
JSS Journal of Statistical Software
November 2018, Volume 87, Code Snippet 2. doi: 10.18637/jss.v087.c02

Rqc: A Bioconductor Package for Quality Control of
High-Throughput Sequencing Data

Wélliton de Souza
University of Campinas

Benilton de Sá Carvalho
University of Campinas

Iscia Lopes-Cendes
University of Campinas

Abstract

As sequencing costs drop with the constant improvements in the field, next-generation
sequencing becomes one of the most used technologies in biological research. Sequencing
technology allows the detailed characterization of events at the molecular level, including
gene expression, genomic sequence and structural variants. Such experiments result in
billions of sequenced nucleotides and each one of them is associated to a quality score.
Several software tools allow the quality assessment of whole experiments. However, users
need to switch between software environments to perform all steps of data analysis, adding
an extra layer of complexity to the data analysis workflow.

We developed Rqc, a Bioconductor package designed to assist the analyst during as-
sessment of high-throughput sequencing data quality. The package uses parallel comput-
ing strategies to optimize large data sets processing, regardless of the sequencing platform.
We created new data quality visualization strategies by using established analytical proce-
dures. That improves the ability of identifying patterns that may affect downstream pro-
cedures, including undesired sources technical variability. The software provides a frame-
work for writing customized reports that integrates seamlessly to the R/Bioconductor
environment, including publication-ready images. The package also offers an interactive
tool to generate quality reports dynamically.

Rqc is implemented in R and it is freely available through the Bioconductor project
(https://bioconductor.org/packages/Rqc/) for Windows, Linux and Mac OS X op-
erating systems.

Keywords: next-generation sequencing, quality assessment, high-performance computing, R.

1. Introduction

Next-generation sequencing (NGS) has become the standard tool to investigate the association
between molecular data and phenotypes of interest. This is the result of improvements on the

https://doi.org/10.18637/jss.v087.c02
https://bioconductor.org/packages/Rqc/

2 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

Raw Reads

FASTQ

Read Alignment

Aligned Reads

BAM

Quantification and

Downstream

Analyses

Quality Control

Rqc

Quality Report

HTML

Figure 1: Workflow for data analysis using the Rqc package. The standard analytical pipeline
processes the FASTQ files to map the reads to a reference. The resulting BAM files are later
used for quantification and downstream analyses. Our software supports both FASTQ and
BAM files as input and does not affect existing pipelines as it provides information that
complements the workflow. The standard Rqc output is a self-contained HTML report.

technology and constant drops in costs. High-performance equipment sequences millions of
short DNA fragments, also known as reads, yielding billions of nucleotides. During the base-
calling process, the sequencer assigns a quality score to every base that comprises the read.
This score indicates the degree of certainty that the equipment has correctly identified the
nucleotide. Compared to previous approaches, NGS technologies produce bigger yields faster
and cheaper. However, higher performance comes at a price: Larger amounts of data make
it harder to identify failures that might have occurred during the sequencing run. Common
problems are contamination with adapter sequences, drops of quality scores at specific cycles
and redundant reads. These issues should be accounted for as early as possible, as they
may affect downstream analyses negatively (Bravo and Irizarry 2010). Also, studies may
use different sequencing platforms to generate data, which may add extra complexity to the
quality assessment step (The 1000 Genomes Project Consortium 2012), requiring tools to be
efficient and capable of processing large amounts of data regardless of the technology used for
sequencing.
The analysis of high-throughput sequencing data is a procedure that requires careful quality
assessment (QA), which can take place at different moments, as Figure 1 shows. The FASTQ
file, obtained after base-calling, is comprised of sequenced fragments along with base-specific
quality scores. This is the first opportunity for quality control, where researchers search for
systematic deviations of quality using PHRED-scaled scores. The second occasion where ad-
ditional quality control can take place is after mapping the reads to a reference. At this point,
the FASTQ files are no longer the objects of interest and, instead, the researcher performs
QA on BAM files, which result from the mapping strategy of choice. On both situations,
the analyst gathers information to decide what procedures (e.g., removal of reads, trimming,
clipping) should be applied to ensure that the data comply with the quality requirements of

Journal of Statistical Software – Code Snippets 3

the study. Acting at these moments allows the researcher to obtain higher success rates in
downstream procedures, as they may be affected by low quality reads or contaminants.
Another source of complexity during the analysis of NGS data is the integration of different
tools used during the process. One common workflow to identify candidates for differential
expression using RNA-Seq data includes: (A) QA using FastQC (Andrews 2016), which is
implemented in Java and executed either from the command line or using a graphical user
interface. (B) Manipulation of the reads via Trimmomatic (Bolger, Lohse, and Usadel 2014),
implemented in Java and called from the command line. (C) Mapping through TopHat (Trap-
nell, Pachter, and Salzberg 2009), executed from the command line. (D) Feature counting via
HTSeq (Anders, Pyl, and Huber 2015), implemented in Python and called from the command
line. (E) Statistical modeling through DESeq2 (Love, Huber, and Anders 2014), implemented
in R (R Core Team 2018) and called from within R. This mix of environments (Java, Python,
Perl, bash, R, etc.) is one of the origins of difficulties when analyzing high-throughput data
sets and deserves special attention from developers.
We developed Rqc (Souza and Carvalho 2018) to address QA of NGS data using high-
performance strategies to handle file formats that are agnostic to sequencing platforms (i.e.,
FASTQ and BAM files). Additionally, our solution uses the Bioconductor environment, which
is known for delivering high-quality software that implements cutting-edge methodologies for
analysis of biological data. Therefore, we provide the users with a quality control tool for
NGS data that can be easily integrated to existing pipelines and also used to establish a
Bioconductor-based workflow for the analysis of high-throughput data.
This paper describes the Rqc software. Section 2 describes how the Rqc package was devel-
oped. In Section 3, we show the usefulness of Rqc package in a QA of public NGS data.
Section 4 describes how the Rqc package can help analyzing NGS data.

2. Implementation
The Rqc package is developed in R, using the Bioconductor framework to efficiently process
FASTQ and BAM files and to simplify the delivery of a unified pipeline for NGS data anal-
ysis. Our software makes constant use of the Bioconductor three main concepts (Gentleman
et al. 2004): transparency, through the development of a free and open-source software; ef-
ficiency, by using the infrastructure defined by core-maintained packages integrated into a
single development ecosystem; and reproducibility, by ensuring that our software runs on any
operating system supported by the R software and generates the same result.
Rqc uses the ShortRead (Morgan, Anders, Lawrence, Aboyoun, Pages, and Gentleman 2009)
and Rsamtools (Morgan, Pagés, Obenchain, and Hayden 2016b) packages to extract infor-
mation from raw and aligned data files respectively, allowing the use of different file formats.
Our package supports both FASTQ and BAM file formats. By default, the software pro-
cesses a random sample of records from each input file to improve execution time. The user
can adjust the size of the chunk: larger sizes increase the statistical power, generating more
reliable results; smaller values allow for better control of computational resources. The user
can also choose to process the whole file, which Rqc does without compromising the available
computing resources.
We use the BiocParallel (Morgan, Obenchain, Lang, and Thompson 2016a) package, the main
Bioconductor’s backend for high-performance computing, to process multiple files in parallel.

4 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

FASTQ

BAM

R Environment

rqcQA Function
RqcResultSet

Object
rqcReport Function HTML

Report

Template

Figure 2: Rqc uses the R statistical environment to create reports for quality assessment. The
rqcQA method processes the input data and returns a list of ‘RqcResultSet’ objects, which
contains quality-related statistics used to create the final report. The rqcReport method uses
the result list combined with a template file, which can be customized by the user, to produce
the HTML report.

The parallel processing takes place on single thread or multiple cores, depending on the user’s
setup. Using this feature, execution time can be significantly reduced. Rqc performs parallel
processing of files automatically, setting the number of processing units according to the
available computational resources. We made the choice for automatic configuration to deploy
a software that is both efficient and simple to use. However, the user has full control of the
parallel processing settings, which can be customized when needed.
Given the input files, as shown by Figure 2, Rqc depends on the execution of the rqcQA
function to produce the table containing the summary statistics required to create the images
for the final report. These statistics are stored as tidy data (Wickham 2014) using a list-
like data structure called ‘RqcResultSet’. The list containing the result data is processed
through the rqcReport method, which combines high-quality images produced via the ggplot2
(Wickham 2009) package with R Markdown template files to generate an HTML report using
the knitr (Xie 2018) package.

3. Results
We developed Rqc, an optimized Bioconductor package to assist the analyst during quality
control steps for high-throughput sequencing data. It uses parallel computing strategies to
process multiple files efficiently. The package handles both FASTQ and BAM files, allowing
the user to assess the quality of the data at different stages of the analysis. Sequencing data
are summarized into frequency tables that are used later to generate charts, tables and other
statistics.
To demonstrate the operation of the Rqc package we used a set of public data of a study on
RNA sequencing (RNA-seq), which is part of the 1000 Genomes Project (The 1000 Genomes
Project Consortium 2012). We used 5 paired-end samples of each population group available
in the public data set resulting in 50 FASTQ files. These files are used as input for the rqcQA
function, which was configured to process 4 files in parallel. To reproduce this demonstration,
R version equal or greater than 3.4.2, Bioconductor 3.6 and Rqc 1.12.0 are required. The
following code shows how to install the Rqc package.

Journal of Statistical Software – Code Snippets 5

R> source("https://bioconductor.org/biocLite.R")
R> biocLite("Rqc")

Run source("http://bioconductor.org/biocLite.R") (with http:// instead of https://)
if HTTPS URLs are not supported. After installation, we load the package and perform data
analysis.

R> library("Rqc")
R> data <- read.delim2("data.txt", stringsAsFactors = FALSE)
R> files <- file.path("data", data$filename)
R> pair <- rep(1:25, each = 2)
R> group <- factor(data$group)
R> checkpoint("qa", path = ".", {
+ qa <- rqcQA(files, pair = pair, group = group, workers = 4)
+ }, keep = "qa")
R> qa[1]

$ERR188040_1.fastq.gz
class: RqcResultSet(3)
QA elements (access with qa[["elt"]]):

perFile: list(2)
information: data.frame(1 7)
topReads: data.frame(10 2)

perCycle: list(2)
quality: data.frame(3150 4)
baseCall: data.frame(375 3)

perRead: list(3)
width: data.frame(1 2)
averageQuality: data.frame(2507 2)
frequency: data.frame(94 2)

3.1. ‘RqcResultSet’ data structure

The ‘RqcResultSet’ class stores summarized data from one file that was previously processed.
As Rqc package may process multiple files at the same time, a list of ‘RqcResultSet’ objects
is returned. This result list is used as input by many methods with different tasks such as
computation of statistics used in plots, chart and report generation. Table 1 presents the
available methods for accessing a list of ‘RqcResultSet’ objects. These methods are also
used by other Rqc functions to extract data and produce additional statistics required by
different visualization strategies. Table 2 shows general information about processed files.

R> library("xtable")
R> fileInformation <- perFileInformation(qa)
R> fileInformation$path <- NULL
R> colnames(fileInformation) <- c("File name", "Pair", "Format",
+ "Group", "Reads", "Total reads")

6 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

Method Description
perFileInformation File name, base directory, number of sampled reads, total reads.
perFileTopReads Most represented sequencing reads and their counts.
perReadWidth Frequency distribution of read width.
perReadFrequency Number of unique reads, duplicated reads, etc.
perReadQuality Frequency distribution of mean quality of reads.
perCycleQuality Frequency distribution of cycle-specific quality.
perCycleBasecall Frequency distribution of cycle-specific base call.

Table 1: Accessor methods for the ‘RqcResultSet’ class.

File name Pair Format Group Reads Total reads
ERR188040_1.fastq.gz 1 FASTQ GBR 1000000 27256165
ERR188040_2.fastq.gz 1 FASTQ GBR 1000000 27256165
ERR188190_1.fastq.gz 6 FASTQ FIN 1000000 14760621
ERR188190_2.fastq.gz 6 FASTQ FIN 1000000 14760621
ERR188325_1.fastq.gz 11 FASTQ CEU 1000000 22136382
ERR188325_2.fastq.gz 11 FASTQ CEU 1000000 22136382
ERR188214_1.fastq.gz 16 FASTQ YRI 1000000 47079579
ERR188214_2.fastq.gz 16 FASTQ YRI 1000000 47079579
ERR188380_1.fastq.gz 21 FASTQ TSI 1000000 23146161
ERR188380_2.fastq.gz 21 FASTQ TSI 1000000 23146161

Table 2: Information of FASTQ files.

R> index <- c(1, 2, 11, 12, 21, 22, 31, 32, 41, 42)
R> tab2 <- xtable(fileInformation[index,], label = "tabinfo",
+ "Information of FASTQ files.", table.placement ="")
R> print(tab2, include.rownames = FALSE)

3.2. Available plots

The Rqc package provides a number of plots to the user. The overall objective of these
graphical summaries is to allow the analyst to make an informed decision regarding the
quality of the data under inspection. All Rqc methods that generate graphs return an object
of class ‘ggplot’. These objects can be combined with graphical elements provided by other
ggplot2 functions, such as themes and color palettes.
rqcReadQualityBoxPlot generates a graphic chart of per file average read quality distribution
that provides an overview of the files (Figure 3). From this chart we can check whether all
files have similar qualities. In situations where the DNA samples are sequenced by different
research groups, or over several days, there may be quality changes of the fragments through
this graph.
Working with many files may complicate the visualization of some graphic charts created by
Rqc. The package provides methods for subsetting a list of ‘RqcResultSet’ objects to address
this issue. For example, we could select the result data only from CEU samples or we can
also subset by pair of files.

Journal of Statistical Software – Code Snippets 7

R> rqcReadQualityBoxPlot(qa[index]) + scale_fill_brewer(palette = "Set1")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●ERR188380_2.fastq.gz

ERR188380_1.fastq.gz

ERR188214_2.fastq.gz

ERR188214_1.fastq.gz

ERR188325_2.fastq.gz

ERR188325_1.fastq.gz

ERR188190_2.fastq.gz

ERR188190_1.fastq.gz

ERR188040_2.fastq.gz

ERR188040_1.fastq.gz

10 20 30 40

Mean Quality

F
ile

na
m

e

Group

CEU

FIN

GBR

TSI

YRI

Figure 3: Per file average read average quality plot. Dots mean minimum and maximum
average quality. Box plots are colored by sample group. For this data set, all FASTQ files
have more than 75% of the reads with average quality above 30 in PHRED scale.

R> qa.ceu <- subsetByGroup(qa, "CEU")
R> qa.pair1 <- subsetByPair(qa, 1)

One new visualization scheme that we implemented in Rqc allows the user to easily determine
what percentage of the reads exceed a given threshold of average quality. We can use this
information as an indicator of success of a sequencing experiment. For example, a sample
that presents 10% of the reads exceeding the Q20 threshold (i.e., 10% of the reads have
PHRED-scaled average quality of at least 20) will likely be removed from the analysis or
even re-sequenced, if possible. A graphic chart with this information can be obtained using
the rqcReadQualityPlot method. Figure 4 presents the average quality pattern by showing
on the x-axis quality thresholds and on the y-axis the percentage of reads that exceed that
quality level; we use this chart as an indicator of the need for re-sequencing samples according
to the minimum average quality.
The biplot is generated by performing a principal component analysis (PCA) on a matrix
containing the sample-specific average quality scores per cycle. Using this approach, we can
easily investigate differences of patterns of quality at different sequencing cycles. The user
can generate such plot using the method rqcCycleAverageQualityPcaPlot (Figure 5).
The analyst can investigate the average quality per cycle by using box plots or line plots. This
strategy allows for the user to pinpoint cycles that show specific behaviors, like sudden drop
in quality. rqcCycleAverageQualityPlot generates a graphic chart of cycle-specific average
quality (Figure 6).

8 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

R> rqcReadQualityPlot(qa.pair1) + scale_color_brewer(palette = "Set1")

0

25

50

75

100

10 20 30 40

Quality (q)

%
 o

f R
ea

ds
 E

xc
ee

di
ng

 Q
ua

lit
y

(q
)

Filename

ERR188040_1.fastq.gz

ERR188040_2.fastq.gz

Figure 4: Survival curve for reads that exceed different quality thresholds.

R> rqcCycleAverageQualityPcaPlot(qa.pair1) + theme_bw()

1 2
3 456

78 910111213 14
15
161718192021222324

25
2627282930

313233343536

37

38

39

40

41
42434445464748

4950

51
52

53
54555657585960616263646566

676869
707172737475

ERR188040_1.fastq.gz

ERR188040_2.fastq.gz

−4

−2

0

−6 −4 −2 0 2 4

PC1

P
C

2

Figure 5: Biplot from PCA of cycle-specific read average quality. There are some discrepancies
in the quality of the files of the same sample.

Journal of Statistical Software – Code Snippets 9

R> rqcCycleAverageQualityPlot(qa.pair1) + scale_color_brewer(palette = "Set1")

●
●

●

●●●●●

●●●
●●

●
●

●●●
●●

●●●●●

●●●
●●

●
●●●

●
●●

●
●

●
●

●
●

●
●

●

●
●

●
●●●

●
●

●●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●●●

●
●

●●●
●

●

●

●

●●●●●●●

●●

●●●●
●

●
●●●●

●
●

●

●

●

●

●
●●●

●
●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●

32

34

36

38

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Cycle

A
ve

ra
ge

 Q
ua

lit
y

Filename
●

●

ERR188040_1.fastq.gz

ERR188040_2.fastq.gz

Figure 6: Average quality score per sequencing cycle. It is possible to see differences between
these two files of the same sample, which proves the results shown by Figure 5.

R> rqcCycleQualityPlot(qa.pair1)

ERR188040_1.fastq.gz ERR188040_2.fastq.gz

1 8 15 22 29 36 43 50 57 64 71 1 8 15 22 29 36 43 50 57 64 71

0

25

50

75

100

Cycle

%

0

10

20

30

40
Quality

Figure 7: Cycle-specific quality distribution plot.

10 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

R> rqcFileHeatmap(qa[[1]])

1

5

4

7

2

9

6

10

3

8

1 5 4 7 2 9 6 10 3 8

Top overrepresented reads

To
p

ov
er

re
pr

es
en

te
d

re
ad

s

0

25

50

75

100
Similarity (%)

ERR188040_1.fastq.gz

Figure 8: The heatmap shows the similarity between the most frequent reads observed for
the sample in question; this information can be used, for example, to investigate the presence
of contaminants on the data.

rqcCycleQualityPlot shows the proportion of quality calls per cycle. Colors are presented
in a gradient red-blue, where red identifies lower quality. This visualization provides a fast
overview of qualities of the files (Figure 7).
Another addition by the Rqc package is the ability of generating a heatmap of the similarity
between the most common reads observed at a given sample. In our experience, this is of
great importance when assessing whether or not different reads may actually be originated
from the same fragment, but one of them has some contamination by adapters. This chart
can be generated with the rqcFileHeatmap method, which allows for setting the number of
most frequent reads to be used. On Figure 8, we present the similarity heatmap, which can
assist on the identification of reads that are likely to be measuring the same target.
The analysis of nucleotide composition per cycle is essential to identify biases like those
caused by Illumina primers on transcriptome sequencing (Hansen, Brenner, and Dudoit 2010).
rqcCycleBaseCallsPlot generates a stacked bar plot that describes the proportion of each
nucleotide called for every cycle of sequencing (Figure 9). rqcCycleBaseCallsLinePlot
shows the same result using lines instead of stacked bars.

3.3. Customized and interactive reports

The rqcQA and rqcReport functions are closely related, as the former generates the input
required by the latter. We chose to have these two different functions to allow the user to
use the Rqc results in other situations, like using a different engine to create graphics. The
rqcQA function requires the input files (FASTQ or BAM) and returns a list of ‘RqcResultSet’

Journal of Statistical Software – Code Snippets 11

R> rqcCycleBaseCallsLinePlot(qa[[1]])

ERR188040_1.fastq.gz

1 8 15 22 29 36 43 50 57 64 71

0

10

20

30

40

Cycle

%

Base Call

A

C

G

T

N

Figure 9: Cycle-specific base call proportion.

objects, which is a table containing the summary statistics needed for the quality report. This
table and a template file are the input for the rqcReport, which creates the HTML quality
report.
R> rqcReport(qa, outdir = ".", file = "qa_report")

[1] "/home/welliton/git/rqcpaper/Code/qa_report.html"

Users can compose R Markdown files, which contain texts and chunks of R code. These files
should be passed as arguments to the rqcReport method. Chunks of R code are executed
and their results are captured and merged with pre-existing text, generating a self-contained
HTML report that contains text, tables and figures.
The user can also choose to use interactive tools to generate quality reports. We provide
the rqcShinyReport method, which uses the shiny package (Chang, Cheng, Allaire, Xie, and
McPherson 2018) to deliver a graphical interface where the user can select samples, groups of
samples and plots of interest. This service is deployed as a web server and all computations
happen in real-time.

R> rqcShinyReport(qa)

4. Conclusion
We developed the Rqc Bioconductor package to provide a simple and effective strategy for
reporting information about the quality high-throughput sequencing data sets. In addition, it

12 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

can provide a deeper view of data quality by reading entire files without degrading the system
performance and allowing the data analyst to identify biases that would be undetectable if
only a subset of the data was analyzed. Rqc builds a self-contained report with high-resolution
graphics that can be used directly in publications or shared with others. It also implements
an interactive web application that simplifies the analysis of data sets, as it does not require
coding. Rqc is completely integrated with and deployed through Bioconductor, simplifying
its incorporation in Bioconductor-based pipelines. All of the software dependencies are trans-
parently resolved by the R/Bioconductor package management system. The Rqc package is
technology-independent and cross-platform, providing the user with the same experience on
the three major operating systems (MS Windows, Mac OS X and Linux).

Computational details

• R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 14.04.5 LTS

• Matrix products: default

• BLAS: /usr/lib/libblas/libblas.so.3.0

• LAPACK: /usr/lib/lapack/liblapack.so.3.0

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4,
utils

• Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, BiocParallel 1.12.0,
BiocStyle 2.6.0, Biostrings 2.46.0, DelayedArray 0.4.0, GenomeInfoDb 1.14.0,
GenomicAlignments 1.14.0, GenomicRanges 1.30.0, ggplot2 2.2.1, IRanges 2.12.0,
matrixStats 0.52.2, Rqc 1.12.0, Rsamtools 1.30.0, S4Vectors 0.16.0, ShortRead 1.36.0,
SummarizedExperiment 1.8.0, xtable 1.8-2, XVector 0.18.0

• Loaded via a namespace (and not attached): acepack 1.4.1, AnnotationDbi 1.40.0,
AnnotationFilter 1.2.0, AnnotationHub 2.10.0, assertthat 0.2.0, backports 1.1.1,
base64enc 0.1-3, BiocInstaller 1.28.0, biomaRt 2.34.0, biovizBase 1.26.0, bit 1.1-12,
bit64 0.9-7, bitops 1.0-6, blob 1.1.0, BSgenome 1.46.0, checkmate 1.8.5, cluster 2.0.6,
colorspace 1.3-2, compiler 3.4.2, curl 3.0, data.table 1.10.4-3, DBI 0.7,
dichromat 2.0-0, digest 0.6.12, ensembldb 2.2.0, evaluate 0.10.1, foreign 0.8-69,
Formula 1.2-2, GenomeInfoDbData 0.99.1, GenomicFeatures 1.30.0,
GenomicFiles 1.14.0, grid 3.4.2, gridExtra 2.3, gtable 0.2.0, highr 0.6, Hmisc 4.0-3,
htmlTable 1.9, htmltools 0.3.6, htmlwidgets 0.9, httpuv 1.3.5, httr 1.3.1, hwriter 1.3.2,
interactiveDisplayBase 1.16.0, knitr 1.17, labeling 0.3, lattice 0.20-35,
latticeExtra 0.6-28, lazyeval 0.2.1, magrittr 1.5, markdown 0.8, Matrix 1.2-11,

Journal of Statistical Software – Code Snippets 13

memoise 1.1.0, mime 0.5, munsell 0.4.3, nnet 7.3-12, plyr 1.8.4, prettyunits 1.0.2,
progress 1.1.2, ProtGenerics 1.10.0, R6 2.2.2, RColorBrewer 1.1-2, Rcpp 0.12.13,
RCurl 1.95-4.8, reshape2 1.4.2, rlang 0.1.2, rmarkdown 1.6, RMySQL 0.10.13,
rpart 4.1-11, rprojroot 1.2, RSQLite 2.0, rtracklayer 1.38.0, scales 0.5.0, shiny 1.0.5,
splines 3.4.2, stringi 1.1.5, stringr 1.2.0, survival 2.41-3, tibble 1.3.4, tools 3.4.2,
VariantAnnotation 1.24.0, XML 3.98-1.9, yaml 2.1.14, zlibbioc 1.24.0

Acknowledgments
This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP). W.S. and B.S.C. are recipients of FAPESP fellowships. W.S. received a masters
degree fellowship (Proc. 2013/24801-2). I.L-C. is also supported by the Conselho Nacional de
Pesquisa (CNPq), Brazil.

References

Anders S, Pyl PT, Huber W (2015). “HTSeq – A Python Framework to Work with High-
Throughput Sequencing Data.” Bioinformatics, 31(2), 166–169. doi:10.1101/002824.

Andrews S (2016). FastQC: A Quality Control Tool for High Throughput Sequence Data.
URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bolger AM, Lohse M, Usadel B (2014). “Trimmomatic: A Flexible Trimmer for Illumina Se-
quence Data.” Bioinformatics, 30(15), 2114–2120. doi:10.1093/bioinformatics/btu170.

Bravo HC, Irizarry RA (2010). “Model-Based Quality Assessment and Base-Calling for
Second-Generation Sequencing Data.” Biometrics, 66(3), 665–674. doi:10.1111/j.
1541-0420.2009.01353.x.

Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2018). shiny: Web Application Frame-
work for R. R package version 1.1.0, URL https://CRAN.R-project.org/package=shiny.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L,
Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry RA, Leisch F, Li C,
Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang
J (2004). “Bioconductor: Open Software Development for Computational Biology and
Bioinformatics.” Genome Biology, 5(10), R80. doi:10.1186/gb-2004-5-10-r80.

Hansen KD, Brenner SE, Dudoit S (2010). “Biases in Illumina Transcriptome Sequencing
Caused by Random Hexamer Priming.” Nucleic Acids Research, 38(12), 1–7. doi:10.
1093/nar/gkq224.

Love MI, Huber W, Anders S (2014). “Moderated Estimation of Fold Change and Dis-
persion for RNA-Seq Data with DESeq2.” Genome Biology, 15(12), 550. doi:10.1186/
s13059-014-0550-8.

https://doi.org/10.1101/002824
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1111/j.1541-0420.2009.01353.x
https://doi.org/10.1111/j.1541-0420.2009.01353.x
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1093/nar/gkq224
https://doi.org/10.1093/nar/gkq224
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8

14 Rqc: Quality Control of High-Throughput Sequencing Data in Bioconductor

Morgan M, Anders S, Lawrence M, Aboyoun P, Pages H, Gentleman R (2009). “ShortRead: A
Bioconductor Package for Input, Quality Assessment and Exploration of High-Throughput
Sequence Data.” Bioinformatics, 25(19), 2607–2608. doi:10.1093/bioinformatics/
btp450.

Morgan M, Obenchain V, Lang M, Thompson R (2016a). BiocParallel: Bioconductor Facili-
ties for Parallel Evaluation. URL https://bioconductor.org/packages/BiocParallel/.

Morgan M, Pagés H, Obenchain V, Hayden N (2016b). Rsamtools: Binary Alignment (BAM),
FASTA, Variant Call (BCF), and Tabix File Import. URL https://bioconductor.org/
packages/Rsamtools/.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Souza W, Carvalho B (2018). Rqc: Quality Control Tool for High-Throughput Sequencing
Data. R package version 1.16.1, URL https://bioconductor.org/packages/Rqc/.

The 1000 Genomes Project Consortium (2012). “An Integrated Map of Genetic Variation
from 1,092 Human Genomes.” Nature, 491(7422), 56–65. doi:10.1038/nature11632.

Trapnell C, Pachter L, Salzberg SL (2009). “TopHat: Discovering Splice Junctions with
RNA-Seq.” Bioinformatics, 25(9), 1105–1111. doi:10.1093/bioinformatics/btp120.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.

Wickham H (2014). “Tidy Data.” Journal of Statistical Software, 59(10), 1–23. doi:10.
18637/jss.v059.i10.

Xie Y (2018). knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.20, URL https://CRAN.R-project.org/package=knitr.

Affiliation:
Iscia Lopes-Cendes
Department of Medical Genetics
School of Medical Sciences and the Brazilian Institute of Neuroscience and Neurotechnology
(BRAINN)
University of Campinas
E-mail: icendes@unicamp.br
URL: http://bcblab.org/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2018, Volume 87, Code Snippet 2 Submitted: 2016-07-07
doi:10.18637/jss.v087.c02 Accepted: 2017-11-30

https://doi.org/10.1093/bioinformatics/btp450
https://doi.org/10.1093/bioinformatics/btp450
https://bioconductor.org/packages/BiocParallel/
https://bioconductor.org/packages/Rsamtools/
https://bioconductor.org/packages/Rsamtools/
https://www.R-project.org/
https://bioconductor.org/packages/Rqc/
https://doi.org/10.1038/nature11632
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=knitr
mailto:icendes@unicamp.br
http://bcblab.org/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v087.c02

	Introduction
	Implementation
	Results
	`RqcResultSet' data structure
	Available plots
	Customized and interactive reports

	Conclusion

