
JSS Journal of Statistical Software
October 2018, Volume 87, Issue 3. doi: 10.18637/jss.v087.i03

Simulated Data for Linear Regression with
Structured and Sparse Penalties: Introducing

pylearn-simulate

Tommy Löfstedt
Neurospin, CEA Saclay

Vincent Guillemot
Neurospin, CEA Saclay

Vincent Frouin
Neurospin, CEA Saclay

Edouard Duchesnay
Neurospin, CEA Saclay

Fouad Hadj-Selem
ITE Institute: VeDeCoM

Abstract

A currently very active field of research is how to incorporate structure and prior
knowledge in machine learning methods. It has lead to numerous developments in the
field of non-smooth convex minimization. With recently developed methods it is possible
to perform an analysis in which the computed model can be linked to a given structure
of the data and simultaneously do variable selection to find a few important features in
the data. However, there is still no way to unambiguously simulate data to test proposed
algorithms, since the exact solutions to such problems are unknown.

The main aim of this paper is to present a theoretical framework for generating sim-
ulated data. These simulated data are appropriate when comparing optimization algo-
rithms in the context of linear regression problems with sparse and structured penalties.
Additionally, this approach allows the user to control the signal-to-noise ratio, the corre-
lation structure of the data and the optimization problem to which they are the solution.

The traditional approach is to simulate random data without taking into account the
actual model that will be fit to the data. But when using such an approach it is not
possible to know the exact solution of the underlying optimization problem. With our
contribution, it is possible to know the exact theoretical solution of a penalized linear
regression problem, and it is thus possible to compare algorithms without the need to use,
e.g., cross-validation.

We also present our implementation, the Python package pylearn-simulate, available
at https://github.com/neurospin/pylearn-simulate and released under the BSD 3-
clause license. We describe the package and give examples at the end of the paper.

Keywords: simulated data, sparse and structured penalties, linear regression, Python.

https://doi.org/10.18637/jss.v087.i03
https://github.com/neurospin/pylearn-simulate

2 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

1. Introduction
Simulated data are widely used to assess optimization methods. This is because of their abil-
ity to evaluate certain aspects of the methods under study; and these aspects are impossible
to look into when using real data sets. In the context of convex optimization, it is never
possible to know the exact solution of the minimization problem with real data and it is
a difficult problem even with simulated data. We propose to generalize an approach origi-
nally published by Nesterov (2013), for LASSO regression, to a broader family of penalized
regression problems.
We would like to generate simulated data for which we know the exact solution of a given
function. The inputs are: the minimizer β∗ (p×1), a candidate data set X0 (n×p), a residual
vector ε (n × 1), regularization parameters (in our case there are up to three of these), the
signal-to-noise ratio σ, and the expression of a function, f(β), that is to be minimized.
The candidate version of the data set may for instance be X0 ∼ N(µ,Σ), and the residual
vector may be ε ∼ N(0, 1). X0 can alternatively be a data set relevant for the application
in mind: a set of images, microarrays, etc. Using real data as input could provide a more
realistic correlation structure, and this correlation structure is not affected by our method.
The procedure proposed here outputs X and y such that

β∗ = arg min
β

f(β), (1)

with f a convex function of β that depends on the parameters that define the simulated data,
(X0, β, ε, σ), and on the regularization parameters. In a nutshell, X is obtained by scaling
each column j = 1, . . . , p of X0 by a factor ωj . We give the expression of ωj as a function of
the inputs and the subdifferential of f in Section 3.
In linear regression, simulated data are often generated such that

y = Xβ∗ + ε. (2)

If we want to evaluate an algorithm to minimize a penalized regression problem

f(β) = 1
2‖Xβ − y‖

2
2 + P (β), (3)

then we need to use, e.g., cross-validation to find an acceptable value for any regularization
parameter that could be hidden in the penalty P . But the found values are very likely
suboptimal, and in any case, we are forced to compare the solution to Equation 2.
Our contribution is thus to give the solution that actually minimizes Equation 3, instead of
Equation 2, namely β∗ from Equation 1. This means we are able to compare speed, sensitivity
to noise, correlation, etc., and the actual solutions found by different minimization algorithms.
We present an implementation of the procedures presented below in an object oriented Python
(van Rossum et al. 2011) package, pylearn-simulate, with which it is straight-forward to
generate such data (Löfstedt, Guillemot, Frouin, Duchesnay, and Hadj-Selem 2014a). pylearn-
simulate is developed for Python 2.7.x and is available at https://github.com/neurospin/
pylearn-simulate.
An R markdown document (Example_in_R.rmd) is also provided as a supplementary file in
order to illustrate to the reader familiar with R (R Core Team 2018) the simplicity of our

https://github.com/neurospin/pylearn-simulate
https://github.com/neurospin/pylearn-simulate

Journal of Statistical Software 3

method and its impact on a realistic gene expression data set. This R markdown example
was developed using R version 3.1.1 and RStudio version 0.98.1062 (RStudio 2013).

2. Installation
pylearn-simulate requires some external packages in order to work. They are, however, very
few, and are freely available online.

• NumPy version 1.6.1 or newer. This is the fundamental package for scientific computing
in Python and contains, among other things, linear algebra functions and matrix/vector
objects (van der Walt, Colbert, and Varoquaux 2011).

• SciPy version 0.9.0 or newer. A library of open-source software for mathematics, science
and engineering (Jones, Oliphant, and Peterson 2001).

• pylearn-parsimony version 0.2.1 or newer; optional. A library for structured and sparse
machine learning. Contains several algorithms for minimizing loss functions with com-
plex structured penalties. While optional, the examples require this package in order
to run fully (Löfstedt, Guillemot, Hadj-Selem, Li, Frouin, and Duchesnay 2014b).

Once the dependencies are installed, pylearn-simulate can be installed by obtaining a release
version from https://github.com/neurospin/pylearn-simulate. Unpack the file, go to
the pylearn-simulate directory and type:

$ python setup.py install --user

for a local installation in the user’s userbase directory (usually in∼/.local/lib/python2.7/-
site-packages on Unix-like/-based operating systems, such as Linux and OS X, and in
%AppData%\Python\Python27\site-packages on Windows), or

$ sudo python setup.py install

for a global installation accessible to all users. You will need to have administrator rights on
your computer in order to install software for all users.

3. Notations
We place ourselves in the context of linear regression models. Let X ∈ Rn×p be a matrix of
n samples, where each sample lies in a p-dimensional space; and let y ∈ Rn denote the n-
dimensional response vector. The p-vector that contains the regression coefficients is denoted
β. In the following, we denote by ‖ · ‖q the standard `q-norm on Rp with dual norm ‖ · ‖q′ .
For a smooth real function f , we denote by ∇f(β) its gradient. Finally, the subdifferential,
i.e. the set of subgradients, of a convex function f is denoted ∂f(β).

https://github.com/neurospin/pylearn-simulate

4 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

4. Method
The objective is to generate X and y such that

β∗ = arg min
β

1
2‖Xβ − y‖

2
2 + P (β), (4)

where P is a penalty that can be expressed in the form

P (β) =
∑
π∈Π

λππ(β),

in which Π is the set of all our penalties, λπ > 0 is the regularization parameter associated
with penalty π, and ∂π(β∗), used below, is the subdifferential of penalty π at β∗. This is a
general notation to represent the fact that we may have several different penalties.
If the subdifferential of each penalty is known, the scaling factors, ωj , that we are looking
for can each be expressed as the jth component of ∑π∈Π−λπ∂π(β∗) divided by X>0,jε. More
details are given below.
The penalties that we consider in the examples in this work are

P (β) = λ`2
2 ‖β‖

2
2 + λ`1‖β‖1 + λTVTV(β),

where TV is the total variation function (Rudin, Osher, Fatemi, and Monica 1992), and

P (β) = λ`2
2 ‖β‖

2
2 + λ`1‖β‖1 + λGLGL(β),

where GL is the overlapping group LASSO penalty (Yuan and Lin 2006) and, as we show
below, we know their subdifferential.

4.1. Algorithm

Nesterov (2013) addressed how to simulate data for the simpler case of the LASSO regression,
and we will therefore not go into the details here. The algorithm given in Nesterov (2013) is
adapted to our notations and is detailed in Appendix A.
The principle behind Nesterov’s idea, that we generalize for complex penalties, is as follows:
First, define the residual to be ε = Xβ − y, in the model between Xβ and y, such that it
is independent from β∗. Then, select acceptable values for the columns of X such that zero
belongs to the subdifferential of f at point β∗. It requires then to have a first unscaled version
of the dataset, X0, whose columns X0,j (j = 1, . . . , p) are each scaled by a factor ωj .
The algorithm is detailed in Algorithm 1. This algorithm is used to generate a simulated data
set that is the solution to a complex optimization problem.
The vector rπ belongs to the subdifferential of penalty π at β∗. We chose to generate such
vectors randomly in our implementation, but it is up to the user to generate them according
to certain additional constraints on the obtained data set. When X0 is a real-world data
set, the purpose of such constraints could be to keep certain properties that are not directly
in relation to the optimization problem. For example, when transforming images, certain
desirable shapes have to remain visible in the resulting data set.

Journal of Statistical Software 5

Algorithm 1 Generate a simulated data set.
Require: β∗, X0, ε
Ensure: X and y such that β∗ = arg minβ f(β)

1: for π ∈ Π do
2: Generate rπ ∈ ∂π(β∗)
3: end for
4: for i = 1, . . . , p do
5: ωj = −

∑
π∈Π λπrπ,j

X>
0,jε

6: Xj = ωjX0,j
7: end for
8: y = Xβ∗ − ε

While this algorithm is fairly general, it can only be used when the subdifferential of f is
explicit. We show in the following that it is possible to have an analytical expression for a
wide variety of complex convex penalties.

4.2. Subdifferential of complex penalties

The complex penalties that we consider in this work can be written in the form

π(β) =
G∑
g=1
‖Agβ‖q. (5)

While any q-norm is possible, we will in this work only be interested in the case when q =
q′ = 2, i.e., the Euclidean norm. This is the case when π is, e.g., the total variation or
(overlapping) group LASSO penalties.
We need the following two lemmas in order to derive the subdifferential of the complex
penalties.

Lemma 4.1 (Subdifferential of the sum). If f1 and f2 are convex functions with domain Rp,
then

∂(f1 + f2) = ∂f1 + ∂f2.

Proof. See Theorem 4.1.1 on Page 183 in Hiriart-Urrut and Lemaréchal (2004).

Lemma 4.2 (Subdifferential of the composition). If f is convex and defined on the image
space of A and g(x) = Ax is a linear function with domain Rp, then

∂(f ◦ g)(x) = A>∂f
(
g(x)

)
= A>∂f(Ax).

Proof. See Theorem 4.2.1 on Page 184 in Hiriart-Urrut and Lemaréchal (2004).

These lemmas play a central role in the following theorem that details the structure of the
subdifferential of π.

6 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

Theorem 4.3 (Subdifferential of π). If π has the form given in Equation 5, then

∂π(β) = A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 .
Proof.

∂π(β) = ∂

 G∑
g=1
‖Agβ‖2


=

G∑
g=1

∂‖Agβ‖2 (Using Lemma 4.1)

=
G∑
g=1

A>g ∂‖Agβ‖2 (Using Lemma 4.2)

= A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 ,
where

A =

 A1
...
AG

 .

Before we show the application to some actual penalties we will mention that the subdiffer-
ential of the `2-norm is

∂`2(x) = ∂‖x‖2 =


{

x
‖x‖2

}
if ‖x‖2 > 0,

{y | ‖y‖2 ≤ 1} if ‖x‖2 = 0,
(6)

i.e., the second case (when ‖x‖2 = 0) corresponds to the set of points in the unit `2 ball.

4.3. Smoothed penalties

The authors have recently published an article detailing an algorithm that utilizes a smoothing
technique proposed by Nesterov (2004). The authors described an efficient minimization of a
convex non-differentiable function involving the total variation penalty (Hadj-Selem, Löfstedt,
Dohmatob, Frouin, Dubois, Guillemot, and Duchesnay 2018).
Nesterov’s smoothing technique is a very efficient way of approximating non-smooth functions
by a smoothed function. The smoothed function is regularized such that when the regular-
ization, or smoothing, parameter approaches zero, the approximation approaches the original
function. We will not describe this technique here, but refer to Nesterov (2004) or Hadj-Selem
et al. (2018) for details.

Journal of Statistical Software 7

When a complex penalty function, π, is smoothed using Nesterov’s method, the smoothed
function is defined as

πµ(β) = 〈α∗, Aβ〉 − µ

2 ‖α
∗‖22,

where µ is a parameter that controls the smoothing,

α∗ = arg max
α∈K

{
〈α,Aβ〉 − µ

2 ‖α‖
2
2

}
,

the operator 〈·, ·〉 denotes the inner product of the arguments, K is a compact convex set
in a finite-dimensional vector space, and A is a linear operator that transforms between two
finite-dimensional vector spaces.
The gradient of πµ(β) is defined as

∇πµ(β) = A>α∗. (7)

It is thus straight-forward to simulate such data. The A matrices for total variation and
(overlapping) group LASSO are defined in Appendix B. The smoothing, or regularization
parameter µ is user-defined, but usually selected to be small. The computation of subgradients
for TV and (overlapping) group LASSO are detailed in Appendix B.

5. Application
We apply the aforementioned algorithm to generate a data set and associate it to the exact
solution of a linear regression problem with elastic net and a Nesterov-smoothed complex
convex penalty.

5.1. Linear regression with elastic net and a complex penalty

We will here give an example with elastic net and a complex penalty, such as, e.g., the total
variation or group LASSO penalties. The function we are working with is

f(β) = 1
2‖Xβ − y‖

2
2 + λ`2

2 ‖β‖
2
2 + λ`1‖β‖1 + λππ(β),

where π is a complex penalty, and λ`2 , λ`1 and λ`π are regularization parameters. The
subdifferential in this case has

0 ∈ ∂f(β) = X>ε+ λ`2β + λ`1∂‖β‖1 + λπ∂π(β), (8)

where ε is distributed like the residuals, Xβ − y. We rearrange and note that we seek

X>j ε ∈ −λ`2βj − λ`1∂|βj | − λπ(∂π(β))j , (9)

where we denote by (·)j the jth component of the vector within parentheses. Furthermore,
since we define Xj = ωjX0,j , we have

ωj ∈
−λ`2βj − λ`1∂|βj | − λπ(∂π(β))j

X>0,jε
. (10)

8 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

We note that in the case when βj = 0, adding the smooth ridge penalty to the LASSO has
no effect on the generated data.
We can show that both complex penalties, i.e. total variation and group LASSO, can be
formulated as in Equation 5 (detailed in Appendix B). It is then possible to use Theorem 4.3
to obtain an expression for the sub-differential of π as

∂π(β) = A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 .
Replacing this expression in Equation 10, we obtain

ωj ∈

−λ`2βj − λ`1∂|βj | − λπ

A>
 ∂‖A1β‖2

...
∂‖AGβ‖2



j

X>0,jε
, (11)

for each variable j = 1, . . . , p and with Xj = ωjX0,j . We also note from Equation 6 that ∂|x|
is {sign(x)} if x 6= 0 and x ∈ [−1, 1] if x = 0; thus, if x = 0, we may choose x ∼ U(−1, 1).
Further, if the non-smooth complex penalty, π, be substituted for a Nesterov-smoothed com-
plex penalty, πµ, the subdifferential of π in Equation 10 could simply be replaced by the
gradient of πµ, defined in Equation 7.

5.2. Intercept

It is very common to include an intercept term in the model, and thus instead of Equation 4
solve

β∗ = arg min
β

1
2‖Xβ + β0 − y‖22 + P (β), (12)

where β0 is the intercept term, and P defines all penalties. The intercept term is usually
included in the original problem by extending β and X such that

β :=
[
β0
β

]

and
X := [1n, X] ,

where 1n is an n× 1 vector of ones.
We note that the penalties do not include the intercept term, and, therefore, that the gradient
of the penalties, with respect to β0, is zero. We also note that the intercept column may not
change from X0 to X by this procedure, and thus that ω0 = 1. We remember Equation 9 and
that the intercept column is a column of ones. Then, we write Equation 9 for the intercept
as

X>j=0ε = ω0X
>
0,j=0ε = 1 · 1>n ε = 1 ·

n∑
i=1

εi = 0.

Journal of Statistical Software 9

Thus, we have properly included the intercept term if the residual terms sum to zero. There-
fore, to handle the intercept, we change β and X as described above and make sure that∑n
i=1 εi = 0. If this is not the case, we make it so by subtracting the mean; i.e., we let

ε := ε− 1
n

n∑
i=1

εi.

5.3. Signal-to-noise ratio
We use the same definition of signal-to-noise ratio as Bach, Jenatton, Mairal, and Obozinski
(2011), namely that

SNR = ‖X(β)β‖2
‖ε‖2

,

where X(β) is the data generated from β when using the simulation process described above.
With this definition of signal-to-noise ratio, and with the definition of the simulated data
given above we may scale the regression vector such that

SNR(a) = ‖X(βa)βa‖2
‖ε‖2

. (13)

If the user provides a desired signal-to-noise ratio, σ, it is reasonable to ask if we are able to
find an a such that SNR(a) = σ. We have the following theorem.

Theorem 5.1. Using the definition of simulated data described above, and with the definition
of signal-to-noise ratio in Equation 13 there exists an a > 0 such that

SNR(a) = σ, (14)

for σ > 0, ‖β‖2 > 0, ‖X>0 ε‖2 > 0, ‖ε‖2 < ∞, and either ‖X0β̃k‖2 > 0 or ‖X0β̃m‖2 > 0,
where β̃k and β̃m are defined below.

Proof. We rearrange the signal-to-noise ratio as

‖X(βa)βa‖2 = σ‖ε‖2, (15)

and square both sides to get

‖X(βa)βa‖22 = σ2‖ε‖22 =: s. (16)

We let Xj be the jth column of X(βa), remember that Xj = ωjX0,j , and let βj be the jth
element of β. The left-hand side of Equation 16 is then

‖X(βa)βa‖22 =

 p∑
j=1

Xjβja

>(p∑
i=1

Xjβja

)
(17)

=
p∑
j=1

p∑
l=1
l 6=j

a2X>j Xlβjβl +
p∑
j=1

a2X>j Xjβ
2
j

=
p∑
j=1

p∑
l=1
l 6=j

a2X>0,jX0,lβjβlωjωl +
p∑
j=1

a2X>0,jX0,jβ
2
jω

2
j .

10 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

Using Equation 6 and a > 0, noting that

ax

‖ax‖2
= ax

a‖x‖2
= x

‖x‖2
,

we conclude that ∂aβj |aβj | = ∂βj |βj | and (∂aβjπ(aβ))j = (∂βjπ(β))j , where by ∂x we denote
the subdifferential with respect to x, and hence the partial subdifferential of the `1 and
complex penalties are independent of any scaling factor a.

If we add all the penalties described above, i.e., `1, `2 and a complex penalty such as TV (or
GL), as has been the case throughout, and compute the partial derivatives of Equation 11
with respect to aβ, we obtain

ωj ∈

−aλ`2βj − λ`1∂aβj |aβj | − λπ

A>
 ∂aβ‖A1aβ‖2

...
∂aβ‖AGaβ‖2



j

X>0,jε

=

−aλ`2βj − λ`1∂|βj | − λπ

A>
 ∂β‖A1β‖2

...
∂β‖AGβ‖2



j

X>0,jε
.

Hence, we may thus write ωj as a function of a by

ωj = kja+mj ,

where

kj = −λ`2βj
X>0,jε

and

mj ∈

−λ`1∂|βj | − λπ

A>
 ∂‖A1β‖2

...
∂‖AGβ‖2



j

X>0,jε
.

Journal of Statistical Software 11

We continue to expand Equation 17 and obtain

p∑
j=1

p∑
l=1
l 6=j

a2X>0,jX0,lβjβlωjωl +
p∑
j=1

a2X>0,jX0,jβ
2
jω

2
j

=
p∑
j=1

p∑
l=1
l 6=j

a2X>0,jX0,lβjβl(kja+mj)(kla+ml) +
p∑
j=1

a2X>0,jX0,jβ
2
j (kja+mj)2

=
p∑
j=1

p∑
l=1
l 6=j

a2X>0,jX0,lβjβl︸ ︷︷ ︸
:=dj,l

(a2kjkl + akjml + amjkl +mjml)

+
p∑
j=1

a2X>0,jX0,jβ
2
j︸ ︷︷ ︸

:=dj,j

(a2k2
j + 2akjmj +m2

j).

=
p∑
j=1

p∑
l=1
l 6=j

a4dj,lkjkl + a3dj,l(kjml +mjkl) + a2dj,lmjml

+
p∑
j=1

a4dj,jk
2
j + 2a3dj,jkjmj + a2dj,jm

2
j .

We note that this is a fourth order polynomial of a and write it in the generic form

‖X(βa)βa‖22 = Aa4 +Ba3 + Ca2. (18)

Now, since we seek a solution a > 0 such that ‖X(βa)βa‖22 = s > 0, we seek positive roots of
the quartic equation

Aa4 +Ba3 + Ca2 − s = 0. (19)

This fourth order polynomial, in the left-hand side of Equation 19, has a minimum of −s
when a→ 0, since Equation 18 is non-negative for all values of a.
We note that the coefficient for the quartic term, A, is non-negative, since

A =
p∑
j=1

p∑
l=1
l 6=j

dj,lkjkl +
p∑
j=1

dj,jk
2
j =

p∑
j=1

p∑
l=1

dj,lkjkl

=
p∑
j=1

p∑
l=1

kjβjX
>
0,jX0,lβlkl

= β̃>k X
>
0 X0β̃k

≥ 0,

where the elements of β̃k are βjkj , for j = 1, . . . , p.

12 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

In case A = β̃>k X
>
0 X0β̃k = 0, then ‖X0β̃k‖2 = 0 and we note that B is also equal to 0, because

B =
p∑
j=1

p∑
l=1
l 6=j

dj,l(kjml +mjkl) +
p∑
j=1

2dj,jkjmj =
p∑
j=1

p∑
l=1

dj,l(kjml +mjkl)

= 2
p∑
j=1

p∑
l=1

kjβjX
>
0,jX0,lβlml

= 2 β̃>k X>0︸ ︷︷ ︸
=0

X0β̃m,

= 0,

where the elements of β̃m are βjmj , for j = 1, . . . , p. Hence, in order for there to be roots
when A = 0, the coefficient of the quadratic must be positive. We note that since s > 0, if
A = 0, then we must have that C > 0 which implies that ‖X0β̃m‖2 > 0.
To sum up, if A > 0, the quartic equation tends to infinity when a tends to infinity. Further,
if A = 0, then B = 0 and C > 0, which means that the equation will also tend to infinity
when a tends to infinity.
Thus, by the intermediate value theorem there is a value of a for which ‖X(βa)βa‖22 − s = 0
and thus also that SNR(a) = σ.

We may use Equation 19 above to find the roots of this fourth order polynomial analytically.
This may, however, be tedious because of the many terms of the function. Instead, because
of the above theorem, we know that we can successfully apply the bisection method to Equa-
tion 15 to find a root of this function. The authors have tested this successfully, even with
data sets with hundreds of thousands of variables. Also, we may use either root, if there are
more than one, since they all give SNR(a) = σ, although we may want to find the one that
minimizes |a− 1|.
Thus, we would encapsulate Algorithm 1 in a bisection loop in order to control the signal-to-
noise ratio.

5.4. Correlation
We control the correlation structure of X0 by, e.g., letting X0 ∼ N (µ,Σ). Since we let
Xj = ωjX0,j for all 1 ≤ i ≤ p, it follows that cor(Xl, Xm) = cor(ωlX0,l, ωmX0,m).

6. The package pylearn-simulate
The package pylearn-simulate contains five main modules. This section describes the five
modules, and how they implement the theory described above.
For the sake of clarity, the modules are presented in alphabetical order. However, we advise
a reader interested in directly using our package to jump directly to Section 6.4, presenting
pylearn-simulate’s main module, or to Section 7 in which three examples are detailed.

6.1. beta.py

The first module allows the generation of random (weight) vectors. It can, e.g., be used to

Journal of Statistical Software 13

generate the true minimizer, β∗, mentioned in Section 1.
Its main function is defined as:

def random(shape, density = 1.0, rng = utils.RandomUniform(0, 1),
sort = False, normalise = False):

where shape is the shape of the underlying data, e.g., p-by-1 would be shape = (p, 1);
density is a value between 0 and 1 that determines the fraction of non-zero elements of the
returned vector (default is density = 1.0, a completely dense vector; density = 0.0 would
be a vector of zeros); rng determines the random number generator to use (rng is a function
or callable that takes a number of integers as input, the shape of the array of random numbers
to return); sort is a Boolean that determines whether or not to sort the output vector (will
sort each axis in turn in ascending order); normalise is a Boolean that determines whether
or not to normalize the output vector. If normalise = True, the output vector will have unit
`2-norm.

6.2. correlation_matrices.py

The second module is used to generate random correlation matrices with a particular struc-
ture. When applied to the generation of a correlation matrix Σ, the initial matrix, X0, can
be sampled from N (µ,Σ), for some mean vector µ.
This module contains two ways to generate correlation matrices, described by Hardin, Ramon
Garcia, and Golan (2013). The two ways to generate correlation matrices are:

1. A correlation matrix with a constant correlation structure, i.e., such that

Σk =


1 ρk . . . ρk
ρk 1 . . . ρk
...

...
ρk ρk . . . 1,

 ,
where Σk is a block diagonal element of Σ, and ρk is the average correlation.

2. A correlation matrix with a Toeplitz correlation structure, i.e., such that

Σk =



1 ρk ρ2
k ρ3

k . . . ρpk−1
k

ρk 1 ρk ρ2
k . . . ρpk−2

k

ρ2
k ρk 1 ρk . . . ρpk−3

k

ρ3
k ρ2

k ρk 1 . . . ρpk−4
k

...
...

...
...

ρpk−1
k ρpk−2

k ρpk−3
k ρpk−4

k . . . 1,


,

where Σk is a block diagonal element of Σ, and ρk is the average correlation between
adjacent variables. The correlation thus decreases exponentially as a function of the
distance between the variables.

Background noise and off-block-diagonal noise may also be added to the correlation matrices.
The k stands for the kth group of variables; the module indeed allows the user to generate

14 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

correlation matrices with blocks of variables, each one of them having a different correlation
structure. See Hardin et al. (2013) for details.
This module contains the following functions:

def constant_correlation(p = [100], rho = [0.05], delta = 0.05, eps = 0.5,
random_state = None):

where p is a list or tuple with the number of variables for each group; rho is a list or
tuple with the average correlation between variables in a group such that rho[k]∈ [0, 1);
delta ∈ [0, min(rho)) defines the baseline noise between groups; eps ∈ [0, 1−max(rho))
is the entry-wise random noise with mean delta and variance eps2/10 (where 10 is the
dimension of the noise space, selected arbitrarily); and random_state is an instance of
numpy.random.RandomState (if omitted, or None, the default NumPy random number gen-
erator will be used instead).

def toeplitz_correlation(p = [100], rho = [0.05], eps = 0.5,
random_state = None):

where p is a list or tuple with the number of variables for each group; rho is a list or tuple
with the average correlation between variables in a group such that rho[k]∈ [0, 1); eps ∈
(0, (1−max(rho))/(1+max(rho)) defines the maximum entry-wise random noise. The noise is
approximately normally distributed with zero mean and variance eps2/10; and random_state
is an instance of numpy.random.RandomState (if omitted, or None, the default NumPy random
number generator will be used instead).

6.3. functions.py

This module defines a set of penalties that can be combined with (added to) the loss function.
The functions are implemented as classes and they all inherit from Function, which requires
them to implement a function grad that returns the gradient (or a subgradient).
The different penalties currently implemented are detailed below.
The class

class L1(Function):
def __init__(self, l, rng = utils.RandomUniform(-1, 1))

represents
l‖β‖1,

the `1-norm penalty, where l is the regularization constant (denoted λ`1 above); rng is a
random number generator to use when computing a subgradient. rng is a function or callable
that takes a number of integers as input, the shape of the array of random numbers to return.
Default rng is random uniform numbers between −1 and 1.
The class

class SmoothedL1(Function):
def __init__(self, l, mu = utils.TOLERANCE):

Journal of Statistical Software 15

represents

l
(
〈β, α∗〉 − mu

2 ‖α
∗‖22
)
,

the Nesterov-smoothed `1 penalty, where l is the regularization constant and mu is the regu-
larization constant for the Nesterov smoothing.
The class

class L2(Function):
def __init__(self, l, rng = utils.RandomUniform(0, 1)):

represents
l‖β‖2,

the `2-norm penalty, where l is the regularization constant; rng is a random number generator
that is used when a subgradient is computed. rng is a callable that takes a number of integers
as input, the shape of the array of random numbers to return. Default rng is random uniform
numbers between 0 and 1.
The class

class L2Squared(Function):
def __init__(self, l):

represents
l
2‖β‖

2
2,

the squared `2-norm penalty, where l is the regularization constant (denoted λ`2 above).
The class

class TotalVariation(Function):
def __init__(self, l, A, rng = utils.RandomUniform(0, 1), **kwargs):

represents

l
p∑
j=1
‖∇βj‖2,

the total variation penalty, where l is the regularization constant (denoted λπ above); A is the
linear operator for the total variation penalty, as specified in Section B.1, and obtained from
the static methods TotalVariation.A_from_shape or TotalVariation.A_from_subset_mask;
rng is a random number generator that is used when a subgradient is computed. rng is a
callable that takes a number of integers as input, the shape of the array of random numbers
to return. Default rng is random uniform numbers between 0 and 1.
The class

class GroupLasso(Function):
def __init__(self, l, A, rng = utils.RandomUniform(-1, 1), **kwargs):

16 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

represents

l
G∑
g=1

weights[g]‖βg‖2,

the overlapping group LASSO, where l is the regularization constant (denoted λπ above); A
is the linear operator for the overlapping group LASSO penalty, as specified in Section B.2,
and obtained from GroupLasso.A_from_groups; rng is a random number generator that
is used when a subgradient is computed. rng is a function or callable that takes a num-
ber of integers as input, the shape of the array of random numbers to return. Default
rng is random uniform numbers between −1 and 1. weights is a list or tuple provided
to GroupLasso.A_from_groups that gives a weight to each group; and βg is a vector with
the variables of group g.
The class

class SmoothedTotalVariation(TotalVariation, NesterovFunction):
def __init__(self, l, A, mu = utils.TOLERANCE):

represents
l
(
〈Aβ,α∗〉 − mu

2 ‖α
∗‖22
)
,

the Nesterov-smoothed total variation penalty, where l is the regularization constant (denoted
λπ above); A is the linear operator for the total variation penalty, as specified in Section B.1,
and obtained from TotalVariation.A_from_shape or TotalVariation.A_from_subset_mask,
two static methods; mu is the regularization constant for the Nesterov smoothing.
Note that SmoothedTotalVariation inherits from NesterovFunction, a base class for Nesterov-
smoothed complex penalties.
The class

class SmoothedGroupLasso(GroupLasso, NesterovFunction):
def __init__(self, l, A, mu = utils.TOLERANCE):

represents
l
(
〈Aβ,α∗〉 − mu

2 ‖α
∗‖22
)
,

the Nesterov-smoothed overlapping group LASSO penalty, where l is the regularization con-
stant (denoted λπ above); A is the linear operator for the overlapping group LASSO penalty,
as specified in Section B.2, and obtained from GroupLasso.A_from_groups.

6.4. simulate.py

This is the main module of pylearn-simulate, and the starting point when generating simulated
data. It contains a class LinearRegressionData that generates simulated data with a linear
regression (linear least squares) objective function, and accepts any combination of functions
(from functions.py) to penalize the loss.
LinearRegressionData is defined as

class LinearRegressionData(SimulatedData):
def __init__(self, penalties, X0, e, snr = None, intercept = False):

Journal of Statistical Software 17

where penalties is a list or tuple with the penalties; X0 is the initial candidate data set, as
explained in Section 1; e = Xβ − y is the residual vector, as explained in Section 4.1; snr
is the desired signal-to-noise ratio; intercept is a Boolean that determines whether or not
to account for an intercept. If intercept = True, then the first column of X0 must contain
only ones.
Once a LinearRegressionData object is constructed, the data is generated by calling

>>> lrd = LinearRegressionData(...)
>>> X, y, beta_star, e = lrd.load(beta0)

where beta_star is the true, known regression vector β∗.

6.5. utils.py

This module contains some helper functions, such as the random number generators. It
contains the following classes and functions:

class RandomUniform(RandomNumberGenerator):
def __init__(self, a = 0, b = 1, random_state = None):

where a and b are the limits within which the random uniform numbers are sampled, and
random_state is an optional numpy.random.RandomState object to use when sampling points
(this is useful for setting a seed, for instance).

class ConstantValue(RandomNumberGenerator):
def __init__(self, val, random_state = None):

where val is a single value that is returned for every call to this number generator. The value
of random_state is never used here.

def find_bisect_interval(f, low = -1.0, high = 1.0, maxiter = 100):

find values of low and high such that sign(f(low)) != sign(f(high).

7. Examples
The main benefit of generating data with pylearn-simulate is that we know everything about
the generated data. In particular, we know the true minimizer, β∗, and we know the Lagrange
multipliers, or regularization parameters, λ`1 , λ`2 and λπ. There is no need to use, e.g., cross-
validation to find the parameters, and we know directly if the β(k) that our minimizing
algorithm finds is close to the true β∗ or not.
We illustrate this main point by three simulations, in which we also demonstrate how to use
pylearn-simulate. Note that due to differences in core packages such as NumPy or SciPy
slightly different random numbers and corresponding plots may be obtained. An example in
R is available in the supplementary material and in the GitHub repository (Löfstedt et al.
2014a).

18 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

7.1. Comparison to the classical approach

Traditionally, simulated data for linear regression problems is generated as follows: The
independent data matrix, X, is sampled from some multivariate distribution, a regression
vector β∗ is generated either with or without sparsity, structure, etc. The noise vector, ε, is
usually Gaussian, ε ∼ N (0, σ2I), for some value of σ. Finally, the response variable, y, is
computed as

y = Xβ∗ + ε. (20)

The problem then is to find a β such that a certain penalized linear regression problem is
minimized.
The main issue is that the generated or sampled data, X, will not adhere to any sparsity or
structure constraints that we may have on the solution β∗. In essence, the data generated
does not fit the mathematical model when penalties are involved. A computational problem
also arises, because the regularization parameters for the penalties are not known in advance,
and finding the minimum is thus going to be computationally expensive, since the parameters
will have to be found by, e.g., cross-validation.
We will in this example simulate data by using pylearn-simulate for linear regression with an
elastic net penalty. We will then compare the solution where the regularization constants are
found by grid search and cross-validation to that of the theoretical solution.
Import packages:

>>> import simulate
>>> import numpy as np
>>> np.random.seed(42)
>>> rs = np.random.RandomState(42)
>>> rng01 = simulate.utils.RandomUniform(0, 1, random_state = rs)
>>> rng_11 = simulate.utils.RandomUniform(-1, 1, random_state = rs)

Generate a start vector, β0, a candidate data set, X0, and the residual vector, ε:

>>> n, p = 50, 100
>>> beta = simulate.beta.random((p + 1, 1), density = 0.5, sort = True,
... rng = rng01)
>>> Sigma = simulate.correlation_matrices.constant_correlation(p = p,
... rho = 0.1, eps = 0.01, random_state = rs)
>>> X0 = rs.multivariate_normal(np.zeros(p), Sigma, n)
>>> X0 = np.hstack((np.ones((n, 1)), X0))
>>> e = 0.1 * rs.randn(n, 1)

A column of ones is added to X0 in order to deal with the intercept.
Create the penalties:

>>> lambda_l1 = 0.618
>>> l1 = simulate.functions.L1(lambda_l1, rng = rng_11)
>>> l2 = simulate.functions.L2Squared(1.0 - lambda_l1)

Create the loss function:

Journal of Statistical Software 19

0.0 0.2 0.4 0.6 0.8 1.0
λ`1

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

C
V

er
ro

r

Cross-validated prediction error for different values of λ`1

0 20 40 60 80 100

βj

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08
Regression vectors

β∗

βSim
βCV

Figure 1: Upper panel: The cross-validated prediction error (sum-of-squares error) for differ-
ent values of λ`1 . Lower panel: The regression vectors for the true β∗ (green), the regression
vector found when using the true regularization parameters, βSim, (blue) and the regression
vector found when using the λ`1 that gave the smallest cross-validated prediction error, βCV
(red).

>>> lr = simulate.LinearRegressionData([l1, l2], X0, e, snr = 5.0,
... intercept = True)

Finally, generate the data:

>>> X, y, beta_star, e = lr.load(beta)

We ran a grid search with 100 values of lambda_l1 in the interval [0, 1] and for every value
of lambda_l1 we performed a 10-fold cross-validation. Any minimization algorithm can be
used here, and we used the fast iterative shrinkage-thresholding algorithm (FISTA) from
pylearn-parsimony (Löfstedt et al. 2014b), an optimization library for machine learning with
structured and sparsity-inducing penalties.
The prediction error is plotted against the different values of the regularization parameter
in Figure 1 (upper panel). The minimum cross-validated prediction error was found when
lambda_l1 = 0.0, i.e., no `1 penalization, and a strong `2 penalization. The cross-validated
prediction error was

1
K

K∑
k=1
‖yk − ŷk‖22 ≈ 0.74,

where ŷk was the predicted y from the left out cross-validation group. There were K = 10
cross-validation groups.
The regression vector that corresponds to the smallest cross-validated prediction error of
y, denoted βCV , is presented in Figure 1 (lower panel) together with β∗, the true regression

20 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

vector, and the regression vector found when using the true regularization parameters, denoted
βSim. Note how different the regression vector found by cross-validation is compared to the
true β∗; note also that βSim is indistinguishable from β∗.
The Python code for this example is contained in the supplementary material, in the file
comparison_to_classical_approach.py.
In conclusion, the proposed way of simulating data, strictly adhering to a given optimization
problem, presents advantages that are highly valuable when conducting a simulated experi-
ment. First, since the values of the regularization parameters are known and set by the users,
they can be given to an optimization algorithm and the result be compared to the known
minimizer of the function. Apart from the practicality of doing so, large amounts of time
will be saved by avoiding techniques such as cross-validation to select optimal values of the
regularization parameters. Second, one can test in a controlled manner the robustness, or
sensitivity of an optimization method to the “wrong” values of the regularization parameters,
since one would know exactly how far the regularization parameter values are from the true
values. Third, knowing exactly what is minimized (i.e., the exact expression of the function)
and its minimizer allows us to know exactly how a minimization method fares: The exper-
imenter knows at each iteration how far an algorithm is from the minimum of the function
and, at the end of the optimization process, he/she will be able to derive the exact speed at
which the optimum was found.
These advantages could benefit many current high level scientific projects. E.g., the one
by Dohmatob, Gramfort, Thirion, and Varoquaux (2014), in which the authors compared the
performance of several optimization algorithms for solving a logistic regression problem with
TV and `1 penalties. It is widely known that this problem has no explicit solution. This
is a typical case in which the proposed approach would have saved time and improved the
quality of the comparison. Indeed, the authors studied the convergence of the algorithms for
parameters close to the optimal parameters, set by 10-fold cross-validation. The proposed
approach would have allowed them to directly plug the optimal parameters in the optimization
algorithms and/or test the robustness of the chosen optimization algorithms to values of the
parameters that would have been chosen to differ from the optimal values.

7.2. Elastic net and total variation

In this example we simulate data to fit the function

f(β) = 1
2‖Xβ − y‖

2
2 + (1− λ`2)‖β‖1 + λ`2

2 ‖β‖
2
2 + λTV TV(β), (21)

in which λ`2 = 0.5 and λTV = 1.0. This is thus elastic net with a TV penalty. We let the `1
parameter be 1− λ`2 . We will vary the values of the regularization parameters in an interval
around their “true” values and compute f(β(k))− f(β∗) for each of these values.
We use pylearn-simulate to generate data that fit this loss function as follows.
Import the required packages:

>>> import simulate
>>> import numpy as np
>>> np.random.seed(42)
>>> rs = np.random.RandomState(42)

Journal of Statistical Software 21

>>> rng01 = simulate.utils.RandomUniform(0, 1, random_state = rs)
>>> rng_11 = simulate.utils.RandomUniform(-1, 1, random_state = rs)

Generate a start vector, β0, a candidate data set, X0, and the residual vector, ε:

>>> shape = (4, 4, 4)
>>> n, p = 48, np.prod(shape)
>>> beta = simulate.beta.random((p, 1), density = 0.5, sort = True,
... rng = rng01)
>>> Sigma = simulate.correlation_matrices.constant_correlation(p = p,
... rho = 0.01, eps = 0.001, random_state = rs)
>>> X0 = rs.multivariate_normal(np.zeros(p), Sigma, n)
>>> e = rs.randn(n, 1)

Generate the linear operator for total variation:

>>> A = simulate.functions.TotalVariation.A_from_shape(shape)

Create the penalties:

>>> lambda_l2 = 0.5
>>> lambda_l1 = 1.0 - lambda_l2
>>> lambda_tv = 1.0
>>> l1 = simulate.functions.L1(lambda_l1, rng = rng_11)
>>> l2 = simulate.functions.L2Squared(lambda_l2)
>>> tv = simulate.functions.TotalVariation(lambda_tv, A, rng = rng01)

Create the loss function:

>>> lr = simulate.LinearRegressionData([l1, l2, tv], X0, e, snr = 3.0,
... intercept = False)

Finally, generate the data:

>>> X, y, beta_star, e = lr.load(beta)

We minimize the function in Equation 21 on the resulting data by using CONESTA (Hadj-
Selem et al. 2018) (which, roughly, is FISTA with continuation of the smoothing parameter
µ) from pylearn-parsimony (Löfstedt et al. 2014b), with the smallest value of the smoothing
parameter set to µ = 5 · 10−8.
We minimize Equation 21 for 21 different values of each of the regularization parameters.
We vary the parameters over lambda_l2 ∈ [λ`2 − 0.25, λ`2 + 0.25] and lambda_tv ∈ [λTV −
0.25, λTV + 0.25].
The result is shown in Figure 2, and we see that the solution that gives the smallest function
value is at precisely the true values of λ`2a and λTV.
The complete Python code for this example is found in the supplementary material, in the
file linear_regression_elastic_net_total_variation.py.

22 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

λ
`
2

0.3

0.4

0.5

0.6

0.7
λTV0.8

0.9
1.0

1.1
1.2

0.00
0.03
0.05
0.08
0.10
0.13

0.15

0.18

0.20

0.23

(0. 5, 1. 0)

f(β (k))− f(β ∗)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 2: An illustration of the benefit of using simulated data as described in this article.
The minimum solution to Equation 21 is found when using the regularization parameters used
in the construction of the simulated data. These 48 × 64 data had no correlation between
variables and the following characteristics: 50 % sparsity, signal-to-noise ratio 3, λ`2 = 0.5,
and λTV = 1.0.

7.3. Elastic net and smoothed group LASSO

In the third example we simulate data for the function

f(β) = 1
2‖Xβ − y‖

2
2 + λ`1‖β‖1 + 1− λ`1

2 ‖β‖22 + λGL GLµ(β), (22)

where GLµ is the smoothed (overlapping) group LASSO function; and in which λ`1 = 0.618
and λGL = 1.618 (in this example we let the `2 parameter be 1 − λ`1). We will vary the
values of the regularization parameters in an interval around their “true” values and compute
f(β(k))− f(β∗) for each of these values.
We use pylearn-simulate to generate data that fit this loss function as follows.
Import the required packages:

>>> import simulate
>>> import numpy as np
>>> np.random.seed(42)
>>> rs = np.random.RandomState(42)
>>> rng01 = simulate.utils.RandomUniform(0, 1, random_state = random_state)
>>> rng_11 = simulate.utils.RandomUniform(-1, 1, random_state = random_state)

Generate a start vector, β0, a candidate data set, X0, the residual vector, ε, and required
parameters. The first step is to define the size of the data:

>>> n, p = 48, 64 + 1

and the groups

Journal of Statistical Software 23

λ
1̀

0.4
0.5

0.6
0.7

0.8 λGL
1.4

1.5
1.6

1.7
1.8

0.00

0.03

0.07

0.10

0.14

0.17

0.21

0.24

0.28

0.31

(0. 618, 1. 618)

f(β (k))− f(β ∗)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure 3: Another illustration of the benefit of using simulated data as described in this article.
The minimum solution to Equation 22 is found when using the regularization parameters used
in the construction of the simulated data. These 48 × 65 data had an intercept variable, no
correlation between variables and the following characteristics: 50 % sparsity, signal-to-noise
ratio 2, λ`1 = 0.618, and λGL = 1.618.

>>> groups = [range(1, 2 * p / 3), range(p / 3, p)]

After that, we generate the data set with a column of ones in X0 to take the intercept into
account:

>>> beta = simulate.beta.random((p - 1, 1), density = 0.5, sort = True,
... rng = rng01)
>>> beta = np.vstack((rs.rand(1, 1), beta))
>>> Sigma = simulate.correlation_matrices.constant_correlation(p = p - 1,
... rho = 0.01, eps = 0.001, random_state = rs)
>>> X0 = rs.multivariate_normal(np.zeros(p - 1), Sigma, n)
>>> X0 = np.hstack((np.ones((n, 1)), X0))
>>> e = rs.randn(n, 1)

Generate the linear operator for overlapping group LASSO:

>>> A = simulate.functions.SmoothedGroupLasso.A_from_groups(p, groups,
... weights = None, penalty_start = 1)

Create the penalties, where lambda_l1, lambda_l2 and lambda_gl are the parameters used
for the `1, the `2, and the group lasso penalties, respectively:

>>> lambda_l1 = 0.618
>>> lambda_l2 = 1.0 - lambda_l1
>>> lambda_gl = 1.618
>>> l1 = simulate.functions.L1(lambda_l1, rng = rng_11)

24 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

>>> l2 = simulate.functions.L2Squared(lambda_l2)
>>> gl = simulate.functions.SmoothedGroupLasso(lambda_gl, A,
... mu = simulate.utils.TOLERANCE)

Create the loss function:

>>> lr = simulate.LinearRegressionData([l1, l2, gl], X0, e, snr = 2.0,
... intercept = True)

Generate simulated data:

>>> np.random.seed(42)
>>> X, y, beta_star, e = lr.load(beta)

We again minimize the function in Equation 22 on these data by using CONESTA from
pylearn-parsimony (Löfstedt et al. 2014b), with the smallest, and true value of the smoothing
parameter set to µ = 5·10−8. See the examples directory in pylearn-simulate for more details.
The result is shown in Figure 3, and we again see that the solution that gives the smallest
function value is at precisely the true values of λ`1 and λGL.
The complete Python code for this example is found in the supplementary material, in the
file linear_regression_elastic_net_group_lasso.py.

8. Discussion and conclusions
The technique that we have used in order to generate the simulated data in this paper is very
useful when testing new optimization methods. Indeed, it allows us to clearly measure the
performance of the optimization method while avoiding an arbitrary choice of the penalization
constants. This means the choice of penalization will not impact the quality of the solution.
In fact, this completely avoids the use of cross-validation, or other resampling techniques,
something that may be computationally expensive, and that does not guarantee optimality.
Additionally, if the candidate matrix, X0, is a real data set, it is possible to use the proposed
technique to generate a quasi-real data set and thus under quasi-real conditions control all
the parameters of the problem. In particular, since we can generate different choices of β∗, we
can test different structured and sparse penalties and see how they perform on the particular
data.
Also, since we know the problem exactly, we are able to numerically study the behavior of
cross-validation, or other resampling techniques, on our data. This may help us understand
how cross-validation performs on different types of data under different model hypotheses.
The presented Python package, pylearn-simulate, offers a simple object oriented interface
with which it is possible to generate data that fits any combination of penalties with a linear
least-squares loss function. It is easy to extend the package and add new penalties, thanks
to the object oriented interface. It is also possible to extend the package, as discussed below,
and to add other loss functions.
The aim of this paper was to discuss how to generate simulated data for optimization problems
with the linear least-squares loss with `1, `2, and a complex penalty such as e.g. TV. We note
that Theorem 5.1 only covers these penalties, but also that the formulation of the complex

Journal of Statistical Software 25

penalties is very general, and therefore covers a large class of penalties. Theorem 5.1 can
likely be generalized to other losses and penalties as well, but that was out of the scope of
this paper.
Finally, we note that other machine learning methods, such as, e.g., logistic regression, are
different from the one with linear regression presented here. In logistic regression, the y
vector is implicitly related to the X matrix. It is possible to find an exact solution for the
minimization problem, but without any control of the correlation structure or on the signal-
to-noise ratio. Therefore, a different approach is needed in this context and for other machine
learning methods as well. This is something that will occupy the authors’ attention in future
research.

Acknowledgments
This work was supported by grants from the French National Research Agency: ANR GENIM
(ANR-10-BLAN-0128), ANR IA BRAINOMICS (ANR-10-BINF-04), and a European Com-
mission grant: MESCOG (FP6 ERA-NET NEURON 01 EW1207).
The authors Tommy Löfstedt, Vincent Guillemot, and Fouad Hadj-Selem contributed equally
to this publication.

References

Bach F, Jenatton R, Mairal J, Obozinski G (2011). “Convex Optimization with Sparsity-
Inducing Norms.” In S Sra, S Nowozin, SJ Wright (eds.), Optimization for Machine Learn-
ing. MIT Press. URL http://www.di.ens.fr/~fbach/opt_book.pdf.

Chen X, Liu H (2011). “An Efficient Optimization Algorithm for Structured Sparse CCA,
with Applications to eQTL Mapping.” Statistics in Biosciences, 4(1), 3–26. doi:10.1007/
s12561-011-9048-z.

Dohmatob E, Gramfort A, Thirion B, Varoquaux G (2014). “Benchmarking Solvers for TV-
L1 Least-Squares and Logistic Regression in Brain Imaging.” In Pattern Recoginition in
Neuroimaging. IEEE, Tübingen, Germany.

Hadj-Selem F, Löfstedt T, Dohmatob E, Frouin V, Dubois M, Guillemot V, Duchesnay E
(2018). “Continuation of Nesterov’s Smoothing for Regression with Structured Sparsity in
High-Dimensional Neuroimaging.” IEEE Transactions on Medical Imaging. doi:10.1109/
TMI.2018.2829802. Forthcoming.

Hardin J, Ramon Garcia S, Golan D (2013). “A Method for Generating Realistic Correlation
Matrices.” The Annals of Applied Statistics, 7(3), 1733–1762. doi:10.1214/13-aoas638.

Hiriart-Urrut JB, Lemaréchal C (2004). Fundamentals of Convex Analysis. 2nd edition.
Springer-Verlag.

Jones E, Oliphant T, Peterson P (2001). “SciPy: Open Source Scientific Tools for Python.”
URL http://www.scipy.org/.

http://www.di.ens.fr/~fbach/opt_book.pdf
https://doi.org/10.1007/s12561-011-9048-z
https://doi.org/10.1007/s12561-011-9048-z
https://doi.org/10.1109/TMI.2018.2829802
https://doi.org/10.1109/TMI.2018.2829802
https://doi.org/10.1214/13-aoas638
http://www.scipy.org/

26 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

Löfstedt T, Guillemot V, Frouin V, Duchesnay E, Hadj-Selem F (2014a). “pylearn-Simulate.”
GitHub repository, https://github.com/neurospin/pylearn-simulate.

Löfstedt T, Guillemot V, Hadj-Selem F, Li J, Frouin V, Duchesnay E (2014b). “pylearn-
Parsimony.” GitHub repository, https://github.com/neurospin/pylearn-parsimony.

Nesterov Y (2004). “Smooth Minimization of Non-Smooth Functions.” Mathematical Pro-
gramming, 103(1), 127–152. doi:10.1007/s10107-004-0552-5.

Nesterov Y (2013). “Gradient Methods for Minimizing Composite Functions.” Mathematical
Programming, 140(1), 125–161. doi:10.1007/s10107-012-0629-5.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RStudio (2013). “RStudio: Integrated Development for R.” RStudio, Inc., URL https:
//www.RStudio.com/.

Rudin L, Osher S, Fatemi E, Monica S (1992). “Nonlinear Total Variation Based Noise
Removal Algorithms.” Physica D: Nonlinear Phenomena, 60(1–4), 259–268. doi:10.1016/
0167-2789(92)90242-f.

van der Walt S, Colbert SC, Varoquaux G (2011). “The NumPy Array: A Structure for
Efficient Numerical Computation.” Computing in Science & Engineering, 13(2), 22–30.
doi:10.1109/mcse.2011.37.

van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Yuan M, Lin Y (2006). “Model Selection and Estimation in Regression with Grouped
Variables.” Journal of the Royal Statistical Society B, 68(1), 49–67. doi:10.1111/j.
1467-9868.2005.00532.x.

https://github.com/neurospin/pylearn-simulate
https://github.com/neurospin/pylearn-parsimony
https://doi.org/10.1007/s10107-004-0552-5
https://doi.org/10.1007/s10107-012-0629-5
https://www.R-project.org/
https://www.RStudio.com/
https://www.RStudio.com/
https://doi.org/10.1016/0167-2789(92)90242-f
https://doi.org/10.1016/0167-2789(92)90242-f
https://doi.org/10.1109/mcse.2011.37
https://www.python.org/
https://www.python.org/
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x

Journal of Statistical Software 27

A. LASSO
The function

f(β) = 1
2 ‖Xβ − y‖

2
2 + λ`1‖β‖1

is known as the LASSO problem.
Nesterov (2013) addressed how to simulate data for this case, and we will therefore not go
into details. Instead we will simply adapt it to our notation and explain some steps that are
not obvious.
The principle behind Nesterov’s idea is as follows: First, define the error to be ε = Xβ − y,
in the model between Xβ and y, such that it is independent from β∗. Then, select acceptable
values for the columns of X such that zero belongs to the subdifferential of f at β∗, with
subdifferential

∂f(β) = X>(Xβ − y) + λ`1∂‖β‖1
= X>ε+ λ`1∂‖β‖1.

At β∗ we have such that
0 ∈ X>ε+ λ`1∂‖β∗‖1, (23)

and we stress again that X>ε does not depend on β∗. We distinguish two cases:

First case: We consider a variable β∗j 6= 0, the jth element of β∗. With β∗j 6= 0 it follows
that ∂|β∗j | = {sign(β∗j)}, and thus that we can write

0 = X>j ε+ λ`1 sign(β∗j),

because of Equation 23, with Xj the jth column of X.

Second case: We consider the case when β∗j = 0. We note that the subdifferential of |β∗j |
when β∗j = 0 is

∂|β∗j | = [−1, 1],

and thus from Equation 23 we see that

0 ∈ X>j ε+ λ`1 [−1, 1]. (24)

Solution

The candidate matrix X0 will serve as a first unscaled version of X and we have such that
Xj = ωjX0,j , for all 1 ≤ j ≤ p.
If β∗j 6= 0, then X>j ε+ λ`1 sign(β∗j) = 0 and thus

X>j ε = −λ`1 sign(β∗j)

and since Xj = ωjX0,j we have

ωj =
−λ`1 sign(β∗j)

X>0,jε
.

28 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

If β∗j = 0, we use Equation 24 and have

X>j ε ∈ λ`1 [−1, 1].

Thus, with Xj = ωjX0,j we obtain

ωjX
>
0,jε ∈ λ`1 [−1, 1],

or equivalently

ωj ∼
λ`1U(−1, 1)

X>0,jε
.

Once X is generated, we let y = Xβ∗ − ε.

B. Two complex penalties

B.1. Total variation

Gradient of non-smooth total variation

The TV penalty, for a discrete β, is defined as

TV(β) =
p∑
j=1
‖ grad(βj)‖2, (25)

where grad(βj) is the discrete spatial gradient at point βj . It is usually expressed as a forward
difference discrete gradient, i.e., such that

TV(β) =
p∑
j=1
‖ grad(βj)‖2

=
p1−1∑
j1=1
· · ·

pD−1∑
jD=1

√
(βj1+1,...,jD − βj1,...,jD)2 + · · ·+ (βj1,...,jD+1 − βj1,...,jD)2,

where pd is the number of variables in the dth dimension, for d = 1, . . . , D, with D dimensions.
We will first illustrate this in the 1-dimensional case. In this case ‖x‖2 =

√
x2 = |x|, since

x ∈ R. We thus have

TV(β) =
p−1∑
j=1
|βj+1 − βj |,

We note that if we define A, a (p− 1)× p matrix, as

A =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
0 0 · · · −1 1

 ,

Journal of Statistical Software 29

1st layer:
1 2 3 4
5 6 7 8
9 10 11 12

2nd layer:
13 14 15 16
17 18 19 20
21 22 23 24

Figure 4: The 24-dimensional regression vector β representing a 2× 3× 4 image.

then

TV(β) =
p−1∑
j=1
|βj+1 − βj | =

G∑
g=1
‖Agβ‖2,

where G = p− 1 and Ag is the gth row of A.
Thus, we use Theorem 4.3 and obtain

∂TV (β) = A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 = A>

 ∂ |β2 − β1|
...

∂ |βp − βp−1|

 ,
in which we recall Equation 6 and obtain that

∂|x| =
{
{sign(x)} if |x| > 0,
[−1, 1] if |x| = 0.

The general case will be illustrated with a small example using a 3-dimensional image. A
24-dimensional regression vector β is generated, that represents a 2×3×4 image. The image,
with linear indices indicated, is given in Figure 4.
We note, when using the linear indices, that β1 and β2 are neighbors in the 1st dimension,
that β1 and β5 are neighbors in the 2nd dimension and that β1 and β13 are neighbors in the
3rd dimension. Using 3-dimensional indices (i.e., such as βi,j,k) the penalty becomes

TV (β) =
p1−1∑
j1=1

p2−1∑
j2=1

p3−1∑
j3=1

√√√√√√ (βj1+1,j2,j3 − βj1,j2,j3)2

+(βj1,j2+1,j3 − βj1,j2,j3)2

+(βj1,j2,j3+1 − βj1,j2,j3)2
,

in which p1 = 4, p2 = 3 and p3 = 2. In total, there are as many groups as 3-dimensional
voxels, there are then G = p1p2p3 = 24 groups.
We thus construct the A matrix to reflect this penalty. The first group is

A1 =

 −1 1 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 .
Thus, for matrix Ag (in group g) we have a −1 in the gth column in all dimensions, a 1 in the
(g + 1)th column for the 1st dimension, a 1 in the (p1 + g)th column for the 2nd dimension

30 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

and a 1 in the (p1 · p2 + g)th column for the 3rd dimension. Note that when these indices
fall outside of the A matrix (i.e., the indices are greater than p1, p2, or p3, respectively) then
the whole row (but not the group!) must be set to zero (or handled in some other way not
specified here).
We have

∂TV (β) = A>

 ∂‖A1β‖2
...

∂‖A24β‖2

 (26)

and use Equation 6 to obtain

∂‖Agβ‖2 3


Agβ
‖Agβ‖2 if ‖Agβ‖2 > 0,
αu
‖u‖2 , α ∼ U(0, 1), u ∼ U(−1, 1)3 if ‖Agβ‖2 = 0.

(27)

We note that A is very sparse, which greatly helps to speed up and save memory in the
implementation.
We now illustrate how to use pylearn-simulate to generate the A matrix.

>>> import simulate

The size of the underlying 2× 3× 4 image is then defined as

>>> shape = (2, 3, 4)

Defining the shape allows then to generate the A matrix:

>>> A = simulate.functions.TotalVariation.A_from_shape(shape)
>>> print A
>>> print A[0].toarray()[0,:], "\n", \
... A[1].toarray()[0,:], "\n", \
... A[2].toarray()[0,:]

The output of the above code is:

[<24x24 sparse matrix of type '<type 'numpy.float64'>'
with 36 stored elements in Compressed Sparse Row format>,

<24x24 sparse matrix of type '<type 'numpy.float64'>'
with 32 stored elements in Compressed Sparse Row format>,

<24x24 sparse matrix of type '<type 'numpy.float64'>'
with 24 stored elements in Compressed Sparse Row format>]

[-1. 1. 0.]
[-1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[-1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

The function simulate.functions.TotalVariation.A_from_shape thus returns a 3-vector
with a sparse matrix in each element. This is for computational reasons (to avoid looping
over p groups). The first element of A contains the first dimension, the second element the

Journal of Statistical Software 31

second dimension and the third element the third dimension. We note that the first group
(as seen in the second print) is precisely as given above.

B.2. Overlapping group LASSO

Gradient of non-smooth overlapping group LASSO

The group LASSO penalty is defined as

GL(β) =
G∑
g=1

ηg‖βg‖2, (28)

where ηg is a group weight that accounts for varying group sizes, βg is a sub-vector of β. Note
that any two sub-vectors βa and βb are allowed to overlap, i.e., it is possible that a variable
βj is present in both subvectors βa and βb.
We will define matrices Ag, one for each group, such that

GL(β) =
G∑
g=1

ηg‖βg‖2 =
G∑
g=1
‖Agβ‖2. (29)

We will illustrate the construction of Ag by an example. We are working with 6 variables,
i.e., β ∈ R6. We define two groups, such that variables 1, 3, 4 and 6 belong to group 1 and
variables 2, 4 and 6 belong to group 2. We define A1 as

A1 = η1


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,
and A2 as

A2 = η2

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .
The matrices Ag are thus |g| × p, where |g| is the number of variables in group g. Each row
of Ag selects one variable to the group; if variable βj belongs to group g, then Ag has a row
with all zeros except for the element in the jth position which is ηg. Thus, Ag selects the
variables that belong to group g and thus ηgβg = Agβ.
We again use Theorem 4.3 and obtain

∂GL(β) = A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 .
We now illustrate how to use pylearn-simulate to generate the A matrix for overlapping group
LASSO.

>>> import simulate

32 pylearn-simulate: Simulated Data with Structured and Sparse Penalties

First, we define the number of variables and the groups:

>>> p = 6
>>> groups = [[0, 2, 3, 5], [1, 3, 5]]

Then, the linear operator (the matrix A) for overlapping group LASSO is generated:

>>> A = simulate.functions.SmoothedGroupLasso.A_from_groups(p, groups,
... weights = [3.14159, 2.71828])
>>> print A
>>> print A[0].toarray()
>>> print A[1].toarray()

The output of the above code is:

[<4x6 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>,

<3x6 sparse matrix of type '<type 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Row format>]

[[3.14159 0. 0. 0. 0. 0.]
[0. 0. 3.14159 0. 0. 0.]
[0. 0. 0. 3.14159 0. 0.]
[0. 0. 0. 0. 0. 3.14159]]

[[0. 2.71828 0. 0. 0. 0.]
[0. 0. 0. 2.71828 0. 0.]
[0. 0. 0. 0. 0. 2.71828]]

The function simulate.functions.SmoothedGroupLasso.A_from_groups thus returns a vec-
tor with two sparse matrices. The elements of this vector are the A matrices for each group.
We note that the printed A matrices correspond to those in the example above. Note also
that the variable indices are zero-based.

Gradient of smoothed group LASSO

The gradient of Nesterov-smoothed complex penalties is given in Equation 7. Thus, in order
to compute the gradient we need the linear operator A and the dual variable α∗. The A
matrix is described above; the computation of the dual variable for group LASSO is given
by Chen and Liu (2011), but without derivation. We therefore derive the solution here.
We compute the parts of the dual variable that corresponds to each group, i.e., α∗g. We

Journal of Statistical Software 33

express α∗g as a projection of the vector 1
µAgβ onto the compact space Kg, i.e.,

α∗g = arg max
α∈Kg

{
〈αg, Agβ〉 −

µ

2 ‖αg‖
2
2

}
(30)

= arg min
α∈Kg

{
‖αg‖22 −

2
µ
〈αg, Agβ〉

}

= arg min
α∈Kg

{∥∥∥∥αg − Agβ

µ

∥∥∥∥2

2
−
∥∥∥∥Agβµ

∥∥∥∥2

2

}

= arg min
α∈Kg

{∥∥∥∥αg − Agβ

µ

∥∥∥∥2

2

}

= projKg
(
Agβ

µ

)
,

where Kg is the unit `2 ball. Thus, the projection operator is

projKg(x) = proj`2(x) =


x
‖x‖2 , if ‖x‖2 > 1,
x, otherwise.

(31)

The dual variable, α∗, is then the concatenation of the sub-vectors of all groups.

Affiliation:
Tommy Löfstedt
Brainomics Team
Neurospin
CEA Saclay
91190 Gif-sur-Yvette, France
E-mail: lofstedt.tommy@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2018, Volume 87, Issue 3 Submitted: 2014-12-28
doi:10.18637/jss.v087.i03 Accepted: 2016-09-07

mailto:lofstedt.tommy@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v087.i03

	Introduction
	Installation
	Notations
	Method
	Algorithm
	Subdifferential of complex penalties
	Smoothed penalties

	Application
	Linear regression with elastic net and a complex penalty
	Intercept
	Signal-to-noise ratio
	Correlation

	The package pylearn-simulate
	beta.py
	correlation_matrices.py
	functions.py
	simulate.py
	utils.py

	Examples
	Comparison to the classical approach
	Elastic net and total variation
	Elastic net and smoothed group LASSO

	Discussion and conclusions
	LASSO
	Two complex penalties
	Total variation
	Gradient of non-smooth total variation

	Overlapping group LASSO
	Gradient of non-smooth overlapping group LASSO
	Gradient of smoothed group LASSO

