
JSS Journal of Statistical Software
December 2018, Volume 87, Code Snippet 3. doi: 10.18637/jss.v087.c03

ggtern: Ternary Diagrams Using ggplot2

Nicholas E. Hamilton
The University of New South Wales

Michael Ferry
The University of New South Wales

Abstract

This paper presents the ggtern package for R, which has been developed for the ren-
dering of ternary diagrams. Based on the well-established ggplot2 package (Wickham
2009), the present package adopts the familiar and convenient programming syntax of
its parent. We demonstrate that ggplot2 can be used as the basis for producing special-
ized plotting packages and, in the present case, a package has been developed specifically
for the production of high quality ternary diagrams. In order to produce ggtern, it was
necessary to overcome a number of design issues, such as finding a means to modify ex-
isting geometries designed for a 2D Cartesian coordinate system and permitting them to
function in an environment that requires an additional spatial aesthetic mapping. In the
present paper, we provide examples of this package in its most basic form followed by a
demonstration of its ease of use, particularly if one is familiar with, and has a predilection
towards using ggplot2 on a regular basis.

Keywords: plotting software, ternary diagrams, R, ggplot2.

1. Introduction
ggtern is a package for the statistical language R (R Core Team 2018), born out of the need to
create ternary diagrams to an equivalent (superior) standard of the well established ggplot2
package (Wickham 2009). Ternary diagrams, not being addressed by the default ggplot2
implementation, are one of the tools held within the standard toolbox at the disposal of
practitioners of several fields such as mineralogy (Flemming 2000), metallurgy & materials
science (Baker 1992), politics (Katz and King 1999) as well as other physical sciences, where
appropriate.
ggplot2 is an implementation of The Grammar of Graphics (Wilkinson 2005) and rigorously
enforces Wilkinson’s series of grammatical rules for creating perceivable graphs, therefore, by
using ggplot2 as a basis for the present work, we inherit this compelling philosophy, perhaps,
from time-to-time, allowing the user to create graphical poetry (Wickham 2010).

https://doi.org/10.18637/jss.v087.c03

2 ggtern: Ternary Diagrams Using ggplot2

Y=33%

Y=20%

Y=30%

X=33%

X=10%

X=50%

Z=
33

%

Z=
70

%

Z=
20

%

●

●

●
A

B

C

Y

X Z

Sample Points on a Ternary Plot

(a) Sample Points.

Y=20%

Y=40%

Y=60%

Y=80%

20

40

60

80

10
0

Y

Y

X

Z

Paths of Constant Y Concentration

(b) Constant Y.

Figure 1: Primitive ternary diagrams, containing (a) three (3) individual points, illustrating
how compositions are interpreted, and, (b) paths of constant Y concentration in increments of
20%. Additionally, in these figures, we demonstrate both (a) anticlockwise and (b) clockwise
axis precession directions. Finally, the plot rotation feature can be seen in (b), which has
been rotated by 60◦ counterclockwise.

Under peer-review, ggtern has already been utilized in various publications and fields, includ-
ing for example, works by Witte, Bradley, Enright, and Muljo (2015), Milani, Ghiselli, Pecci,
Maurizii, and Passamonti (2015); Wenger, Buzgariu, and Galliot (2016); Kalenitchenko et al.
(2016); Chu, Ma, Prince, Antony, Seferovic, and Aagaard (2017) and Nesbitt et al. (2017).

2. Basics of ternary diagrams
For the readers that are not particularly familiar with ternary diagrams, they are a form of
graphical data representation where the total of the respective variables sum to unity (100%),
forming what is known as a ‘simplex’. Using this approach is common for the handling of
compositional data, for example, we could say that a liquid sugar/salt solution contains
90%H2O, 5%NaCl and 5%C12H22O11 – such a composition could be represented using the
methodology described in the present work.
Ternary diagrams are a special case, where apparently three (3) variables have been projected
onto a 2D surface, and this is only made possible since the 3rd component is entirely dependent
on the first two (2), in essence, it is not a variable at all. This is intuitive since if we have an
arbitrary ternary composition made up of, say, 25% A and 25% B, with a balancing amount
of C, then this third component can only represent 50% of the overall composition – any
value less than 50% would suggest that something is missing, and anything above 50% is
simply nonsensical unless we are referring to relative ratios, in which case we know that these
proportions must sum to unity. This type of system is referred to as an Aichison simplex, the
likes of which can be enforced via the compositions package (van den Boogaart, Tolosana,
and Bren 2018).

Journal of Statistical Software – Code Snippets 3

By the above logic, simplexes comprised of two (2) components (binary composition) have
one (1) variable, and can be represented on a ‘line’, and simplexes in four (4) components
(quaternary compositions) have three (3) variables, and can be described in 3D space using
a tetrahedron. Taking this to the general case, if we were able to visually represent a simplex
made up of n components, then we would be able to represent this in (n − 1)D space.
The most common and accepted form of ternary diagram, is one which is rendered on an
equilateral ‘triangle’. A point somewhere within this triangular region indicates an individual
composition (a ·X +b ·Y +c ·Z = 100%), such that the three apexes represent 100%X, 100%Y
and 100%Z respectively. The centroid of the triangle indicates equal amounts of X, Y and
Z. In reference to Figure 1a, three (3) points have been plotted to demonstrate reading of
composition, namely, point A, representing the point of equal concentration between the X,
Y and Z species, point B, having concentration (10%, 20% and 70%), and finally point C,
having concentration (50%, 30% and 20%).
If we note that within the Cartesian coordinate system, the path of constant x (x = k)
is a line which is parallel to the y axis having an x-intercept of k, similarly, the path of
constant y (y = j) is the line which is parallel to the x axis having a y-intercept of j, then,
it is intuitive to understand that for ternary diagrams, the path which is parallel to Y − Z
indicates compositions which have constant amounts of X, and the paths parallel to X − Z,
and X − Y represent constant amounts of Y and Z respectively. To illustrate this, paths of
constant Y concentration, at 20% increments, have been plotted in Figure 1b.
Points outside the triangular region are ‘mathematically sound’, however in reality are non-
sensical when dealing with physical compositions, implying that one or more of the simplex
components have negative concentrations. Sometimes however, negative concentrations can
be of value, say for example in Figure 3 where the text annotation in the lower-right hand
corner has been positioned this way.
Ternary plots are limited in the sense that they are constricted to simplex problems using
three compositional variables. Higher orders can be visualized using ternary ‘slices’, but this
becomes arduous for more than four compositional variables. The obvious problem with
ternary diagrams, is the counter-intuitive nature of reading the information, which is why
reading ternary figures forms part of educational syllabus in many tertiary institutions within
fields that regularly use such techniques, such as materials science and geology for instance
– consider for instance the AMS handbook (Baker 1992), which as a reference book contains
hundreds of compositions represented using ternary diagrams.

3. Features
ggtern is an open-source package for the statistical computational language R, which extends
the functionality of ggplot2, best described by the following set of features:

• Creation of a new (ternary) coordinate system, which behind the scenes includes all
the necessary transformations and inverse transformations between the Cartesian and
ternary spaces.

• Implementation of a dedicated clipping mask geometry, which permits fine control of
its exact point of placement (final layer as default, if not specified). See for example
Figure 3.

4 ggtern: Ternary Diagrams Using ggplot2

• Necessary modifications to the specific plot assembly and rendering routines to account
for axes that cannot be defined within columns or rows in a rectangular grid.

• Adaptation of the hierarchical theme-element structure as the building-blocks for cus-
tomization of plot appearance. Indeed the present work includes over fifty (50) new
theme elements specific to the ternary plot.

• Given the previous item, extensions to the existing base themes, permitting seamless
use of both ggplot2 and ggtern figures in close proximity to each other, as per Figure 2.

• Also included are four (4) new preset themes, which are unique to ggtern. For examples
of these, please refer to Figures 4a to 4d.

• Incorporation of a mechanism to prevent the attempted use of geometries, stats or
positional adjustments that would otherwise be nonsensical for ternary diagrams (e.g.,
violin plots or bar charts etc.).

• Adaptation of the base geometries (point, path, line, segment, smooth, density 2d, text,
labels, annotations etc.) for compatibility with the ternary coordinate system.

• Adaptation of some of the base positional adjustment functions (identity, nudge or
jitter) for compatibility with the ternary coordinate system.

• Creation of several new geometries, such as ternary error bars, isoproportion lines,
crosshairs, interpolation models and confidence regions using isometric log-ratio trans-
formation (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barcelo-Vidal 2003) and
the Mahalanobis distance (Mahalanobis 1936). Additionally, ggtern includes modified
text and label geometries, which permit convenient positioning based on fractional co-
ordinates relative to the limits of the panel viewport, these last two geometries function
equally in ggplot2.

• Creation of several new stats (confidence, density, interpolate), to accompany the re-
spective geometries mentioned in the previous point.

• Introduction of a mechanism to permit rotation of the plotting panel to an arbitrary
angle.

• A specific convenience function, tern_limits(...), for specifying a limiting region to
focus (zoom), minimizing user confusion (and potentially numeric degeneracy) when
trying to specify both starting and finishing points for three (3) axes which together
must satisfy the conditions of an Aichison simplex, see for example, Figure 3.

• Finally, creation of a large number of additional convenience functions for rapidly turn-
ing on or off specific features without having to nullify individual theme elements, such
as theme_showarrows(), theme_nogrid(), theme_clockwise(), theme_noticks(),
theme_ticksinside() and theme_hidemask() etc.

In order to implement the above, a number of design issues had to be overcome, by far
the most difficult issue was in finding a means to modify existing geometries designed for
2D Cartesian coordinate systems, and permit them to function within an environment that
requires an additional (spatial) aesthetic mapping (i.e., the z variable).

Journal of Statistical Software – Code Snippets 5

This was achieved by introducing the prototype member ‘required_aes’ as a variable to
the coordinate system, as additional to only being defined within any given geom or stat.
Specifically, ggplot2 makes no consideration on what is required for a particular geometry to
remain valid within a potentially higher-dimensional coordinate system.
We can demonstrate this in action, via attempting to plot a ternary diagram with a mapping
which we know to be invalid. Ordinarily, this would have been perfectly acceptable, since
geom_point only stipulates x and y as being mandatory:

R> dfError <- data.frame(x = 1, y = 1)
R> ggtern(data = dfError, mapping = aes(x = x, y = y)) + geom_point()

Error: CoordTern requires the following missing aesthetics (tlr->xy) : z

Another design consideration, was the need to overload several of the internal ggplot2 con-
struction routines in preference to the seemingly obvious alternative of subclassing and cre-
ating dedicated (or modified) plot construction routines for the subclass. The former was
required since, there is no difference between the following two methods, in turn making it
difficult to implement the subclass pattern.

R> # (1) Difficult To Enforce The Desired Class/Subclass
R> ggplot() + coord_tern()
R> # (2) Easy to Enforce Desired Class/Subclass
R> ggtern()

Furthermore, ggplot2, even with its new mechanism for extensibility (post version 2.0), does
not provide a means for users to create their own theme elements, and since the functioning of
ggtern is inextricably reliant on many new theme elements any construction procedure that is
called within ggplot2 where theme element verification and inheritance resolution takes place
was required to be overloaded so that a local copy of the element tree could be used.
One of the other design considerations, introduced from ggtern (>= 2.0), was the introduction
of a clipping mask. ggplot2 does not utilize clipping masks since the panel viewport operates
in a de-facto manner with this regard, meaning that outliers to the panel viewport simply do
not get rendered. ggtern on the other hand renders within a triangular shaped region that
resides within a rectangular viewport, so, when the axis limits are reduced, data mappings
can, and often do, lie outside of the triangular region – these need to be either deleted,
masked, or shown (if the user so wishes). To accomplish this, a dedicated clipping mask
geometry, geom_mask(), was created, and is added by default as the final layer, unless the
user has explicitly added one earlier as part of their plot construction routine. To observe
this in action, please refer to Figure 3.

4. Basic usage
ggtern is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=ggtern. Like all packages available from CRAN where all exported
functions must be documented, ggtern is no different and an extensive user manual can be
freely downloaded (Hamilton 2018). In the following section, beginning with the coordinate
system, we will demonstrate ggtern’s most basic usage and syntaxes.

https://CRAN.R-project.org/package=ggtern
https://CRAN.R-project.org/package=ggtern

6 ggtern: Ternary Diagrams Using ggplot2

1

2

3

4

5

0.3

0.5

0.7

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

Series

a

a

Labels

Points

(a) ggplot2.

1

2

3

4

5

0.3

0.5

0.7

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

Series

a

a

Labels

Points

(b) ggtern.

Figure 2: The ‘vanilla’ output from the (a) ggplot2 vs. (b) ggtern packages, using random
data. Internally, the data is scaled, forming an Aitchison simplex, so that the parts sum to
unity for each individual composition.

Typically, ggplot2 utilizes Cartesian coordinates, which expects x and y mappings between the
plot directives and the data, demonstrated via the snippet immediately below and rendered
within Figure 2a.

R> library("ggplot2")
R> n <- 5
R> set.seed(n)
R> constants <- c(0.3, 0.5, 0.7)
R> dfA <- data.frame(ix = c(1:n), x = runif(n), y = runif(n))
R> f2a <- ggplot(data = dfA, mapping = aes(x = x, y = y)) +
+ coord_fixed(ratio = 0.5 * tan(pi / 3)) +
+ scale_x_continuous(limits = c(0, 1)) +
+ scale_y_continuous(limits = c(0, 1)) +
+ scale_color_brewer(palette = "Set1") +
+ geom_point(mapping = aes(color = "Points"), size = 6, alpha = 0.75) +
+ geom_hline(yintercept = constants) +
+ geom_text(mapping = aes(label = ix, color = "Labels"), size = 3) +
+ geom_label(data = data.frame(x = 0, y = constants),
+ mapping = aes(label = y)) + labs(color = "Series") +
+ theme_legend_position("topleft")
R> print(f2a)

By comparison, ggtern has its own constructor and its own coordinate system that expects
an additional spatial mapping, which we have assigned as the z variable, demonstrated via
the snippet below producing Figure 2b.

Journal of Statistical Software – Code Snippets 7

R> library("ggtern")
R> dfBase <- cbind(dfA, data.frame(z = runif(n), id = "Facet Label"))
R> dfLabs <- data.frame(y = constants, x = 0.05, z = 1 - constants - 0.05)
R> base <- ggtern(data = dfBase, mapping = aes(x = x, y = y, z = z)) +
+ geom_point(mapping = aes(color = "Points"), size = 6, alpha = 0.5) +
+ geom_text(mapping = aes(label = ix, color = "Labels"), size = 3) +
+ scale_color_manual(values = c("black", "red")) +
+ labs(color = "Series")
R> f2b <- base + geom_Tline(Tintercept = constants) +
+ geom_label(data = dfLabs, mapping = aes(label = y)) +
+ theme_legend_position("topright")
R> print(f2b)

It is often desirable to focus on a narrower compositional range – this can either be done
manually via each of the scale_*_continuous(...) functions via the limits argument (*
= T, L or R), or, alternatively via the convenience function limit_tern(...), which requires
only the user to specify the axis maxima (Tmax, Lmax & Rmax), sufficient to in-turn solve for
the associated minima (Tmin, Lmin & Rmin) using linear algebra – a process which greatly
reduces the burden on the end user to provide valid limits. The system of linear equations
and solution is easily defined as follows:

Tmax + Lmin + Rmin = 1 (1)
Tmin + Lmax + Rmin = 1 (2)
Tmin + Lmin + Rmax = 1 (3)

Taking Equations 1, 2 and 3, these can be converted to a system of linear equations that can
be solved for the minima (given prior knowledge of the maxima), according to:0 1 1

1 0 1
1 1 0

 Tmin

Lmin
Rmin

 =

 1 − Tmax
1 − Lmax
1 − Rmax

 (4)

 Tmin
Lmin
Rmin

 =

0 1 1
1 0 1
1 1 0

−1 1 − Tmax

1 − Lmax
1 − Rmax

 (5)

Use of the limit_tern(...) function has been demonstrated within Figure 3, where we also
highlight the clipping mask, and the geom_*_isoprop(...) geometry, for producing lines of
isoproportionality. The code for producing this figure can be found immediately below, note
the explicit placement of the geom_mask geometry, above the geom_Risoprop and below the
annotate layers:
R> dfIsoprop <- data.frame(value = c(0.7, 0.5, 0.3))
R> f3 <- base + limit_tern(T = 0.7, L = 0.7, R = 0.7) +
+ geom_Risoprop(data = dfIsoprop,
+ mapping = aes(value = value, linetype = factor(value))) +
+ geom_mask() +
+ annotate(geom = "text", x = 0.775, y = -0.250, z = 0.475,

8 ggtern: Ternary Diagrams Using ggplot2

1

2

3

4

5

2030405060

20

30

40

50

60
20

30

40

50

60

text annotation ('Semi−Transparent Clipping Mask')

y

x

z

Iso., R 0.3 0.5 0.7 Series a aLabels Points

Demonstration of Limited Range and Clipping Mask

Figure 3: Demonstration of the limit_tern(...) convenience function for restricting axis
ranges, which has also been rotated (60◦ rotation), and has the clipping mask highlighted via
semi-transparency, using specific theme-element customization.

+ label = "text annotation ("Semi-Transparent Clipping Mask")",
+ color = "grey40", hjust = 1.0) + theme_classic() +
+ theme(legend.position = "bottom") +
+ theme(tern.plot.background = element_rect(color = "red",
+ fill = alpha("gray", 0.8)),
+ tern.panel.background = element_rect(color = "red", size = 0.5),
+ tern.axis.line = element_blank()) + theme_rotate(degrees = 60) +
+ labs(title = "Demonstration of Limited Range and Clipping Mask",
+ linetype = "Iso., R")
R> print(f3)

It is often desirable to display arrows along each of the axes (ref. Figures 4b and 4c) in order
to make reading these diagrams more intuitive. Some of the themes apply these arrows by
default, and others do not. The standard theme_gray() function does not, although this can
be easily switched back on via the theme_showarrows() theme modifier function.
ggtern comes with four (4) new template ‘themes’ for the user to choose from, as well as a
theme customization procedure that takes advantage of the theme-element inheritance struc-
ture defined by ggplot2. In total, there are more than fifty (50) new theme elements specific
to ggtern in-and-around the three (3) new axes, and, although the user is free to alter any of
these new elements from scratch (for the truly ‘bespoke’ appearance), as a matter of conve-
nience it is often easier to use one of the base templates as a suitable starting point. These
templates have been demonstrated within Figure 4.

Journal of Statistical Software – Code Snippets 9

1

2

3

4

5

●

●
●

●

●
theme_ggtern

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_ggtern(...)

(a)

1

2

3

4

5

●

●
●

●

●
theme_rgbg

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

yx

z

y

x z

theme_rgbg(...)

(b)

1

2

3

4

5

●

●
●

●

●
theme_rgbw

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

yx

z

y

x z

theme_rgbw(...)

(c)

1

2

3

4

5

●

●
●

●

●
theme_darker

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_darker(...)

(d)

1

2

3

4

5

●

●
●

●

●
theme_gray

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_gray(...)

(e)

1

2

3

4

5

●

●
●

●

●
theme_bw

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_bw(...)

(f)

1

2

3

4

5

●

●
●

●

●
theme_classic

20

40

60

80

100
20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_classic(...)

(g)

1

2

3

4

5

●

●
●

●

●
theme_minimal

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_minimal(...)

(h)

1

2

3

4

5

●

●
●

●

●
theme_linedraw

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_linedraw(...)

(i)

1

2

3

4

5

●

●
●

●

●
theme_light

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_light(...)

(j)

1

2

3

4

5

●

●
●

●

●
theme_void

theme_void(...)

(k)

1

2

3

4

5

●

●
●

●

●
theme_dark

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

y

x z

theme_dark(...)

(l)

Figure 4: Themes available to ggtern, namely, theme_X(), where X is: (a) ggtern, (b) rgbg,
(c) rgbw, (d) darker, (e) gray, (f) bw, (g) classic, (h) minimal, (i) linedraw, (j) light,
(k) void and (l) dark. With the exception of the themes bound by the ‘red box’ above, i.e.,
(a), (b), (c) and (d), which are unique to ggtern, the remaining themes have been designed
to mimic the default themes available within ggplot2. Also demonstrated above, the use of a
new annotate(...) function, masking the ggplot2 original, ensuring compatibility with an
additional spatial mapping.

5. Examples

In the following examples, we replicate the United States Department of Agriculture (USDA)
soil classification chart, and present various forms of Elkins and Groves Feldspar data, rep-
resenting physical properties, confidence levels and temperature iso-contours. The results of
the subsequent four (4) code snippets have been collectively rendered in Figures 5 and 6.

5.1. USDA textural soil classification chart

USDA textural soil classification chart can be produced (ref. Figure 5a) using the following
code snippet; this can be compared with Figure 1 in the publication by Cosby, Hornberger,
Clapp, and Ginn (1984):

10 ggtern: Ternary Diagrams Using ggplot2

Clay

Sandy Clay

Sandy Clay Loam

Sandy LoamLoamy SandSand

Clay Loam

Loam
Silt Loam

Silty Clay

Silty Clay Loam

Silt

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

C
lay / PercentSa

nd
 /

Pe
rc

en
t

Silt / Percent

Clay

Sand Silt

USDA Textural Classification Chart

(a)

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0●● ●●●●●●●●●● ●●

●● ● ●●●

An

Ab Or

Pressure/GPa
●

●
●
●

0.10

0.15

0.20

0.25

650

700

750

800

850

900
Temperature/C

Feldspar
● Alkalai

Plagioclase

Feldspar − Elkins & Grove 1990

(b)

Figure 5: First series of examples, including (a) USDA soil classification, and an interpretation
of Elkins and Grove (1990) Feldspar data, namely, (b) mappings of properties to size, fill and
shape. Please note in (b) the explicit mask placement below points and subsequent layers
which has permitted the point geometry to spill over the perimeter of the plotting region.

R> data("USDA", package = "ggtern")
R> dfLabels <- plyr::ddply(USDA, "Label", function(df) {
+ label <- as.character(df$Label[1])
+ df$Angle <- switch(label, "Loamy Sand" = -35, 0)
+ colMeans(df[setdiff(colnames(df), "Label")])
+ })
R> f5a <- ggtern(data = USDA, mapping = aes(x = Sand, y = Clay, z = Silt)) +
+ geom_polygon(mapping = aes(fill = Label),
+ alpha = 0.75, size = 0.5, color = "black") +
+ geom_text(data = dfLabels, mapping = aes(label = Label, angle = Angle),

size = 2.5) + theme_rgbw() + theme_showsecondary() +
+ theme_showarrows() + custom_percent("Percent") +
+ guides(color = "none", fill = "none") +
+ labs(title = "USDA Textural Classification Chart",
+ fill = "Textural Class", color = "Textural Class")
R> print(f5a)

5.2. Elkins and Grove properties

Elkins and Grove Feldspar data (Elkins and Grove 1990), with mappings of the various
properties to shape, size and color has been produced (ref. Figure 5b) using the following
code snippet:

Journal of Statistical Software – Code Snippets 11

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

●● ●

●●

●●●● ●●●●● ●●

●

●●
●

●

●

●

●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●

An

Ab Or

0.50

0.90
0.95
0.99

Confidence Level

Feldspar − Elkins & Grove 1990 (Confidence Levels)

(a)

1100C

700C

●● ●

●●

●●●● ●●●●● ●●

●

●●
●

●

●

●

●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

An

Ab Or

700

800

900

1000

1100
Temperature/C

Feldspar − Elkins & Grove 1990 (Temperature Model)

(b)

Figure 6: Second series of examples including interpretations of Elkins and Grove (1990)
Feldspar data including (a) confidence regions calculated using the Mahalanobis distance and
(b) basic isothermal model via 3rd order polynomial, which has been mapped to color.

R> data("Feldspar", package = "ggtern")
R> Feldspar <- Feldspar[with(Feldspar, order(-P.Gpa)),]
R> f5b <- ggtern(data = Feldspar,
+ mapping = aes(x = Ab, y = An, z = Or)) +
+ geom_point(mapping = aes(fill = T.C, size = P.Gpa, shape = Feldspar)) +
+ scale_shape_manual(values = c(21, 24)) +
+ scale_size_continuous(range = c(2.5, 7.5)) +
+ scale_fill_gradient(low = "green", high = "red") + theme_bw() +
+ theme(tern.panel.mask.show = FALSE, legend.position = c(0, 1),
+ legend.justification = c(0, 1), legend.box.just = "left",
+ legend.background = element_rect(fill = "transparent")) +
+ labs(title = "Feldspar - Elkins & Grove 1990",
+ size = "Pressure/GPa", fill = "Temperature/C")
R> print(f5b)

5.3. Elkins and Grove confidence regions

Elkins and Grove Feldspar data with confidence levels calculated by the Mahalanobis distance
and mapped to color can be produced (ref. Figure 6a) using the following code snippet:

R> confidenceBreaks <- c(0.5, 0.9, 0.95, 0.99)
R> f5c <- ggtern(data = Feldspar, mapping = aes(x = Ab, y = An, z = Or)) +
+ stat_confidence_tern(geom = "polygon", mapping = aes(fill = ..level..),

12 ggtern: Ternary Diagrams Using ggplot2

+ colour = "white", breaks = confidenceBreaks) + geom_mask() +
+ geom_point(colour = "black", fill = "yellow", shape = 21, size = 4) +
+ scale_fill_gradient(breaks = confidenceBreaks) + theme_bw() +
+ theme(legend.position = c(0, 1), legend.justification = c(0, 1),
+ legend.box.just = "left") +
+ labs(title = "Feldspar - Elkins & Grove 1990 (Confidence Levels)",
+ fill = "Confidence Level")
R> print(f5c)

5.4. Elkins and Grove temperature contours

Elkins and Grove Feldspar data with a temperature model at 700, 800, 900, 1000 and 1100◦C
mapped to color has been produced (ref. Figure 6b) using the code immediately below which
can be compared with Figure 3 in the paper by Fuhrman and Lindsley (1988).

R> temperatureBreaks <- seq(from = 700, to = 1100, by = 100)
R> f5d <- ggtern(data = Feldspar, mapping = aes(x = Ab, y = An, z = Or)) +
+ geom_interpolate_tern(mapping = aes(color = ..level.., value = T.C),
+ breaks = temperatureBreaks, base = "identity", method = "glm",
+ formula = value ~ poly(x, y, degree = 3)) +
+ annotate(geom = "text", x = 0.50, y = 0.250, z = 0.250,
+ label = "1100C", color = "darkred") +
+ annotate(geom = "text", x = 0.85, y = 0.075, z = 0.075,
+ label = "700C", color = "darkgreen") +
+ geom_point(mapping = aes(colour = T.C), size = 4) + theme_bw() +
+ theme_legend_position("topleft") +
+ scale_colour_gradient(low = "green", high = "red") +
+ labs(title = "Feldspar - Elkins & Grove 1990 (Temperature Model)",
+ colour = "Temperature/C")
R> print(f5d)

6. Discussion
In the following section, we provide a summary of the existing packages available across
different architectures and programming languages, and, outline the plans for possible future
development.

6.1. Other available packages

Ternary diagrams are not exclusive to ggtern, they have been used extensively within the
literature, and can be processed by many plotting libraries. Some of which have been included
in Table 1, and, listed as follows: MATLAB (The MathWorks Inc. 2017) package (ternPlot),
Python (Van Rossum et al. 2011) libraries (python-ternary and Vuesz), R packages (vcd and
compositions), graphical user interfaces (GUIs: CSpace, Analysen Tetraeder, Trinity and
Origin), and finally spreadsheet implementations (TernPlot and Tri-Plot).

Journal of Statistical Software – Code Snippets 13

Name OS Type Remarks
1 TernPlot All Spreadsheet Points only.
2 Tri-Plot All Spreadsheet Points only.
3 CSpace Win GUI Can do quaternary, dynamic graphics.
4 Analysen Tetraeder Mac GUI Can do quaternary.
5 Trinity Mac GUI Points only.
6 Origin Win GUI Can do 3D scatter and 3D surfaces.
7 ternPlot All MATLAB package Can do 3D scatter and 3D surfaces.
8 vcd All R package Rendered via R grid graphics.
9 compositions All R package Rendered via R base graphics.
10 python-ternary All Python library Several advanced geometries.
11 Vuesz All Python library Several advanced geometries.

Table 1: Survey of other software packages available, across multiple languages/platforms and
operating systems. References for the above are as follows: (1) Marshall (1996), (2) Graham
and Midgley (2000), (3) Torres-Roldan et al. (2000), (4) Schmitz (2013), (5) Appel (2016),
(6) Edwards (2002), (7) Sandrock (2016), (8) Meyer et al. (2006), (9) van den Boogaart et al.
(2018), (10) Harper et al. (2015), (11) Sanders (2018).

In summary, themain point of difference between ggtern and these existing software packages,
is that ggtern adheres to the philosophy of Wilkinson (2005), which provides a strict regiment
for mapping numerical/categorical data, to the various visual cues, such as: color, fill, shape,
size, alpha etc., across the various available geometries points, paths, segments, polygons etc.
Out of the alternatives to ggtern, the Python libraries provide the most compelling alternative,
providing advanced geometries such as trajectories, hexbins, heatmaps and the ability to
map variables to shape, size and color in a similar fashion to ggplot2, however, to the best
knowledge of the authors, in terms of customization of appearance, none of the existing
packages provide flexibility even remotely close to that of ggtern – almost every aspect of
the plots appearance can be tailored in some manner using the hierarchical structure of the
various theme elements, inherited and extended from ggplot2.
In an identical manner to ggplot2, plots can be constructed in a piecewise fashion, adding
layers (geometries), annotations, statistics and the like, to generate extremely complex, yet
clear, data representations. The clarity of the representations, is due to the adherence to
Wilkinson (2005) philosophy, enforced via extension of ggplot2 acting as a ‘tried-and-tested’
foundation. Having said the above, a number of the above packages permit 3D surfaces, or
are able to handle quaternary compositions, both features being unavailable within ggtern at
the present moment.
Additionally, it is worth noting that with the release of ggplot2 (>= 2.0.0), rebuilt partially
with the ambition of providing an extensible framework, ggtern can be further extended (say
for custom geometries) according to the needs of the user. This feature is beyond the scope
of this document.

6.2. Further possible extensions

In future revisions of this software, it is very likely that we will continue to extend ggplot2,
insomuch as introducing additional geometries presently not available to ggtern. One such

14 ggtern: Ternary Diagrams Using ggplot2

geometry that immediately comes to mind, is a ‘ternary’ version of the standard ‘heatmap’,
which will require a compositional ternary binning statistic. There are also a few other ge-
ometries, such as the geom_rug and geom_hex, which would both work on a ternary diagram,
with probably limited applicability, and would be added for the sake of completeness. Several
parties have expressed an interest/or requested 3D ternary diagrams (i.e., to represent a de-
pendent variable, say surface contours in 3D), and/or quaternary diagrams, however such an
implementation would go against the philosophy of ggplot2 and is unlikely ever to be imple-
mented. We have also received a number of requests to introduce functionality for producing
piper diagrams (Güler, Thyne, McCray, and Turner 2002), which will take considerable work
and subject to major revision.

7. Conclusions
We have demonstrated that ggplot2 can be used as a basis for producing specialized plotting
packages and, in this case, a package has been developed specifically for the production of
high quality ternary diagrams. ggtern inherits the vast majority of the strengths of ggplot2,
including (amongst many others) its plot-construction syntax and strict adherence to the rules
governed by The Grammar of Graphics (Wilkinson 2005). In order to produce ggtern, it was
necessary to overcome a number of design issues, primarily finding a means to modify existing
geometries designed for a 2D Cartesian coordinate system, and permit them to function in
an environment that requires an additional spatial aesthetic mapping. Considerations have
been made for the case where users attempt to plot nonsensical geometries relative to the
ternary coordinate system. As a package, ggtern could best be described as being made up
by the new coordinate system, modified existing and new geometries, new theme elements,
new convenience functions and a slightly modified plot-construction and rendering routine.

Acknowledgments
The authors would like to acknowledge the Australian Research Council (ARC) for partly
funding of this work via the ARC Centre of Excellence for Design in Light Metals (CE0561574)
and ARC Discovery grants scheme (DP120102863). Furthermore, the authors would like to
thank Hadley Wickham and the other developers of ggplot2, for their excellent package.

References

Appel P (2016). “Trinity – Ternary Diagram.” Christian-Albrechts-Universität zu Kiel. Ac-
cessed 2016-08-20, URL http://www.ifg.uni-kiel.de/339.html.

Baker H (ed.) (1992). ASM Handbook: Alloy Phase Diagrams, volume 3. ASM International,
Materials Park, Ohio.

Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM (2017). “Maturation of
the Infant Microbiome Community Structure and Function across Multiple Body Sites and
in Relation to Mode of Delivery.” Nature Medicine, 23, 314–326. doi:10.1038/nm.4272.

http://www.ifg.uni-kiel.de/339.html
https://doi.org/10.1038/nm.4272

Journal of Statistical Software – Code Snippets 15

Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984). “A Statistical Exploration of the
Relationships of Soil Moisture Characteristics to the Physical Properties of Soils.” Water
Resources Research, 20(6), 682–690. doi:10.1029/wr020i006p00682.

Edwards PM (2002). “Origin 7.0: Scientific Graphing and Data Analysis Software.” Journal
of Chemical Information and Computer Sciences, 42(5), 1270–1271.

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003). “Isometric
Logratio Transformations for Compositional Data Analysis.” Mathematical Geology, 35(3),
279–300. doi:10.1023/a:1023818214614.

Elkins LT, Grove TL (1990). “Ternary Feldspar Experiments and Thermodynamic Models.”
American Mineralogist, 75(5-6), 544–559.

Flemming BW (2000). “A Revised Textural Classification of Gravel-Free Muddy Sediments
on the Basis of Ternary Diagrams.” Continental Shelf Research, 20(10), 1125–1137. doi:
10.1016/s0278-4343(00)00015-7.

Fuhrman ML, Lindsley DH (1988). “Ternary-Feldspar Modeling and Thermometry.” Ameri-
can Mineralogist, 73(3–4), 201–215.

Graham DJ, Midgley NG (2000). “Graphical Representation of Particle Shape Using Trian-
gular Diagrams: An Excel Spreadsheet Method.” Earth Surface Processes and Landforms,
25(13), 1473–1478.

Güler C, Thyne GD, McCray JE, Turner KA (2002). “Evaluation of Graphical and Multivari-
ate Statistical Methods for Classification of Water Chemistry Data.” Hydrogeology Journal,
10(4), 455–474.

Hamilton N (2018). ggtern: An Extension to ggplot2, for the Creation of Ternary Diagrams.
R package version 3.1.0, URL https://CRAN.R-project.org/package=ggtern.

Harper M, Weinstein B, Simon C, chebee7i, Swanson-Hysell N, Badger TG, Greco M, Zuidhof
G (2015). “python-ternary: Ternary Plots in Python.” doi:10.5281/zenodo.34938.

Kalenitchenko D, Dupraz M, Le Bris N, Petetin C, Rose C, West N, Galand PE (2016).
“Ecological Succession Leads to Chemosynthesis in Mats Colonizing Wood in Sea Water.”
The ISME Journal, pp. 2246–2258. doi:10.1038/ismej.2016.12.

Katz JN, King G (1999). “A Statistical Model for Multiparty Electoral Data.” American
Political Science Review, 93(1), 15–32. doi:10.2307/2585758.

Mahalanobis PC (1936). “On the Generalized Distance in Statistics.” Proceedings of the
National Institute of Sciences (Calcutta), 2, 49–55.

Marshall D (1996). “Ternplot: An Excel Spreadsheet for Ternary Diagrams.” Computers &
Geosciences, 22(6), 697–699. doi:10.1016/0098-3004(96)00012-x.

Meyer D, Zeileis A, Hornik K (2006). “The Strucplot Framework: Visualizing Multi-Way
Contingency Tables with vcd.” Journal of Statistical Software, 17(3), 1–48. doi:10.18637/
jss.v017.i03.

https://doi.org/10.1029/wr020i006p00682
https://doi.org/10.1023/a:1023818214614
https://doi.org/10.1016/s0278-4343(00)00015-7
https://doi.org/10.1016/s0278-4343(00)00015-7
https://CRAN.R-project.org/package=ggtern
https://doi.org/10.5281/zenodo.34938
https://doi.org/10.1038/ismej.2016.12
https://doi.org/10.2307/2585758
https://doi.org/10.1016/0098-3004(96)00012-x
https://doi.org/10.18637/jss.v017.i03
https://doi.org/10.18637/jss.v017.i03

16 ggtern: Ternary Diagrams Using ggplot2

Milani L, Ghiselli F, Pecci A, Maurizii MG, Passamonti M (2015). “The Expression of a Novel
Mitochondrially-Encoded Gene in Gonadic Precursors May Drive Paternal Inheritance of
Mitochondria.” PloS One, 10(9), e0137468. doi:10.1371/journal.pone.0137468.

Nesbitt SJ, Butler RJ, Ezcurra MD, Barrett PM, Stocker MR, Angielczyk KD, Smith RM,
Sidor CA, Niedźwiedzki G, Sennikov AG, et al. (2017). “The Earliest Bird-Line Archosaurs
and the Assembly of the Dinosaur Body Plan.” Nature, 544, 484–487. doi:10.1038/
nature22037.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sanders J (2018). “Veusz – A Scientific Plotting Package.” URL https://veusz.github.io/.

Sandrock C (2016). “ternplot: Plots Ternary Phase Data on a Ternary Phase Diagram.”
MATLAB File Exchange. Version 1.1, Updated 2016-06-25, URL https://au.mathworks.
com/matlabcentral/fileexchange/2299-alchemyst-ternplot.

Schmitz C (2013). “Analysen Tetraeder 1.3.” Accessed 2018-10-30, URL http://www.
monkeybreadsoftware.de/Analysen-Tetraeder/.

The MathWorks Inc (2017). MATLAB – The Language of Technical Computing, Version
R2017b. Natick. URL http://www.mathworks.com/products/matlab/.

Torres-Roldan RL, Garcia-Casco A, Garcia-Sanchez PA (2000). “CSpace: An Integrated
Workplace for the Graphical and Algebraic Analysis of Phase Assemblages on 32-Bit Wintel
Platforms.” Computers & Geosciences, 26(7), 779–793.

van den Boogaart KG, Tolosana R, Bren M (2018). compositions: Compositional Data
Analysis. R package version 1.40-2, URL https://CRAN.R-project.org/package=
compositions.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Wenger Y, Buzgariu W, Galliot B (2016). “Loss of Neurogenesis in Hydra Leads to Compen-
satory Regulation of Neurogenic and Neurotransmission Genes in Epithelial Cells.” Philo-
sophical Transactions of the Royal Society B, 371(1685), 20150040. doi:10.1098/rstb.
2015.0040.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. URL
http://ggplot2.org/.

Wickham H (2010). “A Layered Grammar of Graphics.” Journal of Computational and
Graphical Statistics, 19(1), 3–28. doi:10.1198/jcgs.2009.07098.

Wilkinson L (2005). The Grammar of Graphics. Statistics and Computing, 2nd edition.
Springer-Verlag.

Witte S, Bradley A, Enright AJ, Muljo SA (2015). “High-Density P300 Enhancers Control
Cell State Transitions.” BMC Genomics, 16(1), 903. doi:10.1186/s12864-015-1905-6.

https://doi.org/10.1371/journal.pone.0137468
https://doi.org/10.1038/nature22037
https://doi.org/10.1038/nature22037
https://www.R-project.org/
https://veusz.github.io/
https://au.mathworks.com/matlabcentral/fileexchange/2299-alchemyst-ternplot
https://au.mathworks.com/matlabcentral/fileexchange/2299-alchemyst-ternplot
http://www.monkeybreadsoftware.de/Analysen-Tetraeder/
http://www.monkeybreadsoftware.de/Analysen-Tetraeder/
http://www.mathworks.com/products/matlab/
https://CRAN.R-project.org/package=compositions
https://CRAN.R-project.org/package=compositions
https://www.python.org/
https://www.python.org/
https://doi.org/10.1098/rstb.2015.0040
https://doi.org/10.1098/rstb.2015.0040
http://ggplot2.org/
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1186/s12864-015-1905-6

Journal of Statistical Software – Code Snippets 17

Affiliation:
Nicholas E. Hamilton
School of Materials Science and Engineering
The University of New South Wales (UNSW Sydney)
Sydney, NSW 2052, Australia
E-mail: nick@ggtern.com
URL: http://ggtern.com/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

December 2018, Volume 87, Code Snippet 3 Submitted: 2016-07-23
doi:10.18637/jss.v087.c03 Accepted: 2017-10-31

mailto:nick@ggtern.com
http://ggtern.com/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v087.c03

	Introduction
	Basics of ternary diagrams
	Features
	Basic usage
	Examples
	USDA textural soil classification chart
	Elkins and Grove properties
	Elkins and Grove confidence regions
	Elkins and Grove temperature contours

	Discussion
	Other available packages
	Further possible extensions

	Conclusions

