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Abstract

The analysis of binary three-way data (i.e., persons who indicate which attributes
apply to each of a set of objects) may be of interest in several substantive domains as
sensory profiling, marketing research or personality assessment. Latent class probabilistic
latent feature models (LCPLFMs) may be used to explain binary object-attribute associ-
ations on the basis of a small number of binary latent variables (called latent features).
As LCPLFMs aim to model object-attribute associations using a small number of latent
features they may be more suited to analyze data with many objects/attributes than stan-
dard multilevel latent class models which do not include such a dimension reduction. In
this paper we describe new functions of the plfm package for analyzing binary three-way
data with LCPLFMs. The new functions provide a flexible modeling approach as they
allow to (1) specify different assumptions for modeling statistical dependencies between
object-attribute pairs, (2) use different assumptions for modeling parameter heterogeneity
across persons, (3) conduct a confirmatory analysis by constraining specific parameters
to pre-specified values, (4) inspect results with print, summary and plot methods. As
an illustration, the models are applied to analyze data on the perception of midsize cars,
and to study the situational determinants of anger-related behavior.

Keywords: latent feature, three-way data, disjunctive model, conjunctive model, perceptual
mapping, individual differences, EM algorithm, R.

1. Introduction

The analysis of three-way data is of interest in several substantive domains. In personal-
ity psychology, for instance, one may study the behavior of persons in different situations
(Kuppens, Van Mechelen, and Meulders 2004; Mischel, Shoda, and Mendoza-Denton 2002;
Vansteelandt and Van Mechelen 1998) or one may study the activation of emotion components
(e.g, appraisals, action tendencies) when persons react to situations (Ceulemans, Kuppens,
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and Van Mechelen 2012). In consumer research one may study consumers’ perception of
products in terms of attributes in order to derive a perceptual mapping of the product space
(DeSarbo, Grewal, and Scott 2008; Monteiro, Dibb, and Almeida 2012; Torres and Bijmolt
2009). In sensory science it is common to study the sensory characterization of food samples
by panellists (Meilgaard, Civille, and Carr 1999; Varela 2014).
Data from three-way studies (e.g., persons who judge object-attribute relations) may be an-
alyzed in many ways. A common approach is to apply classical multivariate techniques (e.g.,
principal components analysis, factor analysis, correspondence analysis) to two-way data ob-
tained by aggregating the three-way data across one of the modes (Varela 2014). However, as
the analysis of such aggregated data provides only a partial view, specific three-way methods
have been developed as well. In particular, with ratio-scaled three-way data popular three-
way methods as Tucker3 and Candecomp/Parafac (Carroll and Chang 1970; Harshman and
Lundy 1994) can be used to summarize the entities of each mode using a limited number of
components. Functions for estimating these models are available in the R packages ThreeWay
(Giordani, Kiers, and Del Ferraro 2014), PTAk (Leibovici 2010) and multiway (Helwig 2018).
Furthermore, as these classical three-way methods actually make the rather strict assumption
that component scores assigned to entities of one mode are homogeneous across entities of
other modes, methods that allow to capture such heterogeneity in the component scores have
recently been proposed. In particular, one may use a clusterwise extension of the Parafac
model (Wilderjans and Ceulemans 2013), or (clusterwise extensions of) simultaneous com-
ponents analysis (De Roover, Ceulemans, Timmerman, Vansteelandt, Stouten, and Onghena
2012b; De Roover, Timmerman, Van Mechelen, and Ceulemans 2013b; De Roover, Ceule-
mans, Timmerman, Nezlek, and Onghena 2013a; Helwig 2013). Simultaneous components
analysis and its (clusterwise) extensions can be estimated using the R package multiway or a
software program based on MATLAB code (De Roover, Ceulemans, and Timmerman 2012a).
In addition to component-based methods, classification-based methods have been developed
for three-way data to classify the elements of one mode while accounting simultaneously for
information of the other two modes. In particular, Vichi (1999) described a least-squares
approach to one-mode clustering of continuous three-way data and Vichi, Rocci, and Kiers
(2007) further extended this approach to combine clustering and dimension reduction. Basford
and McLachlan (1985) used a finite mixture of multivariate normal distributions to conduct
one-mode classification of continuous three-way data. This approach was further extended
by Hunt and Basford (1999) to model both continuous and categorical variables and by Hunt
and Basford (2001) to deal with missing observations. Viroli (2011) considered finite mixtures
of matrix-normal distributions to model continuous three-way data. Finally Vermunt (2007)
used a hierarchical mixture approach and adapted multilevel latent class models to analyze
continuous or categorical three-way data. Finite mixtures of normal distributions can be
estimated with the R packages mclust (Scrucca, Fop, Murphy, and Raftery 2016; Fraley and
Raftery 2002), mixtools (Benaglia, Chauveau, Hunter, and Young 2009) and flexmix (Leisch
2004; Grün and Leisch 2007, 2008). Hierarchical mixture models and special cases thereof
can be estimated with Latent GOLD (Vermunt and Magidson 2005).
Although the analysis of continuous three-way data has received a lot of attention, the anal-
ysis of binary three-way data may be of special interest in studies where persons have to
make object-attribute judgments. More specifically, check-all-that-apply (CATA) questions
have recently gained in popularity in sensory product characterization with consumers (Ares,
Deliza, Barreiro, Giménez, and Gámbaro 2010; Ares and Jaeger 2013). Responding to CATA
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questions (i.e., selecting the relevant attributes from a list for each product) has been reported
to be easier for participants while providing stable and reproducible product characterizations
(Jaeger et al. 2013; Ares et al. 2014).
As with continuous three-way data, methods for binary three-way data are often extensions
of existing two-way methods. The deterministic hierarchical classes (HICLAS) model (De
Boeck and Rosenberg 1988), for instance, explains two-way binary data by describing objects
and attributes in terms of a limited set of binary latent variables (further called latent fea-
tures). Several deterministic three-way extensions of the HICLAS model have been described
(Leenen, Van Mechelen, and De Boeck 1999; Ceulemans, Van Mechelen, and Leenen 2003;
Ceulemans and Van Mechelen 2004; Wilderjans, Ceulemans, and Kuppens 2012). In addition,
Maris, De Boeck, and Van Mechelen (1996) developed a stochastic likelihood-based extension
of the HICLAS model to analyze two-way object-by-attribute frequency data (obtained by
aggregating three-way binary object × attribute × person data across persons). This model
is further called the probabilistic latent feature model (PLFM). Meulders (2013) described
the R package plfm to estimate the PLFM and to evaluate its fit. Furthermore several (multi-
level) latent class extensions were proposed to extend PLFMs to the case of binary three-way
data (Meulders, De Boeck, Kuppens, and Van Mechelen 2002; Meulders, De Boeck, and Van
Mechelen 2003; Meulders, Tuerlinckx, and Vanpaemel 2013).
The goal of this paper is to describe the LCplfm function that has been added to the R package
(R Core Team 2018) plfm (Meulders 2013) and that implements the (multilevel) LCPLFMs
described by Meulders et al. (2003) and Meulders et al. (2013). The proposed LCplfm function
offers a flexible modeling approach. First, it allows to specify different assumptions for mod-
eling statistical dependencies between object-attribute pairs as well as different assumptions
for modeling parameter heterogeneity across persons. Second, as the LCplfm function allows
to constrain specific parameters to pre-specified values, it can handle confirmatory LCPLFM
analysis. Third, in contrast to standard multilevel latent class models for three-way data
(Vermunt 2007), LCPLFMs are suited to provide a parsimonious description of the data as
they aim to model objects-attribute associations in terms of a small number of latent features.
Finally, user-friendly print, plot and summary methods are added to enhance data analysis
with the LCplfm function.
In Section 2 we first describe the original PLFM. Next, in Section 3 we describe multilevel
LCPLFMs as described in Meulders et al. (2003) and Meulders et al. (2013). In Section 4 we
describe the LCplfm function for probabilistic latent feature analysis of three-way binary data.
In Section 5 we provide an example on the perception of midsize cars, and in Section 6 we use
LCPLFMs to study the situational determinants of anger-related behavior. In Section 7 we
conduct a small simulation study to investigate to what extent data generated using a specific
decision rule can be fitted using another decision rule. Finally, in Section 8 we discuss topics
that may be interesting to pursue in future research.

2. Probabilistic latent feature models

Probabilistic latent feature models (PLFMs, Maris et al. 1996) can be used to model object-
by-attribute frequency data that are derived by aggregating binary object × attribute ×
person data across persons. The models have been used to analyze data from several sub-
stantive domains as marketing research (Candel and Maris 1997; Meulders 2013), personality
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psychology (Meulders 2013), psychiatric diagnosis (Maris et al. 1996), cross cultural psycholoy
(Meulders, De Boeck, Van Mechelen, Gelman, and Maris 2001) and the facial perception of
emotions (Meulders, De Boeck, Van Mechelen, and Gelman 2005).
Observed object-attribute associations are described using the observed variable Dijk which
equals 1 if object j (j = 1, . . . , J) has attribute k (k = 1, . . . ,K) according to person i
(i = 1, . . . , I), and 0 otherwise. To explain observed object-attribute associations, PLFMs
assume that persons first classify objects and attributes in terms of F binary latent features
and that, in a next step, observed associations are derived by applying a decision rule to these
classifications.
As an example consider consumers who judge for each of a set of car models (e.g., ‘Porsche
Cayenne’, ‘Ford S-Max’, ‘Toyota Prius’) and for each of a set of attributes (e.g., ‘low CO2
emissions’, ‘high status’, ‘comfortable’, ‘city-focused’, ‘powerful’, ‘spacious’, ‘safe’) whether
or not an attribute applies to certain car model. To explain binary car-attribute associations,
PLFMs assume that consumers classify car models and attributes in terms of so-called latent
features. In this example, the latent features could represent basic car properties that may
be ascribed to a car and that can be linked to certain car attributes. For instance, the latent
feature ‘environmentally friendly’ is likely to be attributed to the ‘Toyota Prius’, and this
feature is likely to be linked with attributes as ‘low CO2 emissions’, ‘city-focused’, and ‘high
fuel efficiency’. Furthermore, the latent feature ‘family car’ is likely to be linked with the
attributes ‘spacious’, ‘safe’, ‘easy to enter’ and this feature is likely to be attributed to a car
model as the ‘Ford S-Max’. Next, PLFMs assume that car-attribute associations are obtained
by applying a decision rule to the pattern of features perceived in a certain car and the pattern
of features linked to the attribute.
As another example, consider persons who judge for each of a set of situations and for each of
a set of behaviors whether or not they would display a certain behavior (e.g., suppress anger,
shout, quarrel) when they are being frustrated by someone in a certain situation (e.g., you are
falsely accused of cheating on an exam, you bang your shins against a park bench, you find
out that someone has told lies about you). To explain situation-behavior judgments PLFMs
assume that persons classify situations and behaviors in terms of a number of latent features.
In this case the latent features could for instance represent latent situational encodings (e.g.,
whether or not you are alone in the situation, whether the person that frustrates you has a
higher status than you) that may elicit a certain behavior (shout, become irritated, bottle up
anger). PLFMs assume further that situation-behavior judgments are derived by applying a
decision rule to situation and behavior classifications.
The two-stage process of PLFMs can be formally described as follows:

1. The classification of object j in terms of latent features is modeled using latent Bernoulli
variables. In particular, Xijkf ∼ Bern(σjf ) equals 1 if object j has latent feature f
(f = 1, . . . , F ) according to person i when she judges object-attribute pair (j, k), and
0 otherwise. Likewise, the classification of attribute k in terms of latent features is
modeled using latent Bernoulli variables. More specifically, Yijkf ∼ Bern(ρkf ) equals 1
if attribute k is linked to latent feature f (f = 1, . . . , F ) according to person i when
she judges object-attribute pair (j, k), and 0 otherwise. Note that upper-case notation
is used here to denote random variables and lower-case notation will be used to denote
specific realizations of the corresponding random variable.

2. It is assumed that the observed judgment of person i on object-attribute pair (j, k)
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results from applying a decision rule C(·) to the latent object and attribute classifica-
tions. Formally the decision rule specifies the conditional probability that an object is
associated to an attribute given the corresponding object and attribute classifications,
that is,

C(Xijk,Yijk) = P (Dijk = 1|Xijk,Yijk)

with Xijk = (Xijk1, . . . , XijkF ) and Yijk = (Yijk1, . . . , YijkF ). For deterministic de-
cision rules, the observed association directly follows from the object and attribute
classifications, that is P (Dijk = 1|Xijk,Yijk) can only take the values 0 or 1 and
Dijk = C(Xijk,Yijk). On the other hand, for probabilistic decision rules P (Dijk =
1|Xijk,Yijk) takes values in the interval [0, 1], that is the decision rule specifies the
degree of the object-attribute association given the object and attribute classifications.

Maris et al. (1996) discuss two deterministic non-compensatory decision rules. First, a dis-
junctive communality rule (DC) implies that an object is associated to an attribute if the
object has at least one latent feature that is linked to the attribute, that is,

Dijk = 1 ⇐⇒ ∃f : Xijkf = Yijkf = 1

or
CDC(Xijk,Yijk) = 1−

∏
f

(1−XijkfYijkf ).

Second, a conjunctive dominance (CD) rule implies that an object is associated to an attribute
if the object has all the latent features that are linked to the attribute, that is,

Dijk = 1 ⇐⇒ ∀f : Xijkf ≥ Yijkf

or
CCD(Xijk,Yijk) =

∏
f

[1− (1−Xijkf )Yijkf ] .

In addition to the described deterministic non-compensatory decision rules, we also propose
a probabilistic compensatory so-called additive (ADD) decision rule which assumes that the
conditional probability of an object-attribute association equals the average number of fea-
tures that the object and attribute have in common, that is:

CADD(Xijk,Yijk) = 1
F

∑
f

XijkfYijkf .

From the above model assumptions Xijkf ∼ Bern(σjf ) and Yijkf ∼ Bern(ρkf ) one may derive
the object-attribute association probability:

P (Dijk = 1|σ,ρ) =
∑
xijk

∑
yijk

P (Dijk = 1|xijk,yijk)p(xijk|σ)p(yijk|ρ).

For the disjunctive communality (DC) rule one may derive that

πDCjk = P (Dijk = 1|σ,ρ) = 1−
∏
f

(1− σjfρkf ).
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Likewise, for the conjunctive dominance (CD) rule one may derive that

πCDjk = P (Dijk = 1|σ,ρ) =
∏
f

[1− (1− σjf )ρkf ].

Finally, for the additive decision rule one may derive that

πADDjk = P (Dijk = 1|σ,ρ) = 1
F

∑
f

σjfρkf .

Depending on the application at hand, and depending on available substantive theory a
particular decision rule may be more appropriate. A disjunctive rule, for instance, may be
used to formalize the idea that, when a feature is linked to the attribute, the presence of the
feature in the object is a sufficient condition to observe an object-attribute association. For
instance, to explain binary patient-symptom associations on the basis of latent syndromes,
a disjunctive rule can be used to formalize the idea that a patient will have a symptom if
he/she has at least one syndrome that implies the symptom (Maris et al. 1996).
On the other hand, a conjunctive rule may be used to formalize the idea that, in order
to observe an object-attribute association, all the features linked to the attribute need to
be present in the object. For instance, a conjunctive decision rule may be used to test the
hypothesis of configural encoding in the processing of facial expressions (Meulders et al. 2005).
More specifically this hypothesis implies that an emotion will only be perceived in a facial
expression if all the facial features linked to the emotion are also activated when processing
the facial expression.
The fact that observed variables Dijk are derived as a mapping of independent (Bernoulli
distributed) latent variables implies that the likelihood of the PLFM can be expressed as a
product of Bernoulli distributed variables:

p(d|σ,ρ) =
∏
i

∏
j

∏
k

(πjk)dijk(1− πjk)1−dijk .

Note that Dijk is used to indicate the observed random variable and dijk represents a specific
realization. The vector d comprises the I × J × K observations dijk (i = 1, . . . ; I, j =
1, . . . , J ; k = 1, . . . ,K).
Furthermore, as the basic PLFM assumes homogeneity of object-attribute association proba-
bilities across persons, it is easy to see that the PLFM is actually a model for the aggregated
J × K two-way two-mode frequency matrix that is obtained by summing the I × J × K
three-way three-mode array of binary observations across persons. The likelihood of the basic
PLFM reads

p(n|σ,ρ) ∝
∏
j

∏
k

Binomial(njk, I)

with njk = ∑I
i=1 dijk.

3. Latent class probabilistic latent feature models
Due to the assumptions involved, the basic PLFM is not well suited to model the observed
three-way binary associations. First, the assumption that all observations Dijk are statisti-
cally independent may be unrealistic because object-attribute associations with a common
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object or attribute tend to be correlated across persons. As dependencies between object-
attribute associations with a common element may actually be caused by qualitative individ-
ual differences in object or attribute perception (i.e., persons differ in the pattern of features
they ascribe to objects or attributes), and as such individual differences are likely to occur,
dependence is a realistic model assumption. Second, the assumption that object-attribute
association probabilities are homogeneous across persons may be unrealistic in practice as it
implies that there are no individual differences. To deal with these problems, different types
of latent class extensions of the PLFM have been proposed.

3.1. Modeling dependencies

To deal with unrealistic independence assumptions, Maris (1999) and Meulders et al. (2003)
developed PLFMs with adapted stochastic assumptions. More specifically, to model depen-
dencies between object-attribute associations with a common element, one may assume that
object-feature classifications are not realized again at each new judgment, but that they re-
main constant when a person judges which attributes apply to a certain object. Likewise, one
may model dependencies between observations with a common attribute by assuming that
attribute-feature classifications are not realized again at each new judgment, but that they
remain constant when a person judges whether the attribute applies to each of the objects.
Models that assume constant object-feature classifications or constant attribute-feature clas-
sifications per person, model dependencies between object-attribute pairs with a common
element by including qualitative individual differences in the model. In particular, a model
with constant object-feature classifications assumes that persons differ in the pattern of fea-
tures they ascribe to an object. In the same way, a model with constant attribute-feature
classifications assumes that the pattern of features linked to each attribute is a source of
individual differences.
Formally, models in which object-feature classifications or attribute-feature classifications
remain constant across all the judgments made by a person can be described as constrained
latent class models (Formann 1992). Consider for instance a model in which object-feature
classifications remain constant across the judgments made by a person and in which attribute-
feature classifications are renewed at each new judgment made by the person. Let xij =
(xij1, . . . , xijF ) indicate the pattern of features assigned by person i to object j. Assuming
that judgments of different persons are statistically independent, and that judgements Dij =
(Dij1, . . . , DijK) of person i about the attributes that apply to object j are conditionally
independent given xij , the likelihood of a model with constant object-feature classifications
reads:

p(d|σ,ρ) =
∏
i

∏
j

∑
xij

p(xij |σj)
∏
k

(πjk|x)dijk(1− πjk|x)1−dijk (1)

with
p(xij |σj) =

∏
f

(σjf )xijf (1− σjf )1−xijf (2)

and with πjk|x the conditional probability of an object-attribute association which depends
on the decision rule at hand. For instance, assuming a disjunctive communality rule one may
derive that

πjk|x =
∑
yijk

P (Dijk = 1|xij ,yijk)p(yijk|ρk) = 1−
∏
f

(1− xijfρkf ). (3)
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The model defined by (1), (2) and (3) can be regarded as a constrained latent class model with
F binary latent variables (X) at the object-person level and with F binary latent variables
(Y ) at the object-attribute-person level. The model classifies persons in 2F classes for each
object, and it models 2F ×K conditional probabilities with K×F attribute parameters. Note
that a model with constant attribute-feature classifications can be obtained by switching the
role of objects and attributes in Equation 1.
As an alternative one may consider a model in which attribute-feature classifications remain
constant across the judgements made by a person and in which object-feature classifications
are renewed at each new judgements made by the person. Let yik = (yik1, . . . , yikF ) indicate
the pattern of features assigned by person i to attribute k. Assuming that judgements of
different persons are statistically independent, and that judgements Dik = (Di1k, . . . , DiJk)
of person i are conditionally independent given yik, the likelihood of the model reads:

p(d|σ,ρ) =
∏
i

∏
k

∑
yik

p(yik|ρj)
∏
j

(πjk|y)dijk(1− πjk|y)1−dijk (4)

with
p(yik|ρk) =

∏
f

(ρkf )yikf (1− ρkf )1−yikf (5)

and with πjk|y the conditional probability of an object-attribute association which depends
on the decision rule at hand. For instance, assuming a disjunctive communality rule one may
derive that

πjk|y =
∑
xijk

P (Dijk = 1|xijk,yik)p(xijk|σj) = 1−
∏
f

(1− yikfσjf ). (6)

The model defined by (4), (5) and (6) can be regarded as a constrained latent class model with
F binary latent variables (Y ) at the attribute-person level and with F binary latent variables
(X) at the object-attribute-person level. The model classifies persons in 2F classes for each
attribute, and it models 2F × J conditional probabilities with J × F object parameters.
Finally, we note that a latent class extension of the PLFM in which both object-feature
classifications and attribute-feature classifications remain constant within a person is not
feasible if the involved decision rule is deterministic because it is not always possible to define
latent object and attribute classifications (xij ,yik) so that di = C(xij ,yik).

3.2. Modeling heterogeneity

To relax the assumption of homogeneous object-attribute association probabilities among
persons one may use a latent class extension of the basic PLFM that includes class-specific
object and/or attribute parameters (Meulders et al. 2013). Let Zit indicate a binary latent
variable that equals 1 if person i belongs to class t (t = 1, . . . , T ), and 0 otherwise. It is
further assumed that P (Zit = 1) = ξt with

∑
t ξt = 1. Assuming that judgements of different

persons are independent and that, within persons, judgements are conditionally independent
given latent class membership, the likelihood of a model with both class-specific object and
attribute parameters equals

p(d|σ,ρ, ξ) =
∏
i

∑
t

ξt
∏
j

∏
k

(πjk|t)dijk(1− πjk|t)1−dijk (7)
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with πjk|t being the conditional object-attribute association probability which depends on the
decision rule of the model. For instance, using a disjunctive communality rule one may derive
that

πjk|t = 1−
∏
f

(1− σjftρkft). (8)

The assumption that both object and attribute parameters are class-specific implies that the
interpretation of the features may be different in each of the latent classes. As an alternative
one may also constrain the object or attribute parameters in Equation 8 to be homogeneous
across classes. In particular, using only class-specific object parameters the conditional prob-
abilities equal

πjk|t = 1−
∏
f

(1− σjftρkf ).

Likewise, using only class-specific attribute parameters, the conditional probabilities equal

πjk|t = 1−
∏
f

(1− σjfρkft).

A model with only class-specific object or only class-specific attribute parameters may be
interesting from a substantive point of view. For instance, a model with class-specific object
parameters and homogeneous attribute parameters implies that the features have the same
interpretation for all persons, but that persons of different classes may have different prob-
abilities to ascribe a particular feature to an object. When applying the model to analyze
product-by-attribute judgements of consumers, for instance, it could be meaningful to assume
that product perception is driven by the same set of features for all consumers (i.e., there is
a common reality), but that the probability to ascribe a latent feature to a product depends
on the latent class the person belongs to (Meulders et al. 2013).
Finally, note that the model defined by Equation 7 and Equation 8 can be regarded as a
constrained latent class model with T binary latent variables (Z) at the person level and with
2×F binary latent variables (X,Y ) at the object-attribute-person level. The model classifies
persons in T classes, and it models J ×K×T conditional probabilities with J ×F ×T object
parameters and K × F × T attribute parameters.

3.3. Modeling both dependency and heterogeneity

To model heterogeneity in the object-attribute association probability among persons as well
as dependencies between object-attribute pairs with a common element, Meulders et al. (2013)
developed multilevel LCPLFMs with constant object-feature or attribute-feature classifica-
tions that include class-specific object and/or attribute parameters. Consider for instance a
model that assumes constant object-feature classifications per person as well as class-specific
object and attribute parameters. This type of model actually includes two types of person
classifications. First, the model classifies persons in one of T latent classes to model het-
erogeneity in the object and attribute parameters. This (outer) classification of persons is
represented by a T -element vector Zi = (Zi1, . . . , ZiT ) in which Zit equals 1 if person i belongs
to class t and in which Zit equals 0 otherwise. It is further assumed that P (Zit = 1) = ξt with∑
t ξt = 1. Second, a model with constant object-feature classifications classifies persons in 2F

latent classes for each object. This (inner) classification is represented by xij which indicates
the pattern of latent features assigned by person i to object j. Assuming that judgements of
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different persons are independent, and that judgements of the same person are conditionally
independent given latent class membership, the likelihood of this model can be expressed as
follows:

p(d|σ,ρ, ξ) =
∏
i

∑
t

ξt
∏
j

∑
xij

πx|t

[∏
k

(πjk|x,t)dijk(1− πjk|x,t)1−dijk

]
(9)

with
πx|t = P (xij |Zit = 1,σjt) =

∏
f

(σjft)xijf (1− σjft)1−xijf . (10)

and with πjk|x,t a conditional probability that depends on the decision rule involved. More
specifically, for a disjunctive communality rule one may derive that:

πjk|x,t = P (Dijk = 1|xij , Zit = 1,ρkt) = 1−
∏
f

(1− xijfρkft). (11)

3.4. Taxonomy of models

Table 1 provides an overview of (multilevel) LCPLFMs that can be obtained by combining
different dependency and heterogeneity assumptions. The basic PLFM (Maris et al. 1996;
Meulders 2013) is indicated in Table 1 as m0. This model can be estimated with the plfm
function of the plfm package. Models D and E have been described by Meulders et al. (2003)
for three-way three-mode binary data, and by Maris (1999) for two-way two-mode binary
data. Models A to C and m1 to m6 have been described by Meulders et al. (2013). In this
paper we present the function LCplfm which has been added to the plfm package to estimate
disjunctive, conjunctive and additive models m1 to m6 and models D and E. Models that only
allow to model heterogeneity in the model parameters (i.e., models A to C) are not included
in the LCplfm function because they are usually outperformed by models that allow to model
both dependencies between object-attribute pairs with a common element and heterogeneity
in the model parameters (i.e., models m1 to m6).
Why do models m1 to m6 typically outperform model A to C on real data? First, in real data,
object-attribute pairs with a common element (i.e., a common object or attribute) tend to
be correlated and, unlike models A to C, models m1 to m6 are specifically designed to model
such dependencies. Therefore, when applying the LCPLFMs to real data, models m1 to m6
typically have a higher likelihood than models A to C. Second, as the distribution of object-
feature classification patterns (in models m1 to m3) and the distribution of attribute-feature

Class-specific parameters

Object-feature
classification

Attribute-feature
classification None Object Attribute Object and

attribute
renewed renewed m0 A B C
constant renewed D m1 m2 m3
renewed constant E m4 m5 m6

Table 1: Taxonomy of latent class probabilistic latent feature models.
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classification patterns (in models m4 to m6) is modeled using an independence model (see
Equation 2 and Equation 5), modeling dependencies between object-attribute pairs with a
common element does not increase the number of model parameters. That is, assuming T=t
latent classes are used to model heterogeneity among object and/or attribute parameters,
models {A,m1,m4} are equally complex. In the same way, models {B,m2,m5} and models
{C,m3,m6} have the same number of model parameters. Therefore, if models m1 to m6 have
a higher likelihood than models A to C they will also be selected by AIC or BIC because the
models are equally complex.
As some of the models in Table 1 are equivalent, six different algorithms are sufficient to
estimate 24 models (i.e., disjunctive, conjunctive and additive models of type m1 to m6, D
and E). First, three different algorithms (i.e., for disjunctive models m1 to m3) are needed to
estimate disjunctive models m1 to m6 and models D and E. More specifically, by switching
the role of objects and attributes, model m5 can be obtained from m1, m4 can be obtained
from m2, and m6 can be obtained from m3. Furthermore, models D and E can be obtained
respectively by fitting models m1 and m4 with one latent class (T = 1). Second, as πCDjk (1−
σ,ρ) = 1 − πDCjk (σ,ρ) conjunctive models can be obtained by fitting the corresponding
disjunctive model to transformed data D∗ijk = 1−Dijk and by applying a transformation to
the object parameters, namely σ∗ = 1−σ. Third, using the same reasoning as for disjunctive
models, only three algorithms (i.e., for additive models m1 to m3) are needed to estimate
additive models of type m1 to m6, D and E.

4. Latent class probabilistic latent feature analysis

4.1. Components of the package

The R package plfm comprises the following components for conducting latent class proba-
bilistic latent feature analysis:

• The function LCplfm can be used to compute point estimates of disjunctive or conjunc-
tive LCPLFMs with a specific number of features, a specific dependency assumption
(i.e., constant object classification per person or constant attribute classification per
person) and with a specific heterogeneity assumption (i.e., class-specific object param-
eters and/or class specific attribute parameters). In addition, the function computes
standard errors of the parameters as well as criteria for model selection and descriptive
model fit.

• The function stepLCplfm can be used to fit a series of disjunctive, conjunctive or ad-
ditive LCPLFMs with different numbers of features and different numbers of latent
classes.

• There are print and plot methods provided for each function. The plot method of
the LCplfm function, can be used to visualize (class-specific) point estimates of object or
attribute parameters and corresponding 95% confidence intervals (CI) for each feature.
The plot method of the stepLCplfm function can be used to visualize the value of model
selection criteria (i.e., AIC, BIC) or descriptive fit measures for models with different
numbers of latent classes and with different numbers of features.
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4.2. Function for latent class probabilistic latent feature analysis

The function LCplfm can be used to compute parameter estimates for disjunctive, conjunc-
tive or additive LCPLFMs with a particular number of latent features and with a specific
number of latent classes. In addition, the function computes standard errors of the parameter
estimates, as well as criteria for model selection, and measures of descriptive model fit. The
LCplfm function takes the following arguments:

• data is a I × J × K array of binary observations. Observation (i, j, k) equals 1 if
object j (j = 1 . . . , J) is associated to attribute k (k = 1, . . . ,K) according to person i
(i = 1, . . . , I).

• F indicates number of latent features included in the model.

• T indicates the number of latent classes used to classify persons.

• M indicates number of runs that should be conducted using random starting points.

• maprule is used to specify a disjunctive (maprule = "disj"), conjunctive (maprule =
"conj") or additive (maprule = "add") decision rule for the latent class probabilistic
latent feature model.

• emcrit1 is used to specify the convergence criterion for estimating M candidate models
with the EM algorithm.

• emcrit2 is used to specify the convergence criterion for estimating the best model (out
of M models) with the EM algorithm.

• model is used to specify the type of dependency and heterogeneity assumption included
in the model. More specifically, model = 1, model = 2, and model = 3 represent mod-
els with a constant object classification per person and with, respectively, class-specific
object parameters, class-specific attribute parameters, and class-specific object and at-
tribute parameters (i.e., models m1, m2 and m3 in Table 1). Furthermore, model = 4,
model = 5, and model = 6 represent models with a constant attribute classification per
person, and with, respectively, class-specific object parameters, class-specific attribute
parameters and class-specific object and attribute parameters (i.e., models m4, m5 and
m6 in Table 1).

• start.objectparameters is an array of object parameters to be used as a starting
point in each of M runs. The size of the array equals J × F × T ×M when model = 1,
4, 3, 6 and J × F ×M when model = 2, 5. If start.objectparameters = NULL,
randomly generated starting values are used.

• start.attributeparameters is an array of attribute parameters to be used as a start-
ing point in each of M runs. The size of the array equals K × F × T ×M when model
= 2, 5, 3, 6 and K × F ×M when model = 1, 4. If start.attributeparameters
= NULL, randomly generated starting values are used.

• start.sizeparameters is a T ×M -vector of latent class size parameters to be used as
starting point in each of M runs. If start.sizeparameters = NULL, randomly generated
starting values are used.
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• delta indicates the precision used to compute standard errors of the parameters with
the method of finite differences.

• printrun is used to specify printing options. If printrun = TRUE the mapping rule
(i.e., disjunctive, conjunctive or additive), the number of features (F), the number of
latent classes (T) and the number of the run (out of M runs) are printed to the output
screen, whereas printrun = FALSE suppresses the printing.

• update.objectparameters is a binary valued array that indicates for each object pa-
rameter whether it has to be estimated from the data or constrained to the starting
value. A value of 1 means that the corresponding object parameter is estimated and a
value of 0 means that the corresponding object parameter is constrained to the starting
value provided by the user. The size of the array equals J×F ×T when model = 1, 4,
3, 6 and J ×F when model = 2, 5. If update.objectparameters = NULL all object
parameters are estimated from the data.

• update.attributeparameters is a binary valued array that indicates for each attribute
parameter whether it has to be estimated from the data or constrained to the starting
value. A value of 1 means that the corresponding attribute parameter is estimated and
a value of 0 means that the corresponding attribute parameter is constrained to the
starting value provided by the user. The size of the array equals K×F ×T when model
= 2, 5, 3, 6 and K × F when model = 1, 4. If update.attributeparameters =
NULL all attribute parameters are estimated from the data.

• Nbootstrap indicates the number of bootstrap iterations to be used for simulating the
reference distribution of log odds-ratio dependency measures.

EM algorithm for computation of the posterior mode(s) of multilevel LCPLFMs

As the complete-data likelihood of LCPLFMs has a simple structure, it is convenient to com-
pute maximum-likelihood estimates of the model parameters with an EM algorithm (Maris
et al. 1996; Meulders et al. 2003, 2013). As an example, Meulders et al. (2013) provide a
detailed derivation of the EM algorithm for model m1 in Table 1. The derivation of the EM
algorithm for other models in Table 1 is similar.
Furthermore, as maximum likelihood estimates will not always exist in the interior of the
parameter space, it is convenient to impose a convex prior distribution on the model param-
eters as this will guarantee the existence of posterior mode estimates within the interior of
the parameter space. In particular, for the LCPLFM with class-specific object and attribute
parameters we specify the following conjugate convex prior distribution:

p(σ,ρ, ξ) =
∏
j

∏
f

∏
t

Beta(σjft|1 + ασ
JT

, 1 + βσ
JT

)

×
∏
k

∏
f

∏
t

Beta(ρkft|1 + αρ
KT

, 1 + βρ
KT
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with ασ = βσ = αρ = βρ = 1 and γt = 2 (t = 1, . . . , T ). Note that these constants and their
weights in Equation 12 are chosen to obtain the default prior used by the standard software
Latent Gold (Vermunt and Magidson 2005, 2013).

Computation of asymptotic standard errors

Let θ = (σ,ρ, ξ) and let θ̂ denote the posterior mode of the model. The standard error of
the parameter θi can be computed as follows:

SE(θi) =
[
−∂

2log p(θ|d)
∂θ2

i

∣∣∣∣∣
θ̂

]− 1
2

To compute the second derivative of the log posterior with respect to the parameter θi
we use a central difference approximation to numerically differentiate the gradient g(θ) =
∂log p(θ|d)/∂θ. More specifically,

∂2log p(θ|d)
∂θ2

i

≈ g(θ(−i), θi + δ)− g(θ(−i), θi − δ)
2δ

with θ(−i) a vector in which the i-th parameter has been omitted. Section A of the appendix
describes how the gradient g(θ) can be analytically derived for the disjunctive model. For
additive models, the derivation is similar.

Estimation strategy

For F > 1 the posterior distribution of LCPLFMs is always multimodal. Different local
maxima may exist, and in addition, for each local maximum the posterior distribution of a
model with F latent features contains F ! identical posterior modes because the labels of the
latent features can be switched.
As the posterior distribution can be highly multimodal, a two-stage estimation strategy is
used to efficiently locate the model with the highest posterior density. In a first stage, the EM
algorithm is used to estimate M candidate models using random starting points and using the
less strict convergence criterion emcrit1 with default value 10−3. In a second stage, the EM-
algorithm is used to estimate the best model (i.e., with the highest posterior density among
the M candidate models) using the more strict convergence criterion emcrit2 with default
value 10−8. As many local maxima may exist, it is recommended to estimate a sufficiently
high number of candidate models, that is specify M ≥ 50.

Model selection criteria

When applying LCPLFMs to real data one needs to select an appropriate model to describe
the data. As there are many possible models one could start by fitting the basic PLFM to get
an idea about the approximate number of features needed to explain the object × attribute
associations. In a second step, LCPLFMs with different dependency and heterogeneity as-
sumptions could be fitted and model selection criteria could be used to determine the best
among the candidate models. In a third step, descriptive fit measures can be inspected to
further evaluate the validity of the selected model. Finally, as LCPLFMs are often used as
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an exploratory tool, practical or substantive arguments can also play a role to select a fi-
nal model, for instance, meaningful feature interpretation, sufficient size of extracted latent
classes, accuracy of the parameter estimates, and so on.
To choose the best model among a set of candidate LCPLFMs one may use model selection
criteria as AIC (Akaike 1974) or BIC (Schwarz 1978). Both criteria are computed as the sum
of a badness-of-fit term (minus twice the log-likelihood of the fitted model) and a penalty
term which measures the complexity of the model. For AIC and BIC the penalty term equals
2k and k log(I), respectively with k being the number of free model parameters and I being
the number of persons who have judged the object-attribute pairs. AIC and BIC both have
desirable properties. AIC is an efficient model selection criterion. This means that when
the true model is infinite dimensional, the prediction error in the model selected with AIC is
asymptotically the same as the prediction error of the best candidate model. On the other
hand BIC is asymptotically consistent, which means that it will select the true model from
a set of candidate models if the true model is finite dimensional and among the candidate
models (Liu and Yang 2011, p. 2075). A simulation study with LCPLFMs has shown that
BIC has a good performance to select the true model from a set of candidate models (Meulders
et al. 2003). However, in real data applications it is unlikely that the true model is among
the candidate models and hence AIC may be more appropriate than BIC.

Measures of model fit

When evaluating the fit of LCPLFMs we are especially interested in two aspects, (1) the
fit of the model to the marginal object-by-attribute table, and (2) to what extent observed
individual differences are captured by the model.
First, to describe the fit of the model to the marginal object-by-attribute tablet, the LCplfm
function computes the correlation and squared correlation (i.e., variance accounted for (VAF))
between observed and expected frequencies in the marginal object × attribute table.
Furthermore, the plfm function includes an absolute Pearson-χ2 goodness-of-fit test that
can be used to test the null hypothesis that model m0 fits the marginal object × attribute
frequency table. However, with increasing sample size this test may become very powerful to
detect differences between the true and the fitted model, and as the fitted model is usually
incorrect in some sense the test is likely to be significant. Therefore, it may also be interesting
to study the descriptive fit of the model. For the basic PLFM (model m0), the correlation
between observed and expected frequencies in the object × attribute table is a useful measure
of descriptive fit, because it indicates to what extent the latent features included in the model
can model the object × attribute interaction.
In contrast to PLFMs, LCPLFMs do not directly fit the object× attribute table of frequencies.
For instance, an LCPLFM of type m1 models frequencies of patterns dij . The relevant
goodness-of-fit test for this type of model is a Pearson-χ2 test that compares observed and
expected frequencies of the patterns dij . However, as LCPLFMs are usually applied to data
sets with many objects and attributes, the number of patterns dij is usually large (e.g., if
K = 10 there are 210 = 1024 patterns for object j). As a result, the Pearson-chi square
statistic will not have a χ2 distribution because the table of observed frequencies is sparse
and expected frequencies are too small.
Although the LCplfm function does not directly fit the frequencies in the object × attribute ta-
ble it still reports the correlation between observed and expected frequencies for this marginal
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table, because this correlation gives an indication of how well the object × attribute interac-
tion can be explained by the latent features included in the model.
Second, LCPLFMs model observed individual differences by classifying persons with respect
to the pattern of features they ascribe to an object or attribute, or by assuming class-specific
object or attribute parameters. If the involved classifications represent the observed individ-
ual differences well, observed object-attribute associations will be conditionally independent
(i.e., conditional on latent class membership), and dependencies between pairs of observed
associations will match dependencies predicted by the model.
To check whether observed dependencies between pairs of object-attribute associations Dijk

and Dij′k′ are fitted by the model, one may use a parametric bootstrap procedure to simulate
the distribution of the dependencies under the model, and check whether observed dependen-
cies are in the corresponding 100(1− α)% CI.
The dependency between Dijk and Dij′k′ can be measured using the log-odds ratio computed
on the Dijk ×Dij′k′ cross-table (de la Torre 2008):

ORjkj′k′ = log


[
0.5 +∑

iDijkDij′k′
] [

0.5 +∑
i(1−Dijk)(1−Dij′k′)

][
0.5 +∑

iDijk(1−Dij′k′)
] [

0.5 +∑
i(1−Dijk)Dij′k′

]


Note that we add 0.5 to each cell of the cross-table to make sure that log-odds ratio can be
computed if a cell frequency equals 0.
As LCPLFMs especially focus on modeling dependencies between object-attribute associa-
tions with a common object or attribute the LCplfm function reports the observed OR statistic
and the corresponding 95% and 99% simulated CIs for object-attribute pairs with a common
object, that is, ORjkjk′ (j = 1, . . . , J ; k = 1, . . . ,K; k′ = 1, . . . ,K; k < k′) and ORjkj′k

(k = 1, . . . ,K; j = 1, . . . , J ; j′ = 1, . . . , J ; j < j′). OR dependencies between object-attribute
pairs without a common element are omitted from the reporting because the total number of
dependencies can become very large (i.e., if J = K = 30 then JK(JK − 1)/2 = 404550).

4.3. Function for estimating a series of LCPLFMs

The function stepLCplfm can be used to fit a series of disjunctive or conjunctive latent class
probabilistic latent feature models that assume minF to maxF latent features and minT to
maxT latent classes. As stepLCplfm repeatedly calls the LCplfm function, it takes the same
arguments except the number of features and the number of latent classes which are specified
with the following arguments:

• minF is the minimum number of latent features.

• maxF is the maximum number of latent features.

• minT is the minimum number of latent classes.

• maxT is the maximum number of latent classes.
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5. Example: Perception of midsize cars
The list car2 contains data of 147 persons who indicated for each of 12 midsize cars whether
or not they have each of 23 attributes. In an initial analysis we use the basic PLFM (i.e.,
model m0 in Table 1) to model car-attribute associations on the basis of binary latent features.
More specifically, after loading the data, we use the function stepplfm to estimate disjunctive
PLFMs with 1 up to 7 latent features. For each model M (=50) runs with random starting
points are conducted. A set.seed() statement is used to guarantee the reproducibility of
the results.

R> data("car2")
R> set.seed(723756)
R> car2.m0.lst <- stepplfm(freq1 = car2$freq1, freqtot = car2$freqtot,
+ M = 50, minF = 1, maxF = 7, emcrit1 = 10e-5, emcrit2 = 10e-8)

A print of the results shows that a model with 5 latent features has lowest BIC (i.e., 36566)
and that a model with six features has lowest AIC (i.e., 35952). Furthermore, the results
indicate that models with 5 and 6 features fit the frequencies in the marginal car-by-attribute
table rather well (i.e., the correlation between observed and predicted frequencies equals 0.968
and 0.983, respectively), although both models fail to fit the car-by-attribute frequencies in
an absolute sense (χ2 = 433, df = 101, p < 0.01 and χ2 = 278, df = 66, p < 0.01, respectively).

R> print(car2.m0.lst)

INFORMATION CRITERIA:

LogLik LogPost Deviance AIC BIC
F=1 -20295 -20348 40591 40661 40765
F=2 -18752 -18904 37504 37644 37854
F=3 -18134 -18386 36267 36477 36791
F=4 -17975 -18322 35951 36231 36649
F=5 -17846 -18293 35692 36042 36566
F=6 -17766 -18319 35532 35952 36580
F=7 -17731 -18381 35462 35952 36685

PEARSON CHI SQUARE TEST OBJECT X ATTRIBUTE TABLE:

Chisquare df p-value
F=1 5675.831 241 0
F=2 2383.139 206 0
F=3 1006.579 171 0
F=4 671.833 136 0
F=5 433.054 101 0
F=6 277.697 66 0
F=7 207.503 31 0

DESCRIPTIVE FIT OBJECT X ATTRIBUTE TABLE:
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Correlation VAF
F=1 0.510 0.260
F=2 0.816 0.666
F=3 0.924 0.853
F=4 0.951 0.904
F=5 0.968 0.938
F=6 0.983 0.965
F=7 0.988 0.976

In a subsequent analysis, we use LCPLFMs to model person differences in car perception, and
to model dependencies between car-attribute pairs with a common element. Although the six-
feature model has a lower AIC value, we present the results for the five-feature model because
interpretation and descriptive fit of both models are similar. More specifically we use the
function stepLCplfm to estimate disjunctive five-feature latent class PLFMs with only class-
specific car parameters (T = 1, . . . , 3) and with either a constant car-feature classification per
person (i.e., model m1) or a constant attribute-feature classification per person (i.e., model
m4). The assumption that attribute parameters are constrained to be equal across classes is
convenient as it implies that the latent features have the same interpretation for each of the
latent classes.

R> set.seed(91673)
R> car2.m1.lst <- stepLCplfm(data = car2$data, M = 50, minF = 5, maxF = 5,
+ minT = 1, maxT = 3, printrun = TRUE, model = 1, Nbootstrap = 5000)
R> set.seed(27492)
R> car2.m4.lst <- stepLCplfm(data = car2$data, M = 50, minF = 5, maxF = 5,
+ minT = 1, maxT = 3, printrun = TRUE, model = 4, Nbootstrap = 5000)

To further inspect the fit of the models we may apply the summary method to the result of
each analysis:

R> summary(car2.m1.lst)

LogLik LogPost Deviance AIC BIC Correlation VAF
model=1 F=5 T=1 -17935 -17976 35871 36221 36744 0.95 0.9
model=1 F=5 T=2 -17794 -17836 35588 36060 36765 0.95 0.9
model=1 F=5 T=3 -17740 -17783 35480 36074 36962 0.95 0.9

P.ORattpair.in95CI P.ORobjpair.in95CI
model=1 F=5 T=1 0.83 0.78
model=1 F=5 T=2 0.83 0.80
model=1 F=5 T=3 0.84 0.82

P.ORattpair.in99CI P.ORobjpair.in99CI
model=1 F=5 T=1 0.93 0.91
model=1 F=5 T=2 0.94 0.91
model=1 F=5 T=3 0.94 0.92

R> summary(car2.m4.lst)
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LogLik LogPost Deviance AIC BIC Correlation
model=4 F=5 T=1 -17455 -17485 34909 35259 35782 0.96
model=4 F=5 T=2 -17258 -17290 34515 34987 35693 0.95
model=4 F=5 T=3 -17172 -17207 34343 34937 35826 0.95

VAF P.ORattpair.in95CI P.ORobjpair.in95CI
model=4 F=5 T=1 0.92 0.83 0.89
model=4 F=5 T=2 0.91 0.84 0.89
model=4 F=5 T=3 0.91 0.85 0.90

P.ORattpair.in99CI P.ORobjpair.in99CI
model=4 F=5 T=1 0.93 0.97
model=4 F=5 T=2 0.95 0.97
model=4 F=5 T=3 0.95 0.97

As can be seen from a comparison of AIC and BIC values, LCPLFMs with a constant
attribute-feature classification per person (i.e., model = 4) outperform LCPLFMs with a
constant car-feature classification per person (i.e., model = 1) or basic PLFMs in which both
car-feature classifications and attribute-feature classifications are renewed at each judgment
made by a person. In addition, model m4 can better fit dependencies between object-attribute
pairs with a common attribute than model m1. More specifically, for 1-, 2- and 3- class models
of type m1, 78%, 80%, 82% of the observed OR dependencies between pairs with a common
attribute are in the simulated 95% CI, compared to 89%, 89% and 90% for model m4. On the
other hand, models m1 and m4 perform equally well in fitting dependencies between object-
attribute pairs with a common object. In particular, for 1-, 2- and 3- class models of type
m1, 83%, 83%, 84% of the observed OR dependencies between pairs with a common object
are in the simulated 95% CI, compared to 83%, 84% and 85% for model m4.
Furthermore, among models with constant attribute-feature classification, there is evidence
for heterogeneity of car parameters across respondents. In particular AIC is lowest for the
three-class model (i.e., 34937), whereas BIC is lowest for the two-class model (i.e., 35693). In
what follows, the parameters of the five-feature two-class model will be interpreted more in
detail. We present the results of the two-class solution rather than the three-class solution
because one of the classes in the three-class solution is very small (4% of the respondents),
resulting in inaccurate estimates for the corresponding car parameters.
When using the stepLCplfm function to compute a series of disjunctive (maprule = "disj"),
conjunctive (maprule = "conj") or additive (maprule = "add") LCPLFMs with minF up to
maxF features and minT up to maxT latent classes, the results of subsequent LCplfm analyses
are stored in a matrix of lists with maxF-minF+1 rows and maxT-minT+1 columns. Each list is
an object of class "LCplfm". Using names(), a list of all attached entries can be obtained. For
instance, for the five-feature two-class model with class-specific parameters and a constant
attribute-feature classification per person:

R> names(car2.m4.lst[[1, 2]])

[1] "call" "logpost.runs" "best"
[4] "objpar" "attpar" "sizepar"
[7] "SE.objpar" "SE.attpar" "SE.sizepar"
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[10] "gradient.objpar" "gradient.attpar" "gradient.sizepar"
[13] "fitmeasures" "postprob" "margprob.JK"
[16] "condprob.JKT"

The listed entries have the following contents:

• call contains the parameters used to call the function.

• logpost.runs is a list containing the logarithm of the posterior density for each of the
M computed models.

• best is an index which indicates the model with the highest posterior density among
each of the M computed models.

• objpar is a J × F matrix or a J × F × T array of estimated object parameters for the
best model.

• attpar is a K × F matrix or a K × F × T array of estimated attribute parameters for
the best model.

• sizepar is a T -vector of estimated class size parameters for the best model.

• SE.objpar is a J ×F matrix or a J ×F × T array of estimated standard errors for the
object parameters of the best model.

• SE.attpar is a K × F matrix or a K × F × T array of estimated standard errors for
the attribute parameters of the best model.

• SE.sizepar is a T -vector of estimated standard errors for the class size parameters of
the best model.

• gradient.objpar is a J × F matrix or a J × F × T array containing the gradients of
object parameters for the best model.

• gradient.attpar is a K × F matrix or a K × F × T array containing the gradients of
attribute parameters for the best model.

• gradient.sizepar is a T -vector containing the gradients of class size parameters for
the best model.

• fitmeasures is a list of fit measures for the best model including log-likelihood, log
posterior density, deviance, information criteria (AIC and BIC), and two measures of
descriptive fit on the object-by-attribute table of frequencies (i.e., correlation between
observed and expected frequencies and variance accounted for by the model).

• postprob is a I × T matrix of posterior probabilities for the best model.

• margprob.JK is a J ×K matrix of expected marginal object-attribute association prob-
abilities for the best model.

• condprob.JKT is a J ×K×T array of expected conditional object-attribute association
probabilities (i.e., expected probability of object-attribute association given latent class
membership).



Journal of Statistical Software 21

• report.OR.attpair is a matrix that contains per object, for all attribute pairs, the
observed OR dependency (OR.obs), the expected OR dependency (OR.mean) and the
upper and lower bounds of the corresponding simulated 95 and 99 percent confidence
interval (OR.p025, OR.p975, OR.p005, OR.p995).

• report.OR.objpair is a matrix that contains per attribute, for all object pairs, the
observed OR dependency (OR.obs), the expected OR dependency (OR.mean) and the
upper and lower bounds of the corresponding simulated 95 and 99 percent confidence
interval (OR.p025, OR.p975, OR.p005, OR.p995).

In order to interpret the latent features, one may use the plot method to visualize point
estimates and a 95% CI of car- and attribute parameters for a specific feature. For instance,
to visualize the car- and attribute parameters for feature 1 one may use the following code:

R> plot(car2.m4.lst[[1, 2]], element = "attribute", feature = 1,
+ positionlabel = -0.6, main = "Attribute parameters feature 1")
R> plot(car2.m4.lst[[1, 2]], element = "object", feature = 1,
+ main = "Car parameters feature 1")

The visualization of the parameters for other features is similar. The top panels of Figure 1
to Figure 5 show point estimates and 95% CIs for the attribute parameters of feature 1 to
feature 5, respectively. The bottom panels of Figure 5 contain point estimates and 95% CIs
for the car parameters of the two latent classes. Note that, classes 1 and 2 contain respectively
18% and 82% of the persons in the sample.
As can be seen from an inspection of estimated attribute parameters in Figure 1 to Figure 5,
the latent features have a meaningful interpretation. In particular, feature 2 is ascribed to
environmentally friendly cars with high fuel efficiency that have low CO2 emissions (e.g.,
‘Toyota Prius’). Feature 1 and feature 3 are similar in that they are ascribed to comfortable
and spacious cars that are suited for family use. However, these features also have a different
interpretation as feature 1 is ascribed to cars that are also being perceived as safe and reliable
(e.g., ‘Volkswagen Passat’) whereas feature 3 is ascribed to cars that are also easy to exit or
enter. Feature 4 and feature 5 are similar in that they are ascribed to luxurious sporty cars
with a nice design. In contrast, these features also have a different interpretation as feature
5 is ascribed to cars that are also being perceived as powerful and as having a high status
and a high trade-in value (e.g., ‘Mercedes C-Class’, ‘BMW Series 3’, and ‘Audi A4’) whereas
feature 4 (which is ascribed to ‘Peugeot 508’) is not linked to these attributes.
Further inspection of the car parameters indicates that, depending on the latent class they
belong to, persons may have a different perception of specific car models. For instance, unlike
persons of class 1, persons of class 2 have a much higher probability to ascribe feature 3 to a
‘Citroen C5’ (i.e., 0.57 versus 0.02). In contrast, persons of class 1 are more likely to ascribe
feature 1 to a ‘Citroen C5’ (i.e., 0.34 versus 0.10). Hence persons of class 2 perceive the
‘Citroen C5’ as a comfortable and spacious family car that is also easy to exit or enter, but
that is not particularly reliable or safe. On the other hand, persons of class 1 perceive the
‘Citroen C5’ as a comfortable, spacious family car that is also reliable and has good safety,
but that is not particularly easy to exit or enter. As another example, we see that persons
of class 2 are more likely to ascribe feature 5 (luxurious, sporty, nice design, powerful, high
status, high trade-in value) to ‘Mercedes C-class’, ‘Audi A4’ and ‘BMW Series 3’ than persons
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Figure 1: Point estimates and 95% confidence intervals for attribute parameters (top panel)
and car parameters (bottom panel) of feature 1.
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Figure 2: Point estimates and 95% confidence intervals for attribute parameters (top panel)
and car parameters (bottom panel) of feature 2.
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Figure 3: Point estimates and 95% confidence intervals for attribute parameters (top panel)
and car parameters (bottom panel) of feature 3.
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Figure 4: Point estimates and 95% confidence intervals for attribute parameters (top panel)
and car parameters (bottom panel) of feature 4.
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Figure 5: Point estimates and 95% confidence intervals for attribute parameters (top panel)
and car parameters (bottom panel) of feature 5.
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of class 1. On the other hand, persons of class 1 are more likely to ascribe feature 4 (luxurious,
sporty, nice design, comfortable but lacking high status, high trade-in value) to ‘BMW Series
3’ than persons of class 2.

6. Example: Determinants of anger-related behavior

As a second example we analyze data on the situational determinants of anger-related behavior
(Kuppens et al. 2004). The data, which are stored in the list anger2, consist of the binary
judgements of 115 first-year psychology students who indicated whether or not they would
display each of 14 anger-related behaviors when being angry at someone in each of 9 situations.
The 14 behaviors consist of 7 pairs that reflect a particular behavior type that can be elicited in
situations in which one is angry at someone (1) anger-out (you flew off the handle, you started
a fight), (2) avoidance (you avoided a confrontation, you went out of the other’s way), (3)
social sharing (you unburdened your heart to others, you told others what had happened),
(4) assertive behavior (you said what was bothering you in a direct and sober way, you
calmly explained what was bothering you), (5) indirect behavior (you showed something was
bothering you without saying anything, you started to sulk), (6) anger-in (you suppressed
your anger, you bottled up your anger), and (7) reconciliation (you reconciled, you talked
things out). The 9 situations are constructed by crossing the levels of two factors with three
levels: (1) the extent to which one likes the instigator of anger (like, unfamiliar, dislike), and
(2) the status of the instigator of anger (lower status, equal status, higher status).
An important goal of personality research is to identify personality types with stable situation-
behavior relations (Mischel et al. 2002). As will be illustrated in this section, LCPLFMs
are especially suited to meet this challenge. First, they aim for a parsimonious description
of situation-behavior associations using latent features that represent basic behavior types.
Second, they allow to model heterogeneity in the situation-behavior association probability
by assuming latent person classes with class-specific situation-feature and/or behavior-feature
parameters. Note that in the present example behavior-feature parameters indicate to what
extent a behavior reflects a certain behavior type, and situation-feature parameters indicate
to what extent a certain behavior type is appropriate in a situation.
To study the occurrence of the 7 behavior types hypothesized in the design of the study across
situations we will adopt a confirmatory approach. In particular we use a model with 7 latent
features each of which represents a behavior type hypothesized in the study. Furthermore, we
assume that a behavior-feature parameter equals 0 if the behavior does not reflect the behavior
type hypothesized in the study. Table 2 shows the matrix of behavior-feature parameters to
be estimated assuming that these parameters are equal across persons. On the other hand, as
we want to study to what extent situations affect the occurrence of specific behavior types and
how this differs among persons, we consider a model with class-specific situation parameters.
To conduct the analysis we first load the data

R> data("anger2")

Next, we create a matrix that indicates which behavior parameters should be updated in the
course of the estimation process
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Behavior F1 F2 F3 F4 F5 F6 F7
Fly off the handle ρ11 0 0 0 0 0 0
Start a fight ρ21 0 0 0 0 0 0
Avoid a confrontation 0 ρ32 0 0 0 0 0
Go out of the other’s way 0 ρ42 0 0 0 0 0
Unburden your heart to others 0 0 ρ53 0 0 0 0
Tell others what has happened 0 0 ρ63 0 0 0 0
Say what is bothering you 0 0 0 ρ74 0 0 0
Calmly explain what is bothering you 0 0 0 ρ84 0 0 0
Show something bothers you without speaking 0 0 0 0 ρ95 0 0
Start to sulk 0 0 0 0 ρ10,5 0 0
Suppress your anger 0 0 0 0 0 ρ11,6 0
Bottle up your anger 0 0 0 0 0 ρ12,6 0
Reconcile 0 0 0 0 0 0 ρ14,7
Talk things out 0 0 0 0 0 0 ρ14,7

Table 2: Matrix of behavior parameters assuming latent features reflect the behavior types
hypothesized in the study.

R> update.att <- matrix(c(
1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 1), ncol = 7, byrow = TRUE)

Finally, we use the function LCplfm to estimate disjunctive seven-feature LCPLFMs with class
specific situation parameters (T = 1, . . . , 3) and with a constant situation-feature classification
per person (i.e., model m1). For each model M (= 50) runs using random starting points are
conducted. To constrain part of the behavior parameters to equal 0 as indicated in Table 2,
we specify starting values close to zero (i.e., 10−6) for parameters that are not updated in the
course of the estimation process.
In particular, the following code can be used to subsequently estimate models with one up to
three latent classes

R> set.seed(571125)
R> start.att1 <- array(runif(14 * 7 * 50), c(14, 7, 50))
R> start.att1[update.att %o% rep(1, 50) == 0] <- 1e-6
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R> m1.constr.T1 <- LCplfm(data = anger2$data, M = 50, F = 7, T = 1,
+ printrun = TRUE, model = 1, update.attributeparameters = update.att,
+ start.attributeparameters = start.att1, Nbootstrap = 5000)
R> set.seed(837182)
R> start.att2 <- array(runif(14 * 7 * 50), c(14, 7, 50))
R> start.att2[update.att %o% rep(1, 50) == 0] <- 1e-6
R> m1.constr.T2 <- LCplfm(data = anger2$data, M = 50, F = 7, T = 2, printrun
+ = TRUE, model = 1, update.attributeparameters = update.att,
+ start.attributeparameters = start.att2, Nbootstrap = 5000)
R> set.seed(155983)
R> start.att3 <- array(runif(14 * 7 * 50), c(14, 7, 50))
R> start.att3[update.att %o% rep(1, 50) == 0 ] <- 1e-6
R> m1.constr.T3 <- LCplfm(data = anger2$data, M = 50, F = 7, T = 3,
+ printrun = TRUE, model = 1, update.attributeparameters = update.att,
+ start.attributeparameters = start.att3, Nbootstrap = 5000)

Inspection of the results shows that models with 1, 2 and 3 latent classes have AIC values
equal to 16265, 16051 and 15941 and BIC values equal to 16476, 16438 and 16504, respec-
tively. Hence the three class model has lowest AIC and the two-class model has lowest BIC.
Furthermore, for models with 1, 2 and 3 classes 85%, 89% and 91% of the OR dependencies
between object-attribute pairs with a common object are in the simulated 99% CI and 53%,
64% and 73% of the OR dependencies between pairs with a common attribute are in the
simulated 99% CI. Finally, models with 1, 2 and 3 latent classes all explain 93% of the vari-
ance in the observed situation-behavior frequency table. Although the three-class model has
lowest AIC and yields a somewhat better fit to observed OR dependencies, we will further
discuss the two-class model (with lowest BIC) as the latent classes in this model are easier
to interpret. Note that the first and second latent class contain respectively 34% and 66% of
the students in the sample.
To evaluate whether the behaviors included in the study actually measure the hypothesised
behavior types of the study design, we may inspect the estimated behavior parameters and
the corresponding standard errors.

R> round(m1.constr.T2$attpar, 2)

F1 F2 F3 F4 F5 F6 F7
fly off the handle 0.72 0.00 0.00 0.00 0.00 0.00 0.00
fight 0.55 0.00 0.00 0.00 0.00 0.00 0.00
avoid 0.00 0.67 0.00 0.00 0.00 0.00 0.00
leave 0.00 0.81 0.00 0.00 0.00 0.00 0.00
unburden heart 0.00 0.00 0.81 0.00 0.00 0.00 0.00
tell story 0.00 0.00 0.91 0.00 0.00 0.00 0.00
explain in direct/sober way 0.00 0.00 0.00 0.76 0.00 0.00 0.00
calmly explain 0.00 0.00 0.00 0.70 0.00 0.00 0.00
show that something bothers you 0.00 0.00 0.00 0.00 0.62 0.00 0.00
sulk 0.00 0.00 0.00 0.00 0.29 0.00 0.00
suppress anger 0.00 0.00 0.00 0.00 0.00 0.86 0.00
bottle up anger 0.00 0.00 0.00 0.00 0.00 0.59 0.00
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reconcile 0.00 0.00 0.00 0.00 0.00 0.00 0.91
talk things out 0.00 0.00 0.00 0.00 0.00 0.00 0.81

R> round(m1.constr.T2$SE.attpar, 2)

F1 F2 F3 F4 F5 F6 F7
fly off the handle 0.02 0.00 0.00 0.00 0.00 0.00 0.00
fight 0.02 0.00 0.00 0.00 0.00 0.00 0.00
avoid 0.00 0.02 0.00 0.00 0.00 0.00 0.00
leave 0.00 0.02 0.00 0.00 0.00 0.00 0.00
unburden heart 0.00 0.00 0.02 0.00 0.00 0.00 0.00
tell story 0.00 0.00 0.01 0.00 0.00 0.00 0.00
explain in direct/sober way 0.00 0.00 0.00 0.02 0.00 0.00 0.00
calmly explain 0.00 0.00 0.00 0.02 0.00 0.00 0.00
show that something bothers you 0.00 0.00 0.00 0.00 0.02 0.00 0.00
sulk 0.00 0.00 0.00 0.00 0.02 0.00 0.00
suppress anger 0.00 0.00 0.00 0.00 0.00 0.02 0.00
bottle up anger 0.00 0.00 0.00 0.00 0.00 0.02 0.00
reconcile 0.00 0.00 0.00 0.00 0.00 0.00 0.01
talk things out 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Hence, we can conclude that behavior parameters are accurately estimated (i.e., standard
errors are small) and that the link between the behaviors and the assumed behavior type is
generally rather strong, except for the behavior ‘starting to sulk’, which is only weakly linked
(0.29) to the intended behavior type (i.e., indirect behavior).
To study to what extent situations affect the occurrence of specific behavior types and to
evaluate to what extent these situation-behavior relations differ across persons, we visualize
the situation-feature parameters using the plot method of the LCplfm function:

R> par(mfrow = c(2, 2), pty = "s")
R> plot(m1.constr.T2, element = "object", feature = 1, main = "anger-out",
+ positionlabel = -0.5, xlegend = "topright", y.intersplegend = 0.7,
+ cexsymb = 0.8)
R> plot(m1.constr.T2, element = "object", feature = 4,
+ main = "assertive behavior", positionlabel = -0.5,
+ xlegend = "topright", y.intersplegend = 0.7, cexsymb = 0.8)
R> plot(m1.constr.T2, element = "object", feature = 7,
+ main = "reconciliation", positionlabel = -0.5, xlegend = "topright",
+ y.intersplegend = 0.7, cexsymb = 0.8)
R> par(mfrow = c(2, 2), pty = "s")
R> plot(m1.constr.T2, element = "object", feature = 2, main = "avoidance",
+ positionlabel = -0.5, xlegend = 0.4, ylegend = 45.5,
+ y.intersplegend = 0.7, cexsymb = 0.8)
R> plot(m1.constr.T2, element = "object", feature = 5, main =
+ "indirect behavior", positionlabel = -0.5, xlegend = 0.4,
+ ylegend = 45.5, y.intersplegend = 0.7, cexsymb = 0.8)
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Figure 6: Point estimates and 95% confidence intervals of situation parameters for approach
behaviors anger-out, assertion and reconciliation.

R> plot(m1.constr.T2, element = "object", feature = 6, main = "anger-in",
+ positionlabel = -0.5, xlegend = 0.4, ylegend = 45.5,
+ y.intersplegend = 0.7, cexsymb = 0.8)
R> plot(m1.constr.T2, element = "object", feature = 3, main =
+ "social sharing", positionlabel = -0.5, xlegend = 0.4, ylegend = 45.5,
+ y.intersplegend = 0.7, cexsymb = 0.8)

Figure 6 shows the situation parameters for so-called approach behaviors (i.e., anger-out,
assertion and reconciliation) and Figure 7 displays the situation parameters for so-called
avoidance behaviors (i.e., avoidance, indirect behavior, anger-in) and social sharing.
As can be seen in Figure 6 and Figure 7 the probability that a certain behavior type is con-
sidered appropriate in a situation by a person depends on the latent class the person belongs
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Figure 7: Point estimates and 95% confidence intervals of situation parameters for avoidance
behaviors (avoidance, indirect behavior, anger-in) and social sharing.

to and on situation characteristics. First, it turns out that the two latent classes can be
interpreted as an ‘approach’ and an ‘avoidance’ class. That is, when being angry at someone,
persons in class 1 are generally more likely to consider approach behaviors appropriate, and
persons in class 2 are more likely to consider avoidance behaviors and social sharing appropri-
ate. Second, situation characteristics have a systematic effect on the extent to which behavior
types are considered appropriate in the situation. Anger-in behaviors, for instance, are more
considered appropriate if the status of the person one is angry with increases. In the same
way, anger-out behaviors are more considered appropriate if the status of the person one is
angry with decreases. Assertive behaviors are more likely considered adequate if the person
one is angry with is liked or if he/she has a lower status. Reconciliation is especially consid-
ered appropriate if one likes the person one is angry with and it is considered inappropriate
if the person one is angry with has a higher/equal status and is not liked/unfamiliar.
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7. Example: Simulated data

When applying LCPLFMs one may wonder to what extent a model using a specific decision
rule can fit data generated by another decision rule, and relatedly, which decision rule is more
flexible to fit data generated by other decision rules. Furthermore, one may wonder about
the quality of the parameter recovery when the fitted model involves a correct or incorrect
decision rule.
To research these questions, we conduct a small simulation study. Data generated using a
disjunctive, conjunctive or additive decision rule are fitted using models with a disjunctive,
conjunctive or additive rule. Apart from the decision rule, true and fitted models are assumed
to be equivalent. That is, true and fitted models always have the same number of features F
(F= 1, . . . , 4) and always are of type m1 (i.e., assuming constant object-feature classification
and class-specific object parameters) with T= 2. For each of 12 true models (i.e., disjunctive,
conjunctive and additive models with 1 up to 4 features) 100 data sets are generated using
randomly sampled true parameter values and assuming 10 (= J) objects, 15 (= K) attributes
and 200 (= I) persons. Each model is fitted using M= 40 runs of the EM-algorithm with
random starting points.
The following code illustrates the simulations that are conducted for the true disjunctive
model with 2 features:

R> J <- 10
R> K <- 15
R> I <- 200
R> F <- 2
R> T <- 2
R> M <- 40
R> Niter <- 100
R> outgenDC.F2 <- array(rep(0, Niter * 11 * 3), c(Niter, 3, 11))
R> dimnames(outgenDC.F2)[[2]] <- c("DC", "CD", "ADD")
R> set.seed(972645)
R> for (iter in 1 : Niter){
+ objpar <- array(runif(J * F * T),c(J, F, T))
+ attpar <- matrix(runif(K * F), c(K, F))
+ sizepar <- rep(1 / T, T)
+ gendatDC <- gendatLCplfm(N = I, objpar = objpar,
+ attpar = attpar, sizepar = sizepar, maprule = "disj", model = 1)
+ mDC <- LCplfm(data = gendatDC$data, F = F, T = T, model = 1,
+ maprule = "disj", M = M)
+ mCD <- LCplfm(data = gendatDC$data, F = F, T = T, model = 1,
+ maprule = "conj", M = M)
+ mADD <- LCplfm(data = gendatDC$data, F = F, T = T, model = 1,
+ maprule = "add", M = M)
+ outgenDC.F2[iter, 1, ] <- mDC$fitmeasures
+ outgenDC.F2[iter, 2, ] <- mCD$fitmeasures
+ outgenDC.F2[iter, 3, ] <- mADD$fitmeasures
+ }
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Figure 8: Boxplot of likelihood values for disjunctive (DC), conjunctive (CD) and additive
(ADD) models fitted to data generated from a disjunctive (DC, left column), conjunctive
(CD, center column) or additive model (ADD, right column). True and fitted models have
the same number of features F (F = 1, . . . , 4) and are always of type m1 with T = 2.

Figure 8 displays a boxplot of the likelihood values for disjunctive, conjunctive and additive
models fitted to data generated from a disjunctive, conjunctive or additive model. Note that
the models presented in each boxplot always have the same number of parameters and so
likelihood values are a valid basis for model comparison.
First, the results show that one-feature disjunctive and additive models fit data gener-
ated by the one-feature additive (or disjunctive) model equally well. This could be ex-
pected because one-feature additive and disjunctive models are formally equivalent (i.e.,
CDC(xij ,yijk) = CADD(xij ,yijk) = xij1yijk1). On the other hand, data generated by the
one-feature conjunctive model cannot be fitted well by a disjunctive or additive model, and
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data generated by the one feature disjunctive and additive model cannot be fitted well by the
one-feature conjunctive model.

Second, the results indicate that, when the true model is disjunctive or conjunctive, models
with a correct decision rule will outperform models with an incorrect decision rule. Further-
more, additive models fit data generated from disjunctive (conjunctive) models less well than
conjunctive (disjunctive) models.

Third, the results indicate that when the true model is additive, the additive model only
has a slightly better fit than the disjunctive or conjunctive model. In fact, especially the
disjunctive model can fit data generated by the additive model well. Moreover, the difference
in fit between additive, disjunctive and conjunctive models decreases if the number of features
increases.

In sum, we may conclude that when F > 1 and with an increasing number of features, additive
models become less flexible to fit data generated from disjunctive or conjunctive models. In
addition, with an increasing number of features in the true model, conjunctive and especially
disjunctive models can fit data generated by the additive model rather well. Finally, we note
that other fit measures as the proportion of variance accounted for in the J ×K table and
the proportion of OR dependencies between object-attribute pairs with a common object or
attribute that are in the simulated 95% CI lead to the same conclusions.

Finally, further inspection of (a sample of) the simulations shows that parameter recovery is
usually very good (i.e., correlations between true and estimated object/attribute parameters
of 0.99) when the decision rule of the fitted model is also used for generating the data. Note
however, that for models with F > 2 it may be required to (manually) switch the feature/class
labels of the estimated model so that they match the true feature/class labels.

On the other hand, when the decision rule of the estimated model is not the same as the
decision rule of the true model, parameter recovery of object/attribute parameters is usually
poor. In particular, fitting a disjunctive (conjunctive) model to data generated by a conjunc-
tive (disjunctive) model often leads to a poor recovery of object and attribute parameters.
This is probably because the probability of an observed association is a very different function
of the object and attribute parameters in disjunctive and conjunctive models. On the other
hand, when fitting a disjunctive (additive) model to data generated by an additive (disjunc-
tive) model, correlations between true and estimated parameters may be rather high (i.e.,
> 0.85), but estimated object/attribute parameters may have considerable bias. Finally, note
that recovery of true latent class sizes is generally quite good, also if the incorrect decision
rule is used.

To summarize, parameter recovery of object/attribute parameters is expected to be satis-
factory if the true model involving the correct decision rule is used for fitting the data and
is expected to be poor if a model with an incorrect decision rule is fitted. Note that the
poor recovery of models with an incorrect decision rule should not be considered problematic
because the simulation study shows that models with a correct decision rule will generally
fit better than models with an incorrect decision rule. In addition, a meaningful substantive
interpretation of the features should also help to select the appropriate decision rule.
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8. Discussion
For LCPLFMs several types of model extensions could be interesting to pursue in future
research. A first extension is related to modeling correlations among the latent object or
attribute variables. Currently, the models included in the LCplfm function all use an inde-
pendence model for the marginal distribution of the latent feature patterns (see Equation 2
and Equation 5). Using an independence model has the important advantage that models
are parsimonious and that objects and attributes are described using a limited number of
parameters. However, if needed correlations among latent object or attribute variables can
be modeled in several ways. As an example we consider modeling correlations among the
latent object variables in models of type m1. A first approach to model correlations among
the latent variables Xij1, . . . , XijF is to specify a saturated model for the 2F patterns xij ,
that is p(xij |σj) = σjq with q = 1, . . . , 2F and ∑q σjq = 1 (Maris 1999). A disadvantage of
this approach is that the number of parameters increases rapidly as a function of the num-
ber of latent features, leading to overparameterized models. A second approach is to model
the multinomial probability p(xij |σj) with a multinomial logit model including main-effects,
second-order interactions, third-order interactions and so on (Vermunt and Magidson 2005).
For instance, the following multinomial logit model includes main-effects and second-order
interactions among the latent variables Xij1, . . . , XijF :

p(xij |σj) =
exp

(∑
f∈h xijfσjf +∑

f∈h,f ′∈h,f<f ′ xijfxijf ′σjff ′

)
∑

xij
exp

(∑
f∈h xijfσjf +∑

f∈h,f ′∈h,f<f ′ xijfxijf ′σjff ′

)
with h = {1, . . . , F}. LCPLFMs using this kind of parameterization to include interactions
among latent variables can be estimated using the syntax module of Latent Gold (Vermunt
and Magidson 2013). For an example of estimating LCPLFMs with Latent Gold see (Meulders
et al. 2013). A possible drawback of models including interactions among latent variables is
that selecting the model with the appropriate correlation structure may be difficult as there are
many alternative models. A third approach to model correlation among the latent variables
is to use a mixture of independence models with class-specific parameters, that is, assuming
a mixture with Q components q = 1, . . . , Q:

p(xij |σj) =
Q∑
q=1

γq
∏
f

(σjfq)xijf (1− σjfq)1−xijf .

LCPLFMs that use a mixture to model the marginal distribution of the latent feature patterns
can be estimated using the syntax module of Latent Gold (Vermunt and Magidson 2013).
A second extension that may be of interest is adapting LCPLFMs for other data structures.
The models that are now included in the LCplfm function have been developed to analyze
fully crossed binary three-way three-mode data. However, it could for instance be interesting
to adapt the models to the case of nested binary two-way three-mode data. An example of
such data are respondents i (i = 1, . . . , Ij) of country j (j = 1, . . . , J) who indicate for k
(k = 1, . . . ,K) aspects of national pride (e.g., the performance of the economy, the quality of
the social security system, quality of the educational system, an effective health-care system,
a powerful army, past achievements in sports, science etc.) whether or not they take pride in
their country with respect to this aspect. Let the binary variable Dijk equal 1 if respondent i
of country j is proud of his/her country with respect to aspect k, and 0 otherwise. Using an
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LCPLFM to model the data we assume that pride in the K aspects can be explained from F
more basic sources of national pride (e.g., being proud about past achievements, being proud
about nowadays achievements, etc.). Suppose the binary latent variable Xijf ∼ Bern(σjf )
equals 1 if respondent i of country j takes pride in the basic source f , and 0 otherwise.
Furthermore, the latent variable Yijkf ∼ Bern(ρkf ) equals 1 if aspect k measures the basic
source of pride f when respondent i of country j judges statement k, and 0 otherwise. Using
a disjunctive LCPLFM we assume that a respondent is proud of an aspect if he/she takes
pride in at least one basic source of pride measured by the aspect. An LCPLFM that models
dependencies among the responses of each respondent has the following likelihood:

p(d|σ,ρ) =
J∏
j=1

Ij∏
i=1

∑
xij

p(xij |σ)
K∏
k=1

p(dijk|xij ,ρk).

The previous model assumes measurement invariance because aspect-feature parameters ρkf
are the same for respondents of different countries. The measurement invariance assumption
can now be relaxed by assuming that respondents belong to latent classes with class-specific
aspect-feature parameters. Let Zijt be equal to 1 if respondent i of country j belongs to class
t (t = 1, . . . , T ), and 0 otherwise. Furthermore it is assumed that P (Zijt = 1|ξ) = ξt with∑
t ξt = 1 and that Yijkf |Zijt = 1 ∼ Bern(ρkft). An LCplfm that models dependencies among

the responses of each respondent, and that relaxes the assumption of measurement invariance
by assuming class-specific aspect-feature parameters has the following likelihood:

p(d|σ,ρ, ξ) =
J∏
j=1

Ij∏
i=1

∑
t

ξt
∑
xij

p(xij |σ)
K∏
k=1

p(dijk|xij , Zijt = 1,ρkt).

Third, the present paper uses a latent class extension of PLFMs for modeling qualitative
individual differences in object or attribute classification (i.e., the pattern of features a person
assigns to an object or attribute) and for modeling person heterogeneity in object and/or
attribute parameters. As PLFMs are actually constrained latent class models, using a latent
class approach for modeling qualitative individual differences and person heterogeneity in the
model parameters was straightforward. An advantage of using a latent class approach is that
individual differences can be described in terms of person types. In domains as personality
psychology or marketing this may be a natural way to proceed. However, a disadvantage
of the latent class approach is that many local maxima may exist leading to many different
solutions with a comparable fit. Furthermore, the assumption that reality is categorical may
be unrealistic. As alternative, it could be interesting to investigate how a random effects
approach can be used for modeling person heterogeneity in object or attribute parameters of
(LC)PLFMs. Furthermore, it would be interesting to compare existing LCPLFMs or future
random effects extensions with (random effects) structural equations models that have been
developed for binary three-way three-mode data (González, De Boeck, and Tuerlinckx 2008).
Finally, to speed up the computation of LCPLFMs it would be interesting to use parallel com-
puting in the LCplfm function when using the EM algorithm to estimate M candidate models
from random starting points (Hofert and Mächler 2016; Schmidberger, Morgan, Eddelbuettel,
Yu, Tierney, and Mansmann 1978).
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A. Derivation gradient
To describe the gradient of the model parameters in models m1, m2 and m3, we introduce
the following notation:

δi = p(di|σ,ρ, ξ)
δi|t = p(di|Zit = 1,σ,ρ)
δij|t = p(dij |Zit = 1,σj ,ρ)
δij|x,t = p(dij |xij , Zit = 1,ρ)
δijk|x,t = p(dijk|xij , Zit=1,ρ)
δijk0|x,t = P (Dijk = 0|xij , Zit = 1,ρ)

A.1. Derivation gradient model m1

Using a prior as in Equation 12, the logarithm of the posterior density (LP) for model m1
equals : ∑

j

∑
f

∑
t

1
JT

[log(σjft) + log(1− σjft)]

+
∑
k

∑
f

1
K

[log(ρkf ) + log(1− ρkf )]

+
∑
t

2
T
log(ξt)

+
∑
i

log
∑
t

ξt
∏
j

∑
xij

p(xij |σj , Zit = 1)
∏
k

p(dijk|xij ,ρk)

Assuming a disjunctive model, we can now derive that

∂LP

∂σj′f ′t′
=
∑
i

1
δi
ξt′

δi|t′

δij′|t′

∑
xij′

δij′|t′,x
p(xij′ |σj′ , Zit′ = 1)
p(xij′f ′ |σj′f ′ , Zit′ = 1)(2xij′f ′ − 1)

+ 1
JTσj′t′f ′

− 1
JT (1− σj′f ′t′)

∂LP

∂ρk′f ′
=
∑
i

1
δi

∑
t

ξt
∑
j

δi|t
δij|t

∑
xij

p(xij |σj , Zit = 1)
δij|x,t
δijk′|x,t

δijk′0|x,t
(1− xijf ′ρk′f ′)(2dijk′ − 1)xijf ′

+ 1
Kρk′f ′

− 1
K(1− ρk′f ′)

∂LP

∂γt′
=
∑
i

δi|t′

δi
+ ( 2

T
)( 1
γt′

)− (I + 2).
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A.2. Derivation gradient model m2

Using a prior as in Equation 12, the logarithm of the posterior density for model m2 equals :

∑
j

∑
f

1
J

[log(σjf ) + log(1− σjf )]

+
∑
k

∑
f

∑
t

1
KT

[log(ρkft) + log(1− ρkft)]

+
∑
t

2
T
log(ξt)

+
∑
i

log
∑
t

ξt
∏
j

∑
xij

p(xij |σj)
∏
k

p(dijk|xij , Zit = 1,ρk)

Assuming a disjunctive model, we can now derive that

∂LP

∂σj′f ′
=
∑
i

1
δi

∑
t

ξt
δi|t
δij′|t

∑
xij′

δij′|x,t
p(xij′ |σj′)
p(xij′f ′ |σj′f ′)(2xij′f ′ − 1)

+ 1
Jσj′f ′

− 1
J(1− σj′f ′)

∂LP

∂ρk′f ′,t′
=
∑
i

ξt′

δi

∑
j

δi|t′

δij|t′

∑
xij

p(xij |σj)
δij|x,t′
δijk′|x,t′

δijk′0|x,t′
(1− xijf ′ρk′f ′t′)

(2dijk′ − 1)xijf ′

+ 1
KTρk′f ′t′

− 1
KT (1− ρk′f ′t′)

∂LP

∂γt′
=
∑
i

δi|t′

δi
+ ( 2

T
)( 1
γt′

)− (I + 2).

A.3. Derivation gradient model m3

Using a prior as in Equation 12, the logarithm of the posterior density for model m3 equals :

∑
j

∑
f

∑
t

1
JT

[log(σjft) + log(1− σjft)]

+
∑
k

∑
f

∑
t

1
KT

[log(ρkft) + log(1− ρkft)]

+
∑
t

2
T
log(ξt)

+
∑
i

log
∑
t

ξt
∏
j

∑
xij

p(xij |σj , Zit = 1)
∏
k

p(dijk|xij , Zit = 1,ρk)
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Assuming a disjunctive model, we can now derive that

∂LP

∂σj′f ′t′
=
∑
i

1
δi
ξt′

δi|t′

δij′|t′

∑
xij′

δij′|t′,x
p(xij′ |Zit′ = 1,σj′t′)
p(xij′f ′ |Zit′ = 1, σj′f ′t′)

(2xij′f ′ − 1)

+ 1
JTσj′f ′t′

− 1
JT (1− σj′f ′t′)

∂LP

∂ρk′f ′,t′
=
∑
i

ξt′

δi

∑
j

δi|t′

δij|t′

∑
xij

p(xij |Zit′ = 1,σjt′)
δij|x,t′
δijk′|x,t′

δijk′0|x,t′
(1− xijf ′ρk′f ′t′)

(2dijk′ − 1)xijf ′

+ 1
KTρk′f ′t′

− 1
KT (1− ρk′f ′t′)

∂LP

∂γt′
=
∑
i

δi|t′

δi
+ ( 2

T
)( 1
γt′

)− (I + 2).
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