, synthetic

http://www.cplusplus.com/reference/stl

Journal of Statistical Software – Code Snippets 9

fpl : R6 × [− π, π] → R2

x return value

y
re

tu
rn

 v
al

ue

α argument

−3.14
−2.36
−1.57
−0.79
0
0.79
1.57
2.36
3.14

A

β=0

A

B

β=−0.14

A

B

β=0.27

A B

β=−0.41

A

B

β=0.55

A

B

β=−0.69

A

B

β=0.82

A

B

β=−0.96

A

B

β=1.1

A

B

Figure 3: The rainbow colored rectangles graph the feasible positions of a local placement
function fpl to place a rectangle B around a given rectangle A of any angle α between [−π, π]
(left figure). There are special cases for quadrant I, II, III, and IV indicated by different colors
in the graphic. On the right figure, B should be placed around A starting with an angle of π4
(this is the initial relative position in the input map). Since the rectangle cannot be placed
without overlap (indicated by red), an angle β is added.

checkerboards with map regions in the interval of
[
22, . . . , 202] were generated using the

R function checkerboard. For each checkerboard size recmap was called 100 times using
different index orderings of the checkerboard input. The index order of the input records has
a direct impact how the DFS is traversing the map. This characteristic will later be used for
the metaheuristic.

The benchmark was performed on an Apple MacBookPro Laptop having a 2.9 GHz Intel
Core i7 CPU from 2017 using only one core. The experiments were performed on MacOSX
10.13.4, Linux Debian 9 running on a 4.9.06-amd64 kernel and a Windows 10 platform. The
Linux and Windows OS instances were running as virtual machines using VirtualBox. The
middle plot in Figure 4 displays the resulting mean aggregated measured data of the three
(hardware/OS) systems using the two different implementations of the MBB intersection test.
Besides the fact that the Linux system cannot benefit from the more efficient implementation
of the MBB intersection test, the plot in the middle shows that even for an input size of
202 = 400 map regions a rectangular cartogram can be computed in less than a second.

The right plot in Figure 4 was derived from the performance study (plot in the middle).
It shows the number of rectangular cartograms which can be generated within one second
depending on the number of map regions. The gray vertical line indicates the number of the
US map regions. The ability to generate a high number of cartogram candidates in a short
time period is an important requirement for any metaheuristic as is demonstrated in the next
section.

10 recmap: Rectangular Statistical Cartograms in R

●●

●

●●●●●●●●●

●●●

●●

●

●●●●●●●●●

●●●

●●

●

●●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●
●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●●●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●●●

●●●

●●●●●●

●●●

●●●●●●
●●●●●

●●●

●●●●●●●●●

●

●●

●

●
●

●

●
●

●●

●

●●

●

●●

●

●●●

●●●

number of map regions

nu
m

be
r

of
 M

B
B

 in
te

rs
ec

tio
n

ca
lls

1e
+

01
1e

+
03

1e
+

05
1e

+
07

5x5 US 10x10 15x15 20x20

●

●

C++ STL list
C++ STL multiset

number of map regions

m
ed

ia
n

ag
gr

eg
at

ed
 p

ro
ce

ss
 ti

m
e

[in
 s

ec
on

ds
]

L

L

L

L

L

L

L

L

L

L

L

L

L
L

L

L
L

L
L

L

L

L

L

L

L

L

L

L

L

L

L

L
L

L

L
L

L
L

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A
A

A
A

W

W

W

W

W

W

W

W

W

W

W W

W

W W

W
W

W

W

W

W

W

W

W

W

W

W

W
W

W

W W

W
W

●

●

C++ STL list
C++ STL multiset
−A− MacOSX 10.13.4 / 2.9 GHz Intel Core i7
−L− Debian deb9.3 / 2.9 GHz Intel Core i7 (VM)
−W− Windows 10 / 2.9 GHz Intel Core i7 (VM)

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00
5x5 US 10x10 15x15 20x20

number of map regions

nu
m

be
r

of
 r

ec
ta

ng
ul

ar
 c

ar
to

gr
am

s
ge

ne
ra

te
d

pe
r

se
co

nd

●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●●
●●

●

●●
●

●

●●
●

●

●

●
●

●
●●
●●●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●●

●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●
●5

10
50

50
0

50
00

5x5 US 10x10 15x15 20x20

● C++ STL multiset / MacOSX 10.13.4 / 2.9 GHz Intel Core i7

Figure 4: The boxplot (left) graphs the number of MBB intersection test calls for a given
checkerboard size. The graph in the middle displays the mean aggregated measured com-
putation time. The scatterplot (right) displays how many rectangular cartograms can be
generated within one second based on the board size. All y-axes are on logarithmic scale.

5. Choose a metaheuristic
The design of the RecMap algorithm is as follows: First, compute a set of feasible solutions. In
a second evaluation step, choose the best solution. In the current implementation, variations
can be introduced by changing the index order Π of the input data. This order has a direct
impact on the DFS traversal and leads to different cartogram layouts. The objective functions,
Equations 5 to 12, can be used to evaluate the result and to define a fitness function which
has to be maximized. The following R code defines the fitness function which will be used as
default.

R> recmap:::.recmap.fitness

function (idxOrder, Map, ...)
{

Cartogram <- recmap(Map[idxOrder,])
if (sum(Cartogram$topology.error == 100) > 0) {

return(0)
}
1/sum(Cartogram$relpos.error)

}
<environment: namespace:recmap>

Other variants of fitness functions will lead to different results as shown in Heilmann et al.
(2004, Figure 4).
Since it is not possible to compute and evaluate all permutations, which is n!, random exper-
iments are conducted. In the following section, it is demonstrated how two metaheuristics,
GRASP and GA, can be used to find an optimal layout for the rectangular statistical car-
togram.
For a visual evaluation of the metaheuristics, proposed in this section, an 8 × 8 checkerboard
will be used as input map. The map is generated using the checkerboard method.

Journal of Statistical Software – Code Snippets 11

R> Checkerboard <- checkerboard(8)
R> summary(Checkerboard)

values
number of map regions 64.00
area error 0.27
topology error NA
relative position error NA
screen filling [in %] 100.00
xmin 0.50
xmax 8.50
ymin 0.50
ymax 8.50

and can be seen in Figure 5 (left). If the assumption is made, that for each vertex, the
cyclic order of edges in the contiguous cartogram remains the same as in the input map,
checkerboards provide examples of sets of map regions which do not have ideal cartogram
solutions (Keim et al. 2004, Definition 2, Lemma 1, Figure 3).

5.1. Greedy randomized adaptive search procedures

One group of optimizers that is “trivial to efficiently implement” (Feo and Resende 1995) and
can directly benefit from a parallel environment is called greedy randomized adaptive search
procedures (GRASP). The R method recmapGRASP defines a generic GRASP implementation
as described in Feo and Resende (1995, Figure 1). The recmapGRASP function generates a set
of rectangular cartograms which have different layouts caused by the random sampling. Each
cartogram is evaluated. The best candidate is saved. The following command will generate a
cartogram solution based on a GRASP metaheuristic.

R> set.seed(1)
R> res.GRASP <- recmapGRASP(Checkerboard)
R> plot(res.GRASP$Cartogram,
+ col = c("white", "white", "white", "black")[res.GRASP$Cartogram$z])

A drawing of the cartogram can be found in Figure 5 (middle).
For some types of input maps, GRASP can generate amazing results in a short time. As it can
be seen in Figure 5, for the checkerboard, GRASP is outperformed by the genetic algorithm,
introduced in the next section. The plot in Figure 6 (right) shows that the solution process
runs too fast into saturation.

5.2. Lessons learned from biological evolution

In this paragraph, a constraint-based genetic algorithm (GA) as discussed in Heilmann et al.
(2004) is used as metaheuristic. Here the construction heuristic benefits from the existence
of the GA package by Scrucca (2013). The GA configuration used for recmap was directly
derived from the traveling salesperson problem (TSP) example (Scrucca 2013, Section 4.8)
using the permutation type of the ga method. As genotype the index order Π of the input

12 recmap: Rectangular Statistical Cartograms in R

map is used. The following command generates an almost perfect rectangular cartogram for
the checkerboard map having 64 map regions on the author’s laptop (MacBook Pro from
2017, 2.9 GHz Intel Core i7) within 60 seconds.

R> recmap.GA <- ga(type = "permutation", fitness = recmap:::.recmap.fitness,
+ Map = Checkerboard, min = 1, max = nrow(Checkerboard), popSize = 50,
+ maxiter = 300, maxFitness = 1.7, maxiter = 300, pmutation = 0.25)

The metaheuristic stops when a maximum number of iteration has been performed or the fit-
ness value is higher than 1.7. Having reached a fitness value of 0.342 using the recmap.fitness
function the result in Figure 5 (right) looks like an almost “optimal” solution.
The recmapGA function is a higher level wrapper function to glue the recmap construction
heuristic with the metaheuristic ga.

R> res.GA <- recmapGA(Checkerboard, popSize = 50, run = 300, maxiter = 300,
+ seed = 3)
R> summary(res.GA$Cartogram)

values
number of map regions 64.0000000
area error 0.0000000
topology error 294.0000000
relative position error 0.0500000
screen filling [in %] 65.7237172
xmin 0.4088612
xmax 9.9656942
ymin -0.7320998
ymax 9.4571887

R> plot(res.GA$Cartogram,
+ col = c("white", "white", "white", "black")[res.GA$Cartogram$z])

The recmapGA function returns a list of the input Map, the solution of the GA, and a ‘recmap’
object containing the cartogram. The resulting cartograms using a GA can be seen in Figure 5
(right). The red line in Figure 6 (left) indicates in which order the rectangles were placed
using the DFS numbering. The red • symbol marks the first placed rectangle and the � the
last one.
Figure 7 illustrates the variability in solutions, dependent on the initial seed value. The
experiment was repeated twice to demonstrate the effect that the same seed values lead to
the same permutation order Π and finally to the same cartogram construction. As shown
above, the results of the recmap implementation are reproducible on the same platform.
However, due to the numerical ill-condition of the problem special care has to be taken for the
computation of the fitness value. Small differences in the fitness values on different platforms
cause error propagation through iterations of the metaheuristic and derive a different solution
sequence Π and cartogram drawing.
The rectangular map approximations in Figure 8 demonstrate the continuous improvement of
the feasible solutions with an increasing number of generations using the GA as metaheuristic
for the data used in Section 3. The code below defines a weighted fitness function.

Journal of Statistical Software – Code Snippets 13

a1

a2

a3

a4

a5

a6

a7

a8

b1

b2

b3

b4

b5

b6

b7

b8

c1

c2

c3

c4

c5

c6

c7

c8

d1

d2

d3

d4

d5

d6

d7

d8

e1

e2

e3

e4

e5

e6

e7

e8

f1

f2

f3

f4

f5

f6

f7

f8

g1

g2

g3

g4

g5

g6

g7

g8

h1

h2

h3

h4

h5

h6

h7

h8

g2

b3

d5
g5

g8

d1

b5

d7

h3

a2

h1

h7

d6c6

e7

f5c5

b7

b8

e3

e2

c1

a7

g3

a4

b6

h4

b1

f8

c4

d3

h5

h6

e8d8

b4

f3

h2

f4

c7 f7 g7

g4

g1a1

h8

a6

e5

c2 f2
a3

a8

e4

b2

e1

e6

c8

f6 g6

d4

c3

a5

d2

f1

b7

a4

c7

c3

c2

f6

b3

g4

b1

e6

a2

e1

a3

g8

d2

g6

b2

h5

a7

h2

f5

a6

b8

d3

e2

c1

h8

b6

b4

f7

a5

c4

b5

e4

d1

h4

d7

f2
f1

d4

a1

g5d5

g7

g2

c8

h3

h1

h6

e5

g1

f4

d8

d6

e8
a8

c6

g3

c5

f3
e3

e7

f8

h7

Figure 5: A comparison of the input map, GRASP, and GA is displayed. As input map, a 8
× 8 checkerboard (left) has been generated. The area of a black box needs to be four times as
large as the area of a white box. The cartogram in the middle proposes a solution generated
by a GRASP metaheuristic. The right cartogram graphs a solution computed by a genetic
algorithm within one minute.

b7

a4

c7

c3

c2

f6

b3

g4

b1

e6

a2

e1

a3

g8

d2

g6

b2

h5

a7

h2

f5

a6

b8

d3

e2

c1

h8

b6

b4

f7

a5

c4

b5

e4

d1

h4

d7

f2
f1

d4

a1

g5d5

g7

g2

c8

h3

h1

h6

e5

g1

f4

d8

d6

e8
a8

c6

g3

c5

f3
e3

e7

f8
h7

1 2

3

4

5

6 7

8

9

10

11

12

13 14

15

16

17

18
192021

22

23

24

25

26 27

28

29
30

31

32

33
34

35 36

37

38

39

40

41

42
43

44454647

48 49 50

51

52

53

54

55

56

57

58

59

60

61

6263

64

●

start

0 20 40 60 80

0.
15

0.
20

0.
25

0.
30

0.
35

elapsed time [in seconds]

be
st

 fi
tn

es
s

va
lu

e

●

●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●

●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●

●
●●●●●●●●●●●

●●
●●●

●

●

Evolutionary based Genetic Algorithm (GA)
Greedy Randomized Adaptive Search Procedures (GRASP)

Figure 6: On the checkerboard cartogram drawn on the left, the red lines trace the order of
each rectangle placement step of the construction algorithm. The right scatterplot graphs
the best fitness value computed by recmap.fitness versus the elapsed time of the two meta-
heuristics. Each • represents an iteration. The GRASP reaches the plateau after a few
iterations.

R> fitness.weighted <- function (idxOrder, Map, ...) {
+ Cartogram <- recmap(Map[idxOrder,])
+ if (sum(Cartogram$topology.error == 100) > 0) {
+ return(0)
+ }
+

14 recmap: Rectangular Statistical Cartograms in R

Πforward = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

Πreverse = (16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

d4

d3

d2

d1

c4

c3

c2

c1

b4

b3

b2

b1

a4

a3

a2

a1

Π1 = (2, 14, 10, 4, 12, 8, 3, 5, 6, 16, 7, 9, 1, 13, 11, 15)

a2

d2c2

a4 c4b4

a3

b1

b2

d4

b3

c1a1
d1

c3 d3

Π1 = (2, 14, 10, 4, 12, 8, 3, 5, 6, 16, 7, 9, 1, 13, 11, 15)

a2

d2c2

a4 c4b4

a3

b1

b2

d4

b3

c1a1
d1

c3 d3

Π2 = (13, 3, 8, 7, 1, 6, 9, 2, 15, 4, 10, 14, 12, 16, 11, 5)

d1

a3

b4

b3

a1

b2

c1

a2

d3

a4

c2 d2

c4 d4

c3

b1

Π2 = (13, 3, 8, 7, 1, 6, 9, 2, 15, 4, 10, 14, 12, 16, 11, 5)

d1

a3

b4

b3

a1

b2

c1

a2

d3

a4

c2 d2

c4 d4

c3

b1

Π3 = (5, 15, 7, 12, 13, 9, 14, 16, 2, 8, 1, 10, 11, 3, 4, 6)

b1

d3

b3

c4

d1

c1

d2

d4

a2

b4

a1

c2

c3a3

a4

b2

Π3 = (5, 15, 7, 12, 13, 9, 14, 16, 2, 8, 1, 10, 11, 3, 4, 6)

b1

d3

b3

c4

d1

c1

d2

d4

a2

b4

a1

c2

c3a3

a4

b2

Figure 7: This graphical example illustrates the variability in solutions, dependent on the
initial seed value in Πseed. The left column displays forward- and reverse index orders. All
other columns show the results from duplicate seeds {1, 2, 3} to demonstrate that the same
seed will lead to the same index order and the identical layout of the cartogram.

+ S <- summary(Cartogram)
+ dT <- max(Cartogram$topology.error)
+ dR <- S[4,]
+ dE <- (100 - S[5,]) / 100
+
+ 1 / (c(0.2, 0.6, 0.2) %*% c(dT, dR, dE))
+ }
R> set.seed(2)
R> US.map.best <- recmapGA(Map = US.map, fitness = fitness.weighted,
+ maxiter = 100, maxFitness = 100, popSize = 50, keepBest = TRUE,
+ pmutation = 0.35, parallel = TRUE)

Note that the metaheuristic of the space filling quad tree (Finkel and Bentley 1974) based
RecMap MP1 variant could also be realized by using the GA package. Here, instead of a
permutation, a binary representation of decision variables has to be chosen. This can be done
by setting the type attribute of the ga function to "binary". The genotype, given as a binary
vector, is defining the split type of the quad tree data structure. A 1 is applying a vertical
split, while a 0 triggers a horizontal split.

6. Application
This section applies package recmap to some real world maps having numbers of map regions
of different magnitudes and different kind of topology. Beside Figures 1 and 9 the examples fo-
cus more on the demonstration of the drawing characteristics of the recmap method itself and

Journal of Statistical Software – Code Snippets 15

0 20 40 60 80 100

0.
40

0.
44

0.
48

Generation

F
itn

es
s

va
lu

e

●
●

●
●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●
●

●●
●

●●
●

●●●

●
●

●●
●

●
●
●

●
●●●●

●
●

●

●
●

●
●

●
●●

●
●●

●

●
●●

●●

●
●

●

●

●●●
●

●
●●

●

●
●

●
●

●

●
●●

●

●

●

●●
●

●

●

●
●
●
●

●

●●

●●
●●●●

●●●
●
●

●
●

●●

●●
●●

●

●

Best
Mean
Median

Generation

In
de

x
or

de
r

20 40 60 80 100

10
20

30
40

50

South Dakota

Kentucky

Nebraska

Arizona

New York

Mississippi

Wisconsin

Georgia

Washington

Indiana

Michigan

Iowa

Pennsylvania

Alaska

Tennessee

Vermont

Colorado

Maryland

Oklahoma

Massachusetts

Hawaii

Connecticut

Montana

Alabama

Idaho

Missouri

Texas

South Carolina

Virginia

New Hampshire

New Jersey

Oregon

Kansas

Delaware

Louisiana

Utah

Illinois West Virginia

Minnesota

California

Arkansas

North Carolina

North Dakota

New Mexico

Nevada

Wyoming

Rhode Island

Ohio

Florida

Maine

Generation 1

dT = 10
dR = 0.25
dE = 43

Tennessee

Georgia

Washington

Vermont

Colorado

California

Alaska

Idaho

North Dakota

Louisiana

Texas

Nevada

Rhode Island

Oklahoma Arkansas

Mississippi

Alabama

New Hampshire

Indiana

Oregon

Kansas

Minnesota

South Dakota

New York

Maryland

Connecticut

Illinois
Massachusetts

Florida

New Mexico

Virginia

Kentucky

Ohio
Pennsylvania

Iowa

North Carolina

Wisconsin

Missouri

Delaware

Montana

Arizona

New Jersey

Wyoming

West Virginia

South Carolina

Hawaii

Maine

MichiganNebraska

Utah

Generation 6

dT = 9
dR = 0.39
dE = 39

Massachusetts

New Mexico

Kentucky

Ohio

Pennsylvania

Iowa

Wisconsin

Florida

Nevada

Arkansas
Mississippi Oklahoma

Georgia

Hawaii

Montana

Delaware

New Hampshire

Tennessee

Vermont

Illinois

Maine
Alaska

Texas

Washington

Oregon

Virginia

Alabama

Indiana

North Carolina

Maryland

Kansas

Minnesota

South Dakota

Michigan

California

Idaho

Louisiana

Colorado New JerseyUtah

North Dakota

Nebraska

Arizona

Wyoming

Missouri

South Carolina

West Virginia

New York

Connecticut Rhode Island

Generation 12

dT = 9
dR = 0.3
dE = 44

Indiana

New Hampshire

Florida

Arizona

Kansas

Washington

Colorado
Iowa

Maryland
Michigan

Alabama

North Carolina

Minnesota

Delaware

Illinois

Louisiana

Idaho

Tennessee

Alaska

Kentucky

Virginia

New Mexico

Maine

Massachusetts

Vermont

Oregon

Wisconsin

Hawaii

Nebraska

Mississippi

Texas
Georgia

North Dakota

California

Ohio Pennsylvania

Utah

South Carolina

West Virginia

New York

Connecticut Rhode Island

Nevada

Arkansas

Montana

Wyoming

Missouri

South Dakota

Oklahoma

New Jersey

Generation 25

dT = 9
dR = 0.2
dE = 40

Indiana

New Hampshire

Florida

Arizona

Kansas

Washington

Colorado
Iowa

Maryland
Michigan

Alabama

North Carolina

Minnesota

Delaware

Illinois

Louisiana

Idaho

Tennessee

Alaska

Kentucky

Virginia

New Mexico

Maine

Massachusetts

Vermont

Oregon

Wisconsin

Hawaii

Nebraska

Mississippi

Texas
Georgia

North Dakota

California

Ohio Pennsylvania

Utah

South Carolina

West Virginia

New York

Connecticut Rhode Island

Nevada

Arkansas

Montana

Wyoming

Missouri

South Dakota

Oklahoma

New Jersey

Generation 50

dT = 9
dR = 0.2
dE = 40

Alaska Maryland
New York

Mississippi

Virginia

Kansas

Arizona

North Carolina
South Carolina

Louisiana

Rhode Island

New Hampshire

Pennsylvania

Texas

Maine

Massachusetts

Vermont

Oregon

Wisconsin

Nebraska

Montana

Connecticut

Ohio

New Jersey

Florida

Hawaii

Delaware

Minnesota

Alabama

Michigan

Oklahoma

West Virginia

Tennessee

Colorado

California

Nevada Iowa

Idaho

Utah

North Dakota

Indiana

Georgia

New Mexico

Kentucky

Washington

Illinois
Wyoming

Missouri

Arkansas

South Dakota

Generation 100

dT = 9
dR = 0.19
dE = 50

Figure 8: The plot on the top left displays the fitness value during the increasing genera-
tion of the genetic algorithm. The image plot on the top right visualizes the genotype (Π)
change from one generation to the other using a gray colormap for encoding the index order.
The six phenotypes visualize the improvement of the solution with an increasing number of
generations.

16 recmap: Rectangular Statistical Cartograms in R

less on the information visualization scopes. Examples of combining cartogram drawings with
pixel visualization techniques can be found in Panse, Sips, Keim, and North (2006). Figure 13
demonstrates how ‘recmap’ objects can be transformed into ‘SpatialPolygonsDataFrame’
objects.

US state facts and figures based cartograms are displayed in Figure 9. The data
are available from the data frame state.x77. On the cartograms, two statistical data are
displayed using the area and the color of a map region. The colormap was generated by
using the heat_hcl function of the colorspace package by Zeileis, Hornik, and Murrell (2009)
(red is low; white is high). The code below is a wrapper function for the recmap and the ga
functions. A tuple of state.x77 column names is given as input.

R> recmap_state_x77 <- function(input, Map = US.map, DF = state.x77,
+ cm = heat_hcl(10)) {
+ # Join map and data.frame
+ Map <- cbind(Map, DF, match(Map$name, row.names(DF)))
+ attr(Map, "Map.name") <- "U.S."
+ attr(Map, "Map.area") <- input$area
+
+ # Filter
+ Map <- Map[!Map$name %in% c("Hawaii", "Alaska"),]
+
+ # Set attribute for desired area
+ Map$z <- Map[, input$area]
+
+ res <- recmapGA(Map = Map, popSize = 300, maxiter = 30, run = 10)
+
+ # Set attribute for the coloring
+ S <- Map[res$GA@solution[1,], input$color]
+ col.idx <- round((length(cm) - 1) * (S - min(S))/(max(S) - min(S))) + 1
+
+ # Have fun
+ plot(res$Cartogram, col = cm[col.idx], col.text = "black")
+ legend("bottomleft", c(paste("area:", input$area),
+ paste("color:", input$color)), cex = 1.5)
+
+ res
+ }
As input map, the US.map defined in Section 3 is used. The lines below generate the car-
tograms.
R> op <- par(mfrow = c(4, 1), mar = rep(0.25, 4), bg = "white")
R> set.seed(1)
R> recmapGA.x77 <- lapply(list(list(color = "Area", area = "Population"),
+ list(color = "HS Grad", area = "Murder"), list(color = "HS Grad",
+ area = "Income"), list(color = "Life Exp", area = "Illiteracy")),
+ recmap_state_x77)
R> par(op)

Journal of Statistical Software – Code Snippets 17

The fitness values versus the generations are graphed using the plot method of the ‘GA’ class.

R> op <- par(mar = c(5, 5, 3, 3), mfrow = c(4, 1))
R> res <- lapply(cartogram.x77, function(x) {
+ plot(x$GA)
+ })
R> par(op)

US population cartograms on county level showing cartograms of California, Col-
orado, Florida, New Jersey, and New York are displayed in Figure 10. The map material was
extracted from the maps package by Becker, Wilks, Brownrigg, Minka, and Deckmyn (2016)
and the population data were retrieved from the noncensus package by Ramey (2014). The
map regions were joined over the FIPS (Federal Information Processing Standard) county
codes using the counties data frame. The cartograms were generated by using the genetic
algorithm as metaheuristic.
An interactive shiny (Chang et al. 2016) web application is available by running the code
snippet below. It provides more combinations of parameter settings, attributes, and maps
drawn in Figures 5, 8, 9, and 10.

R> library("shiny")
R> recmap_shiny <- system.file("shiny-examples", package = "recmap")
R> shiny::runApp(recmap_shiny, display.mode = "normal")

The last three application examples use the recmapGA function and the following main pa-
rameter setting: one iteration and a population size of 64. Table 2 lists other significant
operational parameters. The seed values were derived by a greedy heuristic to have a proper
starting construction sequence and thereby avoid intensive computing of the replication code
of the manuscript. In praxis, it turned out that a population size similar to the number of
map regions and the maximum number of iteration set to no more than a couple of hundred
are useful initial values.

A population cartogram of Switzerland on community (Gemeinde) level is drawn in
Figure 11. The rectangles of the original map were extracted from an ESRI shape file of the
map data Landschaftsmodelle: GG25 from the Federal Office of Topography (swisstopo) us-
ing shapefiles by Stabler (2013). The following attributes were extracted for each map region:
box, Gemeindecode, and Gemeindename. There are 2300 rectangles to place. The statistical
values (population 2013, published in 2015) were downloaded from Swiss Statistics (Region-
alporträts: Kennzahlen aller Gemeinden (je-d-21.03.01) Bundesamt für Statistik BFS; http:
//www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html) and joined by the
Gemeindecode attribute with the swisstopo map.

A Swiss railway passenger frequency cartogram is graphed on the bottom of Fig-
ure 12. The visualization above shows the overlapping rectangles of all 724 geo-locations
which define the pseudo dual of the map. The data were retrieved from https://data.sbb.
ch/explore/ and contain already the longitude and latitude coordinates of the railway main

http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
https://data.sbb.ch/explore/
https://data.sbb.ch/explore/

18 recmap: Rectangular Statistical Cartograms in R

Map.name

Map.area

Map.number.regions

Map.error.area

GA.population.size

GA.number.generation

GA.pmutation

GA.fitness

GA.parallel

GA.number.recmaps_a_second

Sys.compute.time

Sys.machine

Sys.sysname

U
S
new

jersey
population

21
0.38

105
25

0.25
0.26

FA
LSE

562.40
4.70

x86_
64

Linux
U
S

population
48

0.41
300

14
0.25

0.12
FA

LSE
224.90

18.70
x86_

64
Linux

U
S

m
urder

48
0.37

300
23

0.25
0.12

FA
LSE

222.70
31.00

x86_
64

Linux
U
S

incom
e

48
0.29

300
29

0.25
0.12

FA
LSE

210.70
41.30

x86_
64

Linux
U
S

illiteracy
48

0.40
300

15
0.25

0.12
FA

LSE
220.00

20.50
x86_

64
Linux

U
S

area
50

0.17
50

100
0.35

0.50
FA

LSE
179.20

27.90
x86_

64
Linux

U
S
california

population
58

0.62
290

25
0.25

0.07
FA

LSE
199.50

36.30
x86_

64
Linux

U
S
new

york
population

62
0.67

310
66

0.25
0.10

FA
LSE

143.70
142.40

x86_
64

Linux
checkerboard

8
x
8

1:4
64

0.27
640

10
0.25

0.21
FA

LSE
60.60

105.60
x86_

64
Linux

U
S
colorado

population
64

0.68
320

44
0.25

0.06
FA

LSE
166.20

84.70
x86_

64
Linux

U
S
florida

population
68

0.44
340

28
0.25

0.10
FA

LSE
157.90

60.30
x86_

64
Linux

U
K

num
ber

ofelectorates
370

0.57
64

1
0.25

0.01
T
RU

E
17.10

3.70
x86_

64
Linux

SBB
passagier

frequency
724

0.67
64

1
0.25

0.46
T
RU

E
6.80

9.40
x86_

64
Linux

C
H

population
2300

0.59
64

1
0.25

0.17
T
RU

E
0.40

151.50
x86_

64
Linux

Table
2:

T
he

spreadsheet
provides

a
sum

m
ary

ofthe
statisticalrectangular

cartogram
s
draw

n
in

Figures
5,8,9,10,11,12,and

13
ordered

by
the

num
berofm

ap
regions.A

lllisted
rectangularcartogram

swere
processed

on
IntelC

ore
i5-2500

C
PU

@
3.30G

H
z
having

four
cores

running
D
ebian

9
G
N
U
/Linux.

Journal of Statistical Software – Code Snippets 19

Kansas

Illinois

North Carolina

Louisiana

New Jersey

Washington

Montana

New Mexico

Colorado

Maine

South CarolinaOklahoma

South Dakota

Michigan

Wisconsin

West Virginia

Delaware

Nevada

Virginia

Maryland

New Hampshire

Alabama

Arkansas

Tennessee

Wyoming

Idaho

Arizona

Kentucky

Texas

Minnesota

Georgia

Oregon

Utah

Missouri
California

Connecticut

North Dakota

Vermont

Indiana

Nebraska Iowa

Rhode Island

Pennsylvania

Massachusetts

Ohio

New York

Florida

Mississippi

area: Population
color: Area

Minnesota

Kansas

Texas

Michigan

Tennessee

Rhode Island

Wyoming

Kentucky

Montana

Maryland
California

Indiana
Nevada

Connecticut

New Hampshire

Missouri

Colorado

Oklahoma

Illinois

Georgia

Ohio

North Dakota

South Carolina

Idaho
Pennsylvania

New York

North Carolina

Utah

Nebraska

Wisconsin

Maine

Louisiana

Virginia

Vermont

Arizona

West Virginia

Washington

South Dakota

Alabama

Massachusetts

Delaware

Mississippi

Iowa

Florida

New Mexico

Arkansas

Oregon New Jersey

area: Murder
color: HS Grad

North Carolina

Georgia

Tennessee

South Dakota

New York

Arkansas

California

Missouri

Virginia

Connecticut

Texas

Michigan

Florida

Indiana

Pennsylvania

Louisiana

Delaware

Montana

Arizona

Wyoming

Kentucky

Oregon

West Virginia

New Hampshire

Nebraska

Massachusetts

Iowa

Rhode Island

New Mexico

Nevada

Mississippi

Kansas

Idaho

Colorado

Maine

Vermont

Utah

Wisconsin

New Jersey

Maryland

Alabama

Oklahoma

North Dakota

South Carolina

Illinois Ohio

Washington

Minnesota

area: Income
color: HS Grad

Pennsylvania
Indiana

Missouri

Montana

Delaware

New Hampshire

Ohio
Illinois

Virginia

Maine

Alabama

Arkansas

North Carolina

Oklahoma

Colorado

Connecticut

WisconsinWyoming

Nebraska

South Dakota

Louisiana

Georgia

North Dakota

Vermont

Utah

Oregon

Massachusetts

New York

Mississippi

New MexicoArizona

Minnesota

West Virginia
Maryland

Kansas

South Carolina

Kentucky

Washington

New Jersey

Florida

Tennessee

Nevada

Iowa

Texas

Rhode Island

California

Michigan

Idaho

area: Illiteracy
color: Life Exp

2 4 6 8 10 12 14

0.
06

0.
08

0.
10

0.
12

Generation

F
itn

es
s

va
lu

e

● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●
● ●

●

● ● ● ● ● ● ●
●

●

●

●

Best
Mean
Median

5 10 15 20

0.
06

0.
08

0.
10

0.
12

Generation

F
itn

es
s

va
lu

e

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

● ● ● ●

●
●

● ● ● ●
●

●
●

● ● ●

●

●

Best
Mean
Median

0 5 10 15 20 25 30

0.
06

0.
08

0.
10

0.
12

Generation

F
itn

es
s

va
lu

e

●

● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

● ●
●

● ● ● ● ● ● ●
●

● ●
● ● ●

●

● ●
●

●

●
●

●

●

●

Best
Mean
Median

2 4 6 8 10 12 14

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

Generation

F
itn

es
s

va
lu

e

●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

● ●

●

● ● ● ●
●

●
●

●

●

Best
Mean
Median

Figure 9: Rectangular statistical cartograms using the “US State Facts and Figures” dataset
are drawn. The plots on the right column display the fitness values versus the generation of
the genetic algorithm during the optimization process.

20 recmap: Rectangular Statistical Cartograms in R

Alameda County

Alpine County

Amador County

Butte County

Calaveras County

Colusa County

Contra Costa County

Del Norte County

El Dorado County

Fresno County

Glenn County

Humboldt County

Imperial County

Inyo County

Kern County

Kings County

Lake County

Lassen County

Los Angeles County

Madera County

Marin County

Mariposa County

Mendocino County

Merced County

Modoc County

Mono County

Monterey County

Napa County

Nevada County

Orange County

Placer County

Plumas County

Riverside County

Sacramento County

San Benito County

San Bernardino County

San Diego County

San Joaquin County

San Luis Obispo County

San Mateo County

Santa Barbara County

Santa Clara County

Santa Cruz County

Shasta County

Sierra County

Siskiyou County

Solano County

Sonoma County

Stanislaus County

Sutter County

Tehama County

Trinity County

Tulare County

Tuolumne County

Ventura County

Yolo County

Yuba County

San Bernardino County

Nevada County

Kings County

Merced County

Stanislaus County

San Luis Obispo County

Glenn County

Santa Cruz County

Ventura County

Sutter County

Kern County

Tulare County

San Francisco County

Madera County

San Diego County

San Joaquin County

San Mateo County

Imperial County

Siskiyou County

Sonoma County

Orange County

Sacramento County

Alameda County

Napa County

Solano County

El Dorado County

Marin County

Tehama County

Butte County

Fresno County

Yolo County

Shasta County

Contra Costa County

Santa Clara County

Los Angeles County

Placer County

Riverside County

Santa Barbara County

Monterey County

Yuba County

Adams County

Alamosa County

Arapahoe County

Archuleta County

Baca County

Bent County

Boulder County

Chaffee County

Cheyenne County

Clear Creek County

Conejos County

Costilla County

Crowley County

Custer County

Delta County

Denver County

Dolores County

Douglas County

Eagle County

Elbert County

El Paso County

Fremont County

Garfield County
Gilpin County

Grand County

Gunnison County

Hinsdale County

Huerfano County

Jackson County

Jefferson County

Kiowa County

Kit Carson County
Lake County

La Plata County

Larimer County

Las Animas County

Lincoln County

Logan County

Mesa County

Mineral County

Moffat County

Montezuma County

Montrose County

Morgan County

Otero County

Ouray County

Park County

Phillips County

Pitkin County

Prowers County

Pueblo County

Rio Blanco County

Rio Grande County

Routt County

Saguache County

San Juan County

San Miguel County

Sedgwick County

Summit County

Teller County

Washington County

Weld County

Yuma County

Park County

Adams County

Gunnison County

Chaffee County

Larimer County

Conejos County

Alamosa County

Routt County

Las Animas County

Pueblo County

Otero County

Lake County

Douglas County

Broomfield County

Teller County

Prowers County

Montrose County

Montezuma County

Denver County

Delta County

La Plata County

Moffat County

Arapahoe County

El Paso County

Weld County

San Miguel County

Morgan County

Grand County

Boulder County

Garfield County

Pitkin County

Fremont County

Elbert County

Mesa County

Rio Blanco County

Eagle County

Logan County

Archuleta County

Jefferson County

Summit County

Alachua County

Baker County

Bay County

Bradford County

Brevard County

Broward County

Calhoun County

Charlotte County

Citrus County

Clay County

Collier County

Columbia County

DeSoto County

Dixie County

Duval County

Escambia County

Flagler County

Franklin County

Gadsden County

Gilchrist County

Glades County

Gulf County

Hamilton County

Hardee County

Hendry County

Hernando County

Highlands County

Hillsborough County

Holmes County

Indian River County

Jackson County

Jefferson County

Lafayette County

Lake County

Lee County

Leon County

Levy County

Liberty County

Madison County

Manatee County

Marion County

Martin County

Miami−Dade County

Monroe County

Nassau County

Okaloosa County

Okeechobee County

Orange County

Osceola County

Palm Beach County

Pasco County

Pinellas County
Polk County

Putnam County

St. Johns County

St. Lucie County

Santa Rosa County

Sarasota County

Seminole County

Sumter County

Suwannee County

Taylor County
Union County

Volusia County

Wakulla County

Walton County
Washington County

Lake County

Osceola County

Volusia County

Miami−Dade County

Okaloosa County

Brevard County

St. Lucie County

Okaloosa County

Broward County

Polk County

DeSoto County

Sumter County

Clay County

Flagler County

Levy County

Hillsborough County

Wakulla County

Gadsden County

Seminole County

Leon County

Hendry County

Putnam County

Santa Rosa County

St. Johns County

Palm Beach County

Martin County

Charlotte County

Duval County

Escambia County

Pasco County

Pinellas County

Collier County

Manatee County

Highlands County

Marion County

Hernando County

Indian River County

Lee County

Monroe County

Citrus County

Jackson County

Bay County

Sarasota County

Alachua County

Orange County

Nassau County

Atlantic County

Bergen County

Burlington County

Camden County

Cape May County

Cumberland County

Essex County

Gloucester County

Hudson County

Hunterdon County

Mercer County

Middlesex County

Monmouth County

Morris County

Ocean County

Passaic County

Salem County

Somerset County

Sussex County

Union County

Warren County

Salem County

Mercer County Monmouth County

Gloucester County

Passaic County

Ocean County

Burlington County

Sussex County

Essex County

Bergen County

Warren County

Cumberland County

Hudson County

Somerset County

Hunterdon County

Camden County

Cape May County

Middlesex County

Morris County

Atlantic County

Union County

Albany County

Allegany County

Broome County
Cattaraugus County

Cayuga County

Chautauqua County

Chemung County

Chenango County

Clinton County

Columbia County

Cortland County

Delaware County

Dutchess County

Erie County

Essex County

Franklin County

Fulton County

Genesee County

Greene County

Hamilton County

Herkimer County

Jefferson County

Lewis County

Livingston County

Madison County

Monroe County

Montgomery County

Nassau County

Niagara County

Oneida County

Onondaga County

Ontario County

Orange County

Orleans County

Oswego County

Otsego County

Putnam County

Queens County

Rensselaer County

Rockland County

St. Lawrence County

Saratoga County

Schenectady County

Schoharie County

Schuyler County

Seneca County

Steuben County

Suffolk County

Sullivan County

Tioga County

Tompkins County

Ulster County

Warren County

Washington County

Wayne County

Westchester County

Wyoming County

Yates County

Essex County

Albany County

Columbia County

Fulton County

Kings County

Clinton County

Monroe County

Steuben County
Chautauqua County

St. Lawrence County

Montgomery County

Oneida County

Dutchess County

Yates County

Queens County

Westchester County

Suffolk County

Delaware County

Rensselaer County

Orange County

Nassau County

Livingston County

Tompkins County

Ontario County

Sullivan County

Bronx County

Broome County

Greene County

Richmond County

Cattaraugus County

Erie County

Wayne County

Orleans County

Putnam County

Chemung County

Warren County

Saratoga County

Jefferson County

Oswego County

Onondaga County

Tioga County

Niagara County

Genesee County

Madison County

Rockland County

New York County

Schenectady County

Ulster County

Otsego County

Wyoming County

5 10 15 20 25

0.
04

0
0.

05
0

0.
06

0
0.

07
0

Generation

F
itn

es
s

va
lu

e

● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ●
●

●
●

●

● ● ● ● ●
● ● ●

●
●

●
●

●

●

●

Best
Mean
Median

0 10 20 30 40

0.
03

5
0.

04
5

0.
05

5
0.

06
5

Generation

F
itn

es
s

va
lu

e

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

● ● ●
● ● ● ●

●
● ●

●
●

●
●

● ●
●

●
●

● ●
●

● ● ●
● ● ● ●

● ●
● ● ● ● ● ● ● ● ●

●

●

Best
Mean
Median

0 5 10 15 20 25

0.
06

0.
07

0.
08

0.
09

0.
10

Generation

F
itn

es
s

va
lu

e ●

● ●

● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●
● ● ● ● ●

● ● ●
● ●

●
●

●
●

●
● ●

●
●

● ● ●

●

●

Best
Mean
Median

5 10 15 20 25

0.
14

0.
18

0.
22

0.
26

Generation

F
itn

es
s

va
lu

e

●
●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
●

●
● ●

●
●

●
●

● ●
●

●

●
●

●

●
● ●

●
●

●

●

●

●

Best
Mean
Median

0 10 20 30 40 50 60

0.
06

0.
07

0.
08

0.
09

Generation

F
itn

es
s

va
lu

e

●

●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●●●
●●●

●
●●●

●●
●

●
●

●●●●●●●●●●●●
●●●

●
●

●●●

●

●
●

●●
●

●
●

●●●●●
●●●●

●
●

●●
●

●
●

●●
●

●

●

Best
Mean
Median

Figure 10: US input maps (left) of California, Colorado, Florida, New Jersey, and New York
on county level were used as input to compute 2010 census population cartograms (middle;
top to bottom). On the right column, the fitness values versus the generations are displayed.

Journal of Statistical Software – Code Snippets 21

Zürich

Genève

Basel

Lausanne

Bern

Winterthur

Luzern

St. Gallen

Lugano

Biel/Bienne

Thun

Köniz

La Chaux−de−Fonds

Fribourg

Schaffhausen

Chur

Vernier

Neuchâtel

Uster

Sion

Lancy

Emmen

Yverdon−les−Bains

Zug

Kriens

Rapperswil−Jona

Montreux

Dübendorf

Dietikon

Frauenfeld

Wetzikon (ZH)

Baar

Meyrin

Wädenswil

Kreuzlingen

Bulle

Riehen

Carouge (GE)

Renens (VD)

Allschwil

Wettingen

Aarau

Horgen

Nyon

Vevey

Reinach (BL)

Baden

Bülach

Kloten

Adliswil

Figure 11: A rectangular population cartogram of Switzerland is shown. Map data source:
Swiss Federal Office of Topography using Landscape Models/Boundaries GG25 (http://
www.toposhop.admin.ch/en/shop/products/landscape/gg25_1, downloaded 2016-05-01);
statistical data: Bundesamt für Statistik (BFS), Website Statistik Schweiz (http://www.
bfs.admin.ch/bfs/portal/de/index.html), downloaded file je-d-21.03.01.xls (http:
//www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html) on 2016-05-26.

station and stops. The fitness function below weights the relative position error of regions
with a higher traveler frequency more than map regions with a lower travel frequency.

R> fitness.SBB <- function(idxOrder, Map, ...) {
+ Cartogram <- recmap(Map[idxOrder,])
+ if (sum(Cartogram$topology.error == 100) > 1){return (0)}
+ 1 / sum(Cartogram$z / (sqrt(sum(Cartogram$z^2))) *
+ Cartogram$relpos.error)
+ }

The UK Brexit EU-referendum is shown as a final example in Figure 13. The UK
boundary file was downloaded from https://census.edina.ac.uk/ and joined by the col-
umn name geo_code and Area_Code with the outcome of the referendum downloaded through

http://www.toposhop.admin.ch/en/shop/products/landscape/gg25_1
http://www.toposhop.admin.ch/en/shop/products/landscape/gg25_1
http://www.bfs.admin.ch/bfs/portal/de/index.html
http://www.bfs.admin.ch/bfs/portal/de/index.html
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/02/daten.html
https://census.edina.ac.uk/

22 recmap: Rectangular Statistical Cartograms in R

Zürich HB

Bern

Basel SBB

Lausanne

Winterthur

Luzern

Zürich Oerlikon
Olten Zürich Stadelhofen

Genève

Zürich Hardbrücke
St. Gallen

Zürich Flughafen

Biel/Bienne

Aarau

Zug

Baden

Zürich Altstetten

Thun

Wetzikon

Chur

Neuchâtel

Uster
Lenzburg

Rapperswil

Fribourg

Brugg AG

Vevey

Stettbach

Wil

Zürich HB

Bern
Basel SBB

Lausanne

Winterthur

Luzern

Zürich Oerlikon

Olten

Zürich Stadelhofen

Genève

Zürich Hardbrücke

St. Gallen

Zürich Flughafen

Biel/Bienne

Aarau

Zug

Baden
Zürich Altstetten

Thun

Wetzikon

Chur

Neuchâtel

Uster

Lenzburg

Rapperswil

Fribourg

Brugg AG

Vevey

Stettbach

Wil

Dietikon

Visp

Renens VD

Thalwil

Bülach

Schaffhausen

Nyon

Effretikon

Liestal

Wädenswil

Zürich HB

Bern

Basel SBB

Lausanne

Winterthur

Luzern

Zürich Oerlikon
Olten Zürich Stadelhofen

Genève

Zürich Hardbrücke
St. Gallen

Zürich Flughafen

Biel/Bienne

Aarau

Zug

Baden

Zürich Altstetten

Thun

Wetzikon

Chur

Neuchâtel

Uster
Lenzburg

Rapperswil

Fribourg

Brugg AG

Vevey

Stettbach

Wil

Zürich HB

Bern
Basel SBB

Lausanne

Winterthur

Luzern

Zürich Oerlikon

Olten

Zürich Stadelhofen

Genève

Zürich Hardbrücke

St. Gallen

Zürich Flughafen

Biel/Bienne

Aarau

Zug

Baden
Zürich Altstetten

Thun

Wetzikon

Chur

Neuchâtel

Uster

Lenzburg

Rapperswil

Fribourg

Brugg AG

Vevey

Stettbach

Wil

Dietikon

Visp

Renens VD

Thalwil

Bülach

Schaffhausen

Nyon

Effretikon

Liestal

Wädenswil

Figure 12: A Swiss railway passenger frequency cartogram is shown on the lower map. The
graphic on the top displays the overlapping rectangles of the input map. Source: http:
//sbb.ch/, 2016-05-12.

http://www.electoralcommission.org.uk/ on July 3rd. This example also demonstrates
the usage of the sp package by Bivand et al. (2013).
Through using the S3 method as.SpatialPolygonsDataFrame the ‘recmap’ instance, UK$Map,
has been transformed into a ‘SpatialPolygonsDataFrame’ object.

R> DF <- data.frame(Pct_Leave = UKMapPct_Leave, row.names = UKMapname)
R> spplot(as.SpatialPolygonsDataFrame(UK$Map, DF),
+ col.regions = diverge_hcl(16, alpha = 0.5),
+ main = "Input England/Wales/Scottland")

http://sbb.ch/
http://sbb.ch/
http://www.electoralcommission.org.uk/

Journal of Statistical Software – Code Snippets 23

Input England/Wales/Scottland

20

30

40

50

60

70

Pct_Leave Pct_Turnout Pct_Rejected

0

10

20

30

40

50

60

70

80

Thurrock

South Northamptonshire

Luton

Hastings

New Forest

Basingstoke and Deane

Highland

Lancaster

Elmbridge

Lewisham

Newcastle upon Tyne

Clackmannanshire

Aberdeen City

Mid Suffolk

Dundee City

Oldham

Bromley

Bradford

East Riding of Yorkshire

Horsham

Shropshire

Boston

Cannock Chase

Wealden

North Lanarkshire

Tamworth

Wyre Forest

Bath and North East Somerset

South Holland

Midlothian

Winchester

Kingston upon Hull, City of

Dumfries & Galloway

Havant

Carlisle

Kirklees

Plymouth

Staffordshire Moorlands

Hart

St. Helens

West Lancashire

Wrexham

East Northamptonshire

North Somerset

Newark and Sherwood

Caerphilly

St Edmundsbury

Waveney

North East Lincolnshire

Rochdale

Aberdeenshire

Derby

Richmondshire

Hounslow

North Devon

Blackburn with Darwen

Gravesham

Stockport

Hinckley and Bosworth

Taunton Deane

Warrington

Burnley

Leeds

Doncaster

East Lothian

Maidstone

Swindon

Salford

Charnwood

Stoke−on−Trent

Wiltshire

Carmarthenshire

Ealing

Reigate and Banstead

Trafford

North Hertfordshire

Amber Valley

Oadby and Wigston

West Berkshire

Tonbridge and Malling

Waltham Forest

Cotswold

Runnymede

Shepway

Huntingdonshire

Harrow

Pembrokeshire

East Renfrewshire

East Dunbartonshire

South Hams

Southampton

Bromsgrove

Sefton

Wirral

Stroud

Isle of Wight

Denbighshire

East Dorset

East Cambridgeshire

Enfield

Croydon

Ashfield

Northampton

The Vale of Glamorgan

Torbay

South Kesteven

Medway

Bolton

Suffolk Coastal

Sutton

Great Yarmouth

Bracknell Forest

Hyndburn

Angus

South Norfolk

Haringey

Redcar and Cleveland

Exeter

West Lindsey

Swansea

Purbeck

Greenwich

Southwark

Barnet

South Staffordshire

Gosport

Manchester

Wandsworth

Cheltenham

Broadland

North East Derbyshire

Gloucester

Cheshire East

Powys

Maldon

Argyll & Bute

Uttlesford

Preston

Blaby

Worthing

Calderdale

Rother

Camden

Daventry

Ipswich

Milton Keynes

Adur

Christchurch

Sevenoaks

Central Bedfordshire

Colchester

Halton

North Dorset

North Ayrshire

Hillingdon

Crawley

Surrey Heath

Broxbourne

Cardiff

South Somerset

Telford and Wrekin

Blaenau Gwent

Falkirk

Fenland

Chorley

Wigan
Stafford

Sunderland

Havering

Vale of White Horse

Hartlepool

Ceredigion

Arun

Waverley

Bournemouth

Barrow−in−Furness

Hertsmere

North Warwickshire

Craven

County Durham

Mole Valley

Isle of Anglesey

Harlow

Dover

Sheffield

Chesterfield

Epping Forest

Dacorum

Broxtowe

Bury

South Ayrshire

Neath Port Talbot

North Tyneside

Watford

Wakefield

Torridge

East Hampshire

Islington

Hambleton

Solihull

Kettering

Renfrewshire

Brighton and Hove

Edinburgh, City of

Guildford

Birmingham

East Lindsey

North Norfolk

Moray

Flintshire

Stockton−on−Tees

Harborough

Eden

Eilean Siar

Aylesbury Vale

Canterbury

Bristol, City of

Gwynedd

Hackney

Coventry

Three Rivers

Chiltern

Knowsley

Peterborough

Chelmsford

Middlesbrough

South Tyneside

Brentwood

Monmouthshire

West Dorset

Forest of Dean

Bassetlaw

Perth & Kinross

West Dunbartonshire

Barnsley

Tewkesbury

West Lothian

York

Redbridge

Fife

SelbyPendle

Forest Heath

Sedgemoor

South Lanarkshire

Sandwell

South Gloucestershire

Tower Hamlets

Torfaen

Lincoln

Redditch

Lichfield

Glasgow City

Worcester

Newport

East Ayrshire

Herefordshire, County of

Gedling

Kensington and Chelsea

Fareham

South Oxfordshire

Wolverhampton

Inverclyde

West Oxfordshire

Stirling

Braintree

Rushmoor

Liverpool

Barking and Dagenham

Fylde

Darlington

Basildon
Babergh

Melton

South Bucks

Ribble Valley

Corby

Bolsover

Orkney Islands

Ashford

Scarborough

Southend−on−Sea

Bexley

Conwy

Walsall

Mansfield

Mid Sussex

North Lincolnshire

Eastleigh

Reading

Rhondda Cynon Taf

Dartford

Poole

Hammersmith and Fulham

South Lakeland

Tunbridge Wells

Cherwell

Harrogate

Spelthorne

Malvern Hills

Epsom and Ewell

Stratford−on−Avon

Oxford

Merton

Warwick

Breckland

Wyre

Cheshire West and Chester

High Peak

Richmond upon Thames

Castle Point

Bridgend

West Devon

Rutland

Rossendale

Cambridge

Dudley

Tameside

Wychavon

East Devon

Newcastle−under−Lyme

Lambeth

Slough

Windsor and Maidenhead

South Derbyshire

Rugby

West Somerset

Scottish Borders

Wellingborough

East Staffordshire

Mendip

Ryedale

Leicester

Tandridge

Derbyshire Dales

Brent

Eastbourne

Rochford

Wycombe

Norwich

South Cambridgeshire

South Ribble

Lewes

North West Leicestershire

Kingston upon Thames

Nottingham

Thanet

Teignbridge

Erewash

Test Valley

Bedford

King's Lynn and West Norfolk

Wokingham

North Kesteven

Tendring

Allerdale

Copeland

Newham

Chichester

Rotherham

Swale

Portsmouth

Merthyr Tydfil

WokingMid Devon

Nuneaton and Bedworth

Blackpool

Rushcliffe

Northern
Ireland

Figure 13: The outcome of the UK Brexit EU-referendum is displayed. Northern Ireland was
manually added. The overlapping MBBs of the input map are displayed in the top left. On all
other plots, the region areas represent the number of the electorates. The colors are indicating
the outcome of the referendum (blue: remain/red: leave; the lower the color intensity the
closer is the outcome to 50%:50%). Other attributes represented as percentages (Pct) are
displayed using the spplot of the sp package (top right).
Copyright: Contains National Statistics data © Crown copyright and database right 2016.
Contains NRS data © Crown copyright and database right 2016. Source: NISRA: Website:
http://www.nisra.gov.uk/. Contains OS data © Crown copyright [and database right]
(2016).

http://www.nisra.gov.uk/

24 recmap: Rectangular Statistical Cartograms in R

The following code snippet applies the sp package’s summary and spplot methods after adding
the NI record.

R> DF <- rbind(data.frame(Pct_Leave = UKMapPct_Leave,
+ Pct_Turnout = UKMapPct_Turnout, Pct_Rejected = UKMapPct_Rejected,
+ row.names = UKMapname),
+ data.frame(Pct_Leave = 44.22, Pct_Turnout = 62.69, Pct_Rejected = 0.05,
+ row.names = "Northern\nIreland"))
R> UK.sp <- as.SpatialPolygonsDataFrame(add_NI(UK.recmap), DF)
R> summary(UK.sp)

Object of class SpatialPolygonsDataFrame
Coordinates:

min max
x -554449.5 1073563
y -596291.6 1072578
Is projected: NA
proj4string : [NA]
Data attributes:

Pct_Leave Pct_Turnout Pct_Rejected
Min. :21.38 Min. :56.25 Min. :0.03000
1st Qu.:47.38 1st Qu.:70.19 1st Qu.:0.06000
Median :54.34 Median :74.30 Median :0.07000
Mean :53.29 Mean :73.69 Mean :0.07283
3rd Qu.:60.49 3rd Qu.:77.89 3rd Qu.:0.08000
Max. :75.56 Max. :83.57 Max. :0.24000

R> spplot(UK.sp, col.regions = diverge_hcl(19)[1:16], layout = c(3, 1))

7. Summary
This article introduces the CRAN recmap package which implements the RecMap MP2 algo-
rithm. This method generates rectangular statistical cartograms. Two outstanding features
of the implemented algorithm are: the areas of the map regions represent the exact statis-
tical value without any area error, and the ratios of the map regions are preserved. These
constraints are important for the correct interpretation of the geography-related statistical
data. It is evident that using these restrictions the map topology cannot be preserved. The
implementation allows the generation of rectangular statistical cartograms having less than
one hundred map regions within a few seconds with the support of a metaheuristic. The
implementation enables an interactive exploratory data analysis. All necessary steps can be
done on the R command line or by using web applications on a modern computer. It has
been demonstrated, how the drawing of the cartogram can be optimized according to a fitness
function by using a metaheuristic and benefiting from today’s multi-core hardware and R’s
parallel environment. Most promising is using a fitness function which is derived from the rel-
ative position error objective function. It should also be highlighted that the method can read
a spreadsheet containing the geographic location. It does not require any complex polygon

Journal of Statistical Software – Code Snippets 25

mesh as input. The potential of the method is shown by using real world maps covering a map
size of three orders magnitude and synthetic data (8 × 8 checkerboard). Table 2 provides an
overview of some rectangular cartogram specification drawn in this manuscript. The recmap
package is a powerful tool in the hand of data analysts, cartographers, or statisticians using
R who want to draw their own statistical rectangular cartograms.

References

Becker RA, Wilks AR, Brownrigg R, Minka TP, Deckmyn A (2016). maps: Draw Geographical
Maps. R package version 3.1.0, URL https://CRAN.R-project.org/package=maps.

Bivand RS, Pebesma E, Gómez-Rubio V (2013). Applied Spatial Data Analysis with R. 2nd
edition. Springer-Verlag. doi:10.1007/978-1-4614-7618-4.

Brunsdon C, Charlton M (2014). getcartr: Front End for Rcartogram Package. R package
version 1.01, URL https://github.com/chrisbrunsdon/getcartr.

Buchin K, Eppstein D, Löffler M, Nöllenburg M, Silveira R (2016). “Adjacency-Preserving
Spatial Treemaps.” Computational Geometry, 7(1), 100–122. doi:10.20382/jocg.v7i1a6.

Buchin K, Speckmann B, Verdonschot S (2012). “Evolution Strategies for Optimizing Rect-
angular Cartograms.” In N Xiao, M Kwan, MF Goodchild, S Shekhar (eds.), Geographic
Information Science. GIScience 2012, volume 7478 of Lecture Notes in Computer Science,
pp. 29–42. doi:10.1007/978-3-642-33024-7_3.

Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2016). shiny: Web Application Framework
for R. R package version 0.13.2, URL https://CRAN.R-project.org/package=shiny.

Dorling D (1996). Area Cartograms: Their Use and Creation. 1st edition. Department of
Geography, University of Bristol, England.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Feo TA, Resende MGC (1995). “Greedy Randomized Adaptive Search Procedures.” Journal
of Global Optimization, 6(2), 109–133. doi:10.1007/bf01096763.

Finkel RA, Bentley JL (1974). “Quad Trees: A Data Structure for Retrieval on Composite
Keys.” Acta Informatica, 4(1), 1–9. doi:10.1007/bf00288933.

Gastner MT, Newman ME (2004). “Diffusion-Based Method for Producing Density-
Equalizing Maps.” Proceedings of the National Academy of Sciences of the United States of
America, 101(20), 7499–7504. doi:10.1073/pnas.0400280101.

Heilmann R, Keim DA, Panse C, Sips M (2004). “RecMap: Rectangular Map Ap-
proximations.” In IEEE Symposium on Information Visualization, pp. 33–40. doi:
10.1109/infvis.2004.57.

Keim DA, North SC, Panse C (2004). “CartoDraw: A Fast Algorithm for Generating Con-
tiguous Cartograms.” IEEE Transactions on Visualization and Computer Graphics, 10(1),
95–110. doi:10.1109/tvcg.2004.1260761.

https://CRAN.R-project.org/package=maps
https://doi.org/10.1007/978-1-4614-7618-4
https://github.com/chrisbrunsdon/getcartr
https://doi.org/10.20382/jocg.v7i1a6
https://doi.org/10.1007/978-3-642-33024-7_3
https://CRAN.R-project.org/package=shiny
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/bf01096763
https://doi.org/10.1007/bf00288933
https://doi.org/10.1073/pnas.0400280101
https://doi.org/10.1109/infvis.2004.57
https://doi.org/10.1109/infvis.2004.57
https://doi.org/10.1109/tvcg.2004.1260761

26 recmap: Rectangular Statistical Cartograms in R

McIlroy D, Brownrigg R, Minka TP, Bivand R (2015). mapproj: Map Projections. R package
version 1.2-4, URL https://CRAN.R-project.org/package=mapproj.

Nusrat S, Kobourov S (2016). “The State of the Art in Cartograms.” Computer Graphics
Forum, 35(3), 619–642. doi:10.1111/cgf.12932.

Panse C (2018). recmap: Compute the Rectangular Statistical Cartogram. R package version
1.0.0, URL https://CRAN.R-project.org/package=recmap.

Panse C, Sips M, Keim DA, North SC (2006). “Visualization of Geo-spatial Point Sets
via Global Shape Transformation and Local Pixel Placement.” IEEE Transactions on
Visualization and Computer Graphics, 12(5), 749–756. doi:10.1109/TVCG.2006.198.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R.” R News, 5(2),
9–13. URL https://CRAN.R-project.org/doc/Rnews/.

Raisz E (1934). “The Rectangular Statistical Cartogram.” Geographical Review, 24(2), 292–
296. doi:10.2307/208794.

Ramey JA (2014). noncensus: U.S. Census Regional and Demographic Data. R package
version 0.1, URL https://CRAN.R-project.org/package=noncensus.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical
Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.

Snyder JP (1997). Flattening the Earth: Two Thousand Years of Map Projections. University
of Chicago Press.

Stabler B (2013). shapefiles: Read and Write ESRI Shapefiles. R package version 0.7, URL
https://CRAN.R-project.org/package=shapefiles.

Temple Lang D (2016). Rcartogram: Interface to Mark Newman’s Cartogram Software. R
package version 0.2-2, URL https://github.com/omegahat/Rcartogram.

Tobler W (2004). “Thirty Five Years of Computer Cartograms.” The Annals of the Association
of American Geographers, 94(1), 58–73. doi:10.1111/j.1467-8306.2004.09401004.x.

Van Kreveld MJ, Speckmann B (2004). “On Rectangular Cartograms.” In S Albers, T Radzik
(eds.), Algorithms – ESA 2004, volume 3221 of Lecture Notes in Computer Science, pp.
724–735. doi:10.1007/978-3-540-30140-0_64.

Van Kreveld MJ, Speckmann B (2007). “On Rectangular Cartograms.” Computational Ge-
ometry, 37(3), 175–187. doi:10.1016/j.comgeo.2006.06.002.

Zeileis A, Hornik K, Murrell P (2009). “Escaping RGBland: Selecting Colors for Statistical
Graphics.” Computational Statistics & Data Analysis, 53(9), 3259–3270. doi:10.1016/j.
csda.2008.11.033.

https://CRAN.R-project.org/package=mapproj
https://doi.org/10.1111/cgf.12932
https://CRAN.R-project.org/package=recmap
https://doi.org/10.1109/TVCG.2006.198
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.2307/208794
https://CRAN.R-project.org/package=noncensus
https://www.R-project.org/
https://doi.org/10.18637/jss.v053.i04
https://CRAN.R-project.org/package=shapefiles
https://github.com/omegahat/Rcartogram
https://doi.org/10.1111/j.1467-8306.2004.09401004.x
https://doi.org/10.1007/978-3-540-30140-0_64
https://doi.org/10.1016/j.comgeo.2006.06.002
https://doi.org/10.1016/j.csda.2008.11.033
https://doi.org/10.1016/j.csda.2008.11.033

Journal of Statistical Software – Code Snippets 27

Affiliation:
Christian Panse
Functional Genomics Center Zurich UZH|ETHZ
Winterthurerstr. 190
CH-8057, Zürich, Switzerland
Telephone: +41/44/63-53912
E-mail: cp@fgcz.ethz.ch
URL: http://www.fgcz.ch/the-center/people/panse.html

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
August 2018, Volume 86, Code Snippet 1 Submitted: 2016-06-01
doi:10.18637/jss.v086.c01 Accepted: 2017-06-12

mailto:cp@fgcz.ethz.ch
http://www.fgcz.ch/the-center/people/panse.html
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v086.c01

	Introduction
	Problem definition and objective functions
	The package usage
	Input
	Run
	Output

	Implementation
	Choose a metaheuristic
	Greedy randomized adaptive search procedures
	Lessons learned from biological evolution

	Application
	Summary

