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Abstract

While likelihood-based derivatives and related facilities are available in R for many
types of statistical models, the facilities are notably lacking for models estimated via lme4.
This is because the necessary statistical output, including the Hessian, Fisher information
and casewise contributions to the model gradient, is not immediately available from lme4
and is not trivial to obtain. In this article, we describe merDeriv, an R package which
supplies new functions to obtain analytic output from Gaussian mixed models. We discuss
the theoretical results implemented in the code, focusing on calculation of robust standard
errors via package sandwich. We also use the sleepstudy data to illustrate the package
and to compare it to a benchmark from package lavaan.

Keywords: linear mixed effects model, scores, Huber-White sandwich estimator, robust stan-
dard error, lme4.

1. Introduction
Package lme4 (Bates, Mächler, Bolker, and Walker 2015) is widely used to estimate a variety
of generalized linear mixed models (GLMMs). Despite its popularity, the package does not
provide certain results related to derivatives of the likelihood, which makes it difficult to obtain
robust standard errors and other statistical tests. This absence is partially related to the fact
that lme4 does not directly estimate models via likelihood maximization, but rather employs
a penalized least squares approach that leads to ML (or REML) estimates (Bates et al.
2015). While this approach eases model estimation, it also makes it more difficult to obtain
derivatives (first and second) of the likelihood from a fitted model (which are required for,
e.g., the Huber-White sandwich estimator). While it is possible to instead utilize the robust
estimation methods from package robustlmm (Koller 2016), we are interested in directly using
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derivative-based methods that rely on estimation of the traditional model. Thus, the goal of
this paper is to describe R package merDeriv (Wang and Merkle 2018), which is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
merDeriv and contains functions that compute these derivatives for objects of class ‘lmerMod’.
We also briefly discuss derivatives associated with models of class ‘glmerMod‘, though we do
not currently have code for these models (the computations are more difficult due to the need
for numerical integration).
The paper proceeds as follows. We first describe general notation for the linear mixed model.
Next, we derive expressions for the linear mixed models’ casewise (observation level) and
clusterwise (cluster/group level) first derivatives, along with the Hessian and Fisher infor-
mation matrix (including both fixed effect parameters and variances/covariances of random
effects). Next, we illustrate the derivatives’ application via the sleepstudy data (Belenky
et al. 2003) included with lme4, comparing our results to a benchmark from lavaan (Rosseel
2012). This illustration includes computation of the Huber-White sandwich estimator (Eicker
1967; White 1980; Huber 1967) for linear mixed models with independent clusters/groups.
Finally, we discuss further use and extension of our package’s functionality.

2. Linear mixed model
Following Bates et al. (2015), the linear mixed model (LMM) can be written as

y|b ∼ N(Xβ +Zb,R) (1)
b ∼ N(0,G) (2)
R = σ2

rIn, (3)

where y is the observed data vector of length n; X is an n× p matrix of fixed covariates; β
is the fixed effect vector of length p; Z is an n× q design matrix of random effects; and b is
the random effect vector of length q.
The vector b is assumed to follow a normal distribution with mean 0 and covariance matrix
G, where G is a block diagonal matrix composed of variance/covariance for random effect
parameters. The residual covariance matrix, R, is the product of the residual variance σ2

r

and an identity matrix of dimension n. We further define σ2 to be a vector of length K,
containing all variance/covariance parameters (including those of the random effects and the
residual). Thus, the matrix G has (K − 1) unique elements. For example, in a model with
two random effects that are allowed to covary, σ2 is a vector of length 4 (i.e., K = 4). The
first three elements correspond to the unique entries of G, which are commonly expressed as
σ2

0, σ01, and σ2
1. The last component is then the residual variance σ2

r .
Based on Equations 1, 2, and 3, the marginal distribution of the LMM is

y ∼ N(Xβ,V ), (4)

where
V = ZGZ> + σ2

rIn. (5)

Therefore, the marginal likelihood can be expressed as

`(σ2,β;y) = −n2 log(2π)− 1
2 log(|V |)− 1

2(y −Xβ)>V −1(y −Xβ). (6)

https://CRAN.R-project.org/package=merDeriv
https://CRAN.R-project.org/package=merDeriv
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3. Derivative computations for the linear mixed model
In this section, we first discuss analytic results involving the linear mixed model’s first and
second derivatives. We then illustrate how these derivatives can be obtained from an object
of class ‘lmerMod’.

3.1. Scores

Based on the objective function from Equation 6, we derive the score function si() for each
observation w.r.t. the parameter vector ξ = (σ2,β)>. We focus separately on σ2 and on β
below.

Scores for σ2

The gradient with respect to the kth entry of σ2 (k = 1, 2, 3, . . . ,K) is (Stroup 2012, p. 136–
137):

∂`(σ2,β;y)
∂σ2

k

= −1
2tr

[
V −1 ∂V

∂σ2
k

]
+ 1

2(y −Xβ)>V −1
(
∂V

∂σ2
k

)
V −1(y −Xβ), (7)

where V is defined in Equation 5. This gradient sums over i, whereas the scores are defined
for each observation i. Thus, to obtain the scores, we can remove the sums from the above
equation. This is accomplished by replacing a trace operator with a diag operator, as well as
replacing a matrix product with a Hadamard product (also known as elementwise/entrywise
multiplication):

s(σ2
k;y) = −1

2diag
[
V −1 ∂V

∂σ2
k

]
+
{

1
2(y −Xβ)>V −1

(
∂V

∂σ2
k

)
V −1

}>
◦ (y −Xβ). (8)

In this way, the gradient of parameter σ2
k (a scalar) becomes a n× 1 score vector.

Scores for β

For the fixed effect parameter β, the gradient is:

∂`(σ2,β;y)
∂β

= X>V −1(y −Xβ). (9)

The score vector s(β;y) can again be obtained by replacing the matrix multiplication by the
Hadamard product:

s(β;y) =
{
X>V −1

}>
◦ (y −Xβ). (10)

The full set of scores can then be expressed as a matrix whose columns consist of the results
from Equations 8 and 10.
These equations provide scores for each observation i, and we can construct the clusterwise
scores by summing scores within each cluster. In situations with one grouping (clustering)
variable, the clusterwise scores can be obtained from our estfun method for ‘lmerMod’ objects
via the default argument level = 2. The casewise scores, on the other hand, can be retrieved
for all models via the argument level = 1.
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3.2. Hessian/observed information matrix

The Hessian is the second derivative of the log-likelihood, noted as A? in this paper. The
negative of the Hessian is often called the observed information matrix or observed Fisher
information. It is a sample-based version of the Fisher information. Because package lme4
does not provide a Hessian that includes both the fixed and variance/covariance of random
effect (including residual variance) parameters, the derivation of this matrix requires special
attention.
To obtain the Hessian, we can divide the matrix A? into the following four blocks:

A? =



∂2`(σ2,β;y)
∂β∂β>

∂2`(σ2,β;y)
∂β∂σ2>

∂2`(σ2,β;y)
∂σ2∂β>

∂2`(σ2,β;y)
∂σ2∂σ2>


,

where β contains all fixed parameters and σ2 contains all variance-covariance parameters (in
variance-covariance scale) in the linear mixed model. To facilitate the analytic derivations,
we index the above four blocks as:

A? =


Block 1? Block 3?

Block 2? Block 4?


.

Block 1? is straightforward, which can be obtained by taking the derivative of Equation 9
w.r.t. β, which can be expressed as:

∂2`(σ2,β;y)
∂β∂β>

= −X>V −1X (11)

Derivation of Block 4? is described in Stroup (2012) and can be written as

∂2`(σ,y,β)
∂σ2

k1
∂σ2

k2

=
(1

2

)
tr
[
V −1

(
∂V

∂σk1

)
V −1

(
∂V

∂σk2

)]
− (y −Xβ)

{
V −1

(
∂V

∂σk1

)
V −1

(
∂V

∂σk2

)
V −1

}
(y −Xβ) , (12)

where k1 ∈ 1, . . . ,K and k2 ∈ 1, . . . ,K.
Finally, Block 3? (which is the transpose of Block 2?) can be seen as the derivative of Equa-
tion 7 w.r.t. β. Using the identity from Petersen and Pedersen (2012, p. 11, Eq. 86), this
allows us to derive Block 3? as

∂2`(σ2,β;y)
∂σ2∂β>

= −X>V −1
(
∂V

∂σ2

)
V −1(y −Xβ) (13)
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The results obtained for A? are similar to the derivation of the Fisher information matrix, as
described below.

3.3. Fisher/expected information matrix

The Fisher information matrix (or expected information matrix) is the expectation of the
negative second derivative of the log likelihood, noted as A throughout the paper. It can
often be obtained in R with the help of the vcov() function, but package lme4 only provides
results for fixed effect parameters. Thus, we obtain the Fisher information w.r.t. all model
parameters by taking the expectation of the negative of the Hessian matrix A?.
Specifically, we can express the matrix A in the following four blocks as before. The only
difference is the negative expectation operator.

A =



−E
(
∂2`(σ2,β;y)
∂β∂β>

)
−E

(
∂2`(σ2,β;y)
∂β∂σ2>

)

−E
(
∂2`(σ2,β;y)
∂σ2∂β>

)
−E

(
∂2`(σ2,β;y)
∂σ2∂σ2>

)


,

Following the same strategy, we index the above four blocks as:

A =


Block 1 Block 3

Block 2 Block 4


.

Because X and X> are considered constants, Block 1 is simply the negative of Block 1?
shown as below:

−E
(
∂2`(σ2,β;y)
∂β∂β>

)
= −E

(
−X>V −1X

)
= X>V −1X. (14)

This analytic result is mathematically equivalent to the result provided by solve(vcov())
in lme4 (which only contains fixed effect parameters).
Derivation of Block 4 is also based on the result from Block 4?. In particular, following
the expectation identity for Gaussian distributions from Petersen and Pedersen (2012, p. 43,
Eq. 380), the second term of Equation 12 can be transformed to tr

[
V −1

(
∂V
∂σ2

k1

)
V −1

(
∂V
∂σ2

k2

)]
.

Thus Block 4 is reduced to the form shown as below, which is also described in Stroup (2012).

−E
(
∂2`(σ,y,β)
∂σ2

k1
∂σ2

k2

)
=
(1

2

)
tr
[
V −1

(
∂V

∂σ2
k1

)
V −1

(
∂V

∂σ2
k2

)]
, (15)

where k1 ∈ 1, . . . ,K and k2 ∈ 1, . . . ,K.
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Finally, Block 3 is the negative of the expectation of Block 3?. Using the expectation identity
from Petersen and Pedersen (2012, p. 35, Eq. 312), this allows us to derive Block 3 as

−E
(
∂2`(σ2,β;y)
∂σ2∂β>

)
= −E

(
−X>V −1

(
∂V

∂σ2

)
V −1(y −Xβ)

)
(16)

= X>E
({
V −1

(
∂V

∂σ2

)
V −1

}
{(y −Xβ)}

)
(17)

Since E(y−Xβ) = 0, it leads to −E
(
∂2`(σ2,β;y)
∂σ2∂β>

)
= 0, which reflects asymptotic independence

of β and σ2. Thus, we have expressed the necessary derivatives as functions of model matrices
and derivatives of the marginal variance V . We can summarize the Fisher information matrix
result for the LMM as:

A =



X>V −1X 0

0
(

1
2

)
tr
[
V −1

(
∂V
∂σ2

k1

)
V −1

(
∂V
∂σ2

k2

)]


.

These results are equivalent to Equations 6.69 to 6.74 of McCulloch and Neuhaus (2001).
We can then invert the information matrix to obtain the variance-covariance matrix. In the
vcov method for ‘lmerMod’ objects from merDeriv, we use the argument full = TRUE to get
the variance-covariance matrix w.r.t. all parameters in the model. If full = FALSE (default),
the variance-covariance matrix w.r.t. only fixed parameters is returned. To switch between
the observed and expected information matrix, we can supply the argument information
= "observed" or information = "expected". The default option is “expected” due to its
wider usage.

4. Relation to ‘lmerMod’ objects
In this section, we describe how the quantities needed to compute the scores, Hessian, and
Fisher information matrix can be obtained from an ‘lmerMod’ object. The data and model
matrices y,X, β, and Z can be obtained directly from lme4 via getME(). The only remaining
components, then, are V and ∂V /∂σ2. In the following, we focus on how to indirectly obtain
these components.
In the lme4 framework, the random effects covariance matrix G is decomposed via (Bates
et al. 2015):

G = ΛθΛ
>
θ σ

2
r , (18)

where Λθ is a q × q lower diagonal matrix, called the “relative covariance factor”. It can be
seen as a Cholesky decomposition of G/σ2

r . The dimension of Λθ is the same as that of G.
Additionally, the position of σ2

k in G is the same as the position of θk in Λθ.
Inserting Equation 18 into Equation 5, we can express V as

V = (ZΛθΛ
>
θZ
> + In)σ2

r . (19)
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Equation 19 is mathematically equivalent to Equation 5, but it has computational advantages
when, e.g., a random effect variance is close to 0.
Using Equation 5, the term ∂V /∂σ2

k can usually be expressed as

Z
∂G

∂σ2
k

Z>, (20)

so long as σ2
k is not the residual variance. The partial derivative ∂G

∂σ2
k
is then a matrix of the

same dimension as G, with an entry of 1 corresponding to the location of σ2
k and 0 elsewhere.

Because the location of σ2
k withinGmatches its location within Λθ, we can use Λθ to facilitate

computation of ∂V /∂σ2
k. The only trick is thatG is symmetric, whereas Λθ is lower diagonal.

The code below illustrates the implementation of this strategy, where object is a fitted model
of class ‘lmerMod’.

parts <- getME(object, "ALL")
uluti <- length(parts$theta)
devLambda <- vector("list", uluti)
devV <- vector ("list", (uluti + 1))

We determine the position of the parameters in the Λθ matrix and we use forceSymmetric()
to convert the lower diagonal information from Λθ into the symmetric G.

LambdaInd <- parts$Lambda
LambdaInd@x[] <- seq(1:uluti)
for (i in 1:uluti) {

devLambda[[i]] <- forceSymmetric(LambdaInd == i, uplo = "L")
devV[[i]] <- tcrossprod(tcrossprod(parts$Z, t(devLambda[[i]])),

parts$Z)
}

Finally, for the derivative with respect to the residual variance, it is obvious that ∂V /∂σ2
r = In

so long as R = σ2
rI (also see Stroup 2012, p. 137).

The above results are sufficient for obtaining the derivatives necessary for computing the
Huber-White sandwich estimator and for carrying out additional statistical tests (see Sec-
tion 7). In the following sections, we will describe the Huber-White sandwich estimator for
linear mixed models with independent clusters, then provide an application.

5. Huber-White sandwich estimator
Let ycj contain the observations within cluster cj . If observations in different clusters are
independent (as is the case in many linear mixed models), then we can write

`(σ2,β;y) =
J∑
j=1

`(σ2,β;ycj ), (21)
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where J is the total number of clusters and `() is defined in Equation 6. The first and second
partial derivatives of ` w.r.t. ξ = (σ2 β)> can then be written as

`′(ξ;y) =
J∑
j=1

∂`(ξ;ycj )
∂ξ

=
J∑
j=1

∑
i∈cj

si(ξ; yi), (22)

`′′(ξ;y) =
J∑
j=1

∂2`(ξ;ycj )
∂ξ2 , (23)

where ∂`(ξ;ycj )
∂ξ represents the first derivative within cluster cj , which can be expressed as the

sum of the casewise score si() belonging to cj . The function si() has also been studied in
other contexts (e.g., Wang, Merkle, and Zeileis 2014; Zeileis and Hornik 2007).
Inference about ξ relies on a central limit theorem:

√
J(ξ̂ − ξ) d−→ N(0,V (ξ)), (24)

where d−→ denotes convergence in distribution. The traditional estimate of V (ξ) relies on Equa-
tion 23, whereas the Huber-White sandwich estimator of V (ξ) is defined as (e.g., Freedman
2006; White 1980; Zeileis 2006):

V (ξ̂) = (A)−1B(A)−1, (25)

where A = −E(`′′(ξ̂);y) and B = COV(`′(ξ̂;y)). The square roots of the diagonal elements
of V are the “robust standard errors.”
When the model is correctly specified, the Huber-White sandwich estimator corresponds to
the Fisher information matrix. However, the estimator is often used in non-i.i.d. samples
to “correct” the information matrix for misspecification (e.g., Freedman 2006). While mixed
models explicitly handle lack of independence via random effects, the Huber-White estimators
can still be applied to these models to address remaining model misspecifications such as
outliers in random effects or deviations from normality (Koller 2016, 2013).
To construct the Huber-White sandwich estimator, A can be obtained from Equation 23,
whose analytic expression for the linear mixed model is expressed in Section 3.2. The matrix
B can then be constructed via (e.g., Freedman 2006):

B =
J∑
j=1

∑
i∈cj

si(ξ; yi)

> ∑
i∈cj

si(ξ; yi)

 . (26)

Thus, we require the derivations presented in the previous section: the “score” terms si(ξ; yi)
(i = 1, . . . , n) and the information matrix using the marginal likelihood from Equation 6.

6. Application
In this section, we illustrate how the package can be used to obtain clusterwise robust standard
errors for the sleepstudy data (Belenky et al. 2003) included in lme4. This dataset includes
18 subjects participating in a sleep deprivation study, where each subject’s reaction time was
monitored for 10 consecutive days. The reaction times are nested by subject and continuous
in measurement, hence the linear mixed model.
We first load package lme4, along with the merDeriv package that is the focus of this paper.
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R> library("lme4")
R> library("merDeriv")

Next, we fit a model with Days as the covariate, including random intercept and slope effects
that are allowed to covary. There are six free model parameters: the fixed intercept and slope
β0 and β1, the random variance and covariances σ2

0, σ2
1, and σ01, and the residual variance

σ2
r .

R> lme4fit <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy,
+ REML = FALSE)

This particular model can also be estimated as a structural equation model via package lavaan,
facilitating the comparison of our results with a benchmark. We first convert the data to wide
format.

R> testwide <- reshape2::dcast(sleepstudy, Subject ~ Days,
+ value.var = "Reaction")
R> names(testwide)[2:11] <- paste("d", 1:10, sep = "")

Then we specify the latent model.

R> latent <- 'i =~ 1*d1 + 1*d2 + 1*d3 + 1*d4 + 1*d5
+ + 1*d6 + 1*d7 + 1*d8 + 1*d9 + 1*d10
+
+ s = ~ 0*d1 + 1*d2 + 2*d3 + 3*d4 + 4*d5
+ + 5*d6 + 6*d7 + 7*d8 + 8*d9 + 9*d10
+
+ d1 ~~ evar*d1
+ d2 ~~ evar*d2
+ d3 ~~ evar*d3
+ d4 ~~ evar*d4
+ d5 ~~ evar*d5
+ d6 ~~ evar*d6
+ d7 ~~ evar*d7
+ d8 ~~ evar*d8
+ d9 ~~ evar*d9
+ d10 ~~ evar*d10
+
+ ## reparameterize as sd
+ sdevar := sqrt(evar)
+ i ~~ ivar*i
+ isd := sqrt(ivar)'

Finally, we fit the model with lavaan.

R> lavaanfit <- growth(latent, data = testwide, estimator = "ML")

The parameter estimates from the two packages (not shown) all agree to at least two decimal
places. Below, we examine the agreement of derivative computations.
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Scores

The analytic casewise and clusterwise scores are obtained via the estfun method for ‘lmerMod’
objects, using the arguments level = 1 and level = 2, respectively. The sum of scores
(either casewise or clusterwise) equals the gradient, which is close to zero at the ML estimates.

R> score1 <- estfun(lme4fit, level = 1)
R> gradients1 <- colSums(score1)
R> gradients1

(Intercept) Days
2.39e-14 2.38e-13

cov_Subject.(Intercept) cov_Subject.Days.(Intercept)
2.94e-09 4.19e-08

cov_Subject.Days residual
8.29e-08 -7.38e-09

R> score2 <- estfun(lme4fit, level = 2)
R> gradients2 <- colSums(score2)
R> gradients2

(Intercept) Days
2.39e-14 2.38e-13

cov_Subject.(Intercept) cov_Subject.Days.(Intercept)
2.94e-09 4.19e-08

cov_Subject.Days residual
8.29e-08 -7.38e-09

The clusterwise scores are also provided by a estfun method for ‘lavaan’ objects in lavaan.
Figure 1 presents a comparison between the clusterwise scores obtained from the estfun
methods for ‘lmerMod’ and ‘lavaan’ objects, showing they are nearly identical. The absolute
difference between the scores obtained from these two packages is within 1.5 × 10−7. The
squared differences is within 2.2× 10−14.

Variance covariance matrices

We also compare the variance covariance matrix calculated via our lme4 second derivatives
to the vcov() output of lavaan. The results are displayed in Table 1. The maximum of
the absolute difference for all components in the variance covariance matrix is 0.07. This
minor difference is due to the fact that lavaan applies the delta method to compute the
Fisher information matrix for defined parameters (Rosseel 2012; Oberski 2014). In contrast,
merDeriv utilizes analytic expressions. This difference is ignorable due to the small relative
difference (within 10−6).
Finally, the clusterwise Huber-White sandwich estimator is shown in Table 2, which is com-
parable to the one provided by lavaan. The maximum of the absolute difference for all
components in the variance covariance matrix is 0.05. The minor difference is again caused
by the aforementioned reasons.
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Figure 1: Comparison of scores obtained via the estfun methods for ‘lavaan’ and ‘lmerMod’
objects. In the left panel, the y-axis represents analytic, clusterwise scores obtained from the
estfun method for ‘lmerMod’ objects, and the x-axis represents clusterwise scores obtained
from the estfun method for ‘lavaan’ objects. The dashed line serves as a reference line as
y = x. In the right panel, the y-axis represents the difference between the scores obtained
via the estfun methods for ‘lavaan’ and ‘lmerMod’ objects, and the x-axis represents the
clusterwise scores obtained from the estfun method for ‘lavaan’ objects. The dashed line
serves as a reference line as y = 0.

7. Discussion
In this paper, we illustrated how to obtain the Huber-White sandwich estimator of estimated
parameters arising from objects of class ‘lmerMod’ with independent clusters. This required
us to derive observational (and clusterwise) scores for fixed and random parameters (leading
to the “meat”) as well as a Fisher information matrix that included random effect variances
and covariances (leading to the “bread”). In the discussion below, we address extensions to
related statistical metrics and models.

7.1. Restricted maximum likelihood (REML)

While we focused on linear mixed models estimated via maximum likelihood (ML), extension
to restricted maximum likelihood (REML) is straightforward. The central idea of REML is to
maximize the likelihood function of variance parameters after accounting for the fixed effects.
By using this approach, the downward bias of ML for variance estimates can be eliminated
(similarly to division of n versus n−1 in simple variance calculations), so REML is used often
in LMM applications (Stroup 2012).
Referring to the sleepstudy example, package merDeriv can provide scores (estfun) and
variance covariance matrix (vcov) based on the REML likelihood function and correspond-
ing estimates. The fixed effects parameters are equivalent for ML and REML, whereas the
corresponding vcov components are larger based on REML. For example, the ML variance
for the estimated fixed intercept is 43.99 whereas the REML variance for the estimated fixed
intercept is 46.57.
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Column name Row name merDeriv lavaan Abs Diff Rel Diff
(Intercept) (Intercept) 43.99 43.99 0.00 0.00
Days (Intercept) −1.37 −1.37 0.00 0.00
cov_Subject.(Intercept) (Intercept) 0.00 0.00 0.00 –
cov_Subject.Days.(Intercept) (Intercept) 0.00 0.00 0.00 –
cov_Subject.Days (Intercept) 0.00 0.00 0.00 –
residual (Intercept) 0.00 0.00 0.00 –
(Intercept) Days −1.37 −1.37 0.00 0.00
Days Days 2.26 2.26 0.00 0.00
cov_Subject.(Intercept) Days 0.00 0.00 0.00 –
cov_Subject.Days.(Intercept) Days 0.00 0.00 0.00 –
cov_Subject.Days Days 0.00 0.00 0.00 –
residual Days 0.00 0.00 0.00 –
(Intercept) cov_Subject.(Intercept) 0.00 0.00 0.00 –
Days cov_Subject.(Intercept) 0.00 0.00 0.00 –
cov_Subject.(Intercept) cov_Subject.(Intercept) 70366.08 70366.15 0.07 0.00
cov_Subject.Days.(Intercept) cov_Subject.(Intercept) −2282.47 −2282.46 0.01 0.00
cov_Subject.Days cov_Subject.(Intercept) 92.56 92.56 0.00 0.00
residual cov_Subject.(Intercept) −2058.08 −2058.08 0.00 0.00
(Intercept) cov_Subject.Days.(Intercept) 0.00 0.00 0.00 –
Days cov_Subject.Days.(Intercept) 0.00 0.00 0.00 –
cov_Subject.(Intercept) cov_Subject.Days.(Intercept) −2282.47 −2282.46 0.01 0.00
cov_Subject.Days.(Intercept) cov_Subject.Days.(Intercept) 1838.33 1838.33 0.00 0.00
cov_Subject.Days cov_Subject.Days.(Intercept) −115.28 −115.28 0.00 0.00
residual cov_Subject.Days.(Intercept) 324.96 324.96 0.00 0.00
(Intercept) cov_Subject.Days 0.00 0.00 0.00 –
Days cov_Subject.Days 0.00 0.00 0.00 –
cov_Subject.(Intercept) cov_Subject.Days 92.56 92.56 0.00 0.00
cov_Subject.Days.(Intercept) cov_Subject.Days −115.28 −115.28 0.00 0.00
cov_Subject.Days cov_Subject.Days 184.21 184.21 0.00 0.00
residual cov_Subject.Days −72.21 −72.21 0.00 0.00
(Intercept) residual 0.00 0.00 0.00 –
Days residual 0.00 0.00 0.00 –
cov_Subject.(Intercept) residual −2058.08 −2058.08 0.00 0.00
cov_Subject.Days.(Intercept) residual 324.96 324.96 0.00 0.00
cov_Subject.Days residual −72.21 −72.21 0.00 0.00
residual residual 5957.61 5957.61 0.00 0.00

Table 1: Comparison between merDeriv vcov method for ‘lmerMod objects output and lavaan
vcov() output for the sleepstudy data. The first two columns describe the specific matrix
entry being compared, the third and fourth columns show the estimates, the fifth and sixth
column shows the absolute and relative difference.

7.2. Statistical tests

The scores derived in this paper can potentially be used to carry out a variety of score-
based statistical tests. For example, the “fluctuation test” framework discussed by Zeileis
and Hornik (2007), Merkle and Zeileis (2013), and others generalizes the traditional score
(Lagrange multiplier) test and is used to detect parameter instability across orderings of
observations. The tests have been critical for the development of model-based recursive
partitioning procedures available via packages such as partykit (Hothorn and Zeileis 2015).
The code that we present here facilitates application of score-based tests to linear mixed
models, because the tests described in the previous paragraph are available via object-oriented
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Column name Row name merDeriv lavaan Abs Diff Rel Diff
(Intercept) (Intercept) 43.99 43.99 0.00 0.00
Days (Intercept) −1.37 −1.37 0.00 0.00
cov_Subject.(Intercept) (Intercept) −523.40 −523.41 0.01 0.00
cov_Subject.Days.(Intercept) (Intercept) −20.77 −20.77 0.00 0.00
cov_Subject.Days (Intercept) −5.92 −5.92 0.00 0.00
residual (Intercept) 149.15 149.15 0.00 0.00
(Intercept) Days −1.37 −1.37 0.00 0.00
Days Days 2.26 2.26 0.00 0.00
cov_Subject.(Intercept) Days −56.09 −56.09 0.00 0.00
cov_Subject.Days.(Intercept) Days 0.18 0.18 0.00 0.00
cov_Subject.Days Days −1.98 −1.98 0.00 0.00
residual Days 78.71 78.71 0.00 0.00
(Intercept) cov_Subject.(Intercept) −523.40 −523.41 0.01 0.00
Days cov_Subject.(Intercept) −56.09 −56.09 0.00 0.00
cov_Subject.(Intercept) cov_Subject.(Intercept) 45232.13 45232.18 0.05 0.00
cov_Subject.Days.(Intercept) cov_Subject.(Intercept) 1055.38 1055.38 0.00 0.00
cov_Subject.Days cov_Subject.(Intercept) 427.39 427.39 0.00 0.00
residual cov_Subject.(Intercept) −27398.62 −27398.62 0.00 0.00
(Intercept) cov_Subject.Days.(Intercept) −20.77 −20.77 0.00 0.00
Days cov_Subject.Days.(Intercept) 0.18 0.18 0.00 0.00
cov_Subject.(Intercept) cov_Subject.Days.(Intercept) 1055.38 1055.38 0.00 0.00
cov_Subject.Days.(Intercept) cov_Subject.Days.(Intercept) 1862.99 1862.99 0.00 0.00
cov_Subject.Days cov_Subject.Days.(Intercept) −89.28 −89.28 0.00 0.00
residual cov_Subject.Days.(Intercept) 1214.37 1214.37 0.00 0.00
(Intercept) cov_Subject.Days −5.92 −5.92 0.00 0.00
Days cov_Subject.Days −1.98 −1.98 0.00 0.00
cov_Subject.(Intercept) cov_Subject.Days 427.39 427.39 0.00 0.00
cov_Subject.Days.(Intercept) cov_Subject.Days −89.28 −89.28 0.00 0.00
cov_Subject.Days cov_Subject.Days 137.89 137.89 0.00 0.00
residual cov_Subject.Days −492.56 −492.56 0.00 0.00
(Intercept) residual 149.15 149.15 0.00 0.00
Days residual 78.71 78.71 0.00 0.00
cov_Subject.(Intercept) residual −27398.62 −27398.62 0.00 0.00
cov_Subject.Days.(Intercept) residual 1214.37 1214.37 0.00 0.00
cov_Subject.Days residual −492.56 −492.56 0.00 0.00
residual residual 43229.03 43229.03 0.00 0.00

Table 2: Comparison of the sleepstudy sandwich estimator obtained from our merDeriv
code with the analogous estimator obtained from lavaan. The first two columns describe the
specific matrix entry being compared, the third and fourth columns show the estimates, the
fifth and sixth column shows the absolute and relative difference.

R packages. That is to say the aforementioned packages can be applied to linear mixed models
estimated via lme4, because we have supplied the generic function estfun for models of class
‘lmerMod’. A challenge involves the fact that much of the above theory requires observations
to be independent. For the linear mixed models with independent clusters, tests can often
be applied immediately. However, while we can test parameter instability across independent
clusters, it is more difficult to test for instability across correlated observations within a
cluster. A related issue, further described below, arises when we attempt to apply sandwich
estimators to models with crossed random effects.
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7.3. Models with multiple random effects terms

The “independence” challenges described in the previous section translate to the setting
of models with multiple random effects terms, such as (partially) crossed random effects or
models with multilevel nested designs (e.g., three-level models; Bates 2005, Chapter 2). These
correspond to situations where there are at least two unique variables defining clusters (for
example, clusters defined by primary school attended and by secondary school attended). In
this case, we cannot simply sum scores within a cluster to obtain independent, clusterwise
scores. This is because observations in different clusters on the first grouping variable may
be in the same cluster on the second grouping variable. Thus, it is unclear how the statistical
machinery developed for independent observations (e.g., robust standard errors, instability
tests) can transfer to models with partially crossed random effects. While our estfun method
for ‘lmerMod’ objects can return casewise scores and the vcov method for ‘lmerMod’ objects
can return the full variance covariance matrix of all ‘lmerMod’ objects, it is unclear how to
further use these results.
The main difficulty involves construction of the “meat”, which is the variance of the first
derivatives based on the grouping variable. One possible solution is to create separate “meats”
based on different grouping variables, accounting for covariances between the meats. This
approach is described in Rasbash and Goldstein (1994) and Cameron, Gelbach, and Miller
(2011) to decompose parameter variances when there are multiple grouping variables. It may
be possible to apply the same idea to our problem, and we plan to study this in the future.

7.4. GLMM

Finally, the procedures described here for scores, Hessians, Fisher information and sandwich
estimators can be extended to generalized linear mixed models estimated via glmer(). The
technical difficulty involved with this extension is the observational scores. In the linear
mixed model, we can derive the analytic scores for each observation because we know that
the marginal distribution is normal. In the GLMM, the marginal distribution is typically
unknown, and we require integral approximation methods (e.g., quadrature or the Laplace
approximation) to obtain the scores and second derivatives. Combination of these integral
approximation methods with the lme4 penalized least squares approach presents a challenge
that we have not yet overcome. We plan to do so in the future.
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