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Abstract

In many applications such as transaction data analysis, the classification of long chains
of sequences is required. For example, brand purchase history in customer transaction
data is in a form like AABCABAA, where A, B, and C are brands of a consumer prod-
uct. The decision tree-based package mbonsai is designed to handle sequence data of
varying lengths using one or multiple variables of interest as predictor variables. This
software package uses tree growing and pruning strategies adopted from C4.5 and CART
algorithms, and includes new features for handling sequence data and indexing for clas-
sification purpose. The software uses a simple command line program for learning and
predicting processes, and has the ability to generate user-friendly graphics depicting de-
cision trees. The underlying C++ codes are designed to efficiently process large data
sets in ASCII files. Two examples from transaction data sets are used to illustrate the
application of mbonsai.

Keywords: decision tree, sequence, classification, alphabet indexing.

1. Introduction to mbonsai
mbonsai is a tree-based classification program that can delineate patterns in sequence data –
an ordered collection of categorical, numerical, or ordinal observations – and provide rules for
splitting the sequence variable space such that the classification of individual cases is possible.
A prototypical application of mbonsai is to classify customers’ purchase of different brands in
sequence order in terms of their possibilities to churn – i.e., stop purchasing from the target
brand at a later period. To illustrate the key features of mbonsai, consider the following
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BrandSequence Churn
cab yes
ab yes
bbab yes
acca yes
aaab yes
aacc no
bacbc no
abca no
abca no

Table 1: Example of sequence data. Each line corresponds to one customer, with the target
variable indicating the churn status of the customer. The alphabetic characters a, b, and c,
shown in the “BrandSequence” column, represent the brand purchased by the customer in
the order shown.

Figure 1: Example of a customer churn model: (a) the decision tree for the original brand
sequence data; (b) the decision tree for the index pattern data.

example. A diaper manufacturer of a brand is interested in using previous diaper purchasing
pattern (e.g., when using size M) to predict churning (i.e., switching to a different brand
when using size L as the baby grows). Table 1 shows the purchase pattern, or sequence, of 9
customers’ purchases of 3 brands of diaper of size M and the churn status of the customer.
Churn=yes indicates that the customer switches to another brand for size L diaper. Churn
status is determined separately using transaction data on size L diapers. The first record, for
example, shows a customer purchased brand c, then a, and then b. This customer eventually
churned.
mbonsai first uses an alphabet index set to map the brands, or alphabets, into a smaller
number of indexes, in this case {1, 2}. The mapping is such that brands a and b map into
index 1, and brand c maps to index 2. When the number of alphabets is large, alphabet
indexing simplifies a model and, when done properly, preserves information in the sequence
patterns for classification purposes. Figure 1 shows decision trees for respective classification
based on the original alphabets and the index. When multiple predictor variables are present,
it is possible to apply alphabet indexing to all of the predictor variables together or to a set
of selected predictors. Details on subsequence and candidate patterns matching is illustrated
in Section 3.
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The software concept underlying mbonsai was originally initiated as a machine learning system
called BONSAI Garden (Shimozono, Shinohara, Shinohara, Miyano, Kuhara, and Arikawa
1994), which was motivated by pattern discovery from amino acid sequences of proteins.
The word BONSAI symbolizes knowledge, as a small bonsai tree comprises various regular
patterns that are in harmony with alphabet indexing to reduce the size of the tree.
In our implementation of mbonsai, we have extended the algorithms in BONSAI for analyzing
large-scale business data, especially for the prediction of consumer behavior (Kawata, Hamuro,
Kato, and Yada 2001; Katoh, Yada, and Hamuro 2003; Yada, Hamuro, and Katoh 2007a;
Yada, Ip, and Katoh 2007b). The key features in this new implementation are as follows:

• Transform patterns from numerical and categorical sequence data into classification
conditions.

• Use alphabet indexing as a data reduction technique for sequence data.

• Process multiple variables of sequence data, using numerical and categorical variables
as predictors.

• Allow a cost sensitive learning approach to optimize misclassification costs by the inte-
gration of a cost matrix.

• Allow separate training and testing of decision tree models.

• Allow two or more classes of the target variable for classification.

• Allow cross-validation for assessing the performance of the predictive model.

mbonsai is a data mining tool within the NYSOL software package (NYSOL Corporation
2014). NYSOL is an integrated framework of knowledge discovery which contains a collection
of command driven tools known as m-commands designed for large-scale data processing and
data mining. The underlying data processing methodology for the set of m-commands was
developed by Yasuyuki Matsuda. Command names within the NYSOL package including
mbonsai are preceded by the letter “m” in honor of the developer. The NYSOL package pro-
vides a wrapper command underpinned by existing algorithms and data processing programs,
for simple execution of data transformation, data aggregation, data mining, and visualization
at command line. This methodology allows users to integrate and manage all text-based
information in one system throughout the knowledge discovery process. Both mbonsai and
NYSOL m-commands were developed in C++ for scalable implementation in the UNIX envi-
ronment by the JST ERATO Minato Discrete Structure Manipulation System Project hosted
by Hokkaido University, Japan, and was distributed under the terms of the GNU Affero
General Public License Version 3 (https://www.gnu.org/licenses/agpl-3.0.html). The
mbonsai decision tree application can be executed as a simple UNIX command directly on the
command line and is customizable with user-defined parameters. mbonsai can be installed
as a standalone package on LINUX and Mac OS X platform at the terminal emulator. More
details are described in Section 5.
The UNIX-based, command-driven mbonsai was designed for the direct processing of large-
scale, text-based data. The default input format is CSV (comma-separated values), which
has the advantage of being highly accessible and can be processed with great efficiency.

https://www.gnu.org/licenses/agpl-3.0.html
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This paper is organized as follows. Section 2 provides a brief description of the background
and algorithms underlying mbonsai. Section 3 describes the strategy of growing a tree using
sequence data. Section 4 describes the required data structure and preparation for data input
for the software. Section 5 describes the functions and parameters of mbonsai. The application
of mbonsai is then illustrated through two classification examples with real customer purchase
transaction data in Section 6. Finally, we provide brief concluding remarks.

2. Tree algorithms

mbonsai is built upon the C4.5 (Quinlan 1993) and CART (Olshen, Breiman, Friedman, and
Stone 1984) algorithms for the classification of sequence data. The core algorithm of tree
building in mbonsai is based on information entropy in the C4.5/C5.0 implementation by
Rulequest (2013), whereas the algorithm of tree pruning is similar to that used in CART
which is implemented by Salford (2015). See Kuhn and Johnson (2013) for a recent review
of tree-based classification methods. Briefly, at each node of the tree, mbonsai selects the
predictor variable for the split in terms of information entropy. Not unlike CART, mbonsai
employs a greedy algorithm for splitting rules, grows a full tree until a terminal node contains
a small sample (e.g., n < 5), and then performs cost complexity pruning on the full tree
to prevent overfitting. Readers are referred to Quinlan (1993) and Olshen et al. (1984) for
technical details for C4.5 and CART algorithms respectively. The differences between C4.5
and CART algorithms are summarized in Wu et al. (2008). The recent development of tree
algorithms, and the associated software programs are described in conjunction with unique
features in mbonsai.
The first recent development is the use of a non-greedy algorithm to circumvent possible
biases introduced in model selection from a greedy algorithm. One example is the evolution-
ary method for learning globally optimal trees and related software (Grubinger, Zeileis, and
Pfeiffer 2011). An alternative approach is to split each node into as many children nodes
as the number of classes and use F tests to rank the predictor variables, as implemented
in CRUISE (Kim and Loh 2001). Because of the potential large search space in sequences,
mbonsai, however, relies on a greedy search algorithm.
The second recent development is the emergence of ensemble-based classifiers. It represents
another important development for improving the accuracy of predictions of tree-based clas-
sifiers. Bagging (Breiman 1996) and boosting (Freund and Schapire 1997) are two noted
examples of this class of classifiers. Open source programs for ensemble-based classifiers in-
clude randomForest (Liaw and Wiener 2002) for bagged trees, and gbm (Ridgeway 2017)
for generalized boosted models including boosted trees. Some implementations of ensemble-
based classifiers such as the R-based package bst (Wang 2018), allow the plugging-in of loss
functions. mbonsai also allows specification of loss functions but does not use ensemble-based
methods. Because ensemble-based methods are general and can be applied to almost any type
of classifier, it is possible to further enhance the accuracy of mbonsai through ensemble-based
methods.
A third recent development are the multivariate and longitudinal extensions of C4.5 and
CART algorithms, which is especially relevant to mbonsai. Examples of such extensions
include Segal (1992) for longitudinal recursive partitioning, Zhang and Singer (2010) for
multivariate binary tree classification, and Yu and Lambert (1999) for a functional curve
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approach. Unlike Yu and Lambert (1999), mbonsai focuses on response vectors that are
categorical, not continuous. Yet another recent approach for analyzing longitudinal data is
the RE-EM method by Sela and Simonoff (2012), which treats longitudinal data as repeated
measurements and the temporal information is viewed more or less as a nuisance factor.
In contrast, mbonsai considers temporal information as central to classification and such
information is embedded in a sequence.
Two other recent work that are most closely related to the approach in mbonsai are the
temporal decision tree (Console, Picardi, and Theseider 2003) and the sequence decision
tree (Rokach, Romano, and Maimon 2008). Incidentally, both tree-based models have been
inspired by applications in production and manufacturing. Both approaches use some form
of C4.5, but are different from mbonsai. For example, the sequence tree algorithm proposed
by Rokach et al. (2008) treats temporal data as sequences. The sequence of operational
setting of a product (e.g., an automobile) is first coded as a string of token. For example,
the sequence B 1–5–9–3–2 F represents assembly procedure 1, 5, 9, 3, 2 (and in that order).
B and F respectively denotes begin and finish. The goal of sequence tree analysis is to
delineate effects of the operation sequence on the quality of the product (e.g., fail/pass). The
algorithm consists of several steps which include (1) using regular expression to represent
relevant patterns in pairs of sequences – e.g., (1, 5), (5, 9), (9, 3), . . . in the above example, and
(2) using C4.5 to classify useful patterns derived from regular expressions. In other words,
preprocessing data plays an important role in this approach, and the original decision tree
algorithm C4.5 is applied to the derived pattern data. The approach thus is different from
mbonsai within which the C4.5 tree algorithm is extended to directly analyze sequence data.
Earlier applications of mbonsai to business transaction data with discrete and continuous
variables can be found in Yada et al. (2007b).

3. The mbonsai algorithm
The process flow of mbonsai is shown in Figure 2, and Figure 3 shows the overall algorithm
of mbonsai. The algorithm takes a sequence dataset D and pruning parameter α as input,
and it returns a decision tree T with alphabet-index f . Alphabet indexing is a notable

Figure 2: Workflow of mbonsai.
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1: Procedure bonsai(D,α)
2: D: sequence dataset
3: α: pruning parameter
4: f = initIndex(D) f is a mapping f : Σ→ I
5: e = 1.0 initialize an error rate
6: while
7: F = neighborIndex(f)
8: e′ = 1.0
9: foreach f ′′ ∈ F find the best mapping in F

11: S = mkDataset(D, f ′′)
12: T ′′ = mkTree(S, α)
13: e′′ = error(T)
14: if e′′ < e′

15: e′ = e′′; T ′ = T ′′; f ′ = f ′′

16: end
17: end
18: if e′ < e update the best tree T and mapping f
19: e = e′; T = T ′; f = f ′

20: else
21: break
22: end
23: end
24: return T, f

Figure 3: Main procedure of mbonsai

feature of mbonsai, which is a mapping f : Σ → I, where Σ = {a1, a2, . . . , an} is a alphabet
set corresponding to the elements of the sequence, and I = {b1, b2, . . . , bm} is an index set.
Usuallym is set at a much smaller number than n, so indexing works as grouping of elements of
a sequence. The algorithm explores the best mapping which minimizes error (misclassification
rate) of the model.
If n is small, it is possible to exhaustively search the entire space of possible partitions for
optimal alphabet indexing. When either n is large or a relatively large number of indexes
m is required, a local search technique is used. The local search starts by generating a
mapping at random (line 4 in Figure 3). In the examplary sequence shown in Table 1,
Σ = {a, b, c} and I = {1, 2}, applying randomized mapping generates a mapping such as
f = {(a, 1), (b, 1), (c, 2)}.
Afterwards, all mapping combinations similar to mapping f are enumerated and stored to a
mapping set F . In the above example, close mappings of f are f0 = {(a, 2), (b, 1), (c, 2)}, f1 =
{(a, 1), (b, 2), (c, 2)}, f2 = {(a, 1), (b, 1), (c, 1)}, but the last mapping is eliminated because
m = 1, so F = {f0, f1}.
With respect to each element f ′′ of the mapping set F , it calculates the best tree T ′ and
mapping f ′ with lowest error (line 14–15). Then the best mapping f is updated. The process
is repeated until no improvement is observed.
We describe the generation of a learning dataset (line 11) and the construction of a decision
tree (line 12) below.
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BrandSequence Churn
211 yes
11 yes
1111 yes
1221 yes
1111 yes
1122 no
11212 no
1121 no
1121 no

Table 2: Indexed sequence converted from Table 1 based on the mapping f =
{(a, 1), (b, 1), (c, 2)}).

3.1. Generating a learning dataset

First of all, the original sequence data on dataset D is converted to an indexed data based
on the given mapping f ′′. For example, the sequence data in Table 1 is converted to the one
shown in Table 2, based on the mapping f ′′ = {(a, 1), (b, 1), (c, 2)}.
Subsequently, a learning dataset for building a decision tree will be generated from the indexed
data sequence. Input variables are patterns of the sequence and they take the Boolean value
of 0 or 1. mbonsai uses “regular pattern” as pattern.

Regular patterns

“Regular patterns” refer to the collection of generic sequence patterns designed for matching
sequences seen in the data. Apparently, the maximum length of a regular pattern of interest
equals the maximum length of observed sequence data. However, in practice one requires to
limit computation costs by specifying the maximum length of regular patterns (e.g., capped
at 5), so the matching procedure will only consider subsequences in the data that have a
maximum length of 5. Define the alphabet set Σ as a collection of characters. This could
be, for example, a collection of brands as indicated by letters a, b, c and so on. Regular
patterns can either be a string or a sequence. In string matching, no other alphabets are
allowed between alphabets. For example, if the string aab is to be matched, then the data
must appear exactly as aab. However, if aab is treated as sequence, then an observed data of
the form acaccb is still considered a match. Thus, as sequence, any data of the form *a*a*b*
is considered a match, where * is a wildcard. Note that here we distinguish between the
terms “sequence” and “string”, whereas the broader term “sequence data” used earlier refers
to generic data that contain a chain of alphabets. Formally, define n substrings π1, π2, . . . , πn
on alphabet Σ, and n + 1 substrings x0, x1, . . . , xn that are used as wild cards. A regular
pattern takes the form x0π1x1π2x2 · · ·πnxn. In mbonsai, the pattern-matching algorithm
allows both string and sequence patterns. For string, mbonsai takes a substring pattern of
the form x0π1x1 unless otherwise specified (see also the discussion on begin / end match)
and subsequence of the form x0π1x1π2x2 . . .. The use of string and sequence patterns can be
specified in the second parameter of the mbonsai command at p=. An example of usage is
given in Section 5.
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a b c aa ab cc · · · Churn
1 1 1 0 1 0 yes
1 1 0 0 1 0 yes
1 1 0 0 1 0 yes
1 0 1 0 0 1 · · · yes
1 1 0 1 1 0 yes
1 0 1 1 0 1 no
1 1 1 0 0 0 no
1 1 1 0 1 0 no
1 1 1 0 1 0 no

Table 3: Each candidate pattern is extracted from the original sequence data as shown in the
“BrandSequence” column from Table 1. Each candidate pattern is matched with the original
sequence, and the presence of the matching candidate pattern is converted to 0–1 values. A
value of 0 indicates “not matched” and 1 indicates “matched”.

Generation of candidate patterns

Candidate patterns are enumerated for each node in a decision tree for classification accuracy,
and a selected number of candidate patterns (e.g., the top 30) for each variable will be
considered in splits when growing a tree. The enumeration is based on the following heuristic.
First, regular patterns generated from the index with length 1 are stored in a priority queue.
Regular patterns in the priority queue are ordered by an entropy measure (defined below).
At the next step, the regular pattern with the lowest entropy in the priority queue is selected,
and a second index is added to the selected regular pattern, resulting in an updated regular
pattern with length of 2. The updated regular pattern is stored in the priority queue again
and evaluated. The above steps are then repeated. If a regular pattern with length k is
selected, an updated regular pattern with length k + 1 is stored in the priority queue. In
mbonsai, the default length of index is set at 5, and the upper limit of the regular pattern k
can be specified in the sixth parameter of p=. The iteration process terminates when the size
of the regular pattern exceeds the number of candidates, which can be specified in cand=.
The default is set at cand=30. The following measure of information entropy is used to both
evaluate regular patterns and compute splitting rules at the nodes of the decision tree:

ent(π) = −qm(π)
c∑
i=1

p
m(π)
i log pm(π)

i − qu(π)
c∑
i=1

p
u(π)
i log pu(π)

i , (1)

where c denotes the number of classes, and pm(π)
i (pu(π)

i ) represents the relative proportion of
class i that matches (not matches) with the sample in the regular pattern π, with ∑c

i p
m(π)
i = 1.

Additionally, qm(π)(qu(π)) represents the composition ratio of matching (not matching) with
regular patterns π of all samples, with qm(π) + qu(π) = 1.
As an example, Table 3 shows candidate patterns, which are matched against the brand
sequence data shown in Table 1. A value of 0 indicates “not matched” and 1 indicates
“matched”.
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3.2. Building a decision tree

Selection of splitting rule
Like the implementation in CART, mbonsai adopts a top-down greedy algorithm for splitting
branches of a tree; the splitting rules at the node of the tree are determined by the information
change in the node due to the split. Specifically, the branching rule is such that the split
maximizes the entropy gain. Given a specific node, the probability of belonging to class i,
as estimated by the empirical proportion, is represented by pi. Entropy is computed by the
equation ent = −∑c

i=1 pi log pi. For a given splitting rule at a given node, denote the number
of samples classified into class i by ni. Accordingly, the ratio of the classified samples to
class i is given by ni/n, where n is the total sample size at the node. Equation 1 is used
to compute the entropy gain as the difference of entropy ent(π) after splitting the regular
pattern π. After entropy is calculated for each splitting point, the splitting point with the
maximal information gain among all splitting point is selected. The procedure is repeated
until the tree can no longer be grown. mbonsai uses a stopping rule that requires a minimum
sample size of a terminal node (e.g., leafSize = 100). The resulting fully-grown decision
tree is referred to as the maximal tree.

Pruning
A maximal tree often overfits the data. In order to avoid spurious branches that “fit to noise”,
mbonsai adopts a strategy similar to that of CART by iteratively pruning back sections of
the maximal tree. Denote the set of nodes t in a decision tree by T and the nodes in the
maximal tree by Tmax = {t1, t2, . . . , tk}, and the subtree with root node t by Tt, t ∈ P , where
P is the set of nodes t. The resubstitution misclassification rate of decision tree T is denoted
by R(T ). Pruning aims to select a subtree T ∗ that has the lowest misclassification rate R(T )
on unseen data.
A practical method of controlling the size of a tree is based on the cost-complexity pruning
method, which is implemented in CART. In brief, the method penalizes the estimated error
based on the subtree size. The degree of penalty is controlled by the pruning parameter α.
An efficient search algorithm can be used to compute all the distinct α values that change
the tree size, and the parameter is chosen to minimize the error on a holdout sample.
The implementation of pruning in mbonsai is completed by the direct specification of the
tuning parameter α, by the use of a holdout test sample, or by cross-validation. If the
pruning based on a holdout test sample or cross-validation is selected, then the subtree with
the highest prediction accuracy is reported.
Specifically, the evaluation function or penalized resubstitution error rate of the decision tree
T , which measures cost complexity, is defined as Rα(T ) = R(T ) + α|T̃ |, where α(≥ 0) is
the tuning parameter. A subtree model is considered a better model if its associated cost
is smaller. The complexity equation represents a tradeoff between the misclassification rate
of a decision tree R(T ) and tree complexity, as measured by the number of leaf nodes in T ,
|T̃ |. In general, for a given value of α, we can always find the subtree T (α) that minimizes
Rα(T ). Because there are a finite number of subtrees, the minimizing subtree for any α always
exists and can be denoted by Tα. Furthermore, because there are at most a finite number of
subtrees of Tmax, Rα(T ) yields different values for only a finite number of α’s. The pruned
tree T̂ ∗ that has a minimum prediction misclassification rate when applied to holdout data or



10 mbonsai: Sequence Classification by Tree Methodology

when evaluated using cross-validation is selected as the optimal tree. Specific details about
computational procedure for pruning and related theoretical issues can be found in Olshen
et al. (1984).

Pruning parameters

In model building mode, mbonsai controls pruning through the following parameters: test
sample ts=, cross validation cv=, and alpha=. When cv= or ts= is specified, test data is
used for predictive accuracy; the model with the minimum misclassification rate is selected.
mbonsai also allows the direct specification of the value of the tuning parameter α. The
option alpha= could be used for promptly defining a specific value of the tuning parameter
and creating a decision tree for special purposes such as exploration or testing the effect of
changes in α. The final tree model is saved in model.txt and model_info.txt.
In prediction mode (-predict), the α value is calculated internally unless the option alpha=
is specified. In that case, the specified value of α is used to construct the decision tree for
prediction.
In the test sample method, training data D is partitioned into two sets D1, D2 at a ratio
of 1 : 2. The maximal tree based on training data D2 is first constructed. Based on the
complexity parameter α1, α2, . . . , αk obtained for pruned subtrees, D1 is used as the set
of unknown data to predict the value of the misclassification rate, and the best subtree is
selected. If the costs for the test sample exceed the costs for the learning sample, then this is
an indication of a poor model fit.
In the cross-validation method, training data D is partitioned equally into D1, D2, . . . , Dp,
and D1 is treated as unknown data for prediction. This method is similar to the test sample
method where a percentage of training data is used for prediction. Cycling through the Dj ,
j = 1, . . . , p as unknown data with the other data as training data, an average misclassifica-
tion rate can be obtained by this method. Subsequently, among the complexity parameters
α1, α2, . . . , αk for corresponding decision trees T1, T2, . . . , Tk, the optimal decision tree with
the lowest average misclassification rate is selected. Additionally, the smallest tree among all
subtrees of which the estimated mean error rate is within one standard error of the overall
error rate is selected (“1 SE rule”).

Learning cost considerations

In many applications, the cost for misclassification may not be uniform across different out-
comes. Using a two-class (positive and negative) model as an example, the cost for false-
positives and false-negatives could be very different, and cost consideration would affect the
construction of a decision tree. The construction of the classification model that takes mis-
classification costs into account is often called cost sensitive learning. Various methods have

real predict cost
positive negative 2
negative positive 5

Table 4: Example of defining the cost file for a two-class (positive/negative) example. The
column name can be customized by the user, but the columns must follow the order of actual
class, predicted class, and cost.
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ProfitPattern Profit Gender Class
55552342 7969 F Loyal
525 5379 M Loyal
5 1538 F Loyal

Table 5: Data sample with 3 predictor variables and 1 target variable.

been proposed in the literature. For example, the method proposed by Olshen et al. (1984)
modified the probability pi of class i in the sample by assigning weights based on cost. Specif-
ically, the cost of a case that belongs to class j but predicted in class i is expressed as c(i|j);
thus, the total cost of class i is expressed as ∑

j c(i|j). This weight is assigned to class i, and
probability pi is accordingly updated.
In mbonsai, the cost function is specified by the creation of a definition file in CSV format. A
two-class (positive/negative) example is shown in Table 4, in which the actual class (real),
corresponding predicted class (predict), and associated cost (cost) are displayed in the same
row. When the combination of actual class and predicted class is not specified, or the cost
file is not defined, all costs of misclassifications are set to unity.

4. Data requirements

4.1. Variable types
There are three basic data types accepted by mbonsai: a sequence made up of alphanumeric
characters, numerical variables, or categorical variables. For the target class variable, which
is defined in c= (see Section 5), it is assumed that the variable is categorical. Note that
mbonsai accepts a multiclass definition of the target variable. Predictor variables can exist in
the form of sequence or single-value. Continuing the customer churning example in Table 1,
we use other predictor variables – a pattern of profit, total amount of profit, and gender – to
illustrate the three data types. Table 5 shows the three respective variables “ProfitPattern”,
“Profit” and ‘Gender” respectively of the type numeric sequence patterns (1–5), numeric,
and categorical. The algorithm for branching rules based on single-value numerical and
categorical is similar to that of the C4.5 algorithm. Within mbonsai, sequential, numerical,
and categorical data types are respectively specified in the p=,n=,d= parameters.

5. Installation and parameters of mbonsai

5.1. Installation
We will describe installation of the mbonsai standalone package for the Linux and Mac OS
platform. When the user is at the website (http://www.nysol.jp/mbonsai), the user can
download the zip archive file. Note that mbonsai requires Ruby 2.0 (Thomas, Fowler, and Hunt
2013), gcc and g++ complier, boost C++ libraries, and libxml2. Details of the installation
instructions of prerequisite software and mbonsai can be found in the website.
The user can first create a parent directory, which is named parentdir in this example, and
save the software program mbonsai.zip in the directory. Afterwards, launch the terminal (in

http://www.nysol.jp/mbonsai
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Mac OS, the terminal emulator is located under /Applications/Utilities). Alternatively,
create the directory in the terminal using the mkdir command:

~$ mkdir parentdir
~$ cd parentdir
~/parentdir$

At the parent directory, execute the following commands to unzip the zip archive mbonsai.zip,
and use the ls command to show the extracted files and folders in the directory. Then go to
the mbonsai/cmd directory to execute the make command to install mbonsai:

~/parentdir$ unzip mbonsai.zip
~/parentdir$ ls

data license.txt mbonsai mbonsaiscript.sh mbonsai.zip

~/parentdir$ cd mbonsai/cmd
~/parentdir/mbonsai/cmd$ make

This package contains three commands in the mbonsai package subfolders. The mbonsai
decision tree command and the mcm classifier command are located within the mbonsai/cmd
directory, the visualization command mdtree.rb is located in the mbonsai/view directory.
The input data for this tutorial is located inside the data directory.
The user needs to define the directory path for mbonsai to execute the command. The input
data is defined at i=, the name of the desired directory where output files are stored at O=
parameter. The p= parameter accepts the column name of the pattern, while c= parameter
accepts the column name of the class. In this example, at the parent directory, named
parentdir, at which the command prompt is shown as ~/parentdir$, the user can execute
the command with corresponding parameters at command line as shown in the following
structure:

~/parentdir$ mbonsai/cmd/mbonsai p=seq c=cls i=data/input.csv O=output

From this point on, the user can proceed to use the tutorial.

5.2. Parameters used in model construction mode

mbonsai is a command-based program. Output model and statistics are saved in text files
and PMML formats1. For data learning and tree constructing, the command line in model
construction mode contains the following parameters:

mbonsai i= [p=] [n=] [d=] c= O= [delim=] [cost=] [seed=] [cand=] [iter=]
[cv= | ts=] [leafSize=] [--help]

The functions of the parameters are summarized in Table 6. Details of the usage of the
1The predictive model markup language (PMML) is an industry standard used to describe data mining

and mathematical models represented in XML-based file formats. Note that this specific command uses an
extended tag of the PMML standard.
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i= Training data file name.
p= Column name of pattern (multiple fields can be specified).

Users can specify up to five parameters after the column name, each separated
by a colon, e.g., p=column_name:is:seq:ordered:head:tail:rs. The details
of each are as follows:
is: Size of the index – if this parameter is not specified, an index is not gener-
ated, instead, the original alphabet of the pattern is used.
seq: type of pattern – true: partial sequence pattern; false: partial string
pattern (default).
ordered: Alphabetical order arrangement when generating the index (this pa-
rameter is ignored when is is not specified) – true: ordered, group alphabet
above / below the threshold value; false: unordered (default)
head: Match string or numeric characters from the beginning (default: start of
string is not considered for matching).
tail: Match string or numeric characters from the end (default: end of string
is not considered for matching).
rs: Upper size limit of regular pattern (default: 5).

n= Column name with numerical data (multiple fields can be specified).
d= Column name with categorical data (multiple fields can be specified).
c= Column name of class.
O= Output directory name (text, PMML model, and model statistics).
delim= Delimiter character of pattern (default: empty character; a 1 byte character is

regarded as 1 alphabet).
cost= Name of cost file.
seed= Seed of random number (default=−1: time dependent).
cand= Number of patterns as predictor variable (default=30, range: 1–256).
iter= Iterations of local search (default=1).
leafSize= Lower limit of the number of samples in one leaf (default: no limit).
alpha= Specify the degree of pruning. However, when cv= or ts= is specified, this

parameter is disabled. Default=0.01.
ts= Specify the percentage of test data partitioned using the test sample method.

When ts= is not specified, the default value is set as 0.333.
cv= Specify partition of data by cross-validation method. When cv= is not specified,

the default value is set as 10. If either ts= or cv= is not specified, the default
value of alpha=0.01 will be applied. Even when alpha=, ts=, and cv=, are
specified, the pruning degree of the maximum tree is recorded in PMML; the
value of α could change in prediction mode.

Table 6: List of parameters for model building mode in mbonsai.

parameters in the training model are illustrated in Section 6.

5.3. Parameters used in prediction mode

The command for the prediction of new cases follows the format:

mbonsai -predict i= I= o= [alpha=] [--help]
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-predict Prediction mode [required for prediction].
i= Input data [required].

The column names must be the same as the columns that were used for building the
model.

I= Destination directory path for model building mode [required]. Required files include:
bonsai.pmml: pmml containing the decision model.

o= Output file name containing the prediction result. The predict column is added to
the input data in output. Columns must be the same as columns that were used in
building the model.

alpha= Specify the pruning complexity parameter. This parameter accepts real numbers
greater than 0, as well as the following two symbols. Designation of the two sym-
bols is effective only when ts= or cv= is specified when building the model.
min: α value that corresponds to the pruned model, which minimizes the estimated
misclassification rate.
1se: α value that corresponds to the pruned model with the same 1SE rule.
Default behavior: If ts= or cv= is specified when building the model, min is used.
If you specify alpha= when building the model, the specified value is applied.

delim= Delimiter character of pattern (default: empty character; a 1 byte character is regarded
as 1 alphabet).

Table 7: List of parameters for prediction mode in mbonsai.

The list of user-defined parameters for predicting new data using the model generated in
training mode are listed in Table 7. The -predict option must be switched on for running
mbonsai in prediction mode.

6. Two applications to illustrate mbonsai
We use a real data example to illustrate the learning algorithm of mbonasi for the construction
of a classification tree and the prediction for new cases. The data set contains purchase history
of member customers of a drugstore chain in Japan (Hamuro, Katoh, Matsuda, and Yada
1999). The drugstore chain, Pharma, has collected purchase history of all of its 3,000,000
member customers. Using two subsets of data extracted from the drugstore chain’s database,
we will illustrate how mbonasi builds decision tree models to (1) identify core customers from
the drugstore’s perspective and classify new customers, and (2) identify loyal customers from
a brand’s perspective and predict loyal new customers. The first data set contains sequence
data for 16,092 members, and the second dataset contains the transaction history of 114,069
members.

6.1. Application I: Identification of core customers

Core customers are those that have consistently generated a high level of profit and ulti-
mately form a stable basis of income streams for a company. The objective in this example
is to identify core customers based on the first 13 weeks of purchase history. mbonsai is used
to construct a tree from transaction data of 16,092 customers using the following identified
variables: average profit per visit (“Profit”), pattern of level of profit (“ProfitPattern”), num-
ber of visits during that period (“Visit”), and weekly visit pattern (“VisitPattern”). “Profit”
and “Visit” are both numerical variables, whereas “ProfitPattern” and “VisitPattern” are
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ProfitPattern VisitPattern Profit Visit Target
55552342 1100011101011 7969 11 Core
525 1000001100000 5379 3 Core
5 1000000000000 1538 1 Core
3545 1000000001011 2760 8 NonCore
42 1000000010000 566 2 NonCore
. . .

Table 8: Example of input data core.csv. Each line corresponds to one customer, and
the target variable indicates the status of the customer. The predictor variables include
“ProfitPattern”, “VisitPattern”, “Profit”, and “Visit”.

sequence data. Each weekly profit value is transformed into a 5-level ordinal variable to form
the sequence “ProfitPattern” (5 = high, 1 = low). In contrast, “VisitPattern” is a sequence
of 13 binary (0/1) variables where 0 and 1 correspond to non-visit and visit in a specific week
over the 13 week period. The target 2-class variable indicates the status of the customer –
i.e., whether the customer belongs to the core customer group. Table 8 shows a sample of the
data in CSV format.

Core customer classification model

Based on the program and file locations explained in the previous section, the following
command creates the first classification model, and the output is saved in the result_core
directory:

~/parentdir$ mbonsai/cmd/mbonsai p=ProfitPattern:2::true,VisitPattern \
> n=Profit,Visit c=Target i=data/core.csv O=result_core seed=100

The field name of pattern variables is specified by the p= parameter. The number of alphabet
indexes is set at 2 for “ProfitPattern”, and since it is an ordered sequence, the parameter is
defined as ProfitPattern:2::true. The third parameter is blank after ProfitPattern:2
and defaults to ordered sequence. “VisitPattern” only contains 0 and 1 in the sequence,
customized parameters are not required. The field names of numeric variables are specified
by the n= parameter, and the target variable by the c= parameter. The input file can be
specified by the i= parameter, whereas the output file is specified by the O= parameter. A
random seed can be specified by the seed= parameter, the seed is set at 100 in this example.
The use of the same random seed would ensure that the same set of results would be obtained.
Using a different random seed could lead to slightly different results. The results shown below
may differ depending on the random number generator in your system.
The summary results of the model is by default stored in result_core/model.txt. Re-
sults are also interactively displayed as sections. [alphabet-index] shows the alphabet
corresponding to the index. “ProfitPattern” classes 5, 2, and 3 are indexed in index 1 and
category classes 4 and 1 are indexed as 2. “VisitPattern” is by default indexed as 0 and 1.

[alphabet-index]
Field Name: ProfitPattern
Index[1]={5,2,3}
Index[2]={4,1}
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Field Name: VisitPattern
Index[1]={1}
Index[2]={0}

[decision tree] shows the pruned decision tree in text format. Information such as model
size (number of leaf nodes) and number of layers of the deepest leaf is reported as well. The
results of the tree show 1 split where profit per visit is less than or equal to 1480.5, in which
case customers are classified as non-core, and if profit per visit is more than 1480.5, customers
are classified as core.

[decision tree]
if($Profit <= 1480.5 )

then $Target=NonCore (hit/sup)=(5680/8037)
else $Target=Core (hit/sup)=(5249/7175)

numberOfLeaves=2
deepestLevel==1

[Confusion Matrix by Training] shows performance of the model using training data. The
confusion matrices by count and by cost are shown. Overall prediction accuracy is 0.718446
for this model. Out of 15,212 cases, the sum of misclassification cost in this model is 4283.
When the parameter cross validation cv= or test sample ts= is specified, the confusion matrix
by estimation will be shown instead.

[Confusion Matrix by Training]
## By count

Predicted As ...
Core NonCore Total

Core 5249 2357 7606
NonCore 1926 5680 7606
Total 7175 8037 15212

## By cost
Predicted As ...

Core NonCore Total
Core 0 2357 2357
NonCore 1926 0 1926
Total 1926 2357 4283

## Detailed accuracy by class
class,recall,precision,FPrate,F-measure
Core,0.690113,0.731568,0.253221,0.710236
NonCore,0.746779,0.706731,0.309887,0.726203

## Summary
accuracy=0.718446
totalCost=4283
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Prediction using the classification model

mbonsai allows the use of test data to validate the classification model. The option -predict
needs to be invoked. The predict mode reads from the model.pmml file, which has been
generated in the previous step. The directory of the model output files can be specified by
the I= parameter. Test data are specified by the i= parameter. In the test data, the original
class label is known and is presented in the Target column. Execute the following command
to build the prediction model using test data.

~/parentdir$ mbonsai/cmd/mbonsai -predict i=data/core_test.csv \
> o=result_core/predict.csv I=result_core

The predicted class for each individual is saved in the predict column in the output.

ProfitPattern,VisitPattern,Profit,Visit,Target,predict,Core,NonCore
4423,1010000100001,1203,4,Loyal,NonLoyal,0.2932686326,0.7067313674
5,1000000000000,816,1,Loyal,NonLoyal,0.2932686326,0.7067313674
525,1010000000010,4308,4,Loyal,Loyal,0.7315679443,0.2684320557
231511,1001110110000,859,6,Loyal,NonLoyal,0.2932686326,0.7067313674
4445,1101000001000,2724,4,Loyal,Loyal,0.7315679443,0.2684320557
555215,1001100011010,6103,7,Loyal,Loyal,0.7315679443,0.2684320557
5522521,1110010000111,4832,9,Loyal,Loyal,0.7315679443,0.2684320557
55,1000000000100,2760,2,Loyal,Loyal,0.7315679443,0.2684320557
...

Within the predict mode, a confusion matrix of classifier accuracy can be calculated with
the mcm command in the mbonsai package. Specify the field name of the actual class as ac=
parameter, the predicted class as pc= parameter, the predict model results from the previous
step as i=, and the output directory as O= parameter, and run the command as follows.

~/parentdir$ mbonsai/cmd/mcm i=result_core/predict.csv ac=Target pc=predict \
> O=result_core/evalAcc

Three output files are generated in the result_core/evalAcc directory. The file summary.csv
contains summary of model accuracy information, class.csv contains positive predictive ac-
curacy information, and finally, confMatrix.txt contains the confusion matrix of positive
and negative instances of prediction outcome.
Below shows the results from the three output files:

[summary.csv]
evaluation,value
accuracy,0.7047337278
error rate,0.2952662722
total records,1690
unpredictable records,0

[class.csv]
Target,TP,FN,FP,TN,upCnt,upRate,recall,precision,f1
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Figure 4: Visualization of the decision tree with samples of the two classes shown in a pie
chart.

Core,559,286,213,632,0,0,0.6615384615,0.7240932642,0.6914038343
NonCore,632,213,286,559,0,0,0.7479289941,0.688453159,0.7169597277

[confMatrix.txt]
a b u

a 559 286 0
b 213 632 0

a:Core
b:NonCore
u:unpredictable

Out of 1,690 cases in core_test.csv, 1,191 are correctly classified with an accuracy of 0.705.

Visualization of the decision tree

The decision tree can be visualized as a SVG (scalable vector graphics) graph that mbonsai
embeds in an HTML file. The input to the SVG file is based on the PMML file, which has
been created when the decision model was built. The following Ruby command generates the
graph:

~/parentdir$ ruby mbonsai/view/mdtree.rb i=result_core/model.pmml \
> o=result_core/tree.html

The decision tree is visualized in Figure 4. The number of samples of each class at each node
is shown in a pop-out area by placing the mouse cursor over the desired class. The two classes
are compared in a pie chart by default. However, the chart can also be shown as a bar graph
by adding the option -bar as follows. The diagram with bar chart option and pop-out area
is shown in Figure 5.

~/parentdir$ ruby mbonsai/view/mdtree.rb i=result_core/model.pmml \
> o=result_core/tree_bar.html -bar
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Figure 5: Visualization of the decision tree with samples of the two classes shown in bar
graph.

Note: Users can modify the color of the graph by editing the colorSet in the dictColor
function in mbonsai/view/mdtree.rb.

Refine the model

Altering the tuning parameter(s) α and/or leaf size allows users to adjust the tree. To
illustrate the idea, we reran mbonsai using the α value of 0.00001 for pruning, together with
a minimum number of 1,500 samples in each leaf.

~/parentdir$ mbonsai/cmd/mbonsai i=data/core.csv \
> p=ProfitPattern:2::true,VisitPattern n=Profit,Visit c=Target seed=100 \
> alpha=0.00001 leafSize=1500 O=result_core_mod

Results of alphabet index and decision tree from result_core_mod/model.txt:

[alphabet-index]
Field Name: ProfitPattern
Index[1]={5,2,3,4}
Index[2]={1}
Field Name: VisitPattern
Index[1]={1}
Index[2]={0}

[decision tree]$Target
if($Profit <= 1480.5 )

then if($Profit <= 548.5 )
then if($ProfitPattern has 1)

then if($Profit <= 290.5 )
then if($Profit <=Core -4373 )

then $Target=Core (hit/sup)=(4/4)
else $Target=NonCore (hit/sup)=(1915/2411)

else $Target=NonCore (hit/sup)=(1035/1393)
else $Target=NonCore (hit/sup)=(679/784)
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else if($Profit <= 971.5 )
then if($ProfitPattern has 2212)

then $Target=NonCore (hit/sup)=(8/8)
else if($ProfitPattern has 11121)

then $Target=Core (hit/sup)=(25/48)
else if($ProfitPattern has 1121)

then $Target=NonCore (hit/sup)=(44/58)
else if($Visit <= 8.5 )

then if($VisitPattern has 22111)
then $Target=NonCore (hit/sup)=(20/24)
else if($ProfitPattern has 12111)

then $Target=Core (hit/sup)=(9/12)
else $Target=NonCore (hit/sup)=(1017/1579)

else $Target=Core (hit/sup)=(15/24)
else $Target=NonCore (hit/sup)=(927/1692)

else $Target=Core (hit/sup)=(5249/7175)

numberOfLeaves=13
deepestLevel==9

[Confusion Matrix by Training]
## By count

Predicted As ...
Core NonCore Total

Core 5302 2304 7606
NonCore 1961 5645 7606
Total 7263 7949 15212

## By cost
Predicted As ...

Core NonCore Total
Core 0 2304 2304
NonCore 1961 0 1961
Total 1961 2304 4265

## Detailed accuracy by class
class,recall,precision,FPrate,F-measure
Core,0.697081,0.730001,0.257823,0.713162
NonCore,0.742177,0.710152,0.302919,0.725812

## Summary
accuracy=0.719629
totalCost=4265

When an α value different from the default is used, an associated tree with 13 leaves and 9
levels is generated. Note that for the new value of α, the misclassification cost is only reduced
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Figure 6: The decision tree as generated when α is set as 0.00001 for pruning with a minimum
1,500 samples in each leaf.

slightly from 4283 to 4265. The decision tree with the new tuning parameters is visualized in
Figure 6.

~/parentdir$ ruby mbonsai/view/mdtree.rb i=result_core_mod/model.pmml \
> o=result_core_mod/tree.html -bar

6.2. Application II: Prediction of diaper purchase
In this application, we examine brand loyalty (brand A in this application) of customers by
using a decision tree for analyzing brand purchase sequences. The objective is to predict who
will stay loyal to brand A through continual purchasing of brand A diaper with a possible
switch from size M to size L as the baby grows. There are seven major brands included in the
data and they are denoted by A, B, C, D, E, F, and G. Among 1,838 customers who purchased
baby diapers of size M from brand A at least four times, those who purchased baby diapers
at least five times after switching from M to L are classified as loyal customers. Using this
definition, 918 customers are labeled as loyal to brand A. Together with the labels, purchase
patterns of M-sized diapers are used as training data to learn the decision tree model.
“BrandPattern” is represented by the string of diaper brands purchased in sequential order,
which is used as a predictor variable to predict whether the customer will continue to purchase
size L of brand A diaper after at least four purchases of size M diaper. A sample of the dataset
is shown in Table 9.

Create a decision tree model
In this application, we encode the 7 brands in “BrandPattern” into a two-class alphabet index
defined at p=. We then apply 5-fold cross-validation defined at cv=. The following mbonsai
command is used to create the training model, followed by results of alphabet index and
decision tree from result_brand/model_1se.txt:
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BrandPattern Target
CAAA Loyal
AAAAAA Loyal
AAAAAAAAAAF Loyal
AACAAAAAAAAA NotLoyal
ABBBBB Loyal
. . .

Table 9: Example of input data brand.csv. Each line corresponds to one customer, with the
variable “Target” indicating the status of the continual purchase of diapers. “BrandPattern”
is a predictor variable.

~/parentdir$ mbonsai/cmd/mbonsai i=data/brand.csv p=BrandPattern:2 \
> c=Target O=result_brand cv=5 seed=500

[alphabet-index]
Field Name: BrandPattern
Index[1]={A}
Index[2]={C,F,B,G,D,E}

[decision tree]
if($BrandPattern has 11)

then $Target=Loyal (hit/sup)=(693/791)
else if($BrandPattern has 1)

then if($BrandPattern has 12)
then $Target=NotLoyal (hit/sup)=(77/121)
else $Target=Loyal (hit/sup)=(24/40)

else $Target=NotLoyal (hit/sup)=(636/702)

numberOfLeaves=4
deepestLevel==3

[Confusion Matrix by Training]
## By count

Loyal NotLoyal Total
Loyal 717 110 827
NotLoyal 114 713 827
Total 831 823 1654

## By cost
Predicted As ...

Loyal NotLoyal Total
Loyal 0 110 110
NotLoyal 114 0 114
Total 114 110 224

## Detailed accuracy by class
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class,recall,precision,FPrate,F-measure
Loyal,0.866989,0.862816,0.137848,0.864897
NotLoyal,0.862152,0.866343,0.133011,0.864242

## Summary
accuracy=0.864571
totalCost=224

[Confusion Matrix by Estimation]
## By count

Predicted As ...
Loyal NotLoyal Total

Loyal 703 124 827
NotLoyal 111 716 827
Total 814 840 1654

## By cost
Predicted As ...

Loyal NotLoyal Total
Loyal 0 124 124
NotLoyal 111 0 111
Total 111 124 235

## Detailed accuracy by class
class,recall,precision,FPrate,F-measure
Loyal,0.85006,0.863636,0.13422,0.856795
NotLoyal,0.86578,0.852381,0.14994,0.859028

## Summary
accuracy=0.85792
totalCost=235

[Selected Alpha]
alpha: 0.00209438

Based on the results from the decision tree, brand A is indexed into 1, and brands C, F, B,
G, D, and E are indexed into 2. The model rule states that if “BrandPattern” contains 11,
which corresponds to 2 consecutive purchases of brand A size M diapers, then the customer is
likely to be a loyal customer of brand A – i.e., they would continue to use size L diapers from
the same brand. The command mdtree.rb generates the decision tree which is visualized in
Figure 7.
In this model, the accuracy is 0.8579. Note that in the result_brand directory, the files
model_info.csv, model_1se.csv, model_info_min.csv, and model_min.txt are created in
cross-validation mode. The accuracy of the training data can be compared across the four files
to inspect the possible variation in estimates of accuracy. In addition, predict.csv, as well
as predict_1se.csv and predict_min.csv, are also generated. The predictive accuracy on
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Figure 7: The decision tree for the brand pattern dataset.

the test set can be cross-checked using the three files. When the decision tree model is cross-
validated against the test data, the classification appears to be both accurate and consistent
across different partitions of data, suggesting that the model is stable and reliable.
The cross-tabulation results are saved in predict_1se.csv and predict_min.csv respec-
tively in the result_brand directory. Statistical calculation of recall, precision, and F -
measure are calculated from the predict data by the mcm command as shown below:

~/parentdir$ mbonsai/cmd/mcm i=result_brand/predict_1se.csv ac=Target \
> pc=predict O=result_brand/evalAcc_1se

[summary.csv]
evaluation,value
accuracy,0.8579201935
error rate,0.1420798065
total records,1654
unpredictable records,0

[class.csv]
Target,TP,FN,FP,TN,upCnt,upRate,recall,precision,f1
Loyal,703,124,111,716,0,0,0.8500604595,0.8636363636,0.8567946374
NotLoyal,716,111,124,703,0,0,0.8657799274,0.8523809524,0.8590281944

[confMatrix.txt]
a b u

a 703 124 0
b 111 716 0

a:Loyal
b:NotLoyal
u:unpredictable

~/parentdir$ mbonsai/cmd/mcm i=result_brand/predict_min.csv ac=Target \
> pc=predict O=result_brand/evalAcc_min
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[summary.csv]
evaluation,value
accuracy,0.8639661427
error rate,0.1360338573
total records,1654
unpredictable records,0

[class.csv]
Target,TP,FN,FP,TN,upCnt,upRate,recall,precision,f1
Loyal,708,119,106,721,0,0,0.8561064087,0.8697788698,0.8628884826
NotLoyal,721,106,119,708,0,0,0.8718258767,0.8583333333,0.8650269946

[confMatrix.txt]
a b u

a 708 119 0
b 106 721 0

a:Loyal
b:NotLoyal
u:unpredictable

7. Explanation of output data

7.1. Output data

The data files generated by running the mbonsai command are summarized in Table 10. The
main output files including model.pmml, predict.csv, model_info.csv, alpha_list.csv,
and param.csv are described below.

model.pmml Based on the maximal tree of the decision tree created, the complexity penalty
attribute is shown for each node. The branch would be pruned if α is greater than the value of
complexity penalty. As the maximal tree and pruning information is recorded in PMML,
different values of α can be used for prediction.

<Node id="0" score="Loyal" recordCount="15212" >
<Extension extender="KGMOD" name="complexity penalty"
value="0.218446"/>

:

predict.csv The prediction result is added to the training data in CSV format. The
prediction result, as described below, outputs the highest prediction probability in the column
“predict”, and the prediction accuracy for each class (“Loyal” and “NonLoyal” as shown
below). When ts= is specified, it returns the prediction results of test data; when cv= is
specified, it returns the prediction results of k-fold cross-validation, where k is user-specified.
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File name Content Remarks
model.pmml The decision tree model repre-

sented by PMML.
Records pruning information for maxi-
mum tree.
Prediction mode is selected when
-predict is specified.

alpha_list.csv Other model information of the
complexity parameter α.

Series of α corresponding to the series
of models.

model_min.txt Summary of pruned model with
minimum classification predic-
tion error.

Created when cv= or ts= is specified.

model_1se.txt Summary of pruned model with
the same 1SE rule.

Created when cv= or ts= is specified.

model.txt Summary of pruned model for
the specified α value.

model_info_min.csv Various information of pruned
model with minimum classifica-
tion prediction error.

Created when cv= or ts= is specified.

model_info_1se.csv Various information of pruned
model with the same 1SE rule.

Created when cv= or ts= is specified.

model_info.csv Summary of pruned model for
the specified α.

predict_min.csv The prediction information of
pruned model with minimum
classification prediction error.

Created when cv= or ts= is specified.

predict_1se.csv The prediction information of
pruned model with the same 1SE
rule.

Created when cv= or ts= is specified.

predict.csv The prediction pruned model for
the specified α.

param.csv List of execution parameters. Returns the pair of keyword-value for
the specified parameters.

Table 10: List of output data from model building mode in mbonsai.

When alpha= is specified, the prediction result of the training data using the specified α value
is returned.

ProfitPattern,VisitPattern,Profit,Visit,Target,predict,Core,NonCore
55552342,1100011101011,7969,11,Core,Core,0.7315679443,0.2684320557
525,1000001100000,5379,3,Core,Core,0.7315679443,0.2684320557
5,1000000000000,1538,1,Core,Core,0.7315679443,0.2684320557
31,1000000010000,91,2,Core,NonCore,0.2057237661,0.7942762339
52,1000001000000,1995,2,Core,Core,0.7315679443,0.2684320557

model_info.csv The file stores the model information in CSV format. The column “nobs”
refers to the number of records in training data, column “alpha” refers to the value of pruning
complexity parameter and “accuracy” and “totalCost” respectively refer to the percentage of
correct answers in the test model and the total cost.
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nobs,alpha,accuracy,totalCost
15212,0.01,0.7184459637,4283

alpha_list.csv The file stores the error rate, standard error, and error rate plus/minus
one standard error corresponding to the α value of the pruning complexity parameter of the
resulting decision tree. The following shows a snapshot from the file.

alpha,leafSize,errorRate,SE,up,lo
0,4164,0.02511175388,0.001268594376,0.02638034825,0.0238431595
1.200198434e-05,4152,0.02524322903,0.0012718252,0.02651505423,0.02397140383
1.469936877e-05,4142,0.02537470418,0.001275046945,0.02664975113,0.0240996572
1.756910609e-05,4122,0.02570339206,0.001283062043,0.0269864541,0.02442033002
...

param.csv The file contains the various parameter values used when building the model in
CSV format.

8. Summary and remarks
In this paper, we have presented the implementation of the mbonsai software with extended
analytical capability of decision trees. The mbonsai software is built upon existing tree al-
gorithms published by of Quinlan (1993) and Olshen et al. (1984). A substantial body of
literature in advancing the tree-based classification methodology can be found in Wu et al.
(2008), Strobl, Malley, and Tutz (2009), Kuhn and Johnson (2013), and Loh (2014). Ad-
ditionally, Hothorn (2018) provides a recent overview of open source R-based decision tree
software programs.
mbonsai extends the decision tools C4.5 with advancements shown through several examples.
For tree pruning and growing strategies, mbonsai closely follows CART, with the exception
of using entropy instead of the Gini index that CART uses. The most innovative feature of
mbonsai is its ability to handle multiple variables that contain sequence data. The graph-
ical output from mbonsai is saved as a SVG file providing a tree map with classification
distribution at each node. This also greatly enhances the presentation of results.
Although here we only illustrate mbonsai using transaction data, the program can be used
in other areas where sequence data are available. For example, like its predecessor BONSAI,
mbonsai can be applied to genetic data. Finally, as far as we know, this version of mbonsai
is a unique attempt to directly analyze sequence data using tree-based methods. We envision
future versions to include improvements such as bias correction and ensemble of trees.
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