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Abstract

The R software package excursions contains methods for calculating probabilistic ex-
cursion sets, contour credible regions, and simultaneous confidence bands for latent Gaus-
sian stochastic processes and fields. It also contains methods for uncertainty quantification
of contour maps and computation of Gaussian integrals. This article describes the theoret-
ical and computational methods used in the package. The main functions of the package
are introduced and two examples illustrate how the package can be used.
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1. Introduction
The ability to find regions where a stochastic process exceeds a certain level, or is significantly
different from some reference level, is important in several areas of application. Examples in
geosciences include studies of air pollution (Cameletti, Lindgren, Simpson, and Rue 2013),
temperature (Furrer, Knutti, Sain, Nychka, and Meehl 2007), precipitation (Sain, Furrer,
and Cressie 2011), and vegetation (Eklundh and Olsson 2003; Bolin, Lindström, Eklundh,
and Lindgren 2009), and similar problems can be found in a wide range of scientific fields
including brain imaging (Marchini and Presanis 2003) and astrophysics (Beaky, Scherrer, and
Villumsen 1992). A related problem is uncertainty quantification of contour curves and more
generally of contour maps, which are often used to display estimates of continuous surfaces.
The number of contours used in a contour map should typically reflect the uncertainty in
the estimate, since one should be allowed to draw many contours if the uncertainty of the
estimated surface is low and fewer contours if the uncertainty is high. The ability to quantify
the uncertainty in the contour map is important if one should be able to choose the number
of contours in a rigorous way.

https://doi.org/10.18637/jss.v086.i05
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The R (R Core Team 2018) software package excursions (Bolin and Lindgren 2018) contains
functions for solving these problems for latent Gaussian models (LGMs), which is a large
model class that is widely used in applications (see e.g., Rue, Martino, and Chopin 2009).
The computational methods are based on the theory introduced by Bolin and Lindgren (2015,
2017) and are especially well-suited for models where the latent field has Markov properties.
Solving the problems involves computing high-dimensional Gaussian integrals, which can be
done more efficiently if Markov properties can be utilized. With the ability to efficiently
compute Gaussian integrals, one can also compute simultaneous credible bands for latent
Gaussian processes, and more generally for mixtures of Gaussian processes. This was investi-
gated by Bolin et al. (2015) and excursions contains a slightly more general implementation
of the methods from these papers.
The package supports at least three ways of specifying the model that should be analyzed.
The standard method for purely Gaussian models is to specify the model by providing the
parameters of the Gaussian process. For more general models, the input can either be given
as Monte Carlo simulations of the process or as the result from an analysis using the R-
INLA software package (Lindgren and Rue 2015, package available from http://R-INLA.
org/download/). The package is available to install from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=excursions. A development
version of the package is available via the repository https://bitbucket.org/davidbolin/
excursions. The development version is updated more frequently, and can easily be installed
directly in R as described on the repository homepage.
The following sections describe the theoretical methods used in the package and provide an
introduction to the implementation. Section 2 summarizes the theory, Section 3 introduces
the main functions in the package, and Section 4 contains two examples that illustrate how
the package can be used. Finally, future plans for the package is discussed in Section 5.

2. Definitions and computational methodology

Hierarchical models are of great importance in many areas of statistics. In the simplest form,
a hierarchical model has a likelihood distribution π(Y|X,θ) for observed data Y, which is
specified conditionally on a latent process of interest, X, which has a distribution π(X|θ). For
Bayesian hierarchical models, one also specifies prior distributions for the model parameters
θ. The most important special case of these models are the LGMs, which are obtained by
assuming that X|θ has a Gaussian distribution. Numerous applications can be studied using
models of this form, and these are therefore the main focus of the methods in excursions.
A statistical analysis using an LGM often concludes with reporting the posterior mean E(X|Y)
as a point estimate of the latent field, possibly together with posterior variances as a measure
of uncertainty. In many applications, however, reporting posterior means and variances is
not sufficient. As stated in the introduction, one may be interested in computing regions
where the latent field exceeds some given threshold, contour curves with their associated
uncertainty, or simultaneous confidence bands. In some applications, only a contour map
of the posterior mean is reported, where the number of levels in the contour map should
represent the uncertainty in the estimate. These are quantities that can be computed with
excursions and we now define these in more detail before outlining how they can be computed.
For details we refer to Bolin and Lindgren (2015, 2017).

http://R-INLA.org/download/
http://R-INLA.org/download/
https://CRAN.R-project.org/package=excursions
https://bitbucket.org/davidbolin/excursions
https://bitbucket.org/davidbolin/excursions
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2.1. Definitions

The main quantities that can be computed using excursions are (1) excursion sets, (2) contour
credible regions and level avoiding sets, (3) excursion functions, (4) contour maps and their
quality measures, (5) simultaneous confidence bands. This section defines these in more detail.
Throughout the section, X(s) will denote a stochastic process defined on some domain of
interest, Ω, which we assume is open with a well-defined area |Ω| < ∞. Since it is not
necessary for the definitions, we will not explicitly state the dependency on the data, but
simply allow X to have some possible non-stationary distribution. In practice, however, the
distribution of X will typically be a posterior distribution conditionally on data, X(s)|Y.
For frequentist models, the distribution of X could also be conditionally on for example a
maximum likelihood estimate of the parameters, X(s)|Y, θ̂.

Excursion sets

An excursion set is a set where the process X(s) exceeds or goes below some given level of
interest, u. A set whereX(s) > u is referred to as a positive excursion set, whereas a set where
X(s) < u is referred to as a negative excursion set. If X(s) = f(s) is a known function, these
sets can be computed directly as A+

u (f) = {s ∈ Ω; f(s) > u} and A−u (f) = {s ∈ Ω; f(s) < u}
respectively. If X(s) is a latent random process, one can only provide a region where it with
some (high) probability exceeds the level. More specifically, the positive level u excursion set
with probability α, E+

u,α(X), is defined as the largest set so that with probability 1 − α the
level u is exceeded at all locations in the set,

E+
u,α = arg max

D
{|D| : P[D ⊂ A+

u (X)] ≥ 1− α}. (1)

Similarly, the negative u excursion set with probability α, E−u,α(X), is defined as the largest
set so that with probability 1− α the process is below the level u at all locations in the set.
This set is obtained by replacing A+

u (X) with A−u (X) in (1).

Contour credible regions and level avoiding sets

For a function f , a contour curve (or set in general) of a level u is defined as the set of all
level u crossings. Formally, the level curve is defined as Acu(f) =

(
A+
u (f)o ∪A−u (f)o

)c, where
Bo denotes the interior of the set B and Bc denotes the complement. Note that Acu(f) not
only includes the set of locations where f(s) = u, but also all discontinuous level crossings.
For a latent random process X, one can only provide a credible region for the contour curve.
A level u contour credibility region, Ecu,α(X), is defined as the smallest set such that with
probability 1 − α all level u crossings of X are in the set. This set can be seen as the
complement of the level u contour avoiding set Eu,α(X), which is defined as the largest union
M+
u,α ∪M−u,α, where jointly X(s) > u in M+

u,α and X(s) < u in M−u,α. Formally,

(M+
u,α(X),M−u,α(X)) = arg max

(D+,D−)
{|D− ∪D+| : P(D− ⊆ A−u (X), D+ ⊆ A+

u (X)) ≥ 1− α},

where the sets (D+, D−) are open. The sets M+
u,α and M−u,α are denoted as the pair of level u

avoiding sets. The notion of level avoiding sets can naturally be extended to multiple levels
u1 < u2 < · · · < uk, which is needed when studying contour maps. In this case, the multilevel
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contour avoiding set is denoted Cu,α(X) (For a formal definition, see Bolin and Lindgren
2017).

Excursion functions

Bolin and Lindgren (2015) introduced excursion functions as a tool for visualizing excursion
sets simultaneously for all values of α. For a level u, the positive and negative excursion
functions are defined as F+

u (s) = 1 − inf{α; s ∈ E+
u,α} and F−u (s) = 1 − inf{α; s ∈ E−u,α},

respectively. Similarly, the contour avoidance function, and the contour function are defined
as Fu(s) = 1− inf{α; s ∈ Eu,α} and F cu(s) = sup{α; s ∈ Ecu,α}, respectively. Finally, for levels
u1 < u2 < · · · < uk, one can define a contour map function as F (s) = sup{1− α; s ∈ Cu,α}.
These functions take values between zero and one and each set E•u,α can be retrieved as
the 1 − α excursion set of the function F •u (s). An example of an excursion set and the
corresponding excursion function is shown in Figure 2.

Contour maps and their quality measures

For a function f(s), a contour map Cf with contour levels u1 < u2 < . . . < uK is defined as
the collection of contour curves Acu1(f), . . . , AcuK

(f) and associated level sets Gk = {s : uk <
f(s) < uk+1}, for 0 ≤ k ≤ K, where one defines u0 = −∞ and uK+1 = ∞. In practice, a
process X(s) is often visualized using a contour map of the posterior mean E(X(s)|Y). The
contour map is visualized either by just drawing the contour curves labeled by their values,
or by also visualizing each level set in a specific color. The color for a set Gk is typically
chosen as the color that corresponds to the level uek = (uk + uk+1)/2 in a given color map.
An example of this is shown in Figure 2.
In order to choose an appropriate number of contours, one must be able to quantify the
uncertainty of contour maps. The uncertainty can be represented using a contour map quality
measure P , which is a function that takes values in [0, 1]. Here, P should be chosen in such a
way that P ≈ 1 indicates that the contour map, in some sense, is appropriate as a description
of the distribution of the random field, whereas P ≈ 0 should indicate that the contour map
is inappropriate.
An example of a contour map quality measure is the normalized integral of the contour map
function

P0(X,Cf ) = 1
|Ω|

∫
Ω
F (s)ds. (2)

The most useful quality measure is denoted P2 and is defined as the simultaneous probability
for the level crossings of (ue1, . . . , ueK) all falling within their respective level sets (G1, . . . , GK)
(for details, see Bolin and Lindgren 2017).
An intuitively interpretable approach for choosing the number of contours in a contour map
is to find the largest K such that P2 is above some threshold. For a joint credibility of 90%,
say, choose the largest number of contours such that P2 ≥ 0.9. How this can be done using
excursions is illustrated in Section 4.2.

Simultaneous confidence bands

Especially for time series applications, the uncertainty in the latent process is often visualized
using pointwise confidence bands. A pointwise confidence interval for X at some location s is
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given by [qα/2(s), q1−α/2(s)], where qα(s) denotes the α-quantile in the marginal distribution
of X(s).
A problem with using pointwise confidence bands is that there is not joint interpretation, and
one is therefore often of interested in computing simultaneous confidence bands. For a process
X(s), s ∈ Ω, we define a simultaneous confidence band as the region {(s, y) : s ∈ Ω, qρ(s) ≤
y ≤ q1−ρ(s)}. Here ρ is chosen such that P(qρ(s) < X(s) < q1−ρ(s), s ∈ Ω) = 1− α. Thus α
controls the probability that the process is inside the confidence band at all locations in Ω.
An example of pointwise and simultaneous confidence bands is given in Figure 3.

2.2. Computational methods

If the latent process X(s) is defined on a continuous domain Ω, one has to use a discretization,
x, of the process in the statistical analysis. The vector x may be the process evaluated at some
locations of interest or more generally the weights in a basis expansion X(s) =

∑
i ϕi(s)xi.

Computations in the package are in a first stage performed using the distribution of x. If Ω is
continuous, computations in a second stage interpolates the results for x to Ω. In this section,
we briefly outline the computational methods used in these two stages. As most quantities of
interest can be obtained using some excursion function, we focus on how these are computed.
As a representative example, we outline how F+

u (s) is computed in the following sections.
As before, let Y and θ be vectors respectively containing observations and model parameters.
Computing an excursion function F+

u = {F+
u (x1), . . . , F+

u (xn)} requires computing integrals
of the posterior distribution for x. To save computation time, it is assumed that E+

u,α1 ⊂
E+
u,α2 if α1 > α2. This means that Fu can be obtained by first reordering the nodes and

then computing a sequential integral. The reordering is in this case obtained by sorting the
marginal probabilities P(xi > u) (for other options, see Bolin and Lindgren 2015). After
reordering, the i:th element of F+

u is obtained as the integral∫ ∞
u

π(x1:i|Y)dx1:i. (3)

Using sequential importance sampling as described below, the whole sequence of integrals
can be obtained with the same cost as computing only one integral with i = n, making the
computation of F+

u feasible also for large problems.

Gaussian integrals
The basis for the computational methods in the package is the ability to compute the required
integral when the posterior distribution is Gaussian. In this case, one should compute an
integral

|Q|1/2

(2π)d/2
∫

u−µ≤x
exp

(
−1

2x>Qx
)

dx. (4)

Here µ and Q are the posterior mean and posterior precision matrix respectively. To take
advantage of the possible sparsity of Q if a Markovian model is used, the integral is rewritten
as ∫ ∞

ad

π(xd)
∫ ∞
ad−1

π(xd−1|xd) · · ·
∫ ∞
a2

π(x2|x3:d)
∫ ∞
a1

π(x1|x2:d) dx (5)

where, if the problem has a Markov structure, xi|xi+1:d only depends on a few of the elements
in xi+1:d given by the Markov structure. The integral is calculated using a sequential im-
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portance sampler by starting with the integral of the last component π(xd) and then moving
backward in the indices, see Bolin and Lindgren (2015) for further details.

Handling non-Gaussian data

Using the sequential importance sampler above, F+
u can be computed for Gaussian models

with known parameters. For more complicated models, the latent Gaussian structure has to
be handled, and this can be done in different ways depending on the accuracy that is needed.
excursions currently supports the following five methods described in detail in Bolin and
Lindgren (2015): Empirical Bayes (EB), quantile correction (QC), numerical integration (NI),
numerical integration with quantile corrections (NIQC), and improved numerical integration
with quantile corrections (iNIQC).
The EB method is the simplest method and is based on using a Gaussian approximation of
the posterior, π(x|Y) ≈ πG(x|Y, θ̂). The QC method uses the same Gaussian approximation
but modifies the limits in the integral to improve the accuracy. The three other methods
are intended for Bayesian models, where the posterior is obtained by integrating over the
parameters,

π(x | Y) =
∫
π(x | Y,θ)π(θ | Y)dθ.

The NI method approximates the integration with respect to the parameters as in the INLA
method, using a sum of representative parameter configurations, and the NIQC and iNIQC
methods combines this with the QC method to improve the accuracy further.
In general, EB and QC are suitable for frequentist models and for Bayesian models where
the posterior distribution conditionally on the parameters is approximately Gaussian. The
methods are equivalent if the posterior is Gaussian and in other cases QC is more accurate than
EB. For Bayesian models, the NI method is, in general, more accurate than the QC method,
and for non-Gaussian likelihoods, the NIQC and iNIQC methods can be used for improved
results. In general the accuracy and computational cost of the methods are as follows:

Accuracy: EB < QC < NI < NIQC < iNIQC.

Computational cost: EB ≈ QC < NI ≈ NIQC < iNIQC.

If the main purpose of the analysis is to construct excursion or contour sets for low values of
α, we recommend using the QC method for problems with Gaussian likelihoods and the NIQC
method for problems with non-Gaussian likelihoods. The increase in accuracy of the iNIQC
method is often small compared to the added computational cost.

Continuous domain interpolations

For a continuous spatial domain, the excursion function F+
u (s) can be approximated using

F+
u computed at discrete point locations. The main idea is to interpolate F+

u assuming
monotonicity of the random field between the discrete computation locations. Specifically,
assume that the values of F+

u correspond to the values at the vertices of some triangulated
mesh such as the one shown in the left panel of Figure 2. If the excursion set E+

u,α(X)
should be computed for some specific value of α, one has to find the 1−α contour for F+

u (s).
For interpolation to a location s within a specific triangle T with corners in s1, s2, and s3,
excursions by default uses log-linear interpolation, Fu(s) = exp{

∑3
k=1wk log[Fu(sk)]}. Here



Journal of Statistical Software 7

{(w1, w2, w3); w1, w2, w3 ≥ 0,
∑3
k=1wi = 1} are the barycentric coordinates of s within the

triangle.
Further technical details of the continuous domain construction are given in Bolin and Lind-
gren (2017). Studies of the resulting continuous domain excursion sets in Bolin and Lindgren
(2017) indicate that the log-linear interpolation method results in sets with coverage probabil-
ity on target or slightly above target for large target probabilities. An example of a continuous
domain excursion set for a triangulated mesh is shown in the middle panel of Figure 2. In the
right panel of the figure, the interpolated function F+

u (s) is shown. The code that generates
the figure is explained in the next section.

3. Implementation
The functions in excursions can be divided into four main categories depending on what they
compute: (1) Excursion sets and credible regions for contour curves, (2) Quality measures for
contour maps, (3) Simultaneous confidence bands, and (4) Utility such as Gaussian integrals
and continuous domain mappings. The main functions come in at least three different versions
taking different input: (1) The parameters of a Gaussian process, (2) Results from an analysis
using the R-INLA software package, and (3) Monte Carlo simulations of the process. These
different categories are described in further detail below.
Much of the computations in the package is done in C functions. These functions use methods
from a number of C and Fortran libraries, such as BLAS (Dongarra, Du Croz, Hammarling,
and Duff 1990), LAPACK (Anderson et al. 1999), and CHOLMOD (Chen, Davis, Hager,
and Rajamanickam 2008) for efficient matrix manipulations together with function from the
GNU Scientific library (Galassi and Gough 2006) and several different reordering methods.
Notably, the CAMD library (Amestoy, Davis, and Duff 1996, 2004) is used for constrained
approximate minimum degree orderings.
As an example that will be used to illustrate the methods in later sections, we generate
data Yi ∼ N(X(si), σ2) at some locations s1, . . . , s100 where X(s) is a Gaussian random field
specified using a stationary SPDE model (Lindgren, Rue, and Lindström 2011).

R> x <- seq(from = 0, to = 10, length.out = 20)
R> mesh <- inla.mesh.create(lattice = inla.mesh.lattice(x = x, y = x),
+ extend = FALSE, refine = FALSE)
R> spde <- inla.spde2.matern(mesh, alpha = 2)
R> obs.loc <- 10 * cbind(runif(100), runif(100))
R> Q <- inla.spde2.precision(spde, theta = c(log(sqrt(0.5)), 0))
R> x <- inla.qsample(Q = Q, seed = seed)

Based on the observations, we calculate the posterior distribution of the latent field, which
is Gaussian with mean mu.post and precision matrix Q.post, these are computed as follows.
We refer to Lindgren and Rue (2015) for details about the R-INLA related details in the code.

R> A <- inla.spde.make.A(mesh = mesh, loc = obs.loc)
R> sigma2.e = 0.01
R> Y <- as.vector(A %*% x + rnorm(100) * sqrt(sigma2.e))
R> Q.post <- (Q + (t(A) %*% A) / sigma2.e)
R> mu.post <- as.vector(solve(Q.post, (t(A) %*% Y) / sigma2.e))
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Figure 1: Posterior mean (left) and posterior standard deviations of an example using simu-
lated data. The measurement locations are marked with circles in both panels.
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Figure 2: Contour map of the posterior mean shown in Figure 1 (left), a triangulated mesh
and interpolated excursion set E+

0,0.1 (mid), and the interpolated excursion function F+
0 (s)

(right). In the right panel, the zero-level contour is also plotted.

Figure 1 shows the posterior mean and the posterior standard deviations. A contour map of
the posterior mean is shown in Figure 2.

3.1. Excursion sets and contour credible regions

The main function for computing excursion sets and contour credible regions is excursions.
A typical call to the function looks like

R> res.exc <- excursions(mu = mu.post, Q = Q.post, alpha = 0.1, type = ">",
+ u = 0, F.limit = 1)

Here, mu and Q are the mean vector and precision matrix for the joint distribution of the
Gaussian vector x. The arguments alpha, u, and type are used to specify what type of
excursion set that should be computed. alpha is the error probability, u is the excursion or
contour level, and type determines what type of region that is considered: ‘>’ for positive
excursion regions, ‘<’ for negative excursion regions, ‘!=’ for contour avoiding regions, and
‘=’ for contour credibility regions. Thus, the call above computes the excursion set E+

0,0.1.



Journal of Statistical Software 9

The argument F.limit is used to specify when to stop the computation of the excursion
function. In this case with F.limit=1, all values of F+

u are computed, but the computation
time can be reduced by decreasing the value of F.limit.
The function has the EB method as default strategy for handling the possible latent Gaussian
structure. In the simulated example, the likelihood is Gaussian and the parameters are
assumed to be known, so the EB method is exact. The QC method can be used instead by
specifying method="QC". In this case, the argument rho should be used to also provide a
vector with point-wise marginal probabilities: P (xi > u) for positive excursions and contour
regions, and P (xi < u) for negative excursions. In the situation when π(x|Y,θ) is Gaussian
but π(x|Y) is not, the marginal probabilities should be calculated under the distribution
π(x|Y) and mu and Q should be chosen as the mean and precision for the distribution π(x|Y, θ̂)
where θ̂ is the MAP or ML estimate of the parameters.

The INLA interface

The function excursions.inla is used to compute excursion sets and credible regions for
contour curves for latent Gaussian models that have been estimated using R-INLA. It takes
the same arguments as excursions, except that mu and Q are replaced with arguments related
to R-INLA. A basic call to the function excursions.inla looks like

R> excursions.inla(result.inla, name, alpha, u, type)

Here result.inla is the output from a call to the inla function, and name is the name of the
component in the output that the computations should be done for. For more complicated
models, one typically specifies the model in R-INLA using an inla.stack object. In this
case, the call to excursions.inla will instead look like

R> excursions.inla(result.inla, stack, tag, alpha, u, type)

Here stack is now the stack object and tag is the name of the component in the stack for
which the computations should be done. The typical usage of the tag argument is to have
one part of the stack that contains the locations where measurements are taken, and another
that contains the locations where the output should be computed.
excursions.inla has support for all strategies described in Section 2 for handling latent
Gaussian structures: The argument method can be one of "EB", "QC", "NI", "NIQC", and
"iNIQC".

Analysis of Monte Carlo samples

The function excursions.mc can be used to post-process Monte Carlo model simulations in
order to compute excursion sets and credible regions. For this function, the model is not
specified explicitly. Instead a d×N matrix X containing N Monte Carlo simulations of the d
dimensional process of interest is provided. A basic call to the function looks like

R> excursions.mc(X, u, type)

where u again determines the level of interest and type defines the type of set that should
be computed. It is important to note that this function does all computations purely based



10 excursions: Probabilistic Excursion Sets and Related Quantities

on the Monte Carlo samples that are provided, and it does not use any of the computational
methods based on sequential importance sampling for Gaussian integrals that the is the basis
for the previous methods. This means that this function in one sense is more general as X
can be samples from any model, not necessarily a latent Gaussian model. The price that has
to be paid for this generality is that the only way of increasing the accuracy of the results is
to increase the number of Monte Carlo samples that are provided to the function.

3.2. Analysis of contour maps

The main function for analysis of contour maps is contourmap. A basic call to the function
looks like

R> res.con <- contourmap(mu = mu.post, Q = Q.post, n.levels = 4,
+ alpha = 0.1, compute = list(F = TRUE, measures = c("P0")))

Here, mu is again the mean value and Q is the precision matrix of the model. The parameter
n.levels sets the number of contours that should be used in the contour map, and these are
spaced equidistant in the range of mu by default. Other types of contour maps can be obtained
using the type argument. For manual specification of the levels, the levels argument can
be used instead. By default, the function computes the specified contour map but no quality
measures and it does not compute the contour map function. If quality measures should be
computed, this is specified using the compute argument. This argument is also used to decide
whether the contour map function F should be computed.
As for excursions, this function comes in two other versions depending on the form of the
input: contourmap.inla for model specification using an R-INLA object, or contourmap.mc
for model specification using Monte Carlo simulations of the model. The model specification
for these functions is identical to that in the corresponding excursions functions.

3.3. Continuous domain interpretations

A common scenario is that the input used in contourmap or excursions represents the value
of the model at some discrete locations in a continuous domain of interest. In this case, the
function continuous can be used to interpolate the discretely computed values by assuming
monotonicity of the random field in between the discrete computation locations, as discussed
in Section 2. A typical call to the function looks like

R> sets.exc <- continuous(ex = res.exc, geometry = mesh, alpha = 0.1)

Here ex is the result of the call to contourmap or excursions and alpha is the error probabil-
ity of interest for the excursion set or credible region computation. The argument geometry
specifies the geometric configuration of the values in input ex, either as a general triangulation
geometry or as a lattice. A lattice can be specified as an object of the form list(x, y) where
x and y are vectors, or as list(loc, dims) where loc is a two-column matrix of coordinates,
and dims is the lattice size vector. If R-INLA is used, the lattice can also be specified as an
inla.mesh.lattice object. In all cases, the input is treated topologically as a lattice with
lattice boxes that are assumed convex. A triangulation geometry is specified as an inla.mesh
object. Finally, an argument output can be used to specify what type of object should be
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generated. The options are currently sp which gives a SpatialPolygons (Bivand, Pebesma,
and Gómez-Rubio 2013) object, and inla which gives an inla.mesh.segment object.

3.4. Simultaneous confidence bands

The function simconf can be used for calculating simultaneous confidence bands for a Gaus-
sian process X(s). A basic call to the function looks like

R> simconf(alpha, mu, Q)

where alpha is the error (1 - coverage) probability, mu is the mean value vector for the process,
and Q is the precision matrix for the process. The function has a few optional arguments
similar to those of excursions, all listed in the documentation of the function. The function
returns upper and lower limits for both pointwise and simultaneous confidence bands.
As for excursions and contourmap, there is also a version of simconf that can be used
to analyze R-INLA models (simconf.inla) and a version that can analyze Monte Carlo
samples (simconf.mc). Furthermore, there is a version simconf.mixture which computes
simultaneous confidence regions for Gaussian mixture models with a joint distribution on the
form

π(x) =
K∑
k=1

wkN(µk, Q−1
k ).

This particular function was used to analyze the models in Bolin et al. (2015) and Guttorp
et al. (2014), but is also used internally by simconf.inla.

3.5. Gaussian integrals

Among the utility functions in the package, the function gaussint can be especially useful also
in a larger context. It contains the implementation of the sequential importance sampling
method for computing Gaussian integrals, described in Section 2. This function has two
features that separates it from many other functions for computing Gaussian integrals: Firstly
it is based on the precision matrix of the Gaussian distribution, and sparsity of this matrix
can be utilized to decrease computation time. Secondly, the integration can be stopped as
soon as the value of the integral in the sequential integration goes below some given value
1 − α. If one only is interested in the exact value of the integral given that it is larger than
some value 1− α, this option can save a lot of computation time.
A basic call to the function looks like

R> gaussint(mu, Q, a, b)

where mu is the mean value vector, Q is the precision matrix, a is a vector of the lower limits in
the integral, and b contains the upper integration limits. If the Cholesky factor of Q is known
beforehand, this can be supplied to the function using the Q.chol argument. An argument
alpha is used to set the computational 1− α limit for the integral. The function returns an
estimate of the integral as well as an error estimate. If the error estimate is too high, the
precision can be increased by increasing the n.iter argument of the function.
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3.6. Plotting

The excursions package contains various functions that are useful for visualization. The func-
tion tricontourmap can be used for visualization of contour maps computed on triangulated
meshes. The following code plots the posterior mean using the contour map we previously
computed.

R> set.sc <- tricontourmap(mesh, z = mu.post, levels = res.con$u)
R> cmap <- colorRampPalette(brewer.pal(9, "YlGnBu"))(100)
R> cols <- contourmap.colors(res.con, col = cmap)
R> plot(set.sc$map, col = cols)

Here contourmap.colors is used to find appropriate colors for each set in the contour map,
based on the color map cmap that was defined using the RColorBrewer (Neuwirth 2014)
package. The results of the following commands are shown in Figure 2. The estimated
excursion set E+

u,α(X), can be visualized as

R> plot(sets.exc$M["1"], col = "red", xlim = range(mesh$loc[,1]),
+ ylim = range(mesh$loc[,2]))
R> plot(mesh, vertex.color = rgb(0.5, 0.5, 0.5), draw.segments = FALSE,
+ edge.color = rgb(0.5, 0.5, 0.5), add = TRUE)

The second plot command adds the mesh to the plot so that we can see how the set is
interpolated by the continuous function. Finally, the interpolated excursion function F+

u (s),
can be plotted easily using the inla.mesh.projector function from the R-INLA package.

R> cmap.F <- colorRampPalette(brewer.pal(9, "Greens"))(100)
R> proj <- inla.mesh.projector(sets.exc$F.geometry, dims = c(200, 200))
R> image(proj$x, proj$y, inla.mesh.project(proj, field = sets.exc$F),
+ col = cmap.F, axes = FALSE, xlab = "", ylab = "", asp = 1)
R> con <- tricontourmap(mesh, z = mu.post, levels = 0)
R> plot(con$map, add = TRUE)

The final two lines computes the level zero contour curve and plots it in the same figure as
the interpolated excursion function. The colorbars in the figures are plotted using the fields
(Nychka, Furrer, Paige, and Sain 2018) package.

4. Two applications
This section presents two examples that illustrate how excursions can be used.

4.1. Time series data: Tokyo rainfall

To illustrate the methods in the package, we use the much analyzed binomial time series from
Kitagawa (1987). Each day during the years 1983 and 1984, it was recorded whether there
was more than 1 mm rainfall in Tokyo. Of interest is to study the underlying probability of
rainfall as a function of day of the year. The data is modelled as yi ∼ Bin(ni, pi) for calendar
day i = 1, . . . , 366. Here ni = 2 for all days except for February 29 (i = 60) which only
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occurred during the leap year of 1984. The probability pi is modeled as a logit-transformed
Gaussian process.
The model and the following R-INLA implementation of the model is described further in
Lindgren and Rue (2015).

R> data("Tokyo")
R> mesh <- inla.mesh.1d(seq(1, 367, length = 25), interval = c(1, 367),
+ degree = 2, boundary = "cyclic")
R> kappa <- 1e-3
R> tau <- 1 / (4 * kappa^3)^0.5
R> spde <- inla.spde2.matern(mesh, constr = FALSE, theta.prior.prec = 1e-4,
+ B.tau = cbind(log(tau), 1), B.kappa = cbind(log(kappa), 0))
R> A <- inla.spde.make.A(mesh, loc = Tokyo$time)
R> time.index <- inla.spde.make.index("time", n.spde = spde$n.spde)
R> stack <- inla.stack(data = list(y = Tokyo$y, link = 1, Ntrials = Tokyo$n),
+ A = list(A), effects = list(time.index), tag = "est")
R> formula <- y ~ -1 + f(time, model = spde)
R> data <- inla.stack.data(stack)

Next, the model is estimated using the inla function. Since we want to analyze the output
using excursions, the additional option control.compute = list(config = TRUE) must be
specified in the inla function. This makes the function save some extra output needed by
excursions.

R> result <- inla(formula, family = "binomial", data = data,
+ Ntrials = data$Ntrials, control.predictor = list(
+ A = inla.stack.A(stack), link = data$link, compute = TRUE),
+ control.compute = list(config = TRUE))

We now have estimates of the posterior mean and marginal confidence intervals for the prob-
ability of rain for each day. However, if we also want joint confidence bands, we can estimate
these using simconf.inla as

R> res <- simconf.inla(result, stack, tag = "est", alpha = 0.05, link = TRUE)

Note the argument link=TRUE which tells the function that the results should be returned in
the scale of the data, and not in the scale of the linear predictor. Next, we plot the results,
showing the marginal confidence bands with dashed lines and the simultaneous confidence
band with dotted lines. The results are shown in Figure 3.

R> index <- inla.stack.index(stack, "est")$data
R> plot(Tokyo$time, Tokyo$y / Tokyo$n, xlab = "Day", ylab = "Probability")
R> lines(result$summary.fitted.values$mean[index])
R> matplot(cbind(res$a.marginal, res$b.marginal), type = "l", lty = 2,
+ col = 1, add = TRUE)
R> matplot(cbind(res$a, res$b), type = "l", lty = 3, col = 1, add = TRUE)
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Figure 3: Empirical and model-based Binomial probability estimates for the Tokyo rainfall
data set, with a marginal 95% confidence band (dashed) and a simultaneous confidence band
(dotted). The empirical probability estimates are the proportion of observed rainfall days for
each day of the year.

4.2. Spatial data: Parana precipitation

We will now illustrate how excursions can be used for a spatial dataset. In order to keep
the parts of the code that are not relevant to excursions brief, we again use data available
in R-INLA. The dataset consists of daily rainfall data for each day of the year 2011, at 616
locations in and around the state of Paraná in Brazil. In the following, we analyze the data
from the month of January.
The statistical model used for the data is a latent Gaussian model, where the precipitation
measurements are assumed to be Γ-distributed with a spatially varying mean. The mean is
modeled as a log-Gaussian Matérn field specified as an SPDE model. Details of the model
and the following INLA implementation can be found in the SPDE tutorial available on the
R-INLA homepage, see Wallin and Bolin (2015) for an analysis of the data using a different
non-Gaussian SPDE model.
We start by loading the data and defining the model:

R> data("PRprec")
R> data("PRborder")
R> Y <- rowMeans(PRprec[, 3 + (1:31)])
R> ind <- !is.na(Y)
R> Y <- Y[ind]
R> coords <- as.matrix(PRprec[ind, 1:2])
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R> b <- inla.nonconvex.hull(coords, -0.03, -0.05, resolution = c(100, 100))
R> prmesh <- inla.mesh.2d(boundary = b, max.edge = c(0.45, 1), cutoff = 0.2)
R> A <- inla.spde.make.A(prmesh, loc = coords)
R> spde <- inla.spde2.matern(prmesh, alpha = 2)
R> mesh.index <- inla.spde.make.index(name = "field", n.spde = spde$n.spde)

The measurement stations are spatially irregular, but we are interested in making predictions
to a regular lattice within the state. In order to do continuous domain interpretations, we
define the lattice locations as a lattice object using the submesh function of the excursions
package. The function inout from the package splancs (Rowlingson and Diggle 2017) is used
to find the locations on the lattice that are within the region of interest.

R> nxy <- c(50, 50)
R> projgrid <- inla.mesh.projector(prmesh, xlim = range(PRborder[, 1]),
+ ylim = range(PRborder[, 2]), dims = nxy)
R> xy.in <- inout(projgrid$lattice$loc, cbind(PRborder[, 1], PRborder[, 2]))
R> submesh = submesh.grid(matrix(xy.in, nxy[1], nxy[2]),
+ list(loc = projgrid$lattice$loc, dims = nxy))

Next, we define the stack objects and estimate the model using inla. Again note that we
have to set the control.compute argument since the result is to be used by excursions.

R> A.prd <- inla.spde.make.A(prmesh, loc = submesh$loc)
R> stk.prd <- inla.stack(data = list(y = NA), A = list(A.prd, 1),
+ effects = list(c(mesh.index, list(Intercept = 1)),
+ list(lat = submesh$loc[,2], lon = submesh$loc[,1])), tag = "prd")
R> stk.dat <- inla.stack(data = list(y = Y), A = list(A, 1),
+ effects = list(c(mesh.index, list(Intercept = 1)),
+ list(lat = coords[,2], lon = coords[,1])), tag = "est")
R> stk <- inla.stack(stk.dat, stk.prd)
R> r <- inla(y ~ -1 + Intercept + f(field, model = spde), family = "Gamma",
+ data = inla.stack.data(stk), control.compute = list(config = TRUE),
+ control.predictor = list(A = inla.stack.A(stk), compute = TRUE,
+ link = 1))

We now want to find areas that likely experienced large amounts of precipitation. In the
following code, we compute the excursion set for the posterior mean for the level 7 mm of
precipitation. To indicate that this level is in the scale of the data, and not in the scale of
the linear predictor, we use the u.link=TRUE argument in the excursions call.

R> exc = excursions.inla(r, stk, tag = "prd", u = 7, u.link = TRUE,
+ type = ">", F.limit = 0.6, method = "QC")
R> sets <- continuous(exc, submesh, alpha = 0.1)

We also compute the contour curve for the level of interest on the continuous domain, using
the tricontourmap function.

R> con <- tricontourmap(submesh, z = exc$mean, levels = log(7))
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Figure 4: A contour map of the posterior mean of log precipitation (left), and the excursion
function for the positive u = log(7) excursion set (right). In the right panel, also the u = log(7)
contour is shown.

We plot the resulting continuous domain excursion function together with the contour curve
using the following commands. The result is shown in the right panel of Figure 4.

R> proj <- inla.mesh.projector(sets$F.geometry, dims = c(300,200))
R> image(proj$x, proj$y, inla.mesh.project(proj, field = sets$F),
+ col = cmap.F, axes = FALSE, xlab = "", ylab = "", asp = 1)
R> plot(con$map, add = TRUE)

Next, the posterior mean is visualized using a contour map.

R> lp <- contourmap.inla(r, stack = stk, tag = "prd", n.levels = 2,
+ compute = list(F = FALSE))
R> tmap <- tricontourmap(submesh, z = lp$meta$mu, levels = lp$meta$levels)
R> plot(tmap$map, col = contourmap.colors(lp, col = cmap))

Here, the contourmap.inla computes the levels of the contour map and tricontourmap
computes the contour map on the mesh. Finally, contourmap.colors is used to compute
appropriate colors for visualizing the contour map. The result is shown in the left panel of
Figure 4.
The contour map we computed had two contours, and a relevant question is now if this is an
appropriate number. To investigate this, we compute the P2 quality measure for this contour
map and for contour maps with one and three levels.

R> lp1 <- contourmap.inla(r, stack = stk, tag = "prd", n.levels = 1,
+ compute = list(F = FALSE, measures = c("P2")))
R> lp2 <- contourmap.inla(r, stack = stk, tag = "prd", n.levels = 2,
+ compute = list(F = FALSE, measures = c("P2")), n.iter=40000)
R> lp3 <- contourmap.inla(r, stack = stk, tag = "prd", n.levels = 3,
+ compute = list(F = FALSE, measures = c("P2")))
R> cat(sprintf("%.2f %.2f %.2f",lp1$P2, lp2$P2, lp3$P2))

1.00 0.20 0.00
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We see that using only one contour gives very high credibility, whereas using three contours
give a credibility that is close to zero. The contour map with two contours has a credibility
around 0.2 and seems to be a good compromise for this application.

5. Discussion
The excursions package was first developed for calculating probabilistic excursion sets and
contour credible regions for latent Gaussian stochastic processes and fields. Since the early
versions, the scope of the package has grown and it now contains functions for several other
related computations, such as simultaneous confidence bands, uncertainty quantification of
contour maps, and computations of Gaussian integrals.
Some of the functionality in excursions can also be found in other packages. For example,
ExceedanceTools (French 2014) provides an alternative method for computing excursion sets
and uncertainty regions for contour curves for Gaussian models. The package mvtnorm (Genz
et al. 2018) contains functions for computing integrals of Gaussian distributions, but does not
have support for computations based on sparse precision matrices. Finally, there are numerous
packages with the ability to compute simultaneous confidence bands for various models, such
as semiparametric regression models using AdaptFitOS (Wiesenfarth, Krivobokova, Klasen,
and Sperlich 2012) or nonparametric regression models for functional data using SCBmeanfd
(Degras 2016). Comparing the methods in excursions to the corresponding methods in these
packages is an interesting topic for future studies.
Future work also includes further development of the package, and new features are added
as they are needed. One main focus for the current development is to add functionality for
large scale computations, where sparse Cholesky factorization is computationally infeasible.
We also plan to add functionality for computations needed in spatial extreme value theory,
where certain Gaussian integrals often are needed during likelihood inference. Finally, the
technical aspects of the functions are also being improved, and future releases will introduce
improvements to both the continuous domain interpretations and to the algorithms for finding
the largest excursion sets.
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