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Abstract

This paper presents two novel statistical analyses of multiblock data using the R lan-
guage. It is designed for data organized in (K+1) blocks (i.e., tables) consisting of a block
of response variables to be explained by a large number of explanatory variables which
are divided into K meaningful blocks. All the variables – explanatory and dependent –
are measured on the same individuals. Two multiblock methods both useful in practice
are included, namely multiblock partial least squares regression and multiblock principal
component analysis with instrumental variables. The proposed new methods are included
within the ade4 package widely used thanks to its great variety of multivariate methods.
These methods are available on the one hand for statisticians and on the other hand
for users from various fields in the sense that all the values derived from the multiblock
processing are available. Some relevant interpretation tools are also developed. Finally
the main results are summarized using overall graphical displays. This paper is organized
following the different steps of a standard multiblock process, each corresponding to spe-
cific R functions. All these steps are illustrated by the analysis of real epidemiological
datasets.

Keywords: multivariate analysis, multiblock partial least squares regression, multiblock prin-
cipal component analysis with instrumental variables, R, ade4.

1. Introduction
Multivariate methods are widely used to summarize data tables where the same experimental
units (individuals) are described by several variables. In some circumstances, variables are
divided in different sets leading to multiblock (or multitable) data stored in K different tables
(X1, . . . ,XK). In this case, each data table provides a typology of individuals based on dif-
ferent descriptors and several statistical techniques have been developed and implemented in
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Figure 1: Examples of (K + 1) multiblock data.

R (R Core Team 2018) to identify the similarities and discrepancies between these typologies
(e.g., Dray, Dufour, and Chessel 2007; Lê, Josse, and Husson 2008). A more complex situation
is encountered when Y is a block of several variables to be explained by a large number of
explanatory variables organized in K blocks (X1, . . . ,XK). This (K + 1) multiblock data are
found in various fields including process monitoring (e.g., Kourti 2003), chemometrics (Ko-
honen, Reinikainen, Aaljoki, Perkio, Vaananen, and Hoskuldsson 2008), sensometrics (Måge,
Menichelli, and Naes 2012), social sciences, market studies, ecology (Hanafi and Lafosse 2001)
or epidemiology (Bougeard, Lupo, le Bouquin, Chauvin, and Qannari 2012). Some examples
of multiblock data are given in Figure 1. In community ecology, the environmental filtering hy-
pothesis suggests that species abundances would be filtered hierarchically, first by large-scale
environmental factors (e.g., climate), and subsequently by landscape structure and fine-scale
environmental factors. In veterinary epidemiology, the expression of an animal disease could
be related to different factors including feeding practices, hygiene, husbandry practices or
treatments.
Multiblock methods preserve the original structure of the data and thus allows one to analyze
the (K + 1) tables simultaneously. They can be used to select explanatory variables in the
datasets (X1, . . . ,XK), generally numerous and quasi-collinear, that are strongly related with
the dependent variables in Y. After this selection step, multiblock methods can also be used to
identify the complex links between explanatory and dependent tables both at the variable and
block levels. Although methods designed for the analysis of (K+1) tables have been available
for a few years, with a straightforward and single eigensolution, there are few published
applications. The main reason for this lack of interest is probably the poor availability of free
statistical software implementing these methods. Multiblock partial least squares regression
is only available in the free Multi-Block Toolbox (Van den Berg 2004) of the commercial
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software package MATLAB (The MathWorks, Inc. 2015). However, this method is designed
for more complex multiblock data (K explanatory datasets to explain K ′ dependent ones)
and there is no proof of the convergence of the associated iterative algorithm. In R (R Core
Team 2018), no methods are implemented to deal with (K+ 1) tables and two unsatisfactory
solutions can be envisaged. A first alternative is to ignore the multiblock structure of the
explanatory variables so that a two-table technique can be applied. For instance, partial least
squares regression (pls package; Mevik and Wehrens 2007) or redundancy analysis (pcaiv
function in ade4; Dray and Dufour 2007) can be used to study the link between the merged
explanatory dataset X and the dependent table Y. On the other hand, the user may also
use methods developed for more complex data structures, such as partial least squares path
modeling (plspm package; Sanchez, Trinchera, and Russolillo 2017). However, this method
is not specifically designed for a (K + 1) structure and the iterative algorithm convergence is
only practically encountered but no formal proofs have been provided (Henseler 2010).
We implemented new statistical and graphical functionalities to analyze multiblock (K + 1)
data in the ade4 package for R. This package provided classes, methods and functions to
handle and analyze multivariate datasets organized in one (Dray and Dufour 2007), two or K
tables (Dray et al. 2007). We propose additional tools for the statistical analysis of (K + 1)
datasets with explanatory and modeling methods in ade4. We implemented two multiblock
methods that are based on the optimization of a criterion with a direct eigensolution. The first
method is multiblock partial least squares regression (MBPLS) applied to the particular case
of a single response dataset Y (Wold 1984). The second one is multiblock principal component
analysis with instrumental variables (MBPCAIV) also called multiblock redundancy analysis
(Bougeard, Qannari, and Rose 2011). We detail preliminary data manipulation, present the
two selected multiblock methods and give advice to select the most relevant. We illustrate
the main advantages provided by the methods and the overall descriptive graphical displays.
Multiblock methods are also devoted to modeling purpose and we thus propose a cross-
validation procedure to select the optimal model dimension and diagnostic plots to describe
its quality. Lastly, we detail the optimal model interpretation at the variable and at the block
levels. The whole procedure is illustrated by the analysis of a real epidemiological dataset.

2. Data manipulation
We consider a response dataset Y with M variables and K explanatory datasets Xk with
Pk variables (k = 1, . . . ,K). The merged dataset X is defined as X = [X1| . . . |XK ] and
contains P =

∑K
k=1 Pk explanatory variables. All these variables are measured on the same

N individuals and are centered.
Note that we added some restrictions concerning the number of individuals (N ≥ 6; defined
from our experience in multiblock analyses), the explanatory variables (Pk ≥ 2) for k =
(1, . . . ,K). The dependent block Y may contain a single variable (M ≥ 1). No missing
values are allowed.
The ade4 package provides the class ‘ktab’ that should be used to store the multiblock
explanatory datasets (Xk). Variables from the same block must be contiguous. Different
procedures can be used to create a ‘ktab’ object. In the following example, we illustrate the
use of the ktab.data.frame function. The data [Y|X1|X2] are stored in the douds object
available in ade4. The dataset Y contains 27 variables, the first explanatory table called
"River" contains 4 variables and the second one called "Chemicals" has 7 variables.
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R> library("ade4")
R> data("doubs", package = "ade4")
R> Y <- doubs$fish
R> X <- doubs$env
R> blo <- c(4, 7)
R> tab.names <- c("River", "Chemicals")
R> ktabX <- ktab.data.frame(df = X, blocks = blo, tabnames = tab.names)

We implemented new functions to manipulate easily multiblock data. For instance, ktabX[1,
1:5, 1:3] can be used to select data for the first five individuals and the first three variables
of the first table. The dependent dataset Y should be analyzed by a one-table method
providing an object of class ‘dudi’. For instance, dudi.pca can be used to apply principal
component analysis.

R> dudiY <- dudi.pca(Y, center = TRUE, scale = TRUE, scannf = FALSE)

Note that the transformation selected for the dependent variables in the call of the dudi.pca
function (centering and scaling in this example) will also be applied in the subsequent multi-
block analysis.
In the rest of the paper, we consider a real dataset (chickenk in ade4) to illustrate the use
of multiblock methods. This example concerns the overall risk factors for losses in broiler
chickens (Y) described by (M = 4) variables (the first-week mortality rate, the mortality
rate during the rest of the rearing, the mortality rate during the transport to the slaughter-
house and the condemnation rate at slaughterhouse). The (P = 20) explanatory variables are
organized in (K = 4) thematic blocks related to the successive production stages of broiler
chickens: the farm structure (X1, 5 variables, "FarmStructure"), the flock characteristics
at placement (X2, 4 variables, "OnFarmHistory"), the flock characteristics during the rear-
ing period (X3, 6 variables, "FlockCharacteristics") and the transport-lairage conditions,
slaughterhouse and inspection features (X4, 5 variables, "CatchingTranspSlaught"). All
these variables are measured on (N = 351) broiler chicken flocks. See ?chickenk for further
details and Lupo et al. (2009) for a complete description.

R> data("chickenk", package = "ade4")
R> losses <- chickenk[[1]]
R> dudiY <- dudi.pca(losses, center = TRUE, scale = TRUE, scannf = FALSE)
R> ktabX <- ktab.list.df(chickenk[2:5])

Several questions can be associated to this epidemiological dataset:

1. Are there some relationships between losses in broiler chickens Y = (y1, . . . , yQ) and
variables measured at the different production stages X = (x1, . . . , xP )?

2. Do the chicken flocks (N) have the same features in terms of their production stage
description (X) in relation with losses (Y)?

3. Are there significant links between all the variables describing the production stages
X = (x1, . . . , xP ) and each type of losses Y = (y1, . . . , yQ)?
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4. Is it possible to sort the effects of all the variables describing the production stages
X = (x1, . . . , xP ) in relation with the overall losses (Y)?

5. Is it possible to sort the effects of the various production stages (X1, . . . ,XK) in relation
with the overall losses (Y)?

Multiblock methods help to answer these different questions. The first two questions relate
to a descriptive aim and will be handled in Section 4. The three last questions pertain to the
modeling framework and will be treated in Section 6.

3. Multiblock methods
We implemented multiblock partial least squares regression (MBPLS) applied to the particular
case of a single response dataset Y (Wold 1984) and multiblock principal component analysis
with instrumental variables (MBPCAIV; Bougeard et al. 2011). In comparison with MBP-
CAIV, the method MBPLS is less sensitive to multicollinearity within explanatory blocks.
For the case where only one block of variables is explained, Westerhuis, Kourti, and Mac-
Gregor (1998) among others, showed that the solution obtained from the iterative algorithm,
originally devoted to K ′ datasets to be explained with K other ones, is equivalent to the solu-
tion obtained from a standard PLS regression of Y and the merged dataset X. The method
MBPCAIV considers the multiblock structure of data and leads to a model with a better
fitting ability than MBPLS but it is unstable when explanatory blocks contain quasi-collinear
variables. The user has to select the most relevant method by making a trade-off between
stable and predictive model according to the data structure and the aims of the study.
Both MBPCAIV and MBPLS methods can be considered as the analysis of (K + 1) triplets,
a dependent one (Y,QY,D) and K explanatory ones (Xk,QXk

,D) for k = (1, . . . ,K). One
can notice that the following algebraic presentation of multiblock methods as the analysis of
(K + 1) triplets is consistent with the one of all the methods developed in ade4 for one, two
and K tables (Dray and Dufour 2007; Dray et al. 2007). The simultaneous analysis of these
triplets is provided by the crossing products of Xk and Y, i.e., Y>DXk, with the metric
D = 1

N IN where IN is the N ×N identity matrix. Multiblock methods seek a smaller dimen-
sion space to represent the main relationships between variables and individuals. They are
based on the analysis of the K triplets (Y>DXk,QY,QXk

) where QY is usually equal to IM

and QXk
= IPk

for MBPLS or QXk
= (X>k DXk)− for MBPCAIV (where − stands for the gen-

eralized inverse). Since the generalized inverse leads to the non-uniqueness of the eigenvalue
decomposition, results for MBPCAIV may slightly differ when replicated in case of high multi-
collinearity. The solution is given by the diagonalization of

∑
k(Y>DXk)QXk

(Y>DXk)>QY.
For the first dimension, the eigenvector v(1) associated to first the eigenvalue λ(1) maximizes
the quantity v(1)>

(∑
k Q>YY>DXkQXk

X>k DYQY
)

v(1) = λ(1) with ‖v(1)‖QY = 1.

For MBPCAIV, this quantity can be rewritten as
∑

k VAR(PXk
DYv(1)) where PXk

is the
projector onto Xk. The constraint ‖t(1)

k ‖D = 1 is added and the latent variables, de-
rived from the eigensolution, are given by t(1)

k = Xkw(1)
k = PXk

u(1)/‖PXk
u(1)‖D with

u(1) = Yv(1) and t(1) = Xw(1) =
∑

k PXk
u(1)/

√∑
k ‖PXk

u(1)‖2D. For MBPLS, the quantity
maximized is equal to

∑
k VAR(X>k DYv(1)) = VAR(X>DYv(1)). In this case, the constraints

‖w(1)
k ‖IPk

= 1 and ‖w(1)‖IP = 1 are added so that the first order solution is also given by
λ(1) = VAR(Y>DXw(1)) = VAR(Y>Dt(1)).
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To obtain the second order solution, for MBPCAIV and MBPLS, the variables in the datasets
(X1, . . . ,XK) are deflated by a regression onto the first global component t(1). The same max-
imization is then performed but the original datasets are replaced by the residuals obtained
in the deflation step. Subsequent components are obtained by reiterating this process. The
reader can consult Bougeard et al. (2011) for more details.
With ade4, MBPCAIV is obtained by:

R> res <- mbpcaiv(dudiY, ktabX, scale = TRUE, option = "uniform",
+ scannf = FALSE, nf = 5)

The MBPLS is performed by replacing the call to mbpcaiv by a call to the mbpls function.
The first two arguments refer to the dependent and the explanatory datasets. Variable scaling
of the explanatory dataset can be set by the scale argument (default is TRUE). The scaling of
the dependent dataset has been previously defined in the first call to dudi.pca. The argument
option defines the block weighting. The "none" option corresponds to no block weighting,
"uniform" corresponds to the case where the merged explanatory dataset X (resp. Y) has
a total variance equal to one and each of the K explanatory blocks to 1/K (Westerhuis and
Coenegracht 1997). The argument scannf allows to display the scree plot of eigenvalues to
help with the choice of the number of the latent variables to be interpreted (default is TRUE).
The optional nf argument indicates the number of selected dimensions (defaults is 2). The
object res contains the different outputs of the analysis:

R> res

Multiblock principal component analysis with instrumental variables
list of class multiblock
list of class mbpcaiv

$eig: 20 eigen values
44.14 26.33 23.76 19.67 5.364 ...

$call: mbpcaiv(dudiY = dudiY, ktabX = ktabX, scale = TRUE,
option = "uniform", scannf = FALSE, nf = 5)

$nf: 5 axis saved

data.frame nrow ncol content
1 $lX 351 20 global components of the explanatory tables
2 $lY 351 5 components of the dependent data table
3 $Tli 1404 5 partial components
4 $Yco 4 5 inertia axes onto co-inertia axis
5 $faX 20 5 loadings to build the global components
6 $bip 4 5 block importances
7 $bipc 4 5 cumulated block importances
8 $vip 20 5 variable importances
9 $vipc 20 5 cumulated variable importances
10 $cov2 4 5 squared covariance between components
other elements: tabX tabY lw X.cw blo rank TL TC Yc1 Tfa Tl1 XYcoef intercept
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4. Descriptive interpretation tools
Multiblock analyses are descriptive methods that provide an overview of the relationships
between variables, blocks and individuals. They can be used to answer questions 1 and 2
(Section 2). The global latent variables t, linear combinations of the explanatory variables,
orthogonal by construction, provide the overall graphical displays. The explanatory variables
are then depicted by their loadings w∗ where the component is given by t(h) = Xw∗(h) and
w∗(h) = Πh−1

l=1 [I − w(l)(t(l)>t(l))−1t(l)>X]w(h) for a given dimension h, as a consequence of
the deflation procedure (Wold, Martens, and Wold 1983). The dependent variables are repre-
sented by their regression coefficients onto these latent variables (c(h) = (t(h)>t(h))−1Y>t(h)).
The decomposition of inertia into successive dimensions indicates the quantity of information
extracted by the global latent variables t (element lX in res). The rank of the analysis is
given by the element rank. A comprehensive summary of the first dimensions is provided by
the summary function. For each dimension, the eigenvalues, inertia percentage and cumulated
inertia percentage are given. The percentage and the cumulated percentage of the inertia
of each dataset, X, Y and (X1, . . . ,XK), explained by the global latent variables are also
provided (VarY and VarYcum) for the dependent dataset:

R> summary(res)

Multiblock principal component analysis with instrumental variables

Class: multiblock mbpcaiv
Call: mbpcaiv(dudiY = dudiY, ktabX = ktabX, scale = TRUE,

option = "uniform", scannf = FALSE, nf = 5)

Total inertia: 125.8

Eigenvalues:
Ax1 Ax2 Ax3 Ax4 Ax5

44.144 26.332 23.758 19.672 5.364

Projected inertia (%):
Ax1 Ax2 Ax3 Ax4 Ax5

35.103 20.939 18.893 15.643 4.265

Cumulative projected inertia (%):
Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5

35.10 56.04 74.93 90.58 94.84

(Only 5 dimensions (out of 20) are shown)

Inertia explained by the global latent, i.e. res$lX (in %):

dudiY$tab and ktabX:
varY varYcum varX varXcum

Ax1 41.17 41.2 6.94 6.94
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Ax2 21.49 62.7 7.31 14.25
Ax3 19.15 81.8 5.95 20.20
Ax4 11.07 92.9 5.25 25.45
Ax5 3.02 95.9 5.64 31.08

FarmStructure:
varXk varXkcum

Ax1 4.68 4.68
Ax2 5.02 9.70
Ax3 2.45 12.15
Ax4 2.67 14.82
Ax5 5.10 19.92

OnFarmHistory:
varXk varXkcum

Ax1 6.81 6.81
Ax2 9.10 15.91
Ax3 4.49 20.40
Ax4 9.49 29.89
Ax5 4.53 34.42

FlockCharacteristics:
varXk varXkcum

Ax1 12.38 12.4
Ax2 4.13 16.5
Ax3 8.35 24.9
Ax4 5.22 30.1
Ax5 8.35 38.4

CatchingTranspSlaught:
varXk varXkcum

Ax1 3.88 3.88
Ax2 11.01 14.88
Ax3 8.51 23.39
Ax4 3.61 26.99
Ax5 4.57 31.56

Graphical tools to represent the outputs of the analysis are provided in the new adegraphics
package (Dray and Siberchicot 2018). The main results are provided by the plot method of
the ‘multiblock’ class. By default, the first two global latent variables t (element lX) are
used but higher order representations can be selected using the arguments xax (defaults to
1) and yax (defaults to 2).

R> library("adegraphics")
R> plotmbpcaiv <- plot(res, xax = 1, yax = 2)

Results are illustrated in Figure 2. The first plot (top right corner) depicts the similarities
between individuals (i.e., the 351 chicken flocks). The scree plot of eigenvalues is represented
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Figure 2: Results of multiblock principal component analysis of the chickenk dataset for the
first two global latent variables.

in the top left corner. Relationships between blocks are depicted in the third plot (bottom
left corner) by the squared covariance between the partial latent variables tk (Tl1) and u
(lY). The fourth plot (bottom middle) depicts the dependent variables by their projection
on the latent variables c (Yco). The fifth plot (bottom right corner) depicts simultaneously
the 20 explanatory variable loadings w∗ (faX). These two last plots are usually interpreted
together to identify the relationships between explanatory and dependent variables. Graphical
functionalities of adegraphics are based on the package lattice (Sarkar 2008, 2017). Classes
are provided to store simple and multiple graphics as objects. It is thus possible to extract and
modify easily a single plot from these multiple graphical outputs. For instance, we updated
some aesthetic properties of the plot of the individuals and added colors corresponding to
different values of stress during the rearing period.

R> class(plotmbpcaiv)

[1] "ADEgS"
attr(,"package")
[1] "adegraphics"



10 Supervised Multiblock Analysis in R with ade4

−4

−2

0

2

−4 −2 0 2

Row scores (X)

Figure 3: Updated graphical representation of the 351 chicken flocks colored according to
stress during the rearing period. Red symbols correspond to stress occurrences (feeding
system defection, electrical defect, etc.), blue symbols to the absence of stress.

R> mycol <- ifelse(ktabX$FlockCharacteristics$Stress == 0, "blue", "red")
R> update(plotmbpcaiv[[1]], plabel.cex = 0, ppoints.col = mycol,
+ paxes.draw = TRUE, pbackground.col = "lightgrey")

5. Selection of the optimal number of latent variables
Multiblock methods can also be used for predictive purposes and the first step is to select the
optimal model dimension. The global latent variables can be expressed as linear combinations
of X, i.e., t(h) = Xw∗(h) and the dependent dataset Y can be split up into the same latent
variables such as Y =

∑h
l=1 t(l)c(l)> + Y(h), Y(h) being the residual matrix of the model

based on h components. This leads to the final model Y = X
∑h

l=1 w∗(l)c(l)> + Y(h) for
all the dimensions h = (1, . . . ,H). The optimal model is obtained by selecting the number
of latent variables with a two-fold cross-validation (Stone 1974). The dataset is split in a
calibration and a validation sets, this procedure being repeated several times. Among all
the models corresponding to the various values of h, the optimal model is retained, as a
compromise between a good fitting ability (minimization of the root mean square error of
calibration RMSE (h)

C ) and a good prediction ability (minimization of the root mean square
error of validation RMSE (h)

V ).
We implemented new classes ‘randxval’ and ‘krandxval’ and methods (print, plot) to man-
age the outputs of cross-validation procedures. For multiblock methods, the two-fold cross-
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Figure 4: Fitting (in red) and prediction (in blue) abilities of the multiblock model as functions
of the number of global latent variables introduced in the model, on the basis of a two-fold
cross-validation procedure, for the chickenk dataset.

validation is provided by the testdim function which has three arguments: the multiblock
object, the number of repetitions (nrepet) and the lower and upper quantiles to compute
(defaults respectively to 0.25 and 0.75) to get confidence intervals. To get reliable results, a
minimum number of 100 repetitions is imposed.

R> set.seed(123456)
R> testdim.chik <- testdim(res, nrepet = 100)
R> class(testdim.chik)

[1] "krandxval"

R> plot(testdim.chik)

Results are summarized in Figure 4 by means and associated confidence intervals for RMSE (h)
C

and RMSE (h)
V . This plot helps to select the optimal number of latent variables to be introduced

in the model by making a trade-off between a stable and a predictive model. In this example,
a model with four latent variables both optimizes (i.e., minimizes) fitting and prediction
abilities.

6. Interpretation of the optimal model
Lastly, we provide tools to identify, in the optimal model, significant relationships between
explanatory and dependent variables at the variable and at the block levels. Bootstrap-
ping simulations are applied to the three main predictive parameters (regression coefficients,
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cumulated variable importance index and cumulated block importance index) to provide con-
fidence intervals, computed by the non-Studentized pivotal method (Carpenter and Bithell
2000). The regression coefficients of the optimal model measure the links between each ex-
planatory and dependent variable. A coefficient is considered significant if the bootstrapped
95% confidence interval does not contain the threshold value 0. If the number of dependent
variables in Y is large, the interpretation of these coefficients is difficult. In this case, it is
more suitable to measure the contribution of each explanatory variable to the explanation
of the whole dependent block Y. The variable importance index (vip) is proposed, derived
from the squared explanatory loadings w∗(h)2 , weighted according to the associated block im-
portance a(h)2

k and expressed as a percentage for each dimension h. The cumulated variable
importance index (vipc) sums these quantities over all the optimal components under study
and weights them according to the amount of the relative importance of each dimension λ(h),
also expressed as a percentage. Each explanatory variable is considered to be significantly
associated with Y when the 95% confidence interval does not contain the threshold value
1/P , P being the number of explanatory variables. Lastly, the block importance index (bip)
is proposed to assess the contributions of the blocks (X1, . . . ,XK) in the modeling process.
It is computed from the coefficients (a(h)2

1 , . . . , a
(h)2

K ) which measure the link between Y and
(X1, . . . ,XK). If the optimal model contains several components, the cumulated block im-
portance index (bipc) is based on the weighted average of the bip indexes, taking as weights
the relative importance of each dimension λ(h). Both these quantities are expressed as per-
centages. A block is considered to be significantly associated with the dependent dataset if
the 95% confidence interval does not contain the threshold value 1/K, K being the number
of blocks. All the details are given in Bougeard et al. (2011).
We implemented new classes ‘randboot’ and ‘krandboot’ and methods (print, plot) to
manage the outputs of bootstrap simulations. For multiblock methods, the randboot method
for ‘multiblock’ objects can be used. It takes three arguments: the multiblock object, the
number of repetitions (nrepet) and the optimal number of dimension of the model (optdim).
By default, the number of repetitions is equal to 199 but a higher number is required to get
more stable results. The randboot method for ‘multiblock’ objects returns a list with 3
elements XYcoef, bipc and vipc. The first element is a list of ‘randboot’ objects, the two
others are object of the class ‘randboot’.

R> set.seed(123456)
R> boot.chik <- randboot(res, nrepet = 199, optdim = 4)
R> class(boot.chik)

[1] "list"

R> names(boot.chik)

[1] "XYcoef" "bipc" "vipc"

R> class(boot.chik$vipc)

[1] "krandboot"
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The plot function applied to ‘randboot’ objects provides graphical summaries of boot-
strapped values:

R> g1 <- plot(boot.chik$XYcoef$Mort7, main = "Mort7", plot = FALSE)
R> g2 <- plot(boot.chik$XYcoef$Mort, main = "Mort", plot = FALSE)
R> g3 <- plot(boot.chik$XYcoef$Doa, main = "Doa", plot = FALSE)
R> g4 <- plot(boot.chik$XYcoef$Condemn, main = "Condemn", plot = FALSE)
R> ADEgS(list(g1, g2, g3, g4))
R> g5 <- plot(boot.chik$vipc, main = "vipc", plot = FALSE)
R> g6 <- plot(boot.chik$bipc, main = "bipc", plot = FALSE)
R> ADEgS(list(g5, g6))

Results are presented in Figure 5. The first four plots illustrate the regression coefficient
values and their confidence intervals for all the explanatory variables associated with each of
the four dependent ones (and the optimal model involving four dimensions). The last two
plots represent the vipc and bipc values associated with their confidence intervals.
From these results, it follows that each variable in Y is significantly related to a specific set
of explanatory variables. Firstly, the first-week mortality rate ("Mort7") is related to four
variables, two of which pertain to the farm structure. The mortality rate during the rest of
the rearing ("Mort") is significantly linked with seven variables, four of which pertain to the
flock characteristics during the rearing period. The mortality rate during the transport to
the slaughterhouse ("Doa") is associated with eight variables, among which four pertain to
the catching, transport-lairage conditions, slaughterhouse and inspection features. Finally,
the condemnation rate at slaughterhouse ("Condemn") is related to fourteen variables, six of
these variables refer to the flock characteristics during the rearing period. Some explanatory
variables are specifically related to one variable in Y, e.g., the chick homogeneity (from X2),
whereas others are linked with up to three (out of four) variables in Y, e.g., the genetic strain
(from X3). Therefore, to sort these explanatory variables by a global order of priority thus
highlighting their overall contribution to the explanation of the Y block, the vipc values
can be used. It turns out that four explanatory variables have a significant impact on the
overall losses: the stress occurrence during rearing ("Stress"), the type of loading system
("LoadType"), the stocking density in transport crates ("StockingD") and the average du-
ration of waiting time on lairage ("Dlairage"). Finally, the relative importance of the four
production stages in the overall losses explanation highlights the significant importance of the
flock characteristics during the rearing period (X3 block). The interested reader may refer to
Bougeard et al. (2012) for a detailed interpretation of the results.

7. Conclusion and perspectives
We provide new tools to improve the handling and the statistical analysis of multiblock
(K + 1) datasets in the ade4 package for R. These methods preserve the original structure
of the data and provide an adapted framework that combines tools from factorial analysis
and regression methods. Traditional graphical outputs are completed by cross-validation and
bootstrap procedures to select and interpret the optimal model.
The framework of multiblock methods provide several tools and could be enriched by consid-
ering hierarchical-structured design of individuals frequently met in biological surveys (e.g.,
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Figure 5: Multiblock predictive plots of the optimal model for the chickenk dataset.



Journal of Statistical Software 15

individuals partitioned in groups corresponding to different treatments). Multiblock methods
can also be directly adapted to the explanation of several dependent datasets (Y1, . . . ,YK′)
to handle more complex data structures. We hope that our implementation of multiblock
methods and future developments will facilitate the use of these techniques and thus improve
the statistical analysis of (K + 1) datasets.
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