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Abstract

SSpace is a MATLAB toolbox for state space modeling. State space modeling is in
itself a powerful and flexible framework for dynamic system modeling, and SSpace is con-
ceived in a way that tries to maximize this flexibility. One of the most salient features
is that users implement their models by coding a MATLAB function. In this way, users
have complete flexibility when specifying the systems, have absolute control on parame-
terizations, constraints among parameters, etc. Besides, the toolbox allows for some ways
to implement either non-standard models or standard models with non-standard exten-
sions, like heteroskedasticity, time-varying parameters, arbitrary nonlinear relations with
inputs, transfer functions without the need of using explicitly the state space form, etc.
The toolbox may be used on the basis of scratch state space systems, but is supplied with
a number of templates for standard widespread models. A full help system and documen-
tation are provided. The way the toolbox is built allows for extensions in many ways. In
order to fuel such extensions and discussions an online forum has been launched.

Keywords: state space models, unobserved components, ARIMA, exponential smoothing,
Kalman filter, MATLAB.

1. Introduction
SSpace is a MATLAB toolbox (The MathWorks Inc. 2017) that provides a number of routines
designed for a general analysis of state space systems. It combines both flexibility and sim-
plicity, and at the same time it enhances the power and versatility of state space modeling
in a user-friendly environment. The toolbox possesses very distinct properties compared to
other state space pieces of software, but at the same time takes advantage of methods and
algorithms from other sources, mainly Taylor, Pedregal, Young, and Tych (2007) and Durbin
and Koopman (2012). The combination of all these factors gives SSpace a particular flavor.
Popularity of high level programming languages like MATLAB has brought the availability
of many free packages with an incredibly wide range of applications in many research areas.
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State space (SS) routines are not an exception, and therefore good packages are so widespread
nowadays, either as open source or paid versions, that it is impossible to quote even a portion
of them. Without any intention of being exhaustive, we offer here a list of the most popular
packages within the academic community. A partial review is available in Volume 41 of
the Journal of Statistical Software (Commandeur, Koopman, and Ooms 2011). There are
several toolboxes written in MATLAB, like toolboxes supplied with the core program, but
also CAPTAIN (Taylor et al. 2007), SSM (Peng and Aston 2011), SSMMATLAB (Gómez
2015) and E4 (Casals, Garcia-Hiernaux, Jerez, Sotoca, and Trindade 2016). One piece of
software widely known is SSfPack (Koopman, Shephard, and Doornik 2008). Some others
are written either in R (R Core Team 2018; Petris and Petrone 2011; e.g., package KFAS;
Helske 2017), RATS (Doan 2011), gretl (Lucchetti 2011), etc. Also, some other, menu-driven
programs that incorporate SS routines with less flexible programming capabilities are STAMP
(Koopman, Harvey, Doornik, and Shephard 2009), Eviews (IHS Inc. 2010; Van den Bossche
2011), SAS (SAS Institute Inc. 2013; Selukar 2011), Stata (StataCorp 2017; Drukker and Gates
2011), etc. ECOTOOL is a complementary MATLAB toolbox written by the same authors
for the identification and estimation of dynamical systems (Pedregal and Trapero 2012).
In a broad sense, SSpace provides the user with the most advanced and up-to-date features
available in the state space framework, sharing some of these properties with some packages
mentioned above and competing with them. However, some other features are specific to this
toolbox and will not be found in any of the alternatives.
Regarding statistical issues, the main features of SSpace are:

1. Full multivariate linear and nonlinear Gaussian models, and univariate non-Gaussian
models are implementable. In any of these possibilities nonlinear, time-varying or trans-
fer function relations with inputs are possible.

2. The framework is very general in the equations formulation and in the sense that all
system matrices are potentially time-varying or state-dependent.

3. Kalman filter, fixed interval smoothing and disturbance smoothing are implemented
with exact, diffuse or ad-hoc initialization. Exact initialization in nonlinear models is
also possible following Koopman and Lee (2009).

4. Steady state detection of linear invariant systems.

5. Use of exact scores in maximum likelihood estimation, when possible. Use of numerical
gradients is always possible, sometimes compulsory.

6. Other estimation procedures apart from maximum likelihood are implemented. At the
moment the toolbox offers concentrated likelihood and minimization of combinations of
several steps ahead forecast errors. More cost functions may be added in the future.

7. Kalman filtering and smoothing of multivariate systems are based on univariate treat-
ment of multivariate systems, see Durbin and Koopman (2012, pages 155–160).

8. A family of models not used in any of the alternative packages is included, namely the
dynamic harmonic regression. To the best knowledge of the authors, this is the first
time that a multivariate seemingly unrelated dynamic harmonic regression is used and
implemented. Such model is an extension of the univariate dynamic harmonic regression
counterpart, see Young, Pedregal, and Tych (1999) and the worked example 3 below.
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On the operative side, SSpace is rather flexible and user-friendly because:

• The toolbox is user-oriented in the sense that a big effort has been done on the developer
side with the aim of simplifying usage to the final users. As a consequence, a compre-
hensive time series analysis may be performed with full control over models, parameters
and specifications, by using just a few number of functions that follow a simple and fixed
calling-standard that is easy to remember (see the section with the worked examples
below). One example of this simplicity is that just one function (namely SSfilter)
is used for filtering any kind of model, regardless of whether it is linear, non-Gaussian
or nonlinear, i.e., the toolbox detects the type of model and applies the appropriate
algorithms in each case automatically without any specific intervention of the user.

• The toolbox is composed of less than thirty functions with names that have been care-
fully selected following nemotechnic rules, so that the user may remember them or easily
look for their names. There are three groups of functions:

– Core functions (named SS*) which set up the models and perform the basic oper-
ations of filtering, smoothing, forecasting, validating, etc.

– Template functions (Sample*) which help the user to set up the model either in
terms of the crude state space system matrices or in terms of its specific nature.

– Other helpful functions for easy handling of models, matrices, etc. The main
ones are for constraining parameters, building semi-definite covariance matrices,
differencing time series, building forecast confidence bands, etc.

• Another key point is that models are directly specified by the user in a user-coded
function written in plain MATLAB syntax. This approach has at least the following
advantages:

– Once the model is specified in the user-coded function, the same syntax applies
to all sort of models, regardless of linearity, Gaussianity, estimation method, etc.
i.e., the same functions with the same syntax are used for estimation, filtering,
smoothing, etc. Internally the operation of the toolbox may be rather different in
each case, but such complexity does not require any intervention of the user.

– The user-coded function is written following a particular template, that is basically
a list of empty values for all the system matrices. The toolbox offers particular
templates for a wide range of standard models. These templates may be extended
or substituted by users. Such functions and templates may be extended in many
ways. Typically, for complex models the model function has to be extended with
the aid of additional inputs to the MATLAB function in order to define the model
in SS form.

– The user has full control over his models in a fairly straightforward manner, e.g.,
different specific parameterizations of the same model are possible, parameter con-
straints of any kind may be imposed, non-standard features of the models may be
added (like adding heteroskedasticity, time-varying parameters, nonlinear exoge-
nous relations, . . . ), etc.

• Parameter estimation is carried out by the standard fminunc function from the Opti-
mization toolbox in MATLAB. By editing the script optimizer.m the user may tune
the optimization settings and/or change even the optimizer itself.
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As a summary, the toolbox is highly configurable and could be extended in several ways,
a reason for which users are encouraged to push their own contributions to the repository
https://bitbucket.org/predilab/sspace-matlab/. Usually default options for modeling
are in place in such a way that a few commands with a few options would produce sensible
results, but advanced users may take advantage of the possibility to configure the toolbox at
their own convenience. For example, they could select different sets of initial parameter values
to start estimation in order to find the global optimum, build alternative cost functions to
the log-likelihood for parameter estimation based on the output of the Kalman filter, try out
different optimization algorithms to search for optimal parameters, add templates for models
not yet implemented or suggest different versions to the existing ones, build canned functions
for standard model estimation, etc.
The rest of the paper is organized as follows: The next section shows the models implemented
in analytical form; Section 3 provides a broad vision of the functions included in the toolbox
and its main usage on implementing a full time series analysis through a simple example;
Section 4 illustrates the usage of SSpace with several examples for different scenarios and
complexity levels; and Section 5 extracts the main conclusions. Code listings and examples
are considerably compressed for space reasons, but may be consulted in extended form in the
SSpace demos.

2. Models implemented in SSpace
SSpace supports linear Gaussian models, non-Gaussian models and nonlinear models.
The linear Gaussian version is shown in Equation 1.

αt+1 = Ttαt + Γt +Rtηt, ηt ∼ N(0, Qt),
yt = Ztαt +Dt + Ctεt, εt ∼ N(0, Ht),

α1 ∼ N(a1, P1), t = 1, 2, . . . , N.
(1)

In these equations αt is the state vector of length n; yt are the m×1 vector of output data; ηt
and εt are the state and observational vectors of zero mean Gaussian noises, with dimensions
r × 1 and h × 1, respectively; both noises are allowed to be correlated by a system matrix
St = COV(ηt, εt) of dimension r × h; α1 is the initial state with mean a1 and covariance P1
and independent of all disturbances and observations involved. The remaining elements in
(1) are the rest of the system matrices with appropriate dimensions, i.e.,

Tt: n× n; Γt: n× 1; Rt: n× r;
Zt: m× n; Dt: m× 1; Ct: m× h.

One interesting feature (see Section 4.1 for an example) is that the toolbox is flexible enough
to allow the terms Γt and Dt to be defined in such a way that k exogenous input variables
appear explicitly, i.e., Γt = f(γt, ut) and Dt = g(dt, ut), with ut of dimension k × 1. Beware
that general functions f(•) and g(•) include as particular cases time-varying linear functions
Γt = γtut and Dt = dtut, with γt and dt of dimensions n× k and m× k, respectively.
Apart from this, the formulation in (1) is also rather general. In particular, data sets may
be multivariate, all system matrices are time-varying and noises in state and observation
equations may be correlated. The system is actually so general that some readers would
immediately detect some redundancies and some terms that are not strictly necessary in

https://bitbucket.org/predilab/sspace-matlab/
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most applications. However, we have preferred to set up the model in the most general
possible way, such that any potential user acquainted with SS methodology does not have to
change his particular mindset, so that the effort to translate the system into SSpace is kept
to a minimum.
The non-Gaussian SS setup is shown in Equation 2:

αt+1 = Ttαt + Γt +Rtηt, ηt ∼ N(0, Qt),
yt ∼ p(yt | θt) +Dt,

θt = Ztαt, t = 1, 2, . . . , N.
(2)

Here θt is known as the signal. With this representation it is possible to deal with three types
of models (see Durbin and Koopman 2012):

1. Exponential family distribution, where p(yt | θt) = exp[y>t θt − bt(θt) + ct(yt)],−∞ <
θt <∞.

2. Stochastic volatility models, i.e., yt = exp(1
2θt)εt +Dt.

3. Observations generated by the relation yt = θt + εt, εt ∼ p(εt), with p(•) being a distri-
bution of the exponential family.

Finally, the nonlinear models are of the type shown in Equation 3.

αt+1 = Tt(αt) + Γt +Rt(αt)ηt, ηt ∼ N(0, Qt(αt)),
yt = Zt(αt) +Dt + Ct(αt)εt, εt ∼ N(0, Ht(αt)) t = 1, 2, . . . , N. (3)

Functions Tt(αt) and Zt(αt) with first derivatives provide nonlinear transformations of the
state vector into vectors of size n×1 and m×1, respectively. The rest of the system matrices
may also depend on the state vector and St = 0.
Given this general framework, (extended) Kalman filtering, state and disturbance smoothing
provide the basis for optimal state estimation, parameter estimation, signal extraction, fore-
casting, etc. For all the algorithmic issues not explicitly commented in this paper refer to
Young et al. (1999), Taylor et al. (2007) and Durbin and Koopman (2012).
Table 2 shows some of the main features of most common software packages. The top block
corresponds to toolboxes written in MATLAB, the rest are developed in other environments.
The table highlights several facts: (i) exact initialization is present in most packages, (ii)
nonlinear and non-Gaussian models are less common than expected and (iii) most packages
use maximum likelihood estimation as the only estimation method.
Moreover, there are some unique properties of SSpace, as far as the authors are aware of, like
the implementation of multivariate dynamic harmonic regression models, the implementation
of systems by direct specification of the system matrices in a MATLAB function, system esti-
mation via the minimization of forecast errors several steps ahead, the possibility of systems
implementing arbitrary nonlinear (and possibly multivariate) relations among inputs and out-
puts, the possibility of multiple-input-multiple-output transfer functions, and the chance to
select an arbitrary minimizer algorithm to estimate the models (with fminunc as a default).
The flexibility of SSpace is so big that, being this its most powerful feature, at the same time
it may be a problem for some users. Specifying a model from scratch in SSpace takes some
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EI +ML UTMM NLNG DA
SSpace X X X X X

E4 X X
SSM X X X

SSMMATLAB X
SSfPack X X X X
STAMP X X X
R KFAS X X X X

Stata X X
Eviews
gretl X X
SAS X

Table 1: Options available in most common state space software packages. The options
are exact initialization (EI), other estimation methods apart from ML (+ML), univariate
treatment of multivariate models (UTMM), nonlinear and non-Gaussian models (NLNG)
and availability of state disturbance algorithms (DA).

time and a bit of familiarization with the toolbox. To solve these problems two solutions are
implemented: (i) when specifying the model, SSpace performs internally a full set of coherency
tests to ensure that the model is correctly specified and issues error or warning messages with
the specific problems that guide the user towards the solution, and (ii) templates for most
common models are provided so that the user does not have to bear in mind the state space
form of any of them. This is actually a part of SSpace that will grow as more templates
appear in the future.

3. SSpace overview
Table 3 shows the core functions necessary to carry out a comprehensive time series analy-
sis. Among all these the most important to understand is SSmodel. It creates a structure
with the user inputs and all the outputs, that will be empty at the time of creation (for a
full description of inputs and outputs type help SSmodel at the MATLAB prompt). This
structure will be the input to the rest of the functions that have to handle the system, like
estimation, filtering, etc., and it also may be the output to such functions, in a way that it
is completed little by little with each additional operation. With SSmodel the user specifies
the input and output data, the model to use, additional inputs to the user-coded function
necessary to implement the model, either exact or diffuse or ad-hoc initialization of recur-
sive algorithms, initial parameters for parameter estimation, fixed parameters that would be
frozen in estimation, the cost function to optimize, exact or numerical scores (if possible) in
maximum likelihood estimation, etc. To sum up, it sets up the models up to the smallest
detail, controlling the posterior performance of the rest of functions.
Once the model is created, SSestim performs parameter estimation by the method previously
selected in SSmodel. SSvalidate produces a table with the estimation results and diagnostics.
SSfilter produces the innovations and filtered estimates of states and covariance matrices
with additional output. If smoothed output is preferred, it is produced by the SSsmooth func-
tion. Disturbance errors (and smoothed output) may be computed by SSdisturb. Finally,
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SSmodel Creates SSpace model object or adds properties to an existing one.
SSestim Estimation of a SSpace model.
SSvalidate Validation of a SSpace model.
SSfilter Optimal Kalman filtering of a SSpace model.
SSsmooth Optimal fixed interval smoothing of a SSpace model.
SSdisturb Optimal disturbance smoother.
SSdemo Runs SSpace demos 1 to 8.

Table 2: Main functions of the SSpace library.

Linear and Gaussian models
SampleSS General SS template.
SampleARIMA ARIMA models with exogenous variables.
SampleBSM Basic structural model.
SampleDHR Dynamic harmonic regression.
SampleDLR Dynamic linear regression.
SampleES Exponential smoothing with exogenous variables.
Non-Gaussian models
SampleNONGAUSS General non-Gaussian models.
SampleEXP Non-Gaussian exponential family models.
SampleSV Stochastic volatility models.
Nonlinear models
SampleNL General nonlinear models.
Other templates
SampleAGG Models with time aggregation.
SampleCAT Concatenation of state space systems.
SampleNEST Nesting in inputs state space systems.

Table 3: Available templates for the SSpace toolbox.

there are eight step-by-step demos ready, that may be run with the SSdemo function.
All the functions in Table 3 run on the model previously coded by the user in MATLAB
language. In order to make the communication between the user and SSpace efficient and
easy, a number of templates have been created and listed in Table 3. SampleSS sets up any
linear and Gaussian models with or without inputs and any sort of non-standard feature.
The rest of the linear models are self-explanatory and are intended for the creation of well-
known models. There are also some templates for non-Gaussian models and for general
nonlinear models (SamplenNL). Additional templates help the user to build models with time
aggregation, concatenate systems or nest systems in inputs. In all cases, time-varying system
matrices are three dimensional, being time the third dimension.
The rest of the functions in Table 3 are very useful to set up models in SS form: (i) confband
builds confidence bands of filtered or smoothed outputs in a comfortable way, (ii) constrain
settles constraints among parameters in the models, (iii) varmatrix is a function useful
to constrain covariance matrices to be semi-positive-definite in multivariate models or just
positive in scalar cases, (iv) normalize standardizes any set of time series with a time-varying
covariance structure, (v) vdiff produces differencing of vector time series, and (vi) optimizer



8 SSpace: State Space Modeling in MATLAB

confband Forecasts confidence intervals.
constrain Free constraints of parameters.
varmatrix Semi-definite-positive covariance matrices.
normalize Variable normalization (standardization).
vdiff Differentiation of vector time series.
optimizer Optimizer options.

Table 4: Auxiliary functions for the SSpace library.

is an editable script that allows tuning the optimizer tolerances and even to change the
optimizer itself.
The analysis with SSpace consists of following the next steps, that mimic closely the steps
any researcher ought to follow in any SS analysis.

1. Write the model on paper or specify the model in SS form.

2. Translate model to MATLAB code using the templates supplied.

3. Set up model with SSmodel.

4. Estimate unknown parameters with SSestim.

5. Check appropriateness of model with SSvalidate.

6. Determine optimal estimates of states, their covariance matrices, innovations, etc. Any
or several of SSfilter, SSsmooth or SSdisturb may be used.

In the next subsections, a local level (or random walk plus noise) model is used to illustrate
how to implement all these steps applied to the Nile river data used in Durbin and Koopman
(2012), specifically demo1 of SSpace. The data consists of the flow volume of the Nile river at
Aswan from 1871 to 1970. The local level model is given in Equation 4, being B the backshift
operator.

yt = ηt

(1−B) + εt; VAR(ηt) = Q; VAR(εt) = H. (4)

3.1. Specify model (step 1)

One SS representation of (4) is (5):

State equation: αt+1 = αt + ηt, ηt ∼ N(0, Q),
Observation equation: yt = αt + εt, εt ∼ N(0, H). (5)

It may be seen immediately that the local level is one of the simplest models that can be
specified in SS form. Comparing it with the general form (1) we see that for this case all
system variables are scalar and time invariant, i.e., Tt = Rt = Zt = Ct = 1, Qt = Q, Ht = H
and Γt and Dt do not exist because the model has no inputs.

3.2. Code the model (step 2)

The best way to deal with the previous model is to edit the SampleSS template, rename it
to, say, example1, and fill in all the matrix values accordingly. The aspect of SampleSS is
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shown below, with the system matrix names easily identifiable. The template is offered in this
way, nothing should be removed, but anything could be added in order to define the system
matrices.

function model = SampleSS(p)
model.T = [];
model.Gam = [];
model.R = [];
model.Z = [];
model.D = [];
model.C = [];
model.Q = [];
model.H = [];
model.S = [];

The following is the adaptation of such template to the local level model.

function model = example1(p)
model.T = 1;
model.Gam = [];
model.R = 1;
model.Z = 1;
model.D = [];
model.C = 1;
model.Q = 10.^p(1);
model.H = 10.^p(2);
model.S = 0;

Note that the input argument p to both functions is a vector of parameters, in this case just the
scalars Q and H. By default, both state and observation noises are considered independent.
Furthermore, the first element in the vector p has been assigned to the matrix Q, while the
second is assigned to H. Since both must be positive values, the system matrices are defined
as powers of 10. An alternative and equivalent definition is model.Q = varmatrix(p(1)).

3.3. Setting up the model (step 3)

Now the user has to communicate with SSpace and build a model to use later on. This is done
with the SSmodel function. In this case the MATLAB code is simply sys = SSmodel(’y’,
nile, ’model’, @example1). It is assumed that nile is a vector variable containing the
Nile data and basically with this line of code the user is telling that he wants to apply the
local level model written in example1 to the data in the MATLAB variable nile.
This is the most important step because at this stage the user defines the posterior perfor-
mance of the toolbox. In essence, if the validation of the model is not correct, then the user
has to come back to SSmodel and change either the model, options, etc. There are many
options available to set up the model, that are passed on to SSmodel using duplets (see all
possibilities in the SSpace documentation).
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3.4. Estimate parameters (step 4)

Having defined the model in the previous step, the rest is straightforward. In particular, the
estimation is done by sys = SSestim(sys).
No additional inputs to this functions are necessary, since everything has been set up in the
previous step via the SSmodel function, in particular the estimation method that will be used,
i.e., exact maximum likelihood by default. Parameters are stored in the sys output structure.
If the estimation converges to a well defined optimum, then estimation results, with standard
errors of parameters, information criteria, etc. may be shown by means of the SSvalidate
function with the syntax sys = SSvalidate(sys).

3.5. Use the model (step 5)

A final step consists of estimating the filtered and/or smoothed output together with the
disturbances of the model, and further validation tests. These operations constitute the basis
for forecasting, signal extraction, interpolation, etc. When only the filtered output is required
the call should be sys = SSfilter(sys); if smoothed estimates without disturbances are
preferred then the call should be sys = SSsmooth(sys); whereas the full computation and
output are produced by the call sys = SSdisturb(sys).
Results in all these brief examples are stored always in the sys output structure, though at any
point different structures may be used. It stores parameters with covariance matrix, optimal
states and covariances, fitted output values and covariances, forecasted values and covari-
ances, innovations, disturbances estimates with covariances. Further statistical diagnostics
are advisable.

4. Worked examples
The examples shown in this section are presented as illustrations of the flexibility and power
of the toolbox, with no pretension of showing any scientific result or improvement over other
researchers’ analysis. Code listings are truncated in order to save space. This is especially
important in the case of the templates shown, for which the extended versions are also included
in the software provided with an abundant help. Identification and validation issues are not
treated in the examples to keep them short.

4.1. Example 1: Local level

The next listing puts together the MATLAB code shown up to now for the local level model
applied to the Nile river data, with some additions for plotting outputs.
% Load data and set up time variable with NaN's
% for interpolation and forecasting
load nile
y = [nile; nan(10, 1)];
y(61:70) = nan;
t = (1 : size(y, 1))';
% Build SSpace model
sys = SSmodel('y', y, 'model', @example1);
% Estimate model by exact ML
sys = SSestim(sys);
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% Model table output etc.
sys = SSvalidate(sys);
% Smoothing
sys = SSsmooth(sys);
% Plotting fitted values with 90% confidence bands
plot(t, y, 'k', t, sys.yfit, 'r.-', t, confband(sys.yfit, sys.F, 1), 'r:')
% Plotting innovations
plot(sys.v)
% Estimating and plotting disturbances
sys = SSdisturb(sys);
plot(t, sys.eta, 'k', t, sys.eps, 'r')

Some missing observations have been arbitrarily added in the middle of the data and at the
end to show how interpolation and forecasting are automatically done. The output of the
SSvalidate call is:

----------------------------------------------------
Linear Gaussian model: example1.
Objective function: llik
System collapsed at observation 1 of 100.
Exact gradient used.
----------------------------------------------------

Param S.E. T-test P-value |Gradient|
----------------------------------------------------
p(1) 3.1404 0.3595 8.7362 0.0000 0.000008
p(2) 4.2084 0.0855 49.2198 0.0000 0.000051

----------------------------------------------------
AIC: 12.906
SBC: 12.9938
HQC: 12.9398

Log-likelihood: -571.3177
Corrected R2: 0.2669

Residual Variances: 21919.3612
----------------------------------------------------
Summary Statistics:
----------------------------------------------------

1
Missing data points 10.0000
Q( 1) 1.1031
Q( 4) 4.1847
Q( 8) 7.6771
Q(12) 18.9641
H(33) 0.6020
P-value 0.1501
Bera-Jarque 0.0209
P-value 0.9896

----------------------------------------------------
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Figure 1: Fit, innovations and disturbances of example1.m.

This table shows abundant information about convergence of estimation, significance of pa-
rameters, information criteria, and diagnostic statistics on the innovations (autocorrelation,
heteroskedasticity and Gaussianity). The resulting plots are shown in Figure 1.
Exactly the same results may be obtained if the model is estimated by concentrated maximum
likelihood. Two slight changes have to be made to the previous code: (i) one of the variances
in the user model has to be concentrated out of the likelihood by setting it to 1 (say, model.Q
= 1; in example1.m); (ii) the call to SSmodel changed to sys = SSmodel(’y’, y, ’model’,
@example1, ’OBJ_FUNCTION_NAME’, @llikc). Beware that only the three initial characters
are necessary in the string inputs arguments (i.e., ’OBJ’, instead of ’OBJ_FUNCTION_NAME’).
See a more detailed description by running SSdemo(1).
One of the challenges for this time series, is to evaluate whether the construction of the Aswan
dam in 1899 (observation 29) led to a significant decline in the river flow. This may be tested
in several ways by changing the user function, either by including a Dt in Equation 1 directly
(Case 1 below), or by using a dummy variable as input to the SS system (Cases 2 and 3). It is
worthy passing through these three cases to realize the flexibility of SSpace when specifying
models.

Case 1

In this case the user function for concentrated maximum likelihood would be:

function model = example2(p)
model.T = 1;



Journal of Statistical Software 13

Figure 2: Fit, innovations and disturbances of example2.m.

model.Gam = [];
model.R = 1;
model.Z = 1;
model.D = [repmat(p(2), 1, 28) repmat(p(3), 1, 82)];
model.C = 1;
model.Q = 1;
model.H = 10.^p(1);
model.S = 0;

Keep in mind that matrix Dt is time-varying, but it is not defined as a three dimensional ma-
trix, as it is the general convention in SSpace. This is an exception that affects also Γt and has
been considered very convenient from the user point of view, since handling three dimensional
matrices in MATLAB is much more cumbersome than two dimensional. Nevertheless, ortho-
dox three dimensional matrices would work exactly in the same way. The call for estimat-
ing the model by concentrated maximum likelihood is sys = SSmodel(’y’, y, ’model’,
@example2, ’OBJ_FUNCTION_NAME’, @llikc, ’p0’, [-1; 1000]). An interesting point of
this example is that a Dt matrix is used, but no input data is supplied and there is no need
to specify a Γt matrix. Here, initial parameters for the numerical search are added via the
duplet {’p0’, [-1; 1000]}. The rest of the code is identical to the previous example. The
results are shown in Figure 2.
It is important to note that the estimation is such that there is no additional information in
the series apart from the jump in the volume due to the Aswan dam. By comparison with
Figure 1, it is easy to check this, since the innovations and output are essentially the same.
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Case 2

An alternative way to do the same, which is more formal from a statistical point of view,
consists of defining one dummy variable as a step, taking zeros up to observation 28 and ones
afterwards, i.e., u = [zeros(28, 1); ones(82, 1)]. In this case, the user function is:

function model = example3(p)
model.T = 1;
model.Gam = [];
model.R = 1;
model.Z = 1;
model.D = p(2);
model.C = 1;
model.Q = 1;
model.H = 10.^p(1);
model.S = 0;

The difference with the previous option is that matrix model.D is just the second element
of the parameter vector p, i.e., a coefficient that will multiply the input dummy variable ut.
Now the call to SSmodel should be:

sys = SSmodel('y', y, 'u', u, 'model', @example3, 'OBJ', @llikc);

Here, the duplet {’u’, u} tells SSpace which is the input variable to use. The estimation of
the coefficient measuring the jump is negative and significant.

Case 3

A final case, still worth mentioning, consists of including the dummy input variable into the
user function as an additional input argument, but now the SS system is considered as a
system without inputs:

function model = example4(p, u)
model.T = 1;
model.Gam = [];
model.R = 1;
model.Z = 1;
model.D = p(2)*u;
model.C = 1;
model.Q = 1;
model.H = 10.^p(1);
model.S = 0;

The call now should be:

sys = SSmodel('y', y, 'model', @example4, 'OBJ', @llikc, 'user_inputs', {u});

Additional inputs to the user function may be passed on to the model definition with the
help of duplets {’user_inputs’, {u}}. Though it does not make sense in this case, it is
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worth noting that the dependence to the inputs may be modeled by a nonlinear function,
e.g., just by defining model.D = p(2)*(u(2, :).^(p(3))) or any other specification. This
is the main advantages of specifying models by writing a function. More examples may be
checked in demo5.

4.2. Example 2: Univariate models
In this second example the air-passenger data taken from Box, Jenkins, Reinsel, and Ljung
(2015) is analyzed with a number of different univariate possibilities.

Case 1: Basic structural model (BSM)
A BSM à la Harvey (Harvey 1989) may be used with the template SampleBSM (it is also
possible to use SampleSS and test the SS-form from scratch). In such a template, separate
definitions are in place for the trend and the harmonics and input variables, if any. Have a
look at the function demo_airpasbsm.m that is one of the cases implemented in demo2.
The part of the template related to the trends is:

m = ;
I = eye(m);
O = zeros(m);
TT = [I I;O I];
ZT = [I O];
RT = [I O; O I];
QT = [];

where the variable m is the number of output variables (1 for univariate) and matrices I and
O are pre-defined as a unity matrix and a block of zeros. The model is specified directly by
the state space form of the local linear trend type (LLT), i.e.,(

α1,t+1
α2,t+1

)
=
(

1 1
0 1

)(
α1,t
α2,t

)
+
(

1 0
0 1

)(
η1,t
η2,t+1

)
A LLT is fully specified by filling in the missing variables in the previous listing, i.e., m
= 1, and QT = [10.^p(1) 0; 0 10.^p(2)]. Other possibilities are implemented by small
variations to this option, one interesting case is an integrated random walk (IRW) or smooth
trend with one single noise by setting RT = [O; I]; QT = 10.^p(1); (Young et al. 1999).
The periodic components (either seasonal or cyclical) in SampleBSM may be coded as either
trigonometric or dummy seasonality. For the trigonometric case the empty code in the tem-
plate is:

Period = [];
Rho = [];
Qs = repmat( , , );

This portion of the code filled in for a monthly time series converts to:

Period = [12 6 4 3 2.4 2];
Rho = [1 1 1 1 1 1];
Qs = repmat(varmatrix(p(3)), 1, 6);
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The argument Period is used to provide the periods for the seasonal and/or cyclical, Rho is
the damping factor of each harmonic sinusoid, i.e., values between zero and one and values of
unity recommended for seasonal harmonics. The variances for each harmonic are introduced
via the Qs matrix (all variances equal for all the harmonics in the example). If all variances
have to be different the code would be Qs = varmatrix(p(3:8)’). The function varmatrix
provides an alternative way of building semi-positive-definite covariance matrices.
The rest of the template is:

H = varmatrix(p(4));
D = [];

where H is the variance of the observed noise and matrix D is included to deal with input
variables (none in this case).
Once the BSM model is set up, the code to run is as follows:

load airpas;
y = log(airpas);
sys = SSmodel('y', y, 'model', @demo_airpasbsm);
sys = SSestim(sys);
sys = SSsmooth(sys);
T = sys.a(1, :)';
I = y-sys.yfit';
S = y-I-T;

Here the trend, seasonal and irregular components are estimated by combinations of the
estimated states and stored in T, S and I matrices, respectively.

Case 2: ARIMA

The ARIMA model is easily implemented by using the SampleARIMA template used as an
example in demo3, check demo_airpasarima. Assuming that an ARIMA(0, 1, 1) × (0, 1, 1)12
is to be estimated, the relevant part of this template is:

Sigma = varmatrix(p(3));
Diffy = conv([1 -1], [1 zeros(1, 11) -1])';
ARpoly = 1;
MApoly = conv([1 p(1)], [1 zeros(1, 11) p(2)])';

where Diffy is the differencing polynomial in the backshift operator B such that Bjyt = yt−j ,
ARpoly is the AR polynomial and MApoly is the MA polynomial. Check that the differencing
order is the convolution (i.e., multiplication) of a regular and seasonal difference operators,
i.e., ∆∆12 = (1−B)(1−B12). The MA polynomial of the model is (1+θ1B)(1+Θ1B

12), with
p(1)= θ1 and p(2)= Θ1. All polynomials are coded as column vectors of the corresponding
coefficients in ascending order of powers of the backshift operator, as it is common in other
MATLAB toolboxes. Though it does not make sense in this example, constraints among
parameters would be very simple to impose, e.g., if the constraint θ1 = Θ1 is needed, the MA
polynomial may be coded as MApoly = conv([1 p(1)], [1 zeros(1, 11) p(1)])’.
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Case 3: Exponential smoothing

A final illustration for this data is an exponential smoothing model à la Hyndman, Koehler,
Ord, and Snyder (2008), where the template is SampleES, check demo_airpasES used in
demo3. The template filled in for this example is:

ModelType = 'AAA12';
Phi = [];
Alpha = constrain(p(1), [0 2]);
Beta = constrain(p(2), [0 4-2*Alpha]);
AlphaS = constrain(p(3), [0 2]);
D = [];
Sigma = varmatrix(p(4));

The argument ModelType deals with the type of model, the first letter stands for the type of
level (‘N’ for none, ‘A’ for additive and ‘D’ for damped with damping factor Phi), the second
letter is the slope type (‘N’ for none or ‘A’ for additive), and the third letter stands for the
type of seasonal (again either ‘N’ or ‘A’), and the numbers after those letters is the period
of the seasonal component. The rest of the code sets up the α, β and γ parameters affecting
the level, slope and seasonal components, that are supposed to be estimated within certain
values, see Hyndman et al. (2008). Sigma stands for the variance of the unique noise present
in the model. Input variables may be included by introducing a D matrix as a function of the
p vector of parameters.

4.3. Example 3: Multivariate dynamic harmonic regression (DHR)

The models presented so far are univariate and may be easily extended to multivariate ver-
sions. In this example we present a new model that has not yet been used in its multivariate
version, namely the multivariate dynamic harmonic regression. It is built in the spirit of
seemingly unrelated equations models, i.e., the relation among the endogenous variables is
not explicit in the equations, but are modeled exclusively via non-diagonal covariance matrices
of the different noises. The specific formulation is given in Equation 6.

yt = Tt + Ct + St + f(ut) + εt
Ct + St =

∑k
i=1[Ait cos(ωit) +Bit sin(ωit)]

(6)

Obviously yt is multivariate in this case; Tt, Ct, St are a set of trends, cycles and seasonals,
respectively; f(ut) models linear or nonlinear relations to inputs; εt is a white noise vari-
able with full covariance matrix Ht; ωi (i = 1, 2, . . . , k) are the frequencies for the periodic
components that typically include the seasonal fundamental frequency and all the harmonics
down to π but also may include cyclical frequencies; and Ait and Bit are diagonal matrices
of time-varying parameters. Usually random walk parameters may suffice, but other options
may be preferred in specific applications. In essence the DHR model is effectively a multivari-
ate Fourier analysis in particular frequencies with time-varying parameters. The univariate
version of these models estimated in the frequency domain where explored by Young et al.
(1999) and Taylor et al. (2007).
These type of models may be easily implemented in SSpace with the help of the template
SampleDHR. This template resembles SampleBSM of the previous example, with a user function



18 SSpace: State Space Modeling in MATLAB

that needs an additional input argument that have to be taken into account in the SSmodel
call, i.e., the size in time of the sample. In the case of a trivariate model of quarterly data is
implemented in demo_energydhr used in demo4. A compacted version of such template is

function model = demo_energydhr(p, N)
% Trend
m = 3;
I = eye(m); O = zeros(m);
TT = [I I;O I];
ZT = [I O];
RT = [I O; O I];
QT = blkdiag(varmatrix(p(1:6)), varmatrix(p(7:12)));
% Seasonal/cyclical DHR components
Periods = repmat([4 2], 3, 1);
Rho = ones(3, 2);
Qs = repmat(varmatrix(p(13:18)), 1, 2);
% Covariance matrix of irregular component (observed noise)
H = varmatrix(p(19:24));

There are a total of 24 unknown parameters, all of them located at covariances matrices. It is
important to note here the use of the varmatrix function, used to convert any set of arbitrary
parameters into a semi-positive covariance matrix. Beware that, since covariance matrices are
symmetrical, a 3× 3 matrix have 9 elements, but only 6 of them are different. This function
allows also to impose rank and other constraints to build homogeneous models, etc. (see the
SSpace documentation). It is also easy to check that there are only two harmonics and both
are estimated with the same covariance matrices, check the Qs matrix.
Such model may be run on the energy data of Harvey (1989), with the following code:

load energy
y = log(energy);
p0 = repmat([-2 -2 -2 0 0 0]', 4, 1);
sys = SSmodel('y', y, 'model', @demo_energydhr, 'p0', p0, ...

'user_inputs', length(y));
sys = SSestim(sys);
sys = SSsmooth(sys);
Trend = sys.a(1:3, :)';
Irregular = y-sys.yfit';
Seasonal = y-Trend-Irregular;

It is important to initialize the searching algorithm with appropriate diagonal covariance
matrices, this is achieved by the setting of p0 above. The call to SSmodel is done with the
required initial parameters and the number of time samples.
Figure 3 shows some output of this DHR model.

4.4. Example 4: Non-Gaussian
The number of van driver casualties in the UK, see Durbin and Koopman (2012) and Figure 4,
is a case where a Poisson distribution is justified, because numbers are small and the units
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Figure 3: Unobserved components of the DHR example.

are integers. Neither the Gaussian assumption is strictly correct nor does the logarithmic
transformation manage to produce sensible results. The model used is a BSM with a trend,
dummy seasonal, irregular and an exogenous effect due to the enforcement of the seat belt
law, but the distribution of the observations is a Poisson, see Equation 7.

αt+1 = Ttαt + Γt +Rtηt
p(yt | θt) = exp{θtyt − exp(θt)− log yt!}+ bIt

(7)

In order to set up this model in SSpace we have to create two user functions, one with the linear
model, i.e., the BSM with a dummy seasonal (note that there is no noise in the observation
equation) by using the SampleBSM template and a second one to change the observation
equation into a Poisson model with the help of SampleEXP template (other distributions
available are Binary, Binomial(n), Negative Binomial and Exponential). Both functions may
be checked in demo_van_poisson, used in demo7. The linear model is (function demo_van in
file demo_vanl.m):

function model = demo_van(p, H)
% Trend
TT = 1;
ZT = 1;
RT = 1;
QT = varmatrix(p(1));
% Dummy seasonal
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Figure 4: Data and trend of non-Gaussian example.

Period = 12;
Qs = 0;
% Linear term
D = p(2);

As it may be seen, the model is just a random walk trend with a dummy seasonal component
and a dummy effect dealing with the step change due to the seat belt law enforcement.
The second user model is rather simple, it consists of a call to the linear model above and
just telling SSpace that the observations follow a Poisson distribution. This function has the
peculiarity that it necessarily has to have two input arguments, while the user may add as
many as the model requires for its definition:

function model = demo_van_poisson(p, H)
% Call to linear model
model = demo_van(p, H);
% Distribution of observations
model.dist = Poisson;

Then, the following code would produce the analysis for the data with some artificial missing
values in the middle and some at the end to produce the forecasts:

load Van
y = Van(:, 1);
u = Van(:, 2);
y(50:55)= nan;
y = [y; nan(20, 1)];
u = [u; ones(20, 1)];
sys = SSmodel('y', y, 'u', u, 'model', @demo_van_poisson);
sys = SSestim(sys);
sys = SSvalidate(sys);
sys = SSsmooth(sys);
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Figure 4 shows the trend with the jump due to the seat-belt law effect and twice the standard
error confidence bands.

4.5. Example 5: Nonlinear

This example illustrates the use of the extended Kalman filter with exact initialization applied
to the monthly visits abroad by UK residents from January 1980 to December 2006 following
Koopman and Lee (2009) and Durbin and Koopman (2012). This example was used to test for
the convenience of the log transform so widely use in econometrics. As a matter of fact, it is
shown that the log transform does not fix the heteroskedasticity problem, and, consequently a
model with an interaction between the trend and the seasonal component is proposed instead
while the rest of hypothesis are applied, see Equation 8.

yt = Trendt + Cyclet + exp{bTrendt}Seasonalt + εt (8)

Comparing this equation with the general nonlinear system (3) we see that there is only one
nonlinear term, namely Tt(αt) that is the Equation 3 without the noise. Setting up the model
now is much more difficult because the partial derivatives of Tt(αt) with respect to the vector
state αt ought to be calculated explicitly. For convenience a linear BSM model is implemented
in a separate model using the SampleBSM template (check demo_uk in demo8):

function model = demo_uk(p)
TT = [1 1;0 1];
ZT = [1 0];
RT = [0; 1];
QT = varmatrix(p(1));
% Trigonommetric seasonal model
Period = [constrain(p(3), [18 800]) 12 6 4 3 2.4 2];
Rho = [constrain(p(4), [0.5 1]) 1 1 1 1 1 1];
Qs = [varmatrix(p(5)) repmat(varmatrix(p(6)), 1, 6)];
% Observed noise variance
H = varmatrix(p(2));

This model has some singularities with respect to previous listings in this paper. Firstly, an
integrated random walk or smooth trend is chosen that depends on just one parameter (p(1)).
Secondly, a cycle is introduced into the model by adding one element to all the arguments in
the function having to do with the seasonal component. Thirdly, one interesting point is that
the period of such a cycle is estimated as a constrained value between 18 and 800 months
(one and a half year and 67 years, see the use of constrain in Period). Fourthly, the cycle is
modulated by a damping factor estimated as a value between 0.5 and 1 (again with the help
of the constrain function). Finally, separate variance values for the cycle and the seasonal
components are estimated.
The nonlinear model is now built with the template SampleNL (check model_uknle):

function model = demo_uknle(p, at, ctrl)
model1 = demo_uk(p(1:6));
% Defining linear matrices
if ctrl< 2
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model.T = model1.T;
model.Gam = [];
model.R = model1.R;
model.Z = [];
model.D = [];
model.C = 1;
model.Q = model1.Q;
model.H = model1.H;
model.p = p;
model.S = [];

end
% Defining nonlinear matrices in State Equation
if any(ctrl== [2 0])

% Code defining derivative of matrix T(a(t)) (ns x Nsigma)
model.dTa = [];
% Code defining matrix T(a(t)) (ns x Nsigma)
model.Ta = [];
% Code defining matrix R(a(t)) (ns x neps x (1 or n))
model.Ra = [];
% Code defining matrix Q(a(t)) (neps x neps x (1 or n))
model.Qa = [];

end
% Defining nonlinear matrices in Observation Equation
if any(ctrl== [3 0])

b = p(7);
expfun = exp(b*at(1));
S = sum(at(5:2:15));
% Derivative of matrix Z(a(t)) (m x Nsigma)
model.dZa = [1+b*expfun*S 0 1 0 expfun 0 expfun 0 expfun ...

0 expfun 0 expfun 0 expfun];
% Code defining matrix Z(a(t)) (m x Nsigma)
model.Za = at(1)+at(3)+expfun*S;
% Code defining matrix C(a(t)) (Ny x Neps x (1 or n))
model.Ca = [];
% Code defining matrix H(a(t)) (Ny x Ny x (1 or n))
model.Ha = [];

end

This template has three compulsory input arguments, i.e., the parameter vector p, the current
state vector at, and a variable that controls the execution (ctrl). As a first step, the function
calls the linear model demo_uk in order to set up all the matrices in the state equation. Then
the system matrices are redefined in three blocks, (i) linear matrices, (ii) nonlinear or state-
dependent matrices in the state equation, (iii) nonlinear or state-dependent matrices in the
observation equation. Only one definition for each matrix in any of the blocks is permitted,
in order to avoid errors. Beware that both Zt(αt) (in model.Za) and ∂Zt(αt)

∂αt
(model.dZa)

have to be correctly specified.
Figure 5 shows the estimated components.
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Figure 5: Series and trend, cycle and raw seasonal and scaled seasonal
(exp{bTrendt}Seasonalt) of Nonlinear example.

4.6. Further features

More templates and more demos are available in SSpace, but are left out of this paper for the
sake of clarity and space. They may be checked by running carefully the 8 demos included in
the toolbox. Some of the most relevant are linear, nonlinear and time-varying regressions (see
SampleDLR and demo5), concatenation of state space systems with the SampleCAT template
(a typical case would be a BSM model with time-varying parameters), estimating parameters
of any model by minimizing functions of squared of several-steps-ahead forecast errors (see
e.g., demo2), time aggregation problems (see SampleAGG and demo6), and nesting in inputs
models (see SampleNEST and demo5).

5. Concluding remarks
This paper has presented SSpace, a new toolbox for the exploitation of state space models. It
is intended for a wide audience, including professional practitioners, researchers and students,
indeed anyone involved in the analysis of time series, forecasting or signal processing.
The library incorporates most modern algorithms and advances in the field of state space
modeling, following mainly Taylor et al. (2007) and Durbin and Koopman (2012). The system
is very general because it is possible to implement linear, non-Gaussian and nonlinear systems,
all system matrices may vary over time and may be multivariate, several estimation methods
are implemented, inputs to the system may be introduced explicitly, etc.
Other advantages of the library are that a few functions are necessary to carry out a com-
prehensive analysis of time series. Such functions are used systematically following a fixed
pattern that simplifies the usage of the toolbox. However, one of the main feature that makes
SSpace really flexible, powerful and transparent is that the user implements models directly
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as a function written in MATLAB. This approach makes some cumbersome tasks truly simple
and transparent, this is the case, say of trying different parameterizations of the same model
or imposing parameter constraints.
The toolbox is supplied with templates for building general SS models from scratch in a
completely free way, but is also accompanied by a number of templates useful for the imple-
mentation of a variety of common models.
In this paper, the capabilities of the toolbox have been demonstrated in action on several
worked examples. These properties should make the toolbox particularly interesting for those
in need of non-standard models, for which even many commercial alternatives may not provide
the required flexibility.
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