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Abstract

In modern applications large amounts of data are produced at a high rate and are
characterized by relationship structures changing over time. Principal component anal-
ysis (PCA) and multiple correspondence analysis (MCA) are well established dimension
reduction methods to explore relationships within a set of variables. A critical step of
the PCA and MCA algorithms is a singular value decomposition (SVD) or an eigen-
value decomposition (EVD) of a suitably transformed matrix. The high computational
and memory requirements of ordinary SVD and EVD make their application impractical
on massive or sequential data sets. A series of incremental SVD/EVD approaches are
available to address these issues. The idm R package is introduced that implements two
efficient incremental SVD approaches. The procedures in question share desirable prop-
erties that ease their embedding in PCA and MCA. The package also provides functions
for producing animated visualizations of the obtained solutions. A comparison of online
MCA implementations in terms of accuracy is also included.

Keywords: singular value decomposition, dimensionality reduction, principal component anal-
ysis, correspondence analysis.

1. Introduction
Principal component analysis (PCA; Jolliffe 2002) as well as multiple correspondence analy-
sis (MCA; Greenacre 2007) are well established methods for exploratory analysis and visu-
alization of high dimensional data sets. In modern applications, with large amounts of data
being produced at a high rate, the applicability of PCA or MCA is unfeasible, or even im-
possible, because of the limitations that affect eigenvalue decomposition (EVD) and singular
value decomposition (SVD), that are at the core of PCA and MCA. In particular, with X
a matrix of n observations and Q attributes, the computational complexity of EVD

(
X>X
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and SVD(X) is O(Q3) and O(n2Q), respectively, assuming n ≥ Q (Golub and Van Loan
2012). Therefore, the application of EVD and SVD becomes unfeasible for large data sets
and impossible for data streams, as the general implementations require all the data to be
available when the analysis starts. Several proposals in the literature aim to overcome the
limitations of EVD and SVD; the different approaches can be roughly classified into batch
and incremental. Batch methods aim to increase the computational efficiency of EVD and
SVD, extending their applicability to very large data sets. For EVD, iterative algorithms
such as the LR and the QR (Golub and Van Loan 2012), are widely used for finding the
eigenvalues of X. The LR algorithm is based on the successive triangular decomposition of
X, whereas the QR algorithm makes use of unitary transformations. Under certain condi-
tions, both algorithms converge to upper triangular form, thereby revealing the eigenvalues of
X. On the SVD side, the bilinear diagonalization Lanczos methods considerably reduce the
computational complexity of the procedure (Baglama and Reichel 2005).
Incremental methods aim to update an existing decomposition when new data comes in se-
quentially, i.e., in the case of data streams. Incremental EVD/SVD is widely used in image
analysis and face recognition (see, e.g., an incremental PCA implementation in Zhao, Yuen,
and Kwok (2006)). Incremental decomposition methods can be roughly classified into the
following categories (see Cardot and Degras (2018) for a detailed review): i) pertubation
mehods (Hegde, Principe, Erdogmus, Ozertem, Rao, and Peddaneni 2006); ii) stochastic op-
timization and related methods (Sanger 1989; Oja 1992; Weng, Zhang, and Hwang 2003;
Mitliagkas, Caramanis, and Jain 2013), iii) randomized algorithms (Warmuth and Kuzmin
2008); iv) secular equations (Gu and Eisenstat 1994) and v) heuristic techniques for incremen-
tal EVD/SVD (Zha and Simon 1999; Levey and Lindenbaum 2000; Hall, Marshall, and Martin
2002; Ross, Lim, Lin, and Yang 2008; Baker, Gallivan, and Van Dooren 2012). The methods
of the last family are particularly interesting, since they are computationally efficient and
share desirable properties that ease their embedding in both PCA and MCA (Iodice D’Enza
and Markos 2015).
There are several packages in R (R Core Team 2018) that implement PCA, MCA and their
variants: package FactoMineR (Lê, Josse, and Husson 2008) provides a wide range of factor
analysis methods; package ca (Nenadić and Greenacre 2007) is specific for simple and multi-
ple correspondence analysis, with several options for interpretation and visualization; package
ade4 (Thioulouse and Dray 2007) provides standard PCA and MCA for the analysis of eco-
logical and environmental data. In all these packages, computations are based on ordinary
EVD and SVD eigensolvers.
Efficient batch EVD/SVD implementations are also provided in R: the svd package (Ko-
robeynikov and Larsen 2017) is a bridge to the C library TRLAN (Wu and Simon 2010)
that uses state of the art eigensolvers, including the thick-restart Lanczos method (Wu and
Simon 2000); package irlba (Baglama, Reichel, and Lewis 2018) implements the implicitly
restarted Lanczos method for SVD; package rARPACK (Qiu and Mei 2016) is a wrapper
of the ARPACK library for large scale eigendecompositions (Lehoucq, Sorensen, and Yang
1998). Also, packages corpcor (Schaefer, Opgen-Rhein, Zuber, Ahdesmäki, Duarte Silva, and
Strimmer 2017) and gmodels (Warnes, Bolker, Lumley, and Johnson 2015) provide efficient
computations of the SVD.
A series of incremental EVD/SVD methods embedded in the context of PCA, have been re-
cently implemented in the onlinePCA package (Degras and Cardot 2016) and were thoroughly
compared in terms of computational accuracy (Cardot and Degras 2018).
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In this paper, the idm R package (Iodice D’Enza, Markos, and Buttarazzi 2018) is intro-
duced that implements two efficient methods for block-wise incremental eigendecomposition,
namely eigenspace arithmetics (Hall et al. 2002) and block incremental SVD with mean up-
date (Ross et al. 2008), and embeds these methods in dimension reduction techniques for
both interval (PCA) and categorical (MCA) data. In particular, for MCA, two variants are
implemented (Iodice D’Enza and Markos 2015). The first one refers to the exact case and
is suitable when all the data is available from the beginning of the analysis, whereas the
second one refers to the online case i.e., when new data comes in sequentially, as in data
streams. Package idm is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=idm.
The idm package shares the same purpose with package onlinePCA, that is, to provide incre-
mental dimension reduction methods, but it differs in the following aspects. First, in addition
to incremental PCA, package idm provides incremental MCA implementations. Second, the
two incremental decomposition methods provided in package idm are not included in package
onlinePCA. Therefore, in this context, we are also interested in comparing all these methods
against each other in terms of computational accuracy, especially when used to provide online
MCA solutions. The third distinguishing feature of the idm package lies in the animated plots
that the user can easily produce to display evolving PCA and MCA solutions. To facilitate
the interpretation, static ggplot2 graphs (Wickham 2009) are complemented by animated
two-dimensional plots, created with the animation package (Xie 2013). Animated plots are
particularly appealing since they allow to monitor the evolution of PCA and MCA solutions
as new data blocks arrive.
The paper is structured as follows. In Section 2, PCA and MCA are briefly introduced as
matrix decomposition techniques, whereas their incremental versions are described in Sec-
tion 3. The package description is provided by means of applicative examples in Section 4. A
comparison between online MCA algorithms in terms of computational accuracy on simulated
and real data is offered in Section 5. A discussion in Section 6 concludes the paper.

2. Dimension reduction methods as a matrix decomposition
This section provides a brief introduction to PCA and MCA from a matrix decomposition
viewpoint. Let X be an n×Q data matrix, where n is the number of observations and Q is
the number of quantitative attributes. We refer in this section to covariance PCA, with the
Q attributes on their original scale, whereas in correlation PCA the Q attributes are scaled
to have a unit variance (see, e.g., Borgognone, Bussi, and Hough 2001). In this setting, the
PCA of X amounts to the SVD of the following matrix

SPCA = n−1/2
(
X− n−111>X

)
Q−1/2, (1)

where 1 is an n-dimensional vector of ones. The decomposition is SPCA = UΣV>, where
U is an n × Q orthonormal matrix with left singular vectors on columns, Σ is a diagonal
matrix containing the Q singular values and V is a Q × Q matrix of right singular vectors.
The jth singular value corresponds to the standard deviation of data along the direction of
the jth singular vector, j = 1, . . . , Q. Let Ũ and Ṽ be the first d columns of U and V
and let Σ̃ be the matrix of the first d singular values, then ŨΣ̃Ṽ> is the rank-d matrix
that approximates SPCA in the least-squares sense. The principal coordinates for rows and
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columns are F = n1/2ŨΣ̃ and G = Q1/2ṼΣ̃, respectively.
We define MCA in a very similar way. Let Z be an n × Q binary matrix, where n is the
number of observations and Q the total number of categories that characterize q categorical
variables. The general element is zij = 1 if the ith observation is characterized by the jth
category, zij = 0 otherwise. Let P = 1

n×q Z be the so-called correspondence matrix, where
n × q is the grand total of Z. The core step of MCA is the matrix decomposition of the
standardized residual matrix S, defined as follows

SMCA = D−1/2
r

(
P− rc>

)
D−1/2

c , (2)

where r and c are the row and column margins of P, respectively; Dr and Dc are diagonal
matrices with values in r and c. As for PCA, the MCA lies in the SVD of SMCA = UΣV>, and
the principal coordinates in the d-dimensional space are F = D−1/2

r ŨΣ̃ for the observations,
and G = D−1/2

c ṼΣ̃ for the attributes.

3. Incremental dimension reduction
In order to describe an incremental scheme for PCA and MCA we first introduce some neces-
sary definitions. An eigenspace is a collection of the quantities needed to define the result of a
matrix eigendecomposition, as it involves eigenvalues (singular values), eigenvectors (singular
vectors), data mean and size. In particular, with respect to the SVD, for an n1×Q matrix X1
and an n2 × Q matrix X2, we can specify two eigenspaces as Ω1 = (n1,µ1,U1,Σ1,V1) and
Ω2 = (n2,µ2,U2,Σ2,V2). The aim of incremental decomposition is to obtain an eigenspace

Ω3 for the row-wise concatenated matrix
[
X1
X2

]
, using uniquely the information in Ω1 and

the matrix X2. The total number of observations and the global data mean can be easily
updated: n3 = n1 + n2 and µ3 = n1µ1+n2µ2

n3
.

3.1. Incremental block-wise PCA

The incremental version of PCA is a straightforward adaptation of the eigenspace arithmetics
approach (Hall et al. 2002). As pointed out by Hall et al. (2002) adding new data to an
existing eigenspace rotates the eigenvectors (singular vectors) and it scales the eigenvalues
according to the data spread. Therefore the eigenvectors in V3 are linear combinations of
the already available ones, V1. In order to deal with a change in dimension, a basis sufficient
span V3 is constructed, where V1 is augmented by v, the latter given by

v = orth (ψ [H,h]) . (3)

The orth(·) operator stands for a Gram-Schmidt orhogonalization procedure, ψ discards very
small column vectors from the matrix, and v is the set of t eigenvectors that are outside the
eigenspace Ω1; H is the null space of both V1 and V2; h is the component of the vector
joining the means (µ1 − µ2) that lies in the null space of both subspaces. More specifically,

H = V2 −V1V>1 V2 and h = (µ1 − µ2)−V1V>1 (µ1 − µ2) .
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Finally, the merged eigenvectors are given by V3 = [V1,v] R, where R is an orthonormal
matrix obtained from the SVD of the following block matrix:[

Σ1U>1 V>1 V2Σ2U>2
0 v>V2Σ2U>2

]
+
[
V>1 (µ1 − µ3) 1n1 V>1 (µ2 − µ3) 1n2

v> (µ1 − µ3) 1n1 v> (µ2 − µ3) 1n2

]
= RΣU>, (4)

where 1n is an n-dimensional vector of ones.
The remaining elements of the SVD-based eigenspace Ω3 are given by

Σ3 = Σ and U3 = U. (5)

The row and column principal coordinates of Ω3 are given by F = n
1/2
3 U3Σ3 and G =

Q1/2V3Σ3, respectively.
Note that for each analyzed data block, X, it is assumed that n > Q. When the matrix
has more attributes than observations, that is when Q > n, it is more convenient to perform
an EVD on XX> to obtain U and then compute V by means of the transition formula,
V = X>UΣ−1. The case when the whole data set is Q� n, however, has peculiarities that
will be briefly discussed in Section 6.
It is important to outline that the obtained PCA solution using the incremental method
described above is exact, in the sense that it collapses into the ordinary PCA solution on
the covariance matrix. If the PCA solution on the correlation matrix is needed, then the Q
attributes need to be scaled in advance. Moreover, the addition of eigenspaces is commutative
and associative, which is convenient for a parallel implementation (see Hall et al. 2002).
In terms of computational complexity, the starting and the incoming eigenspaces need a total
of O(n2

1 +n2
2)Q operations. In addition, eigenspace merging requires at most O(Q+n2

2 +1)2Q
operations. When computer memory is a limiting factor, the method is expected to yield much
lower space complexity than the ordinary PCA algorithm. A drawback of this procedure,
however, is that it requires computing all eigenelements of the covariance matrix. Therefore,
it is more suitable when the whole data set is available in advance, as in the case of large
data sets, than in online settings.

3.2. Incremental block-wise MCA

Setting the problem in an MCA framework, it is necessary to derive the matrix to be decom-
posed and the data mean. This is because, in the case of MCA, variables are transformed
according to the margins of each data block. In particular, we first express the standardized
residual matrix of Equation 2 in covariance matrix form:

S = Z
Q
√
n

D−1/2
c︸ ︷︷ ︸

X1

−1n
1√
n

1T
c D1/2

c︸ ︷︷ ︸
µT

1

, (6)

where X1 = 1
Q
√

n
ZD−1/2

c is the n1 ×Q row-wise centered matrix of the first data block and
µ1 = 1√

n
D1/2

c 1 is the data mean. For an incoming data block, we obtain the corresponding
n2 ×Q matrix X2.
Two different MCA approaches can be defined. If the whole data matrix is known in advance,
then the final or global column margins are also known and the eigenspace Ω3 of the super
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matrix
[
X1
X2

]
can be obtained using the eigenspace arithmetics method of Hall et al. (2002), as

in the case of incremental PCA. This leads to an exact MCA solution. Similar to incremental
PCA, the starting and the incoming eigenspaces need a total of O(n2

1 + n2
2)Q operations. In

addition, eigenspace merging requires at most O(k + n2
2 + 1)2Q operations, where k = Q− q

is the number of singular values needed for a full MCA solution.
When the whole data set is not known in advance, then the final MCA solution is approximate
and Ω3 can be obtained using block incremental SVD with mean update, a method proposed
by Ross et al. (2008). This method exploits the relationship between the QR decomposition
and the SVD to incrementally compute the left and right singular vectors. The complexity of
the algorithm is similar to that of the exact case, with a crucial difference: eigenspace merging
requires approximately O(d+n2

2 +1)2Q operations, where d 6 k. This is a decisive advantage
of incremental SVD over eigenspace arithmetics, because it does not require computing all
k eigenelements, if one is only interested in the d largest eigenvalues. Therefore it is more
appropriate for a live or online MCA approach.
The incremental SVD is based on the following lemma.

Lemma. Given the SVD of X1 = U1Σ1V>1 ,[
X1
X2

]
=
[
U1 0
0 I

] [
Σ1 0
L HQ>

] [
V>1
Q

]
,

where L = X2V1, Q is a result from the QR-decomposition of H = X2 − LV>1 and I is the
identity matrix. In order to take into account the varying mean, the vector

√
nm

n+m (µ2 − µ1)
was added to X2.

Proof. Let L = X2V1 be the projection of X2 onto the orthogonal basis V1 and H =
X2 − LV>1 the orthogonal component of L. Apply a QR-decomposition to H to obtain Q.
Thus, H = X2 − LV>1 ⇔ X2 = H + LV>1 ⇔ X2 = HQ>Q + LV>1 . Therefore,[

U1 0
0 I

] [
Σ1 0
L HQ>

] [
V>1
Q

]
=
[

U1Σ1V>1
LV>1 + HQ>Q

]
=
[

X1
X2.

]

Apply the SVD to the matrix
[
Σ1 0
L HQ>

]
to obtain UmΣmV>m.

Finally, U3 =
[
U1 0
0 I

]
Um , Σ3 = Σm, V3 = V>m

[
V>1
Q

]
.

In each update, the new row and column margins are given by D(3)
r = n−1

3 and D(3)
c =(

n1D(1)
c + n2D(2)

c
)
n−1

3 , respectively. Thus, D(3)
c is set to be the average of the “local” margins

or the margins of the merged data blocks. Finally, row and column principal coordinates are
given by F3 =

(
D(3)

r
)−1/2

U3Σ3 and G3 =
(
D(3)

c
)−1/2

V3Σ3, respectively.

For a thorough treatment of incremental MCA see Iodice D’Enza and Markos (2015).
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Data set Description
tweet The data set refers to a small corpus of 7,296

messages or tweets mentioning seven major hotel
brands (Iodice D’Enza and Markos 2015).

women Data related to 2,107 Spanish working women and the
effect of their work on the family (Greenacre 2010).

enron Presence/absence of 80 words in 39,861 e-mail mes-
sages. The data is a subset of the Enron e-mail corpus
from the UCI Machine Learning Repository (Dua and
Karra Taniskidou 2017).

Function Description
add_es Addition of two eigenspaces using the incremental

methods of Hall et al. (2002) or Ross et al. (2008).
do_es Computation of the eigenspace of a data matrix.
i_mca Computation of the incremental multiple correspon-

dence analysis solution using either exact or live
methods.

i_pca Computation of the incremental principal component
analysis solution using the method of Hall et al.
(2002).

plot method for ‘i_mca’ objects Static or animated graphical visualization of the in-
cremental multiple correspondence analysis solution.

plot method for ‘i_pca’ objects Static or animated graphical visualization of the in-
cremental principal component analysis solution.

update method for ‘i_mca’ objects Update of a given multiple correspondence analysis
solution using the method proposed by Ross et al.
(2008).

update method for ‘i_pca’ objects Update of a given principal component analysis solu-
tion using the method proposed by Hall et al. (2002).

Table 1: Summary of the idm package contents.

4. Package description and illustrative examples

In this section, the features of the package are illustrated through real data examples. First,
incremental PCA is demonstrated with the HCS data set provided by the caret package (Kuhn
2008). Then, two incremental MCA approaches, exact and live, are demonstrated with the
enron and the tweet data sets. The former is taken from the UCI Machine Learning Repos-
itory (Dua and Karra Taniskidou 2017) while the latter was reported by Iodice D’Enza and
Markos (2015).

The incremental block-wise PCA and MCA techniques described in Section 3 are implemented
in the idm package, adopting the standard S3 object-oriented system. They can be performed
by invoking the main functions i_pca() and i_mca(), respectively. Accordingly, the plot()
function allows for both static and animated graphical visualizations of the solution. The
complete list of functions and data sets available in package idm is summarized in Table 1.
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Arguments Description
data1 Matrix or data frame of starting data or full data if data2 = NULL.
data2 Matrix or data frame of incoming data.
current_rank Rank of approximation or number of components to compute; if empty,

the full rank is used.
nchunk Number of incoming data chunks (equal splits of data2, default = 2) or

a vector with the row size of each incoming data chunk.
disk Logical indicating whether the output is saved to hard disk (default =

FALSE).

Output Description
rowpcoord Row scores on the principal components.
colpcoord Variable loadings.
eg A list describing the eigenspace of a data matrix, with components: u:

left eigenvectors; v: right eigenvectors; m: number of cases; d: eigenvalues;
orgn: data mean.

sv Singular values.
inertia.e Percentage of explained variance.
levelnames Attribute labels.
rowctr Row contributions.
colctr Column contributions.
rowcor Row squared correlations.
colcor Column squared correlations.
nchunk A copy of nchunk in the return object.
disk A copy of disk in the return object.
allrowcoord A list containing the row scores on the principal components produced

after each data chunk is analyzed; returned only when disk = FALSE.
allcolcoord A list containing the variable loadings on the principal components pro-

duced after each data chunk is analyzed; returned only when disk =
FALSE.

allrowctr A list containing the row contributions after each data chunk is analyzed;
returned only when disk = FALSE.

allcolctr A list containing the column contributions after each data chunk is ana-
lyzed; returned only when disk = FALSE.

allrowcor A list containing the row squared correlations produced after each data
chunk is analyzed; returned only when disk = FALSE.

allcolcor A list containing the column squared correlations produced after each data
chunk is analyzed; returned only when disk = FALSE.

Table 2: List of i_pca() arguments and output with description.

4.1. Incremental PCA: HCS data

An incremental PCA can be performed by invoking the i_pca() function that requires two
arguments, which can be matrices or data frames, and returns a list of objects of class ‘i_pca’.
The description of the available arguments along with the related output is reported in Table 2.
Incremental PCA is demonstrated using data from high-content screening (HCS), which refers
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to quantitative information about cells, collected through the analysis of their microscopic
images. Several features are usually measured (e.g., size, fluorescence intensity, shape, just to
cite a few; see Giuliano et al. (1997) for an overview about the HCS approach). The data set
used in this example comes from a study conducted by Hill, Lapan, Li, and Haney (2007),
aimed to investigate the impact of image segmentation on HCS. The attributes in the HCS
data set are measurements of cells. Since multiple attributes refer to a particular characteristic
of the cell (e.g., size, shape, morphology) it is reasonable to expect, in a supervised setting,
multicollinearity among predictors. Predictive models prefer predictors to be uncorrelated (or
at least with low correlation), therefore a common approach is to define a limited number of
linear combinations of the attributes via PCA and fit the predictive model using the obtained
orthogonal components. This is done both to limit model complexity, as an alternative to
model selection and regularization (see, e.g., Gareth, Witten, Hastie, and Tibshirani 2013)
and to deal with multicollinearity.
The HCS data set is available in the caret package (Kuhn 2008) in its pre-processed version as
used in Kuhn and Johnson (2013) to apply PCA prior to segmentation. The HCS data set is
organized in a 2,019 ×61 data frame, where the first column is the cell identification number,
the second column indicates whether the cell was originally used either in the training or
test sample, and the third column is the class variable indicating if the cell was either poorly
or well segmented. These first three variables will be excluded from our analysis, while the
remaining 58 cell features will be used to perform an incremental PCA.
After installing the idm package from the Comprehensive R Archive Network (CRAN), the
package and the HCS data set are loaded:

R> library("idm")
R> data("segmentationData", package = "caret")

An incremental PCA is performed by sequentially adding 20 blocks of cells to the PCA
solution of the first 150 cells via the following commands:

R> HCS <- scale(segmentationData[, -(1:3)])
R> colnames(HCS) <- abbreviate(colnames(HCS), minlength = 5)
R> data1 <- HCS[1:150, ]
R> data2 <- HCS[151:2019, ]
R> res_iPCA <- i_pca(data1, data2, nchunk = 20)

First, variable names are abbreviated to the first 5 characters in order to improve the readabil-
ity of the plots. The data1 argument specifies the first data block on which PCA is applied
and consists of the first 150 rows of the HCS data set. Then, data2 indicates the incoming
data that will be used to update the existing PCA solution, consisting of the remaining 1, 869
rows. The nchunk argument specifies that the incoming observations (rows) will be splitted
into 19 equal blocks of 93 cells and one (last) block of 102 cells, and will be sequentially
added to the PCA solution. Notice that the number of retained principal components after
each incremental update is the maximum possible, i.e., 58, which corresponds to the full rank
solution. Fewer dimensions can be specified through the current_rank argument. Moreover,
in this example, the HCS variables are initially standardized to have zero mean and unit stan-
dard deviation, so that results are equivalent to the analysis of the correlation matrix. The
i_pca() function returns the list of objects reported in Table 2. When disk = FALSE, the
PCA output of each data chunk is returned in lists allrowcoord, allcolcoord, etc.
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Arguments Description
x Principal component analysis object returned by i_pca or the update

method for ‘i_pca’ objects.
dims Numerical vector of length 2 indicating the dimensions to plot on horizon-

tal and vertical axes, respectively; the first dimension is horizontal and
the second dimension is vertical.

what Vector of two logicals specifying the contents of the plot(s). The first entry
indicates if the scatterplot of observations is displayed and the second
entry if the correlation circle of the variable loadings is displayed (default
= c(TRUE, TRUE) shows both plots).

dataname String prefix used for custom naming of output files; by default, it is the
name of the output object.

labels String vector of variable labels.
animation Logical indicating whether animated GIF or PDF files are created and

saved to the hard drive or a static plot is created (default = TRUE).
frames Number of animation frames shown per iteration (default = 10); appli-

cable only when animation = TRUE.
zoom Logical indicating whether axes limits change during the animation cre-

ating a zooming effect; applicable only when animation = TRUE.
movie_format Specifies if the animated plot is saved in the working directory either in

default = "gif" or "pdf" format.
... Further arguments passed to the plot() function.

Table 3: List of arguments for the plot method for ‘i_pca’ objects with description.

If the full data set is not available in advance or the user wants to mimic the online update
process, the S3 function update() can instead be used to handle one update at a time, as
follows:

R> data(segmentationData, package = "caret")
R> HCS <- scale(segmentationData[, -(1:3)])
R> colnames(HCS) <- abbreviate(colnames(HCS), minlength = 5)
R> res_PCA <- i_pca(HCS[1:200, ])
R> aa <- seq(from = 201, to = nrow(HCS), by = 200)
R> aa[length(aa)] <- nrow(HCS) + 1
R> for (k in 1:(length(aa) - 1)) {
+ res_PCA <- update(res_PCA, HCS[c((aa[k]):(aa[k + 1] - 1)), ])
+ }

The i_pca() function is initially called to create a starting PCA solution of the first 200 ob-
servations. The ten remaining blocks are subsequently added, one at a time, using update().
The first nine blocks of data consist of 200 rows, while the last block consists of 218 rows.
The final solution can be visualized via the plot() function by passing as argument an object
of class ‘i_pca’. Hence, the plot method for ‘i_pca’ objects makes a two-dimensional map of
the object created by the function i_pca() (or the update method for ‘i_pca’ objects) with
respect to the selected principal components. The description of the available arguments for
the plot method for ‘i_pca’ objects is given in Table 3.
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Figure 1: Static PCA representation for the HCS data set with respect to principal components
1 (horizontal) and 2 (vertical). (a) Scatterplot of the 2,019 HCS observations. (b) Correlation
circle of the 58 attributes.

The animation argument specifies whether a static or an animated representation of the PCA
solution will be obtained. The animations are produced using the animation package (Xie
2013) and the animated PDF file should be viewed using Adobe Acrobat Reader. In order to
create the animated displays, ImageMagick (or GraphicsMagick) needs to be installed on the
user’s system. When movie_format = "pdf" the following files are produced: a stand-alone
"pdf" file containing the animation, a TEX file with the LATEX code that can be embedded in
a manuscript or Beamer presentation, and another PDF file containing all the single frames
of the animation. When movie_format = "gif", a GIF file is produced that contains all the
frames. In practice, the animated plots turn out to be more helpful for the interpretation,
and allow the user to monitor the evolution of incremental PCA results.
The static plot of the final solution for the HCS data invokes the following command:

R> plot(res_iPCA, animation = FALSE)

The two-dimensional scatterplot of the observations is reproduced in Figure 1(a). The hor-
izontal axis represents the first principal component that explains about 21% of the total
variance, while the vertical axis represents the second principal component that accounts for
about 17% of the variance. The dims argument allows the user to specify which dimensions
are to be plotted, with default dims = c(1, 2). The res_iPCA$inertia.e object can be
invoked to explore the variance retained by each principal component. For instance, the first
five components explain about 62% of the total variation, while the first ten components
explain about 78% of total variation. The variance explained by the first twenty components
is above 90%. Hence, the 58 dimensions of the HCS data set can be substantially reduced by
using PCA. This is not entirely surprising, as this technique is widely applied in high-content
screening.
The correlation circle, depicted in Figure 1(b), represents the variable loadings with respect
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(a) (b)

Figure 2: Animated incremental PCA representation for the HCS data set with respect to prin-
cipal components 1 (horizontal) and 2 (vertical). (a) Scatterplot of the 2,019 cells. (b) Cor-
relation circle of the 58 attributes (the control panel below the plots enables to activate the
animation).

to the first two principal components. Two well separated groups of variables can be dis-
tinguished: one contributing more to the first principal component (i.e., SP2AC, WdtC1,
FbLC1, among many others), and one contributing more to the second principal component
(i.e., TtlC4, DIDC4, VrlC4 and others). In addition, it can be clearly observed that many
variables, those showing very short segments in Figure 1(b), provide very small contributions
to the first two principal components. The interpretation of the graphical output can also
be facilitated by the use of the so-called row and column contributions (res_iPCA$rowctr,
res_iPCA$colctr) and correlations (res_iPCA$rowcor, res_iPCA$colcor) allowing to de-
tect among the observations and the attributes which ones are well projected and which ones
contribute more to the construction of the axes.
In order to visualize the various steps leading to the final PCA solution, the animated plot
can be obtained via the following command:

R> plot(res_iPCA, animation = TRUE, frames = 25, movie_format = "pdf")

The frames argument specifies the number of animation frames shown per iteration. The
animation argument is set, by default, equal to TRUE.
The animated plots for the HCS data set are reproduced in Figure 2. In particular, the
animated scatterplot of the observations on the two-dimensional subspace is reproduced in
Figure 2(a). The animation takes place in twenty steps. First, a remarkable anticlockwise
rotation takes place when the first incoming data block (93 cells) is added to the initial
data block (150 cells). While the PCA solution continues to update, the plot shows how



Journal of Statistical Software – Code Snippets 13

the sequence of the remaining 19 blocks of observations distributes with respect to the first
two principal components. Then, when the last block of data arrives (102 observations), the
animation converges to the final solution. It is important to note that the PCA solution
referring to the starting data block (specified with the data1 argument), is already on the
plot when the second data block arrives.
Additional information can be deduced from the animated plot focusing on the correlation
patterns among variables, reproduced in Figure 2(b). For instance, some correlations become
stronger as more information becomes available. The animated plot can also reveal if variables
initially contributing more to one principal component turn out to contribute more to another
principal component once the PCA has arrived at its final solution. Nonetheless, the animated
plot clearly reveals which blocks of incoming observations (cells) substantially alter the PCA
solution.

4.2. Incremental “exact” MCA: Enron data

The two versions of incremental MCA can be applied through the i_mca() function. The
function requires two arguments, which can be matrices or data frames, and returns a list of
objects of class ‘i_mca’. The description of available arguments, along with the related output
is reported in Table 4. In particular, through the method argument, it is possible to specify
which approach is to be implemented. When method = "exact", dimensionality reduction
is based on the method proposed by Hall et al. (2002), that is suitable when all the data is
available from the beginning of the analysis. On the other hand, when method = "live",
dimensionality reduction is based on the method proposed by Ross et al. (2008), that refers
to the case when new data comes in, as in data streams. As mentioned in Section 3.2, the
main difference between "exact" and "live" lies in the calculation of the column margins of
the input matrix; see Iodice D’Enza and Markos (2015) for further details.
An incremental MCA using the exact method is applied to a subset of the Enron e-mail
corpus from the UCI Machine Learning Repository (Dua and Karra Taniskidou 2017). The
Enron corpus is a collection of 39,861 e-mail messages with roughly 6 million tokens and a
28,102 terms vocabulary. From the original corpus, we selected the 80 most frequent words
and created a binary 39,681 ×80 presence/absence data set.
After loading the data, an exact incremental MCA solution can be obtained by:

R> data("enron", package = "idm")
R> data1 <- enron[1:500, ]
R> data2 <- enron[501:39861, ]
R> res_iMCAh <- i_mca(data1, data2, method = "exact", nchunk = 10)

where data1 represents the starting data over which MCA is applied, while data2 contains the
incoming data used to update the starting MCA solution. In addition, the nchunk argument
specifies that the incoming data is split into ten equally-sized data blocks.
The results can be visualized via the plot() function. The arguments available for the plot
method for ‘i_mca’ object are equivalent to those reported in Table 3 for the plot method
for ‘i_pca’ objects. A notable difference is that the plot (either static or animated) can be
customized by the contrib argument so that:
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Arguments Description
data1 Matrix or data frame of starting data or full data if data2 = NULL.
data2 Matrix or data frame of incoming data.
method String specifying the type of implementation: "exact" or "live".
current_rank Rank of approximation or number of components to compute; if empty,

the full rank is used.
nchunk Number of incoming data chunks (equal splits of data2, default = 2) or

a vector with the row size of each incoming data chunk.
ff Number between 0 and 1 indicating the “forgetting factor” used to down-

weight the contribution of earlier data blocks to the current solution.
When ff = 0 (default) no forgetting occurs; applicable only when method
= "live".

disk Logical indicating whether the output is saved to hard disk (default =
FALSE).

Output
rowpcoord Row principal coordinates.
colpcoord Column principal coordinates.
rowcoord Row standard coordinates.
colcoord Column standard coordinates.
sv Singular values.
inertia.e Percentages of explained inertia.
levelnames Column labels.
rowctr Row contributions.
colctr Column contributions.
rowcor Row squared correlations.
colcor Column squared correlations.
rowmass Row masses.
colmass Column masses.
nchunk A copy of nchunk in the return object.
disk A copy of disk in the return object.
ff A copy of ff in the return object.
allrowcoord A list containing the row principal coordinates produced after each data

chunk is analyzed; returned only when disk = FALSE.
allcolcoord A list containing the column principal coordinates produced after each

data chunk is analyzed; returned only when disk = FALSE.
allrowctr A list containing the row contributions after each data chunk is analyzed;

returned only when disk = FALSE.
allcolctr A list containing the column contributions after each data chunk is ana-

lyzed; applicable only when disk = FALSE.
allrowcor A list containing the row squared correlations produced after each data

chunk is analyzed; returned only when disk = FALSE.
allcolcor A list containing the column squared correlations produced after each data

chunk is analyzed; returned only when disk = FALSE.

Table 4: List of i_mca() arguments and output with description.
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Figure 3: (a) Animated incremental MCA representation for the enron data set using the
exact approach with respect to dimensions 1 (horizontal) and 2 (vertical). (b) Static batch
MCA representation for the enron data set given by plot(i_mca(enron), binary = TRUE,
animation = FALSE), where binary = TRUE is used to display word presence only (the con-
trol panel below plot (a) enables to activate the animation).

• if contrib = "none", contributions are not indicated in the plot (default);

• if contrib = "cor", the larger the size of an attribute label, the higher its relative
contribution;

• if contrib = "ctr", the larger the size of an attribute label, the higher its absolute
contribution.

When the data is binary or indicate presence/absence, another argument specific to the
plot method for ‘i_mca’ objects is binary, a logical indicating whether only the categories
associated with presence will be displayed on the plot.
The animated plot of exact incremental MCA on the enron data set is obtained invoking the
command:

R> plot(res_iMCAh, animation = TRUE, what = c(FALSE, TRUE), binary = TRUE,
+ frames = 25, movie_format = "pdf")

The animated plot is reproduced in Figure 3(a) and can be compared with the results provided
by a batch MCA on the same data (Figure 3(b)). The final solution obtained by exact
incremental MCA is equivalent to that provided by batch MCA. The inertia explained by the
first two dimensions approximates 23%. Words close to each other are related in that they
occur together in the same e-mail messages.

4.3. Incremental “live” MCA: Twitter data
The “live” approach turns out to be especially useful when the entire data set is not available
from the beginning of the analysis. In particular, following Ross et al. (2008), the MCA
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solution is updated when new data blocks arrive, as in the case of data streams. For instance,
consider the tweet data set available in the idm package. The data consists of 7,296 tweets
mentioning seven major hotel brands, extracted via the twitteR package (Gentry 2015) within
a time period of six days. The variables considered are:

• Brand: the hotel brand mentioned in the tweets (Hilton, Intercontinental, Marriott,
Bestwestern, Starwood, Hyatt, Choice), coded as 1 to 7.

• Sentiment: a sentiment polarity variable on a four-point scale (negative “−”, mixed
“+/−”, positive “+”, very positive “++”), coded as 1 to 4.

• UserVis: the user popularity/visibility given by number of followers in Twitter on a
three-point scale (low, medium, high), coded as 1 to 3.

An online MCA can be performed via the i_mca() function, setting the method argument
equal to "live". An additional parameter, the forgetting factor ff, can be used to give
exponentially less weight to older data blocks. A value of ff = 1 (default value) implies that
no past data is forgotten at every update of the solution. After loading the data set, the
results according to the live approach are obtained invoking the commands:

R> data("tweet", package = "idm")
R> data1 <- tweet[1:100, ]
R> data2 <- tweet[101:7296, ]
R> res_iMCAl <- i_mca(data1, data2, method = "live", current_rank = 2,
+ nchunk = 5)

First, the starting MCA solution is computed over the first 100 tweets. Then, five equally
sized data blocks are sequentially analyzed. A reduced-rank solution is obtained by keeping
only the first current_rank = 2 dimensions. It is important to outline that the i_mca()
function immitates in a way the data stream scenario, as the whole data set is available in
advance. The update method for ‘i_mca’ objects can instead be used to handle one update
at a time.
The solution, either static or animated, can be visualized by using the plot method for
‘i_mca’ objects. To facilitate interpretation, custom attribute labels are provided. Hence, the
animated maps of live MCA are given by:

R> labels <- c("HLTN", "ICN", "MRT", "BWN", "SWD", "HYT", "CH",
+ "-", "-/+", "+", "++", "Low", "Med","High")
R> plot(res_iMCAl, labels = labels, animation = TRUE, movie_format = "pdf")

The maps of Figure 4 show how tweet and attribute associations change as new data becomes
available. Focusing on the final configurations, the first (horizontal) axis opposes Marriott
hotels, receiving very positive comments (left of axis) to the others (right of axis). The second
(vertical) axis opposes Hilton hotels, associated with negative comments mostly made by users
of low visibility (bottom of axis) to all the others (top of axis). The corresponding static plots
can also be obtained with the plot method for ‘i_mca’ objects.
Consequently, while the exact approach can deal with large data sets, the greatest value of
the live approach is that it well suits the nature of data streams.
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(a) (b)

Figure 4: Animated incremental MCA representation for the tweet data set using the live
approach with respect to dimensions 1 (horizontal) and 2 (vertical). (a) Tweets and (b) at-
tributes (the control panel below the plots enables to activate the animation).

5. A comparison of online MCA approaches

A recent study by Cardot and Degras (2018) presented a series of incremental approaches that
lead to online PCA and compared their statistical accuracy, computation time, and memory
requirements. Seven incremental algorithms were considered: block stochastic power method
(BSP; Mitliagkas et al. 2013), incremental PCA (IPCA; Arora, Cotter, Livescu, and Srebro
2012), block incremental PCA (BIPCA; Levey and Lindenbaum 2000), generalized Hebbian
algorithm (GHA; Sanger 1989), candid covariance-free incremental PCA (CCI; Weng et al.
2003), stochastic gradient ascent (SGA; Oja 1992) and subspace network learning (SNL; Oja
1992). All these methods are implemented in the onlinePCA R package (Degras and Cardot
2016).

Since MCA can be described as a weighted PCA (see Section 3.2), all the above algorithms
can be interchangeably used to provide online MCA solutions. Thus, it would be interesting
to investigate how these different approaches compare to each other, as well as to block
incremental SVD with mean update (BISVD), the method implemented in the idm package.
Hence, in this section we present experimental results to demonstrate the efficiency of eight
online MCA implementations on both simulated and real data sets. The focus of our attention
is on a comparison in terms of accuracy, which is defined as the similarity between the ordinary
MCA and the incremental MCA configurations in d dimensions.
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5.1. Simulated data

The function poLCA.simdata() in the poLCA package (Linzer and Lewis 2011) was used to
simulate categorical variables that match the data-generating process assumed by the basic
latent variable model. The number of latent classes could randomly vary between 2 and 8 and
the number of categories between 2 and 5, with randomly generated probabilities of occurence
of the different categories. Following Cardot and Degras (2018), the number of observations,
n, was generated with n ∈ {103, 104, 105, 106} and the number of variables Q ∈ {10, 100}.
The eight algorithms under comparison were initialized by the MCA of the first 25% of the
observations and then run on the remaining 75%. The number of estimated dimensions, d,
was fixed to 5. The tuning parameters of the stochastic methods, SGA, SNL and GHA,
were selected by trial-and-error, as described in Cardot and Degras (2018). Note that BSP,
BIPCA and BISVD allow for block-wise updates, whereas the other methods allow for vector
updates only (one row at a time). For these methods, the recommended optimal block size
was used (see Levey and Lindenbaum 2000; Mitliagkas et al. 2013; Iodice D’Enza and Markos
2015).
The similarity between the ordinary MCA and online MCA configurations in principal co-
ordinates was measured using the R index, that equals 1 −m2, where m2 is the symmetric
orthogonal Procrustes statistic. The index ranges from 0 to 1 and can be interpreted as a
correlation coefficient; it was calculated using the function protest() of the vegan pack-
age (Oksanen et al. 2018). Ordinary MCA was applied using the ca package (Nenadić and
Greenacre 2007).
Table 5 shows the similarity values of the R index (averaged over 1,000 replications) between
ordinary MCA and each one of the eight online MCA variants under comparison, using the
first d = 5 dimensions and different values of n and Q. A first remark is that online MCA
configurations are getting more similar to those of ordinary MCA as the number of obser-
vations increases from 103 to 106, for all methods. Also, as expected, when the number of
variables increases, the performance generally deteriorates, given that the number of dimen-
sions is fixed. Stochastic approximation methods perform quite similar to each other with the
exception of BSP, which generally provides more accurate solutions. Moreover, it is easy to
observe that the three block-based algorithms, BSP, BIPCA and BISVD, are more accurate
than vector-based methods. BISVD, the method implemented in the idm package, clearly
outperforms every other method with the exception of BSP; BISVD and BSP have similar
performance as n gets larger. It is important to outline, however, that block-based methods
are expected to be less efficient than vector-based approaches in terms of computation time.

5.2. Real data

The accuracy of the eight online MCA approaches was also evaluated using two real-world
data sets, the enron and tweet data sets, described in Section 4. The number of estimated
dimensions, d, was set to 2 and 6, and the starting data block to 300 and 1, 000, respectively.
All other settings were as specified in the experiments on simulated data.
Table 6 shows the R index between ordinary MCA and each one of the eight online MCA ap-
proaches for the two data sets. In line with the results obtained on the simulated data, BISVD
and BSP clearly outperform all other methods. Notice that for BISVD, two dimensions suffice
to obtain a highly accurate MCA solution on the enron data set (R = 0.99).
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Data size Value BSP IPCA BIPCA GHA CCI SGA SNL BISVD

103 × 10 Mean 0.88 0.76 0.76 0.76 0.76 0.76 0.76 0.89
SD 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.05

103 × 100 Mean 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.87
SD 0.04 0.07 0.07 0.07 0.07 0.07 0.07 0.08

104 × 10 Mean 0.90 0.86 0.86 0.86 0.86 0.86 0.86 0.90
SD 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07

104 × 100 Mean 0.94 0.92 0.92 0.92 0.92 0.92 0.92 0.95
SD 0.03 0.07 0.07 0.07 0.07 0.07 0.07 0.04

105 × 10 Mean 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.93
SD 0.07 0.08 0.09 0.08 0.08 0.08 0.08 0.08

105 × 100 Mean 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.95
SD 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.04

106 × 10 Mean 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
SD 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06

106 × 100 Mean 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.98
SD 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 5: Accuracy of eight online MCA approaches for the first d = 5 dimensions
.

Data set Size BSP IPCA BIPCA GHA CCI SGA SNL BISVD
enron 39,861 ×80 0.94 0.59 0.74 0.79 0.74 0.79 0.74 0.99
tweet 7,296 ×3 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.98

Table 6: Accuracy of eight online MCA approaches for the enron and tweet data sets.

6. Concluding remarks
In this paper we have presented the idm package for the R environment. It implements two
efficient SVD-based procedures to provide incremental block-wise PCA and MCA variants.
Both procedures allow to keep track of the data mean, which is a desirable property in the
context of PCA and MCA, so as to simultaneously update the center of the low-dimensional
space of the solution. A distinct feature of eigenspace arithmetics, the approach by Hall et al.
(2002), is that the addition of eigenspaces is commutative and associative, which is convenient
for a parallel implementation. On the other hand, BISVD, the method of Ross et al. (2008),
has a computational advantage in that it can produce an approximate, reduced-rank solution.
This property makes the method more appealing for online MCA scenarios. Experiments on
simulated and real data sets indicated that BISVD compares well with alternative online
methods in terms of accuracy. Another important feature of the package is that it includes
the option for animated visualization of the PCA/MCA solutions. Animated plots can be
used to facilitate interpretation but could also serve didactic purposes (e.g., the illustration
of theoretical concepts of PCA/MCA).
In this work, we considered the incremental case when new observations, n, come in, whereas
Q, the number of attributes, is fixed. In this framework, even if Q > n for the first few
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data blocks, n is expected to increase as new data blocks are analyzed and eventually become
greater than Q. We did not consider, however, the case when the whole data set refers to
further attributes (e.g., genes) describing a fixed set of observations, that is, scenarios with
fixed n as Q increases. The application of PCA when Q is at least as large as n can lead to
solutions being inconsistent and/or hard to interpret, as pointed out by Johnstone and Lu
(2009). The authors show the consistency of PCA by introducing a simple model involving a
single component

xi = νiρ + σzi, (7)

where xi is a Q-dimensional data vector, ρ ∈ RQ is the single component being estimated,
νi ∼ N(0, 1) are iid random effects, zi are independent noise vectors (also Gaussian) and σ
is the noise standard deviation. The estimator ρ̂ is the dominant eigenvector of the sample
covariance matrix given by n−1∑n

i=1 xix>i . Johnstone and Lu (2009) show that, assuming a
positive signal-to-noise ratio, ρ̂ is a consistent estimate of ρ if and only if Q

n → 0; we refer
the reader to the original paper for details. In a more recent paper, however, Lee, Zou, and
Wright (2010) pointed out that inconsistency of the sample eigenvectors does not necessarily
imply poor performance of PCA. For example, PCA has been successfully applied in genome-
wide association studies for accurate estimation of ethnicity (Ma, Kosorok, and Fine 2006),
and in PC regression for microarrays (Price, Patterson, Plenge, Weinblatt, and Shadickand
D. Reich 2006). Still, the authors warn the reader about the possibility of poor performance
of PCA when Q > n.
In conclusion, incremental settings where Q� n are interesting problems that are worth fur-
ther investigation and are left for future work. Furthermore, extensions to other incremental
versions of well-known multivariate analysis methods based on incremental EVD/SVD can
be considered in future versions of the package.
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