Journal of Statistical Software

August 2018, Volume 86, Issue 8. doi: 10.18687/jss.v086.i08

Image Segmentation, Registration and
Characterization in R with SimpleITK

Richard Beare Bradley Lowekamp Ziv Yaniv
Monash University, National Institutes of Health, National Institutes of Health,
Murdoch Childrens Medical Science and TAJ Technologies Inc.
Research Institute Computing

Abstract

Many types of medical and scientific experiments acquire raw data in the form of
images. Various forms of image processing and image analysis are used to transform the
raw image data into quantitative measures that are the basis of subsequent statistical
analysis.

In this article we describe the SimpleITK R package. SimpleITK is a simplified in-
terface to the insight segmentation and registration toolkit (ITK). ITK is an open source
C++ toolkit that has been actively developed over the past 18 years and is widely used
by the medical image analysis community. SimpleITK provides packages for many in-
terpreter environments, including R. Currently, it includes several hundred classes for
image analysis including a wide range of image input and output, filtering operations,
and higher level components for segmentation and registration. Using SimpleITK, devel-
opment of complex combinations of image and statistical analysis procedures is feasible.
This article includes several examples of computational image analysis tasks implemented
using SimpleITK, including spherical marker localization, multi-modal image registration,
segmentation evaluation, and cell image analysis.

Keywords: image processing, image segmentation, image registration, medical imaging, R.

1. Introduction

Images are an important source of quantitative information in many fields of research and
many industrial, medical and scientific applications. The processing required to transform
pixel or voxel data into quantitative information used in subsequent statistical analysis is as
varied as the imaging instruments used to acquire image data, the scenes being imaged and
the form of information required. Instruments in typical use include basic digital cameras

https://doi.org/10.18637/jss.v086.i08

2 SimpleITK: Image Segmentation and Registration in R

in scenarios like security and wildlife monitoring, digital cameras associated with an ever
increasing variety of microscopes, and medical imaging equipment such as magnetic resonance
imaging (MRI), computed tomography (CT), ultrasound and X-ray. Other instruments, such
as LIDAR, produce gridded data that may be useful to regard as an image in some scenarios.
This small list of examples serves to illustrate the range of data types typically acquired,
before considering the range of scenes being imaged. Typical digital cameras are capable
of acquiring two-dimensional scenes, possibly with color channels and possibly with time
series. MRI is capable of acquiring a range of three-dimensional (3D) time series and other,
more specialized, forms including directional information in 3D. Microscopes are capable of
acquiring time series of 3D images with multiple fluorescent channels, and such microscopes
are being coupled to automated sample preparation systems to produce automated screening
platforms capable of generating massive amounts of images from complex experiments.

The type of information extracted from an image may range from a detection (e.g., presence
of an intruder or an animal) to a count (e.g., number of cells or brain lesions) to more com-
plex characterizations of objects (e.g., measures of length/area/volume, spatial distributions,
brightness) to tracks of moving objects in time series. There are numerous options, and the
difficulty varies considerably with scene complexity and consistency.

Creating a new image analysis process typically requires experimentation with a variety of
approaches, each of which will combine several computational steps or components. It is a
considerable advantage to have on hand an image analysis framework with a large number
of functional components capable of operating on multi-dimensional data when embarking
on such an endeavor. The Insight Segmentation and Registration Toolkit (ITK; Johnson,
McCormick, Ibanez, and The Insight Software Consortium 2013) is such a framework, offering
thousands of components for image input and output, image filtering, image segmentation
and image registration. Originally designed for medical images, ITK has been successfully
used in varied domains with data ranging from cell images to remote sensing images.

In this article we introduce the SimpleITK package (The Insight Software Consortium 2018)
for R(R Core Team 2018), which allows development of image analysis pipelines using R and
a simplified interface to ITK.

2. ITK, SimpleITK and the SimpleITK R package

2.1. ITK

ITK is a large, open source, C++ library which includes a wide variety of components for
image analysis. The toolkit was originally developed for analysis of medical images, as part of
the Visible Human Project at the National Library of Medicine, USA (Yoo et al. 2002). ITK
employs a generic design enabling support for arbitrary image dimensions and pixel types.
The toolkit was funded by the U.S. National Institutes of Health to provide a well engineered
platform for development of new algorithms and allow testing of existing algorithms on new
data, without the cost of redeveloping published methods. There are currently 1800+ classes
available.

The toolkit is widely used both as a foundation for other toolkits and as a component in ap-
plications for analysis of medical images. Amongst others, these include toolkits for computer
assisted surgery such as MITK (Wolf et al. 2005) and IGSTK (Enquobahrie et al. 2007), and

Journal of Statistical Software

toolkits for image registration such as elastix (Klein, Staring, Murphy, Viergever, and Pluim
2010), ANTS (Avants, Tustison, Song, Cook, Klein, and Gee 2011) and BRAINSFit (John-
son, Harris, and Williams 2007). Examples of medical image analysis applications developed
using ITK include ITK-SNAP (Yushkevich et al. 2006), 3D Slicer (Fedorov et al. 2012), and
medINRIA (Toussaint, Souplet, and Fillard 2007). Outside of the medical domain it is used
by the remote sensing toolbox, ORFEO (Inglada and Christophe 2009), and the cell image
analysis tool GoFigure2 (Mosaliganti, Gelas, and Megason 2013).

ITK has two features distinguishing it from most image analysis toolkits:

e Complex operations are accomplished by using filter pipelines.

Filter pipelines are the architecture used in ITK to accomplish complex tasks, such
as segmentation, via lazy evaluation. A pipeline of filters is constructed to implement
a series of computational steps, however no computation is performed until a call is
made to the Update method of the last filter. The request is propagated back along
the pipeline and only the required processing is performed. Pipelines also facilitate
processing of datasets that are too large for core memory via streaming.

o An image occupies a region in physical space and operations should take this into
account.

The center of every voxel in an ITK image is located at a specific point in space with re-
spect to a coordinate system, the axes of which are not necessarily orthogonal. Distances
between adjacent voxel centers are in physical units and are not necessarily isotropic.

ITK offers a high degree of customizability which, unfortunately, leads to a steep learning
curve for developers and requires significant C++ experience.

2.2. SimplelTK

By making several judicious design decisions, SimpleITK is able to provide a simplified inter-
face to ITK while maintaining most of the functionality available in the original toolkit. The
key design decisions were based on the following observations obtained via surveys: most users
analyze two-dimensional (2D), three-dimensional (3D), and possibly four-dimensional images
(3D plus time); most users do not take advantage of the features of the pipeline approach;
non-C++ developers prefer a procedural interface over an object oriented one.

As a consequence, SimpleITK was designed to support 2D and 3D images, with an optional
configuration flag for 4D support. The pipeline architecture is hidden in favor of immediate
execution, and both, an object oriented and a procedural interface, have been implemented.
Note that while the image dimensions are restricted, voxels can be vectors of arbitrary length
containing a multi-dimensional measure, such as color, fiber orientation or spectra.

Just like ITK, SimpleITK is implemented in C++. Unlike ITK, most of the code is generated
automatically using a JavaScript Object Notation (JSON) template structure. A detailed
description of the design and automated code generation process is given in Lowekamp, Chen,
Ibéaniez, and Blezek (2013). The design of SimpleITK also allows for easy automated wrapping
of the C++ implementation for several interpreted languages including Python(Rossum et al.
2011), Perl (Christiansen, Foy, Orwant, and Wall 2012), C#, Lua (Ierusalimschy 2016), Ruby
(Thomas, Fowler, and Hunt 2009), Tcl (Tcl Core Team 2017), and R, the focus of this article.

4 SimpleITK: Image Segmentation and Registration in R

Automated generation of interface code is critical for long term viability of SimpleITK due
to its dependence on ITK, which is very large and continually evolving.

2.3. Licensing

SimpleITK is distributed under the Apache 2.0 license. The full license is available at http:
//www.simpleitk.org/SimpleITK/project/license.html.

2.4. The SimpleITK R package

Multiple layers of automated code generation and dependencies on external tools make build-
ing SimpleITK a challenge and cause problems distributing packages via traditional mecha-
nisms, such as at the Comprehensive R Archive Network (CRAN). Two approaches for Linux
and OSX systems are described below.

Documentation

Documentation is automatically converted from the doxygen extracted C++ class documen-
tation. It offers a non-standard starting point for the R developer. Most important details
are to be found in the help for the class interface, rather than the help for the procedural
interface. For example 7Cast will display only the most basic information concerning usage
(useful for determining argument names and order) while details of functionality are avail-
able in 7CastImageFilter. This division is common across SimpleITK and is shared with
the C+4 documentation. The C++ documentation is structured to describe the classes and
associated methods, and thus does not fit into the R function documentation design. The
current approach maps class methods to function arguments. The SimpleITK C++ docu-
mentation (The Insight Software Consortium 2016b) is the canonical source of information
concerning available methods and classes.

Beyond the API documentation described above the toolkit also maintains general, language
agnostic, documentation on read-the-docs https://simpleitk.readthedocs.io/. This doc-
umentation covers installation, fundamental concepts specific to SimpleITK’s image and
transformation elements, common API conventions, frequently asked questions and short
example programs. Additional resources include a Jupyter notebook repository illustrating
complete image-analysis workflows in Python and R (Yaniv, Lowekamp, Johnson, and Beare
2018, ; https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks) and a
discourse discussion forum for users to post questions (https://discourse.itk.org/).

Installation using devtools

The simplest way to install the SimpleITK package from source is using devtools (Wickham,
Hester, and Chang 2018) to fetch a stub installer package from GitHub and build it. This
procedure is dependent on CMake, make, Git, C++ compilers and devtools. The following
will fetch, build and install the package.

R> devtools::install_github("SimpleITK/SimpleITKRInstaller")

Additional help and answers to common problems are provided at http://github.com/
SimpleITK/SimpleITKRInstaller

http://www.simpleitk.org/SimpleITK/project/license.html
http://www.simpleitk.org/SimpleITK/project/license.html
https://simpleitk.readthedocs.io/
https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks
https://discourse.itk.org/
http://github.com/SimpleITK/SimpleITKRInstaller
http://github.com/SimpleITK/SimpleITKRInstaller

Journal of Statistical Software

Building from source

Greater control of the build process, as well as the ability to generate other wrapper packages
and run testing procedures, is available with a source build.

Building of the R package involves two code generation steps. In the first step the C++
classes are generated using scripts written in the Lua programming language. These classes
are described by a combination of template and JSON files describing each of the classes.
Some additional classes are implemented directly in C+4. Omnce all of the C++ source is
created, SWIG is used to generate the R bindings for all classes.

The current build process requires CMake and Git to fetch and build dependencies. The
additional components on which the build process depends include SWIG, Lua, and ITK. For
a fully automated build process without any pre-installed components one selects the project’s
SuperBuild CmakeLists file without making any change to the CMake settings. The build
process is documented at The Insight Software Consortium (2016a). In brief, the process is:

e Clone the source code:
$ git clone http://itk.org/SimpleITK.git
e Create a build folder and run cmake on the SuperBuild subdirectory:

$ mkdir SimpleITK-build

$ cd SimpleITK-build

$ cmake ../SimpleITK/SuperBuild
$ make

The build process fetches and builds all dependencies. A successful build produces a binary
R package in SimpleITK-build/Wrapping/R that can be distributed and installed.

Wrapper generation with SWIG

The software interface generator, SWIG (Beazley et al. 1996), was originally designed to
generate Python interfaces to C code, but now supports many interpreted environments, in-
cluding R. This makes SWIG a natural choice as the interface generator for SimpleITK, which
aims to support multiple interpreted programming languages. However SWIG’s popularity
in the R world is probably lower than Repp (Eddelbuettel and Frangois 2011), which provides
an API layer for C++/R rather than an interface generator. The SWIG support for R has
been extended to support SimpleITK development, specifically support for C++ stl vectors
(automatic conversion to and from R vectors). These developments potentially make SWIG
an interesting alternative to Repp for projects targeting multiple programming languages in
addition to R.

Objects in SimpleITK, such as images and filters, are external references to C++ objects.
SWIG generated binding code uses a combination of S4 classes and a reference class style
structure to wrap these objects which are then managed via the R garbage collection system.

Multi-threaded components

There are a number of architectural features in ITK to make construction of multi-threaded
filters simpler. As a result a substantial proportion of SimpleITK components are able to

6 SimpleITK: Image Segmentation and Registration in R

take advantage of multicore processors and multiple processor configurations. This includes
all operations that operate on single pixels, such as image arithmetic, many kernel filters and
parts of the registration framework. By default the number of threads a component uses is
equal to the number of cores available. The number of threads used by a class can be queried
and set as shown in the following code snippet.

R> reg <- ImageRegistrationMethod()
R> reg$GetNumberOfThreads ()

(1] 8

R> reg$SetNumberOfThreads (2)
R> reg$GetNumberOfThreads ()

(1] 2

3. SimplelTK concepts

3.1. Image files, image objects and meta-data

SimpleITK can read and write many image file formats, including traditional 2D formats
such as jpeg, bmp, png and tiff, as well as medically oriented, 3D formats including Digital
Imaging and Communications in Medicine (DICOM), analyze, nifti, nrrd, metaimage and
others. The image format is automatically determined during reading and writing.

Images in SimpleITK are external references, that is pointers to C++ objects. They are
created by loading data from files, calls to constructor methods or conversion from R arrays.
Image meta-data, such as voxel type, voxel spacing, and image orientation may be queried
and set using method calls, as follows:

R> img <- ReadImage ("phantom.dcm")
R> img$GetSize ()

[1] 512 512 1

R> img$GetWidth ()

[1] 512

R> img$GetSpacing ()

[1] 0.65625 0.65625 1.00000

This DICOM image is a single 512 x 512 slice, with voxel dimensions 0.65625 x 0.65625 x 1mm.
The presence of slice thickness information in the DICOM file leads to creation of a 3D image,
even though there is only a single slice. Image formats, such as png, which typically do not
have thickness information will be interpreted as 2D images.

The meta-data can also be modified, for example to change the spacing:

Journal of Statistical Software

R> img$SetSpacing(c(2, 2, 2))
R> img$GetSpacing ()

(1] 2 22

An image also contains a meta-data dictionary. In many cases this meta-data dictionary is
empty, but for some images, such as those stored using the format specified by the DICOM
standard, this meta-dictionary contains a considerable amount of information, including pa-
tient name, imaging modality, equipment manufacturer and many other data elements as
shown below. SimpleITK allows us to query and set this dictionary as follows:

Load a DICOM image and retrieve all the meta-data dictionary keys:

R> img <- ReadImage ("phantom.dcm")
R> head(img$GetMetaDataKeys(), 5)

(1] "0008|0000" "0008|0005" "0008|0008" "0008|0012" "0008|0013"

Query a specific metadata key — e.g., image modality — and modify it:

R> img$GetMetaData ("0008/0060")
[1] n CT n

R> img$SetMetaData ("0008/0060", "JSS Example")
R> img$GetMetaData ("0008/0060")

(1] "JSS Example"

Other commonly used medical image formats also have meta-data dictionaries accessible in the
same way. Nifti files, for example, have dictionary entries such as descrip, gform_code_name
ete.

Image extent and physical coordinates

Relationships between image data and the patient are critical when working with medical
images. It is usually important to know the precise size of a voxel, and sometimes exactly
where it was located in the scanner. Such knowledge is clearly needed when measuring sizes
of pathology, such as tumors, that are expected to change size over time. It is also critical in
applications where images are combined, to ensure that only legal operations are performed
— for example, performing masking with images of the same size but different orientations
is likely to cause errors. SimpleITK provides image orientation and image voxel spacing
information that enable these operations and ensure that illegal operations are detected.

The key components are image origin, voxel spacing and axis orientation. The following code
snippet illustrates the creation of a 2D axis aligned image with non-zero origin and non-
isotropic pixel spacing and demonstrates mapping between voxel and physical units. Looking
at the returned indexes we see that the pixel extent in physical space indeed starts half a
pixel from its center and that the indexes in SimpleITK are zero-based.

8 SimpleITK: Image Segmentation and Registration in R

R> img <- Image (64, 64, "sitkFloat32")

R> img$SetOrigin(c(0.3, 0.6))

R> img$SetSpacing(c(0.4, 1.0))

R> p1 <- ¢(0.1, 0.1)

R> plIndexes <- img$TransformPhysicalPointToIndex(pl)

R> cat("Point coordinates: [", pl, "] Point indexes: [", plIndexes, "J\n")

Point coordinates: [0.1 0.1] Point indexes: [0 0]

R> p2 <- ¢(0.0, 0.1)
R> p2Indexes <- img$TransformPhysicalPointToIndex (p2)
R> cat("Point coordinates: [", p2, "] Point indexes: [", p2Indexes, "]\n")

Point coordinates: [0 0.1] Point indexes: [-1 0]

R> p3 <- ¢(0.1, 0.0)
R> p3Indexes <- img$TransformPhysicalPointToIndex (p3)
R> cat("Point coordinates: [", p3, "] Point indexes: [", p3Indexes, "]J\n")

Point coordinates: [0.1 O] Point indexes: [0 -1]

3.2. Display

Printing the image object using the print method will display the image meta-data and
associated underlying internal data structures.

SimpleITK has no inherent image display capabilities. A convenience Show function is pro-
vided, displaying images by writing them to a temporary location in nifti format and then
invoking an external viewer. By default this function will attempt to invoke the Fiji/ImageJ
viewer. Invoking other viewers is facilitated by setting SITK_SHOW_COMMAND as environment
variable to indicate a specific viewer. Finer grained control is possible, allowing one to specify
a viewer for color images and for 3D images by setting the SITK_SHOW_COLOR_COMMAND and
SITK_SHOW_3D_COMMAND environment variables.

3.3. Conversion to and from arrays

Images can be converted to native R arrays using as.array and arrays can be converted to
images using as.image. Image meta-data can be copied from one image to another or set
manually. Note that as.array includes a drop option to discard unit dimensions.

3.4. Indexing and slicing

Unlike R indexing, SimpleITK functions use zero-based indexing, so you will need to account
for this when working with SimpleITK images. The exception to the rule is slicing. This is
a native R operation and SimpleITK supports it using R’s one-based indexing;:

R> img <- Image(1, 1, "sitkUInt8")
R> riIndex <- 1
R> img[rIndex, rIndex]

Journal of Statistical Software 9

(11 O

R> img$SetPixel (c(rIndex, rIndex) - 1, 255)
R> img[rIndex, rIndex]

[1] 255

Slicing allows complex manipulation of images using standard syntax, returning new images.
Cropping, flipping, etc. is easy to achieve using slicing operations:

o Extracting one corner:

R> img <- Image(10, 10, "sitkUInt8")
R> imgCorner <- img[1:5, 1:5]
R> imgCorner$GetSize ()

[11 55

e Simple reflection:

R> imgPadLeft <- img[img$GetWidth():1,]
R> imgPadLeft$GetSize ()

[1] 10 10
o Accessing a single pixel:
R> pix <- img[2, 3]
R> pix
[1] ©
o Illegal operation — remove central columns producing non-uniform spacing:
R> ii <- img[-c(3:5),]
Error in img[-c(3:5),]: X spacing is not uniform

Image slicing is designed to preserve image constraints, and is thus slightly less flexible than
standard R array indexing. A slicing operation must produce images with uniform voxel
spacing along each image dimension. The concept of empty arrays, produced by indexing
operations like ar[0, 1:2], does not translate directly to image objects, and an error is
raised. A voxel is converted to a native R object when a slicing operation produces a single
voxel result (rather than returning a single voxel image). Slicing of multi-component images
is possible, with multi-component voxels being returned as R vectors. Array-based indexing
is not yet supported.

3.5. Image operators

Operator overloading is used to simplify arithmetic and logical expressions with images. The
operations are carried out by SimpleITK filters, offering control over pixel types, multi-
threaded operation and meta-data consistency. For example:

10 SimpleITK: Image Segmentation and Registration in R

R> sz <- 512

R> iml <- Image(sz, sz, sz, "sitkFloat64") + 1

R> arr2 <- array(seq(l, sz"3, 1.0), c(sz, sz, s5z))
R> im2 <- as.image(arr2)

R> im3 <- Image(sz, sz, sz, "sitkFloat64") + 2

R> mask <- ((iml1 * im2) / im3) > 24

3.6. Methods for SimpleITK objects

There are some useful R language tricks that can be used to interrogate image and filter
objects to identify available methods. For example:

R> getMethod("$", class(img))

Method Definition:

function (x, name)

{

accessorFuns = list(Equal = Image_Equal, GetITKBase = Image_GetITKBase,

GetPixelID = Image_GetPixellD,
GetPixelIDValue = Image_GetPixelIDValue,
GetDimension = Image_GetDimension,
GetNumber(OfComponentsPerPixel = Image_GetNumberOfComponentsPerPixel,
GetNumberOfPixels = Image_GetNumberOfPixels,
GetOrigin = Image_GetOrigin, SetOrigin = Image_SetOrigin,
GetSpacing = Image_GetSpacing, SetSpacing = Image_SetSpacing,
GetDirection = Image_GetDirection,

3.7. Error messages

The reference class style of method call, combined with the need for method overloading, leads
in some cases to unhelpful error messages, such as when invoking a non-existent method:

R> img <- Image(10, 10, "sitkUInt8")
R> img$SetVoxel(c(5, 5), 255)

Error in callNextMethod() : node stack overflow

Or passing combinations of arguments that the method overloading code is unable to resolve:

R> th <- Threshold(img, "pixtype")
Error in f(...): could not find function "f"

In the first example we should be using SetPixel while in the latter case there is no function
call version of Threshold with image and character arguments.

Journal of Statistical Software

Finally, configuration of the external viewer often causes problems the first time one uses
SimpleITK. The primary reason being that the default viewers, ImageJ /Fiji, are not installed
and the environment variable specifying an alternative viewer was not set as described above.

4. SimplelITK computational components

SimpleITK reduces the learning curve compared to ITK by simplifying many of the pro-
gramming aspects. Unfortunately, mastering all of the available functionality still requires an
effort, primarily due to the size of the computational framework.

It is often difficult to identify components of interest due to differences in naming conventions
between toolkits. ITK uses a module hierarchy for code that can help make the range of com-
ponents more comprehensible. Not all of the classes are directly accessible from SimpleITK,
but most are or will eventually be. Infrastructure modules have been left out for clarity. The
key modules and their contents are described below.

4.1. Filtering

This is the largest module and contains numerous classes that modify voxel values in some
way. It contains the following categories, in alphabetical order:

e AnisotropicSmoothing: Gradient and curvature anisotropic diffusion for scalar and vec-
tor images.

o AntiAlias: Reduce aliasing artifacts when displaying binary volume.
o BiasCorrection: The N4 algorithm for bias field inhomogeneity in MR images.

o BinaryMathematicalMorphology: Specialized mathematical operations for binary im-
ages.

e Colormap: Colormaps for creating overlays and display.

e Convolution: Convolution and correlation classes.

e CurvatureFlow: Diffusion-based denoising.

e Deconvolution: A range of deconvolution algorithms — RichardsonLucy, Tikhonov, etc.
¢ Denoising: Patch-based denoising.

« DiffusionTensorImage: Basic tools for diffusion tensor data — reconstruction, fractional
anisotropy.

o DisplacementField: Tools for processing displacement images produced by registration.
o DistanceMap: Signed and unsigned distance transforms using various algorithms.

o FastMarching: Classes to compute geodesic distances on images using the fast marching
algorithm.

o FFT: A range of fast Fourier transform classes.

12

4.2.

SimpleITK: Image Segmentation and Registration in R

ImageCompare: Checkerboard visualization aids.

ImageCompose: Tiling, joining.

ImageFeature: Edge detection, Laplacians, Hessians, etc.

ImageFusion: Overlays.

ImageGradient: Separable, recursive gradient filters.

ImageGrid: Padding, cropping, resampling etc.

Imagelntensity: Arithmetic, logical operations, etc.

ImageLabel: Manipulation of label images (outputs of connected component analysis).
ImageNoise: Noise generators for algorithm tests.

ImageSources: Filters creating various sorts of synthetic images (e.g., coordinate posi-
tions).

ImageStatistics: Whole image statistics, label statistics, projections, overlap measures.

LabelMap: Manipulation of run-length-encoded objects from connected component
analysis.

MathematicalMorphology: Erosions/dilations using various fast decompositions, tophat
filters, geodesic reconstruction, regional extrema and attribute morphology.

Smoothing: Separable, recursive smoothing filters.

Thresholding: Threshold estimation using a range of histogram-based approaches.

Segmentation

Image segmentation filters produce output images in which voxel values indicate class mem-
bership. The relevant ITK modules are:

Classifiers: Bayesian, K-means voxel classifiers.
ConnectedComponents: Label objects in a binary image (aka particle analysis).

DeformableMesh: Mesh-based segmentation in which mesh deformation is driven by
image forces.

KLMRegionGrowing: Koepfler, Lopez and Morel algorithm.

LabelVoting: Various schemes for combining label images, including STAPLE, voting.
Hole filling with voting.

LevelSets: An extensive framework for segmentation using the level set methodology.
Includes geodesic active contours, shape priors and others.

Journal of Statistical Software 13

¢ MarkovRandomFieldsClassifiers: MRF voxel classification class.

¢ RegionGrowing: Various combined threshold and connectivity approaches to segmen-
tation.

o SignedDistanceFunction: Distance functions for shape models.
e Voronoi: Color segmentation tools using Voronoi tessellation.

o Watersheds: Several algorithms for watershed transforms, including marker-based op-
tions.

4.3. Registration

Image registration is the process of estimating a spatial transformation that makes two images
similar according to some measure. It is usually structured as an optimization problem.
There are numerous choices available for similarity measures, optimizers, and transformation
functions. For intensity-based registration, SimpleITK makes many of these available via a
single framework class, with options for callback functions to track optimizer progress. The
available choices include:

o Similarity metrics: Correlation, mutual information (Mattes and joint histogram),
Demons, mean squares, and the ANTS neighborhood correlation.

o Transforms: Rigid, similarity, affine, B-spline, dense deformation field, etc.
e Optimizers: Conjugate gradient line search, gradient descent, exhaustive, LBFGSB, etc.

o Interpolators: Nearest neighbor, linear, B-spline, windowed sinc, etc.

Classes implementing transforms, optimizers and interpolators are in core modules, rather
than the registration module, as they are used in other scenarios.

Additional algorithm specific implementations are also available. These include the im-
plementation LandmarkBasedTransformInitializer, estimating the transformation which
minimizes the distance between two point sets with known correspondences (transforma-
tion can be rigid, affine or B-spline); and several Demons-based intensity-based algorithms
for estimating the dense deformation field between images, Demons, DiffeomorphicDemons,
SymmetricForcesDemons and FastSymmetricForcesDemons.

5. Case studies

The addition of SimpleITK to the R development environment enables the rapid development
of end-to-end image characterization and statistical analysis tools. This combination benefits
from the large choice of image operators available in SimpleITK and the extensive range of
existing R packages for feature extraction and statistical analysis. In addition, the use of
SimpleITK in an interpreted environment offers a reduction in development cycle time by
removing the compile stage from the usual change-compile-test cycle.

14 SimpleITK: Image Segmentation and Registration in R

Figure 1: Cropped cone-beam CT volume of a metallic sphere (top row) and the result of
performing 3D edge detection on the volumetric data (bottom row). Original image intensity
values have been mapped to [0, 255] for display purposes. The filled circle edge images at
both ends (left, right) of the sphere highlight the fact that the operation is indeed carried out
in 3D. If performed on a slice by slice manner all edge images would result in empty circles.

In this section we will illustrate SimpleITK via several example case studies, with the aim of
providing an introduction to both, the slightly unusual syntax of a SWIG interface and some
of the extensive capabilities of SimpleITK. These examples illustrate only a small proportion
of the available classes but provide an introduction to several components that are useful in
many different scenarios.

5.1. Spherical marker localization

Alignment between a patient and volumetric images of that patient is critical in many forms
of surgical/medical intervention. Spherical markers that are visible on the patient and in the
volumetric images are frequently used to aid registration in computer assisted intervention.
Before the markers can be used for alignment they need to be localized in the image coordinate
system as described in Yaniv (2009). There are a variety of approaches for spherical marker
localization. In our case we will perform edge detection using SimpleITK, and use R to obtain
a least-squares estimate of the sphere’s location and radius.

Our input image was acquired using a cone-beam CT system and contains a single sphere.
The image is non-isotropic, a 40 x 25 x 11 volume with a 0.44 x 0.44 x 0.89mm spacing, and
has a high dynamic range of intensity values, [-32767, —25481]. Figure 1 shows the volume
containing the metallic sphere and the result of performing edge detection on it.

The localization code, below, employs edge detection with parameters selected to match the
anisotropic image voxel spacing.

First, load the image.

R> library("SimpleITK")
R> sphere_image <- ReadImage ("sphere.mha")

Second, perform 3D edge detection to produce a binary edge map using a Canny edge detector.

R> edges <- CannyEdgeDetection(Cast (sphere_image, "sitkFloat32"),
+ lowerThreshold = 0.0, upperThreshold = 200.0,
+ variance = ¢(5.0, 5.0, 10.0))

Third, convert the edge image to an array and determine the physical coordinates of each
edge voxel using the built-in image method TransformIndexToPhysicalPoint. Note that
indexes are adjusted to zero-based to match C++ standards.

Journal of Statistical Software

R> edge_indexes <- which(as.array(edges) == 1.0, arr.ind = TRUE)
R> physical_points <- t(apply(edge_indexes - 1, MARGIN = 1,
+ sphere_image$TransformIndexToPhysicalPoint))

Finally, estimate sphere parameters using a least-squares fit.

R> A <- -2 * physical_points

R> A <- cbind(4, 1)

R> b <- -rowSums (physical_points~2)

R> x <- solve(qr(A, LAPACK = TRUE), b)

R> cat("The sphere's center is: ", x, "\n")

R> cat("The sphere's radius is: ", sqrt(x[1:3] 7/*J x[1:3] - x[4]), "\n")

The sphere's center is: 19.66792 -80.40793 9.260396 6925.624
The sphere's radius is: 3.52053

5.2. Intensity-based image registration

Registration is the process of computing the transformation that relates corresponding points
in two different coordinate systems. It is a key component in many medical and non-medical
applications, with a large number of algorithms described in the literature (Oliveira and
Tavares 2014; Zitova and Flusser 2003).

Intensity-based image registration estimates the transformation that aligns images to each
other based on their intensity values. The task is formulated as an optimization problem
with the optimized function indicating how similar the two images are to each other after
applying a given spatial transformation. As an image consists of a discrete set of intensity
values at grid locations and the transformation is over a continuous domain, this formulation
also requires the use of interpolation. The terminology which we use here refers to one image
as the fized image and the other, which is being transformed to match the fixed image, as the
moving image. The transformation whose parameters we are optimizing maps points from
the fized image coordinate system to the mowving image coordinate system. Registration is
discussed in more detail in Fitzpatrick, Hill, and Maurer Jr (2000), Yaniv (2008), or Goshtasby
(2005).

The four components that one needs to specify in order to configure the registration framework
in SimplelTK are:

1. Transformation type — global domain (linear) transformations such as AffineTransform
or Euler3DTransform are available, or local domain (nonlinear) transformations such
as BSplineTransform and DisplacementFieldTransform. This choice defines the set
of parameters whose values are optimized.

2. Similarity function — a model of the relationship between the intensity values of the two
images such as Correlation for affine relationship and MattesMutualInformation for
a stochastic relationship. The function is expected to attain a local minimum when the
images are correctly aligned.

15

16 SimpleITK: Image Segmentation and Registration in R

Figure 2: Five slices extracted from the center of each volume, from top to bottom: original
CT image, our fixed image; original MR, image, our moving image; fused image after initial
spatial alignment of images; fused image after registration.

3. Interpolator — method to use for interpolating intensity values at non-grid locations,
such as sitkNearestNeighbor, sitkLinear or sitkHammingWindowedSinc. This choice
often reflects a compromise between accuracy and computational complexity with the
most common choice being sitkLinear.

4. Optimizer — algorithm used to reach the optimum of the similarity function. These
range from simple evaluation of the similarity using a discrete grid in the parameter
space, Exhaustive, to a limited memory method with simple constraints, L-BFGS-B.
There can be a complex relationship between an optimizer and parameters of a trans-
form, especially when transform parameters have very different units (e.g., radians and
millimeters).

An optional additional component, an observer function, can be added to report registration
progress. One can add multiple functions to the same observed event or different functions
for each observed event. Observer functions written in R are readily utilized.

In the following example we align a patient’s cranial CT to their T1 MRI scan. This data
is available online and is the training data set provided as part of the Retrospective Image
Registration Evaluation project (Fitzpatrick 2016). The CT is a 512 x 512 x 29 volume with

Journal of Statistical Software

a spacing of 0.65 x 0.65 x 4mm. The MRI is a 256 x 256 x 26 volume with a spacing of
1.25 x 1.25 x 4mm. Figure 2 shows five axial slices from the data at different phases of the
registration process.

The specific component selections for the task at hand are as follows. As both images were
obtained from the same patient, the transformation between them is expected to be rigid. We
use a Euler angle-based parameterization of the transformation. As the intensities of the two
modalities are related via a stochastic relationship we use mutual information as the similarity
function. To reduce the computational burden of computing the similarity function we use
1% of the voxels, selected via simple random sampling, leading to slight differences in final
transform between runs. The other available option is to obtain them using a regular grid
overlaid onto the image. We use linear interpolation to obtain intensity values at non-grid
locations. Finally, we use the basic gradient descent optimizer as our optimization method.

First we load the CT and T1 MR images:

R> library("SimpleITK")
R> fixed_image <- ReadImage("training 001_ct.mha", "sitkFloat32")
R> moving image <- ReadImage("training 001_mr_T1.mha", "sitkFloat32")

Provide an initial alignment based on the centers of the two volumes:

R> initial_tx <- CenteredTransformInitializer(fixed_image,
+ moving_image, Euler3DTransform(), "GEOMETRY")

Create the observer functions. These will store similarity metric values for each iteration so
that the progress can be visualized:

R> start_plot <- function() {

+ metric_values <<- c()

+ }

R> plot_values <- function(registration_method) {
+ metric_values <<- c(metric_values,

+ registration_method$GetMetricValue())

+ }

Create the registration object and attach observers:

R> reg <- ImageRegistrationMethod ()
R> reg$AddCommand ("sitkStartEvent", start_plot)
R> reg$AddCommand ("sitkIterationEvent", function() plot_values(reg))

Configure the registration object and execute:

R> reg$SetMetricAsMattesMutualInformation (number0fHistogramBins = 50)
R> reg$SetMetricSamplingStrategy ("RANDOM")

R> reg$SetMetricSamplingPercentage(0.01)

R> reg$SetInterpolator("sitkLinear")

R> reg$SetOptimizerAsGradientDescent (learningRate = 1.0,

+ number0fIterations = 100)

17

18 SimpleITK: Image Segmentation and Registration in R

R> reg$SetOptimizerScalesFromPhysicalShift ()

R> reg$SetInitialTransform(initial_tx, inPlace = FALSE)
R> final_tx <- reg$Execute(fixed_image, moving image)
R> cat("The estimated transformation is:\n")

R> print(final_tx)

The estimated transformation is:
itk::simple: :Transform
CompositeTransform (0x54ab990)
RTTI typeinfo: itk::CompositeTransform<double, 3u>
Reference Count: 1
Modified Time: 689392
Debug: 0ff
Object Name:
Observers:
none
Transforms in queue, from begin to end:
SO55555>>
Euler3DTransform (0x64136c0)
RTTI typeinfo: itk::Euler3DTransform<double>
Reference Count: 1
Modified Time: 689383
Debug: Off
Object Name:
Observers:
none
Matrix:
0.999434 0.0324727 -0.00876782
-0.0323064 0.999307 0.018489
0.00936213 -0.0181952 0.999791
Offset: [13.4809, -28.0635, -20.2838]

Two features of the registration framework that are specific to ITK and SimpleITK are the
use of a so-called centered transform, CenteredTransformInitializer, and the automated
estimation of parameter scales, SetOptimizerScalesFromPhysicalShift, for gradient-based
optimizers. The centered transform performs rotation about the center of the fixed image,
rather than the origin of the coordinate frame. The automated estimation of parameter
scales deals with the complex relationship between transform terms with different units. For
a comprehensive overview of the ITK registration framework we refer the interested reader
to Avants, Tustison, Stauffer, Song, Wu, and Gee (2014).

Finally, even when the registration appears to have been performed successfully as validated
by visual inspection (i.e., Figure 2) we always check the reason for the optimizer’s termination.
In our case we see below that we are likely dealing with premature termination, as the
optimizer terminated because it reached the maximal number of iterations which we set.
However the rate of improvement in similarity measure, illustrated in Figure 3 and based

Journal of Statistical Software

0.2
o 03
>
(2]
©
[}
= -04-
2
3
1S
& -0.5-
-0.6-
0 25 50 75 100

Iteration

Figure 3: Similarity metric changes during rigid registration.

on information stored by the observer functions, decreased markedly after iteration 50. The
solution is therefore unlikely to improve much with further iterations.

R> reg$GetOptimizerStopConditionDescription ()

[1] "GradientDescentOptimizerv4Template:"
[2] "Maximum number of iterations (100) exceeded."

Rigid body registration, as illustrated in this example, is useful for aligning images of the
same patient taken at similar times. This includes different modalities acquired during a
study, such as different MR weightings, CT or PET as well as time series images, such as
fMRI, where rigid body registration can be used to correct for patient movement.

5.3. Segmentation evaluation

Evaluation of segmentation algorithms applied to natural, medical, and biomedical images is
most often done by comparing the output from the algorithm to those of human raters. It is
common practice to derive an underlying reference segmentation by combining the annotations
obtained from multiple raters. All raters can then be compared to the reference, which is
useful when one rater is not known to be better than all others. Creating a combined reference
is not straightforward, i.e., majority vote, when the raters are lay people such as when using
crowd sourcing platforms as Amazon’s mechanical Turk (Ipeirotis, Provost, and Wang 2010).
Surprisingly, this is also not straightforward when the raters are domain experts such as
radiologists interpreting medical images (Warfield, Zou, and Wells III 2004).

In this example we illustrate how to use the simultaneous truth and performance level esti-
mation (STAPLE) algorithm (Warfield et al. 2004) to derive a reference segmentation. We
then use this derived segmentation to evaluate the quality of the segmentation provided by
each of our raters. As no single quality measure reflects the quality of the segmentation we
generate a set of quality measures relating to overlap, over- and under-segmentation (false

19

20 SimpleITK: Image Segmentation and Registration in R

Figure 4: Deriving a reference segmentation from multiple raters using the STAPLE algo-
rithm: (top row) manual segmentations performed by three radiologists; (bottom row) two
additional segmentations derived from the expert segmentations to illustrate the effects of
over-segmentation and segmentation with outliers. Last image is the derived reference seg-
mentation obtained by the STAPLE algorithm.

positive, false negative), and distances between the boundaries of the segmented objects. The
overlap and error scores between regions S and 1" are defined as follows:

SNT)

Dice: 2|7.
ST+ 1T

|SNT|

Jaccard: 2 SUT|

S

Volume similarity: 2%.

[T\ S

False negative:
& i

[S\T|

False positive: .
P [T

Scores for boundary distances are based on summaries (max, mean, median and standard
deviation) of the distance between the contour defined by S and the closest point on the
contour of T'. These measures characterize difference in outline. When comparing two large
regions, a large maximum distance between boundaries may result in a very small difference
in overlap scores, for example if caused by a single isolated voxel. Whether this distinction is
important is application dependent.

In our case we use a single slice from an abdominal CT scan in which three radiologists seg-
mented a liver tumor. We added two additional segmentations with intentional errors resulting

Journal of Statistical Software 21

in over-segmentation and segmentation which contains an outlying region. Figure 4 visually
illustrates the inputs to the STAPLE algorithm and the derived reference segmentation.

We next look at the code used to generate the reference segmentation and how it is used to
evaluate segmentations. We start by loading the segmentations provided by our raters.

R> image <- ReadImage("liver_ tumor.mha")

R> segnames <- list.files(pattern = "liver_ tumor_segmentation_.\\.mha",
+ path = "Code", full.names = TRUE)

R> names (segnames) <- gsub("liver_tumor_segmentation_(.+)\\.mha",

+ "rater_\\1", basename (segnames))

R> segmentations <- lapply(segnames, ReadImage)

We now generate the reference segmentation. Note that the input images are passed to
STAPLE using a list.

R> foreground_value <- 1

R> threshold <- 0.95

R> reference_segmentation_STAPLE_probabilities <- STAPLE(segmentations,
+ foreground_value)

R> STAPLE_reference <- reference_segmentation_STAPLE probabilities >

+ threshold

Using the derived reference segmentation we can compare how each of the raters agrees
with our reference segmentation. Note that in practice you would compare a new rater or a
segmentation algorithm’s performance to the derived reference segmentation. Two common
ways to perform this evaluation include computation of overlap and boundary distance scores.

Computing the overlap scores is straightforward, simply provide the two segmentations as
input to the LabelOverlapMeasuresImageFilter, which is what we do in the utility function
compute_overlap_measures.

Computing the boundary distance scores is slightly more involved. This is a two step pro-
cess, where first an unsigned distance map from the reference data is generated. Then for
each segmentation, the voxels on its boundary are labeled, LabelContour, and the inten-
sity statistics is computed using the label as a mask and the distance map as the image for
the LabelIntensityStatisticsImageFilter. This is implemented in the utility function
compute_surface_distance_measures.

R> overlap_measures <- t(sapply(segmentations, compute_overlap_measures,
+ reference_segmentation = STAPLE_reference))

R> overlap_measures <- as.data.frame(overlap_measures)

R> overlap measures$rater <- rownames (overlap_measures)

R> distance_map_filter <- SignedMaurerDistanceMapImageFilter ()
R> distance_map_filter$SquaredDistance0ff ()

R> STAPLE_reference_distance_map <-

+ abs(distance_map_filter$Execute (STAPLE reference))

R> surface_distance_measures <- t(sapply(segmentations,

+ compute_surface_distance_measures,

+ reference_distance_map = STAPLE_reference_distance_map))

22 SimpleITK: Image Segmentation and Registration in R

1.00 - =
0.75- -
Measure

0.50 - I:' DiceCoefficient
o I:' FalseNegativeError
O o
&)’ I:' FalsePositiveError

0.25- I:l JaccardCoefficient

[“ |:| VolumeSimilarity
LT AR
0.00 m|
-0.25-

rater_O rater_1 rater_2 rater_3 rater_4
rater

Figure 5: Comparison of raters using various overlap measures.

R> surface_distance_measures <- as.data.frame(surface_distance_measures)
R> surface_distance_measures$rater <- rownames (surface_distance_measures)

It is straightforward to visually compare raters using their overlap scores, as illustrated in the
code below, with the results shown in Figure 5.

R> library("tidyr")

R> library("ggplot2")

R> overlap.gathered <- gather (overlap_measures, key = Measure,

+ value = Score, -rater)

R> ggplot(overlap.gathered,

+ aes(x = rater, y = Score, group = Measure, fill = Measure)) +
+ geom_bar (stat = "identity", position = "dodge",

+ colour = "black", alpha = 0.5)

Displaying the boundary distance data in table format, Table 1, is just as easy.

R> library("xtable")

R> sd <- surface_distance_measures

R> sd$rater <- NULL

R> xtable(sd, caption = "Surface distance measures',
+ label = "tab:surfdist", digits = 2)

5.4. Cell segmentation

Segmentation of cells in fluorescent microscopy is a relatively common image characterization
task with variations that are dependent on the specifics of fluorescent markers for a given
experiment. A typical procedure might include:

Journal of Statistical Software

Mean Median SD Max
rater 0 0.33 0.65 0.49 141
rater 1 0.14 0.65 0.35 1.00
rater 2 0.05 0.65 0.23 1.00
rater 3 0.52 0.65 0.56 1.41
rater 4 2.82 0.65 4.07 12.17

Table 1: Surface distance measures.

o Histogram-based threshold estimation to produce a binary image.

o Cell splitting (separating touching cells) using distance transforms and watershed trans-
form.

¢ Refinement of initial segmentation using information from other channels.

o Cell counting/characterization.

This example demonstrates the procedure on a 3 channel fluorescent microscopy image. The
blue channel is a DNA marker (DAPI) that indicates all cells, the red channel is a marker of
cell death (Ph3) while the green channel is a marker of cell proliferation (Ki67). A typical
experiment might count the number of cells and measure size in the different states, where
states are determined by presence of Ph3 and Ki67, various times after treatment with a drug
candidate.

Cell segmentation and splitting

Histogram-based threshold estimation is performed by the segChannel function, listed below.
It applies light smoothing followed by the Li threshold estimator (Li and Tam 1998), one of a
range of threshold estimation options available in SimpleITK. A cell splitting procedure using
distance transforms and a marker-based watershed (implemented by segBlobs, also listed
below) was then applied to the resulting mask. Distance transforms replace each foreground
pixel with the distance to the closest background pixel, producing a cone-shaped brightness
profile for each circular object. Touching cells can then be separated using the peaks of the
cones as markers in a watershed transform. A marker image is created by identifying peaks in
the distance transform and applying a connected-component labeling. The inverted distance
transform is used as the control image for the watershed transform.

The original image, provided in Nowell (2015), is illustrated in Figure 6 and processing stages
are illustrated for an image subset (lower left part of original) in Figures 7 to 8.

R> segChannel <- function(dapi, dtsmooth = 3, osmooth = 0.5) {
dapi.smooth <- SmoothingRecursiveGaussian(dapi, osmooth)
th <- LiThresholdImageFilter()

th$SetOutsideValue (1)

th$SetInsideValue (0)

B <- th$Execute(dapi.smooth)

g <- splitBlobs(B, dtsmooth)

return(list(thresh = B, labels = g$labels, peaks = g$peaks,

+ + + + + + +

23

24 SimpleITK: Image Segmentation and Registration in R

+ dist = g$dist))

+ }

R> splitBlobs <- function(mask, smooth = 1) {
DT <- DanielssonDistanceMapImageFilter ()
DT$UseImageSpacingOn ()

distim <- DT$Execute (!mask)

distimS <- SmoothingRecursiveGaussian(distim, smooth, TRUE)
distim <- distimS * Cast(distim > 0, "sitkFloat32")

peakF <- RegionalMaximaImageFilter ()
peakF$SetForegroundValue (1)
peakF$FullyConnectedOn ()

peaks <- peakF$Execute(distim)

markers <- ConnectedComponent (peaks, TRUE)

WS <- MorphologicalWatershedFromMarkers(-1 * distim,
markers, TRUE, TRUE)
WS <- WS * Cast(distim > 0, WS$GetPixelID())
return(list(labels = WS, dist = distimS, peaks = peaks))
}

+ + + + 4+ + +++FF A+ o+

Load the data and place them into an red/green/blue image for display. The original is
formatted as a 3D tif.

R> cntrl <- ReadImage("Control.tif")

R> red <- cntrll[, , 1]

R> green <- cntrll[, , 2]

R> blue <- cntrll[, , 3]

R> cntrl.colour <- Compose(red, green, blue)
R> dapi.cells <- segChannel(blue, 3)

R> ph3.cells <- segChannel(red, 3)

R> Ki67.cells <- segChannel (green, 3)

Refinement of segmentation

The Ph3 and Ki67 stains do not mark the entire cell nuclei. In some cases the marker is
much smaller than the nucleus and there may be multiple markers per nucleus, leading to
errors in counts or areas. We can, however, use the segmentation results from these channels
to perform a geodesic reconstruction based on the DAPI segmentation results to reliably
segment cells with those markers. The steps below mask the Ph3 and Ki67 segmentations
using the DAPI segmentation and then apply a geodesic reconstruction that “grows” the
Ph3/Ki67 cell segmentation to the size of the DAPI marked cell. Figure 8 illustrates the
initial segmentation of the Ph3 and Ki67 channels while Figure 9 illustrates the results for
the Ph3 channel.

Journal of Statistical Software 25

Figure 6: Confocal microscope image of cells stained with Ph3 (red), Ki67 (green) and DAPI
(blue).

L) r [A)
. ‘v . ‘v
0 0 e 0o e
. °
o 02 o | o 02 .
JEe . JEe .
® pu L J o [J P L ®
[y ® @ {] ® O
- o L) Y ° [J [] 9
(a) Original 3 channel image. (b) Thresholded image. (c) Results of cell splitting.

Figure 7: Stages of segmentation for the DAPI channel. Touching cells in the mid-right side
of the image are separated by the splitting stage.

R> dapi.mask <- dapi.cells$labels != 0
R> ph3.markers <- ph3.cells$thresh * dapi.mask
R> Ki67.markers <- Ki67.cells$thresh * dapi.mask

26 SimpleITK: Image Segmentation and Registration in R

v
#
»
’
o o2
o ¢ []
e
Y
(a) Ph3 channel segmentation. (b) Ki67 channel segmentation.

Figure 8: Segmentation using Li thresholding of Ph3 and Ki67 channels.

v v
Fy ¢ L]
’ .
o ¢2 o 03
L& Jé
°) -
- e
(a) Ph3 channel segmentation. (b) Ph3 channel refinement.

Figure 9: Ph3 segmentation refinement using geodesic reconstruction — note the increase in
size of nuclei at the top and right of image.

R> ph3.recon <- BinaryReconstructionByDilation(ph3.markers, dapi.mask)
R> Ki67.recon <- BinaryReconstructionByDilation(Ki67.markers, dapi.mask)

Characterization and counting

Image segmentations can lead to quantitative measures such as counts and shape statistics
(e.g., area, perimeter etc.). Such measures can be biased by edge effects, so it is useful to know
whether the objects are touching the image edge. The classes used for these steps in Sim-
pleITK are ConnectedComponentImageFilter and LabelShapeStatisticsImageFilter.
The former produces a labeled image, in which each binary connected component is given
a different integer voxel value. Label images are used in many segmentation contexts, in-
cluding the cell splitting function illustrated earlier. The latter produces shape measures per
connected component. The function below illustrates extraction of centroids, areas and edge
touching measures. Cell counts are also available from the table dimensions.

R> getCellStats <- function(labelledim) {
+ StatsFilt <- LabelShapeStatisticsImageFilter()
StatsFilt$Execute (labelledim)

+
+
+ objs <- StatsFilt$GetNumberOfLabels ()
+

Journal of Statistical Software 27

60 -
= 40~ Stain
§ dapi
= ki67
= []
O ph3
20-

0 1000 2000 3000
Nucleus area

Figure 10: Histograms of cell nucleus area by stain type.

areas <- sapply(1l:objs, StatsFilt$GetPhysicalSize)
boundarycontact <- sapply(l:objs, StatsFilt$GetNumberOfPixelsOnBorder)
centroid <- t(sapply(1l:objs, StatsFilt$GetCentroid))

result <- data.frame(Area = areas,
TouchingImageBoundary = boundarycontact,
Cx = centroid[, 1], Cy = centroid[, 2])
return(result)
}
R> dapi.stats <- getCellStats(dapi.cells$labels)
R> head(dapi.stats)

+ + + + + + + + +

Area TouchingImageBoundary Cx Cy
1 18 14 962.5000 0.2222222
2 722 30 548.1745 11.1149584
3 296 24 718.8446 5.1047297
4 794 0 709.3489 22.0214106
5 1403 0 1671.6251 23.3036351
6 775 0 1315.4839 28.7987097

Using this data we can begin to visualize the properties of the cell population — for example
distributions of cell areas — Figure 10. Note that the cell measures include information about
which cells touch the image boundary, allowing easy removal to avoid biasing area statistics.

R> ph3.recon.labelled <- ConnectedComponent (ph3.recon)
R> Ki67.recon.labelled <- ConnectedComponent (Ki67.recon)
R> dapistats <- getCellStats(dapi.cells$labels)

28 SimpleITK: Image Segmentation and Registration in R

R> ph3stats <- getCellStats(ph3.recon.labelled)

R> ki67stats <- getCellStats(Ki67.recon.labelled)

R> dapistats$Stain <- "dapi"

R> ph3stats$Stain <- "ph3"

R> ki67stats$Stain <- "ki67"

R> cellstats <- rbind(dapistats, ph3stats, ki67stats)

R> cellstats$Stain <- factor(cellstats$Stain)

R> cellstats.no.boundary <- subset(cellstats, TouchingImageBoundary == 0)

6. Discussion and conclusions

There are a large number of R packages with imaging capabilities, many of which are discussed
in the CRAN task view on medical imaging (Whitcher 2018) and the recent special issue on
“Magnetic Resonance Imaging in R” of this journal (Tabelow and Whitcher 2011). Some pack-
ages implement IO of standard or specialized image formats: tiff (Urbanek 2013b), jpeg (Ur-
banek 2014), png (Urbanek 2013a), bmp (Jefferis 2017), pixmap (Bivand, Leisch, and Maech-
ler 2011), R4dfp (Barry and Snyder 2013), readbitmap (Jefferis 2014), tractor.base (Clay-
den 2018; Clayden, Maniega, Storkey, King, Bastin, and Clark 2011), oro.nifti (Whitcher,
Schmid, and Thornton 2017; Whitcher, Schmid, and Thorton 2011), oro.dicom (Whitcher
2015; Whitcher et al. 2011) neuroim (Buchsbaum 2016). Such packages typically make image
pixel data available as an R array and possibly provide access to file format specific image
meta-data.

The advanced model fitting capabilities of R are used to implement a range of domain-specific
algorithms for image data. Examples in the medical domain include dpmixsim (da Silva
2012) and mritc (Feng and Tierney 2015, 2011) for structural MRI, dti (Tabelow, Polzehl,
and Anker 2016; Polzehl and Tabelow 2011) and tractor.base for diffusion MRI, and An-
alyzeFMRI (Lafaye de Micheaux and Marchini 2018; Bordier, Dojat, and Micheaux 2011),
fmri (Tabelow and Polzehl 2016b, 2011) for functional MRI and DATforDCEMRI (Ferl 2013,
2011) and dcemriS4 (Whitcher, Schmid, and Thornton 2015; Whitcher and Schmid 2011) for
dynamic contrast-enhanced MRI and oasis (Sweeney, Muschelli, and Taki Shinohara 2018) for
lesion segmentation in multiple sclerosis. Diverse modalities are supported by other packages,
such as atomic force microscopy by AFM (Beauvais, Liascukiene, and Landoulsi 2018), satel-
lite imagery by landsat (Goslee 2012) and ripa (Frery and Perciano 2013), thermal imaging by
Thermimage (Tattersall 2017), and more specific packages such as measuRing (Lara, Sierra,
and Felipe Bravo 2018) which provides tools for characterizing growth rings in trees.

Other packages focus on specific techniques, such as texture analysis (radiomics; Carlson
2016), smoothing (adimpro; Tabelow and Polzehl 2016a), boundary detection (BayesBD; Li
2017), and registration (NiftiReg; Modat et al. 2010; and antsR; Avants, Kandel, Duda, Cook,
and Tustison 2015).

Finally, some packages provide interfaces to external imaging applications, such as
fslr (Muschelli 2018) and RImageJ (Francois, Grosjean, and Murrell 2015), interfacing to
FSL and ImageJ (Schneider, Rasband, and Eliceiri 2012; Schindelin et al. 2012) respectively.
R is acting as an advanced shell to run executables from those packages.

Although many of the packages above may have functionality that is applicable to multi-
ple domains, they are not designed to be general purpose packages. Two exceptions are

Journal of Statistical Software

imager (Barthelme 2017), which utilizes the CImg library to provide a range of filtering,
thresholding and warping functions and EBImage (Pau, Fuchs, Sklyar, Boutros, and Huber
2010) which provides similar capabilities for cell imaging in microscopy. Both use R arrays
to represent images. SimpleITK offers a much greater range of computational functions than
either of these packages.

The SimpleITK package introduced in this article supports 10 for a wide variety of image
formats and provides a broad range of computational components to perform filtering, seg-
mentation and registration. It uses the image data structures from ITK, which include a
complete set of meta-data describing image and voxel geometry in world coordinates, and
processing classes, which have been widely used for many years and have solid software engi-
neering support to provide long-term maintainability.

SimpleITK provides an open source solution to complex image analysis tasks with facilities
that rival many commercial offerings. The option of using SimpleITK with interpreter-based
environments such as R allows a researcher or developer to quickly explore many combinations
of computational strategies when working with images.

To follow the ongoing toolkit development go to: https://github.com/SimpleITK/
SimpleITK. We hope that SimpleITK will be useful to anyone faced with the task of ob-
taining insights from images.

Acknowledgments

This work was supported by the Intramural Research Program of the U.S. National Insti-
tutes of Health, National Library of Medicine, the Murdoch Children’s Research Institute,
Melbourne, Australia and the Victorian Government’s Operational Infrastructure Support
Program.

References

Avants BB, Kandel BM, Duda JT, Cook PA, Tustison NJ (2015). antsR: ANTs in R. R pack-
age version 0.3.2, URL http://stnava.github.io/ANTsR/.

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011). “A Reproducible Eval-
uation of ANTs Similarity Metric Performance in Brain Image Registration.” Neurolmage,
54(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025.

Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC (2014). “The Insight ToolKit
Image Registration Framework.” Frontiers in Neuroinformatics, 8(44). doi:10.3389/
fninf.2014.00044.

Barry KP, Snyder AZ (2013). R4dfp: 4dfp MRI Image Read and Write Routines. R package
version 0.2-4, URL http://CRAN.R-project.org/package=R4dfp.

Barthelme S (2017). imager: Image Processing Library Based on CImg. R package ver-
sion 0.40.2, URL http://CRAN.R-project.org/package=imager.

Beauvais M, Liascukiene I, Landoulsi J (2018). AFM: Atomic Force Microscope Image Anal-
ysis. R package version 1.2.4, URL http://CRAN.R-project.org/package=AFM.

29

https://github.com/SimpleITK/SimpleITK
https://github.com/SimpleITK/SimpleITK
http://stnava.github.io/ANTsR/
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.3389/fninf.2014.00044
http://CRAN.R-project.org/package=R4dfp
http://CRAN.R-project.org/package=imager
http://CRAN.R-project.org/package=AFM

30 SimpleITK: Image Segmentation and Registration in R

Beazley DM, et al. (1996). “SWIG: An Easy to Use Tool for Integrating Scripting Languages
with C and C++." In Tcl/Tk Workshop.

Bivand R, Leisch F, Maechler M (2011). pixmap: Bitmap Images (“Pizel Maps”). R package
version 0.4-11, URL http://CRAN.R-project.org/package=pixmap.

Bordier C, Dojat M, Micheaux P (2011). “Temporal and Spatial Independent Component
Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package.” Journal of
Statistical Software, 44(9), 1-24. doi:10.18637/jss.v044.1009.

Buchsbaum BR (2016). neuroim: Data Structures and Handling for Neuroimaging Data.
R package version 0.0.6, URL http://CRAN.R-project.org/package=neuroim.

Carlson J (2016). radiomics: ‘Radiomic’ Image Processing Toolboz. R package version 0.1.2,
URL http://CRAN.R-project.org/package=radiomics.

Christiansen T, Foy BD, Orwant J, Wall L (2012). Programming Perl. 4th edition. O’Reilly
& Associates, Inc., Sebastopol.

Clayden J (2018). tractor.base: Read, Manipulate and Visualise Magnetic Resonance Images.
R package version 3.2.2, URL http://CRAN.R-project.org/package=tractor.base.

Clayden J, Maniega S, Storkey A, King M, Bastin M, Clark C (2011). “TractoR: Magnetic
Resonance Imaging and Tractography with R.” Journal of Statistical Software, 44(8), 1-18.
doi:10.18637/jss.v044.108.

da Silva AF (2012). dpmixsim: Dirichlet Process Mixture Model Simulation for Clustering
and Image Segmentation. R package version 0.0-8, URL http://CRAN.R-project.org/
package=dpmixsim.

Eddelbuettel D, Frangois R (2011). “Repp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.108.

Enquobahrie A, Cheng P, Gary K, Ibanez L, Gobbi D, Lindseth F, Yaniv Z, Aylward S,
Jomier J, Cleary K (2007). “The Image-Guided Surgery Toolkit IGSTK: An Open Source
C++ Software Toolkit.” Journal of Digital Imaging, 20(Suppl. 1), 21-33. doi:10.1007/
s10278-007-9054-3.

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C,
Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R
(2012). “3D Slicer as an Image Computing Platform for the Quantitative Imaging Network.”
Magnetic Resonance Imaging, 30(9), 1323-1341. doi:10.1016/j.mri.2012.05.001.

Feng D, Tierney L (2011). “mritc: A Package for MRI Tissue Classification.” Journal of
Statistical Software, 44(7), 1-20. doi:10.18637/jss.v044.107.

Feng D, Tierney L (2015). mritc: MRI Tissue Classification. R package version 0.5-0, URL
http://CRAN.R-project.org/package=mritc.

Ferl G (2011). “DATfor DCEMRI: An R Package for Deconvolution Analysis and Visualization
of DCE-MRI Data.” Journal of Statistical Software, 44(4), 1-18. doi:10.18637/jss.v044.
i03.

http://CRAN.R-project.org/package=pixmap
https://doi.org/10.18637/jss.v044.i09
http://CRAN.R-project.org/package=neuroim
http://CRAN.R-project.org/package=radiomics
http://CRAN.R-project.org/package=tractor.base
https://doi.org/10.18637/jss.v044.i08
http://CRAN.R-project.org/package=dpmixsim
http://CRAN.R-project.org/package=dpmixsim
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/s10278-007-9054-3
https://doi.org/10.1007/s10278-007-9054-3
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.18637/jss.v044.i07
http://CRAN.R-project.org/package=mritc
https://doi.org/10.18637/jss.v044.i03
https://doi.org/10.18637/jss.v044.i03

Journal of Statistical Software 31

Ferl GZ (2013). DATforDCEMRI: Deconvolution Analysis Tool for Dynamic Contrast
Enhanced MRI. R package version 0.55, URL http://CRAN.R-project.org/package=
DATforDCEMRI.

Fitzpatrick JM (2016). “Retrospective Image Registration Evaluation Project.” Accessed on
2016-05-02, URL http://www.insight-journal.org/rire/.

Fitzpatrick JM, Hill DLG, Maurer Jr CR (2000). “Image Registration.” In Handbook of
Medical Imaging, Volume 2. Medical Image Processing and Analysis. SPIE Press.

Francois R, Grosjean P, Murrell P (2015). RImageJ: R Bindings for ImageJ. R package
version 0.2-146, URL https://R-forge.R-project.org/R/7group_id=451.

Frery AC, Perciano T (2013). Introduction to Image Processing Using R: Learning by Exam-
ples. Springer-Verlag. doi:10.1007/978-1-4471-4950-7.

Goshtasby AA (2005). 2-D and 3-D Image Registration for Medical, Remote Sensing, and
Industrial Applications. John Wiley & Sons.

Goslee S (2012). landsat: Radiometric and Topographic Correction of Satellite Imagery.
R package version 1.0.8, URL http://CRAN.R-project.org/package=landsat.

Ierusalimschy R (2016). Programming in Lua. 4th edition. Lua.org.

Inglada J, Christophe E (2009). “The ORFEO Toolbox Remote Sensing Image Processing
Software.” In IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

Ipeirotis PG, Provost F, Wang J (2010). “Quality Management on Amazon Mechanical Turk.”
In Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 64—67.

Jefferis G (2014). readbitmap: Simple Unified Interface to Read Bitmap Images (BMP, JPEG,
PNG). R package version 0.1-4, URL http://CRAN.R-project.org/package=readbitmap.

Jefferis G (2017). bmp: Read Windows Bitmap (BMP) Images. R package version 0.3, URL
http://CRAN.R-project.org/package=bmp.

Johnson H, Harris G, Williams K (2007). “BRAINSFit: Mutual Information Registrations
of Whole-Brain 3D Images, Using the Insight Toolkit.” Insight Journal. July—-December.

Johnson HJ, McCormick M, Ibanez L, The Insight Software Consortium (2013). The ITK
Software Guide, 3rd edition. URL http://www.itk.org/ItkSoftwareGuide.pdf.

Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010). “elastix: A Toolbox
for Intensity-Based Medical Image Registration.” IFEE Transactions on Medical Imaging,
29(1), 196-205. doi:10.1109/tmi.2009.2035616.

Lafaye de Micheaux P, Marchini JL (2018). AnalyzeFMRI: Functions for Analysis of fMRI
Datasets Stored in the ANALYZE or NIFTI Format. R package version 1.1-17, URL http:
//CRAN.R-project.org/package=AnalyzeFMRI.

Lara W, Sierra C, Felipe Bravo F (2018). measuRing: Detection and Control of Tree-Ring
Widths on Scanned Image Sections. R package version 0.5, URL http://CRAN.R-project.
org/package=measuRing.

http://CRAN.R-project.org/package=DATforDCEMRI
http://CRAN.R-project.org/package=DATforDCEMRI
http://www.insight-journal.org/rire/
https://R-forge.R-project.org/R/?group_id=451
https://doi.org/10.1007/978-1-4471-4950-7
http://CRAN.R-project.org/package=landsat
http://CRAN.R-project.org/package=readbitmap
http://CRAN.R-project.org/package=bmp
http://www.itk.org/ItkSoftwareGuide.pdf
https://doi.org/10.1109/tmi.2009.2035616
http://CRAN.R-project.org/package=AnalyzeFMRI
http://CRAN.R-project.org/package=AnalyzeFMRI
http://CRAN.R-project.org/package=measuRing
http://CRAN.R-project.org/package=measuRing

32 SimpleITK: Image Segmentation and Registration in R

Li CH, Tam PKS (1998). “An Iterative Algorithm for Minimum Cross Entropy Thresholding.”
Pattern Recognition Letters, 19(8), 771-776. doi:10.1016/s0167-8655(98)00057-9.

Li M (2017). BayesBD: Bayesian Boundary Detection in Images. R package version 1.2, URL
http://CRAN.R-project.org/package=BayesBD.

Lowekamp BC, Chen DT, Ibéafniez L, Blezek D (2013). “The Design of SimpleITK.” Frontiers
in Neuroinformatics, 7, 1-14. doi:10.3389/fninf.2013.00045.

Modat M, et al. (2010). “Fast Free-Form Deformation Using Graphics Processing Units.”
Computer Methods and Programs in Biomedicine, 98(3), 278-284. doi:10.1016/j.cmpb.
2009.09.002.

Mosaliganti KR, Gelas A, Megason SG (2013). “An Efficient, Scalable, and Adaptable Frame-
work for Solving Generic Systems of Level-Set PDEs.” Frontiers in Neuroinformatics, 7,
1-35. d0i:10.3389/fninf.2013.00035.

Muschelli J (2018). fslr: Wrapper Functions for FSL (FMRIB Software Library) from
Functional MRI of the Brain (FMRIB). R package version 2.17.3, URL http://CRAN.
R-project.org/package=fslr.

Nowell C (2015). “Fiji Training Notes, 5.0.” http://imagej.net/User_Guides.

Oliveira FPM, Tavares JMRS (2014). “Medical Image Registration: A Review.” Com-
puter Methods in Biomechanics and Biomedical Engineering, 17(2), 73-93. doi:10.1080/
10255842.2012.670855.

Pau G, Fuchs F, Sklyar O, Boutros M, Huber W (2010). “EBImage — An R Package for
Image Processing with Applications to Cellular Phenotypes.” Bioinformatics, 26(7), 979
981. doi:10.1093/bioinformatics/btq046.

Polzehl J, Tabelow K (2011). “Beyond the Gaussian Model in Diffusion-Weighted Imaging:
The Package dti” Journal of Statistical Software, 44(12), 1-26. doi:10.18637/jss.v044.
i12.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rossum GV, et al. (2011). Python Programming Language. URL https://www.python.org/.

Schindelin J, et al. (2012). “Fiji: An Open-Source Platform for Biological Image Analysis.”
Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019.

Schneider CA, Rasband WS, Eliceiri KW (2012). “NIH Image to ImageJ: 25 Years of Image
Analysis.” Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089.

Sweeney EM, Muschelli J, Taki Shinohara R (2018). oasis: Multiple Sclerosis Lesion Seg-
mentation Using Magnetic Resonance Imaging (MRI). R package version 3.0.4, URL
http://CRAN.R-project.org/package=oasis.

Tabelow K, Polzehl J (2011). “Statistical Parametric Maps for Functional MRI Experiments
in R: The Package fmri” Journal of Statistical Software, 44(11), 1-21. doi:10.18637/
jss.v044.1i11.

https://doi.org/10.1016/s0167-8655(98)00057-9
http://CRAN.R-project.org/package=BayesBD
https://doi.org/10.3389/fninf.2013.00045
https://doi.org/10.1016/j.cmpb.2009.09.002
https://doi.org/10.1016/j.cmpb.2009.09.002
https://doi.org/10.3389/fninf.2013.00035
http://CRAN.R-project.org/package=fslr
http://CRAN.R-project.org/package=fslr
http://imagej.net/User_Guides
https://doi.org/10.1080/10255842.2012.670855
https://doi.org/10.1080/10255842.2012.670855
https://doi.org/10.1093/bioinformatics/btq046
https://doi.org/10.18637/jss.v044.i12
https://doi.org/10.18637/jss.v044.i12
https://www.R-project.org/
https://www.python.org/
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2089
http://CRAN.R-project.org/package=oasis
https://doi.org/10.18637/jss.v044.i11
https://doi.org/10.18637/jss.v044.i11

Journal of Statistical Software 33

Tabelow K, Polzehl J (2016a). adimpro: Adaptive Smoothing of Digital Images. R package
version 0.8.2, URL http://CRAN.R-project.org/package=adimpro.

Tabelow K, Polzehl J (2016b). finri: Analysis of fMRI Experiments. R package version 1.7-2,
URL http://CRAN.R-project.org/package=fmri.

Tabelow K, Polzehl J, Anker F (2016). dti: Analysis of Diffusion Weighted Imaging (DWI)
Data. R package version 1.2-6.1, URL http://CRAN.R-project.org/package=dti.

Tabelow K, Whitcher B (2011). “Special Volume on Magnetic Resonance Imaging in R.
Journal of Statistical Software, 44(1), 1-6. doi:10.18637/jss.v044.i01.

Tattersall GJ (2017). Thermimage: Functions for Handling Thermal Images. R package
version 3.1.0, URL http://CRAN.R-project.org/package=Thermimage.

Tcl Core Team (2017). Tcl: Tool Commander Language. URL http://www.tcl.tk/.

The Insight Software Consortium (2016a). “Building SimpleITK.” URL https://simpleitk.
readthedocs.io/en/master/Documentation/docs/source/building.html.

The Insight Software Consortium (2016b). “SimpleITK Documentation.” URL https://itk.
org/SimpleITKDoxygen/html.

The Insight Software Consortium (2018). SimpleITK: Bindings to SimpleITK Image Segmen-
tation and Registration Toolkit. R package version 1.1.0, URL http://www.simpleitk.
org/.

Thomas D, Fowler C, Hunt A (2009). Programming Ruby 1.9: The Pragmatic Programmer’s
Guide. The Facets of Ruby. The Pragmatic Bookshelf, Raleigh, North Carolina.

Toussaint N, Souplet JC, Fillard P (2007). “medINRIA: Medical Image Navigation and
Research Tool by INRIA.” In MICCAI Workshop on Interaction in Medical Image Analysis
and Visualization.

Urbanek S (2013a). png: Read and Write PNG Images. R package version 0.1-7, URL
http://CRAN.R-project.org/package=png.

Urbanek S (2013b). tiff: Read and Write TIFF Images. R package version 0.1-5, URL
http://CRAN.R-project.org/package=tiff.

Urbanek S (2014). jpeg: Read and Write JPEG Images. R package version 0.1-8, URL
http://CRAN.R-project.org/package=jpeg.

Warfield SK, Zou KH, Wells III WM (2004). “Simultaneous Truth and Performance Level
Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation.” IEEE
Transactions on Medical Imaging, 23(7), 903-921. doi:10.1109/tmi.2004.828354.

Whitcher B (2015). oro.dicom: Rigorous — DICOM Input/Output. R package version 0.5.0,
URL http://CRAN.R-project.org/package=oro.dicom.

Whitcher B (2018). CRAN Task View: Medical Image Analysis. Version 2018-01-24, URL
https://CRAN.R-project.org/view=MedicalImaging.

http://CRAN.R-project.org/package=adimpro
http://CRAN.R-project.org/package=fmri
http://CRAN.R-project.org/package=dti
https://doi.org/10.18637/jss.v044.i01
http://CRAN.R-project.org/package=Thermimage
http://www.tcl.tk/
https://simpleitk.readthedocs.io/en/master/Documentation/docs/source/building.html
https://simpleitk.readthedocs.io/en/master/Documentation/docs/source/building.html
https://itk.org/SimpleITKDoxygen/html
https://itk.org/SimpleITKDoxygen/html
http://www.simpleitk.org/
http://www.simpleitk.org/
http://CRAN.R-project.org/package=png
http://CRAN.R-project.org/package=tiff
http://CRAN.R-project.org/package=jpeg
https://doi.org/10.1109/tmi.2004.828354
http://CRAN.R-project.org/package=oro.dicom
https://CRAN.R-project.org/view=MedicalImaging

34 SimpleITK: Image Segmentation and Registration in R

Whitcher B, Schmid V (2011). “Quantitative Analysis of Dynamic Contrast-Enhanced and
Diffusion-Weighted Magnetic Resonance Imaging for Oncology in R.” Journal of Statistical
Software, 44(5), 1-29. doi:10.18637/jss.v044.105.

Whitcher B, Schmid V, Thornton A (2015). dcemriS4: A Package for Image Analysis of
DCE-MRI (S4 Implementation). R package version 0.55, URL http://CRAN.R-project.
org/package=dcemriS4.

Whitcher B, Schmid V, Thornton A (2017). oro.nifti: Rigorous — NIfTI + ANALYZE
+ AFNI: Input/Output. R package version 0.9-1, URL http://CRAN.R-project.org/
package=oro.nifti.

Whitcher B, Schmid V, Thorton A (2011). “Working with the DICOM and NIfTT Data
Standards in R.” Journal of Statistical Software, 44(6), 1-29. doi:10.18637/jss.v044.
i06.

Wickham H, Hester J, Chang W (2018). devtools: Tools to Make Developing R Packages Eas-
ier. R package version 1.13.5, URL https://CRAN.R-project.org/package=devtools.

Wolf I, Vetter M, Wegner I, Béttger T, Nolden M, Schébinger M, Hastenteufel M, Kunert T,
Meinzer HP (2005). “The Medical Imaging Interaction Toolkit.” Medical Image Analysis,
9(6), 594-604. doi:10.1016/j.media.2005.04.005.

Yaniv Z (2008). “Rigid Registration.” In T Peters, K Cleary (eds.), Image-Guided Interven-
tions Technology and Applications, chapter 6. Springer-Verlag.

Yaniv Z (2009). “Localizing Spherical Fiducials in C-Arm Based Cone-Beam CT.” Medical
Physics, 36(11), 4957-4966. doi:10.1118/1.3233684.

Yaniv Z, Lowekamp BC, Johnson HJ, Beare R (2018). “SimpleITK Image-Analysis Note-
books: a Collaborative Environment for Education and Reproducible Research.” Journal
of Digital Imaging, 31(3), 290-303. doi:10.1007/s10278-017-0037-8.

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D,
Whitaker R (2002). “Engineering and Algorithm Design for an Image Processing API:
A Technical Report on ITK — The Insight Toolkit.” Studies in Health Technology and
Informatics, 85, 586—592. doi:10.3233/978-1-60750-929-5-586.

Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006).
“User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly
Improved Efficiency and Reliability.” Neurolmage, 31(3), 1116-1128. doi:10.1016/j.
neuroimage.2006.01.015.

Zitova B, Flusser J (2003). “Image Registration Methods: A Survey.” Image and Vision
Computing, 21(11), 977-1000. doi:10.1016/s0262-8856(03)00137-9.

https://doi.org/10.18637/jss.v044.i05
http://CRAN.R-project.org/package=dcemriS4
http://CRAN.R-project.org/package=dcemriS4
http://CRAN.R-project.org/package=oro.nifti
http://CRAN.R-project.org/package=oro.nifti
https://doi.org/10.18637/jss.v044.i06
https://doi.org/10.18637/jss.v044.i06
https://CRAN.R-project.org/package=devtools
https://doi.org/10.1016/j.media.2005.04.005
https://doi.org/10.1118/1.3233684
https://doi.org/10.1007/s10278-017-0037-8
https://doi.org/10.3233/978-1-60750-929-5-586
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/s0262-8856(03)00137-9

Journal of Statistical Software

Affiliation:

Richard Beare

Monash University

Department of Medicin

Monash Medical Centre

Clayton, Melbourne, Australia, 3168
E-mail: Richard.Beare@monash.edu

Bradley Lowekamp, Ziv Yaniv

National Institutes of Health,

Office of High Performance Computing and Communications
National Library of Medicine

8600 Rockville Pike

Bethesda, MD, 20894, United States of America

E-mail: blowekamp@mail.nih.gov, zivyaniv@nih.gov

Journal of Statistical Software
published by the Foundation for Open Access Statistics

August 2018, Volume 86, Issue 8
d0i:10.18637/jss.v086.108

http://www. jstatsoft.org/
http://wuw.foastat.org/

Submitted: 2016-06-24
Accepted: 2017-08-07

35

mailto:Richard.Beare@monash.edu
mailto:blowekamp@mail.nih.gov
mailto:zivyaniv@nih.gov
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v086.i08

	Introduction
	ITK, SimpleITK and the SimpleITK R package
	ITK
	SimpleITK
	Licensing
	The SimpleITK R package
	Documentation
	Installation using devtools
	Building from source
	Wrapper generation with SWIG
	Multi-threaded components

	SimpleITK concepts
	Image files, image objects and meta-data
	Image extent and physical coordinates

	Display
	Conversion to and from arrays
	Indexing and slicing
	Image operators
	Methods for SimpleITK objects
	Error messages

	SimpleITK computational components
	Filtering
	Segmentation
	Registration

	Case studies
	Spherical marker localization
	Intensity-based image registration
	Segmentation evaluation
	Cell segmentation
	Cell segmentation and splitting
	Refinement of segmentation
	Characterization and counting

	Discussion and conclusions

