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Abstract

Relative survival methods are crucial with data in which the cause of death information
is either not given or inaccurate, but cause-specific information is nevertheless required.
This methodology is standard in cancer registry data analysis and can also be found in
other areas. The idea of relative survival is to join the observed data with the general
mortality population data and thus extract the information on the disease-specific hazard.
While this idea is clear and easy to understand, the practical implementation of the
estimators is rather complex since the population hazard for each individual depends on
demographic variables and changes in time.

A considerable advance in the methodology of this field has been observed in the
past decade and while some methods represent only a modification of existing estimators,
others require newly programmed functions. The package relsurv covers all the steps of
the analysis, from importing the general population tables to estimating and plotting the
results. The syntax mimics closely that of the classical survival packages like survival
and cmprsk, thus enabling the users to directly use its functions without any further
familiarization.

In this paper we focus on the nonparametric relative survival analysis, and in par-
ticular, on the two key estimators for net survival and crude probability of death. Both
estimators were first presented in our package and are still missing in many other software
packages, a fact which greatly hampers their frequency of use.

The paper offers guidelines for the actual use of the software by means of a detailed
nonparametric analysis of the data describing the survival of patients with colon cancer.
The data have been provided by the Cancer Registry of Slovenia.

Keywords: relative survival analysis, net survival, crude probability of death, R.

1. Introduction
The cause of death information in observational survival studies with long follow-up times
is often incomplete or unavailable even though disease-specific information is of interest.
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A typical example of such data comes from cancer registries, where only follow-up times
and vital status at the end of follow-up are recorded, while cause of death is unknown or
inaccurately recorded. The methodology dealing with these data has been developed under
the name relative survival analysis – the data of the cohort are joined with the data on
general population mortality that are collected by the national statistical offices. Under the
assumption that the population mortality hazard is the hazard that our patients would be
exposed to if they did not have the disease in question, this mortality can be used to extract
the excess or cause-specific information of interest.
The idea of relative survival analysis has been introduced many years ago (Ederer, Axtell, and
Cutler 1961) and has been in standard use in cancer registry data analyses. For many years,
the gold standard for nonparametric estimation of survival curves has been the Hakulinen es-
timator (Hakulinen and Tenkanen 1987), but it has been recently shown that this estimator
does not have the expected properties. This gave rise to methodological advances, either in
terms of corrections of this estimator (Pokhrel and Hakulinen 2009; Hakulinen, Seppä, and
Lambert 2011) or in the search for alternative measures (Cronin and Feuer 2000; Lambert,
Dickman, Nelson, and Royston 2010). Many controversies in the field were resolved by the
recent paper of Pohar Perme, Stare, and Estève (2012) that defined the often confused theo-
retical measures of interest and proposed a consistent nonparametric estimator of net survival.
An overview of the different measures is given in Pohar Perme, Estève, and Rachet (2016),
assumptions of the net survival measure were thoroughly studied and discussed in Pavlič and
Pohar Perme (2018).
This paper is a practical complement to the recent methodological advances as it describes
the functions for estimating the measures of interest in R (R Core Team 2018). In particular,
it focuses on nonparametric estimation of three measures: net survival, crude probability of
death and relative survival ratio. It discusses the practical problems in the implementation
and usage of the estimators. The paper represents a companion to the R package – it explains
the basic concepts in a currently rather confused field, states the formulae for the implemented
estimators, explains the R syntax and works through an example.
All the new functions have been added to the package relsurv (Pohar Perme 2018; Pohar
and Stare 2006, 2007) that has previously focused on regression modeling in relative survival
setting. Package relsurv is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=relsurv. Other R packages such as mexhaz (Char-
vat and Belot 2018) and rstpm2 (Clements and Liu 2018) include more elaborate regression
modeling options (flexible parametric parametric models, random effects, penalization). Func-
tions for estimation in the relative survival setting are being developed in other statistical
environments as well, with the work in Stata (StataCorp 2015) currently being the closest to
the extent covered in R. We believe it is crucial that all the different concepts are covered in
one statistical software package, since the different measures have a different interpretation
and one may wish to use several or all to tell the complete story.
We limit ourselves to methods for continuous-time data and introduce formulae for the
continuous-time version of the nonparametric estimator of crude probability of death, which
was up to now available only for discretely reported data (interval data) (Cronin and Feuer
2000). For completeness we add also the formulae for the net estimator that were first in-
troduced in Pohar Perme et al. (2012). A clear distinction should also be made between
parametric and nonparametric methods; we focus on nonparametric methods in this work.
Since well-defined unbiased estimators now exist for each of the measures, we have also avoided
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any ad-hoc developed estimators that have no clearly defined population value regardless of
whether they were shown to have reasonable properties in practice.
The paper is organized as follows. Section 2 focuses on a clear theoretical presentation of
the different concepts and estimators. Section 3 presents the R functions for the described
estimators and discusses some practical problems encountered when working with these esti-
mators. Section 4 describes the usage of these functions and Section 5 describes a detailed
example of the analysis with all the intermediate steps. Section 6 concludes the paper.

2. Computational methods and theory
In this work, we shall focus on three different measures, each of them carrying some informa-
tion on the effectiveness of disease treatment: the relative survival ratio, the net survival and
the crude probability of death.
Let SO(t) denote the overall survival, i.e., the probability that an individual is still alive. This
survival is referred to as “overall” since it is calculated without respect to the cause of death
– we are simply interested in the proportion of individuals still alive in the population at a
certain time point. The other quantity of central importance in the relative survival field is
the “expected” or the “population” survival SP (t) which is the survival curve of a group of
people that matches our sample of patients in terms of the demographic variables at the time
of diagnosis, but does not have the disease of interest. We assume that the value of SP (t) can
be read from the population mortality tables, for N patients, the population survival equals
SP (t) = 1

N

∑
i SPi(t). In this, we assume that the deaths due to the disease in question form

only a negligible part of the population mortality and that the national mortality tables would
not change much if the patients having this disease were excluded from the calculation. Note
here, that the naming of the measures is slightly confusing, we shall speak of the “population
survival” and refer to the survival of the general population, but also speak of the measures
defined on the “population” (the theoretical values) and then later discuss their estimators
that are of course calculated on a sample.
The most simple measure that has been in use for years is the relative survival ratio (Ederer
et al. 1961)

SR(t) = SO(t)
SP (t) .

The ratio describes how our patients’ survival compares to that of the general population.
It is typically below 1 indicating that the survival of the patients is worse. There is no
reason why this curve could not also increase, it is not a survival function of any group of
patients and thus not necessarily a monotonically decreasing function (Pohar Perme et al.
2012). When comparing this measure between two cohorts with different demographic values,
one should always take into account its relativity – even if two compared cohorts have the
same disease-specific hazards, their ratio can be different, usually it is the cohort with the
better population survival that has a lower relative survival ratio.
In order to define the other two measures, we assume that the overall hazard of each individual
λOi can be written as a sum of “disease-specific” or “excess” hazard λEi and the “population”
hazard λPi, i.e., λOi(t) = λEi(t) + λPi(t). With the disease-specific hazard being of primary
interest,
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we wish to report a summary of λEi through time and over individuals. To this end, we define
the individual relative survival ratio as

SEi(t) = exp{−
∫ t

0
λEi(u)du} = exp{−

∫ t
0 λOi(u)du}

exp{−
∫ t

0 λPi(u)du}
, (1)

the marginal relative survival ratio of a cohort of size N is thus

SE(t) = 1
N

N∑
i=1

SEi(t).

Note that despite the notation (SE), the marginal relative survival ratio is not necessarily a
survival function.
Similarly to the relative survival ratio which is the ratio of averages, the net survival can be
written as the average of ratios:

SR(t) =
1
N

N∑
i=1

SOi(t)

1
N

N∑
i=1

SPi(t)
; SE(t) = 1

N

N∑
i=1

SOi(t)
SPi(t)

. (2)

However, contrary to the relative survival ratio, this measure is much more suitable for com-
parisons between cohorts with different population survival, since it is by definition not af-
fected by the population mortality hazard (1). If two cohorts have equal disease-specific
hazards, their net survival curves shall be equal.
As an alternative to the “average of ratios” interpretation, one can refer to the measure as
the probability that a patient is still alive in the hypothetical world where the disease of
interest is the only possible cause of death. To make it estimable from real life data, we add
the assumption that the hazard λEi remains unchanged when the other causes are removed.
When using this interpretation, we refer to the measure as net survival. Such a hypothetical
world is of course unreasonable and the estimation of the survival in it requires some strong
untestable assumptions. The reason why we nevertheless wish to estimate this measure comes
from the wish to get a measure that does not depend on the probability of dying due to other
causes. This measure is therefore of use when interested in comparisons between populations
with different mortality (different countries, same country in different time periods).
Net survival (or marginal relative survival ratio) is calculated whenever the disease-specific
hazard is the sole quantity of interest, but we wish to express it on a survival scale.
As the third option, we consider splitting the overall mortality (1 − SO(t)) into the two
cumulative incidence functions: the crude probability of death from the disease in question
by time t (also referred to as crude cancer mortality)

FC(t) = P(T ≤ t, death due to disease) =
∫ t

0
SO(u−)dΛC(u),

and the crude probability of death from other causes

FP (t) = P(T ≤ t, death due to other causes) =
∫ t

0
SO(u−)dΛP (u).
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Here, T is the random variable denoting the time from diagnosis to the event, while ΛC
and ΛP are the cumulative versions of the cause-specific hazards which satisfy the equation
λO(t) = λC(t)+λP (t) on a group level, i.e., λC(t) =

∑
i
SOi(t)λEi(t)∑

i
SOi(t)

and λP (t) =
∑

i
SOi(t)λP i(t)∑

i
SOi(t)

(see Pohar Perme et al. 2012, where notation λ∗
E and λ∗

P was used). Crude probability
of death is a measure that is clearly defined in the real world, but again depends on the
population mortality differences. If two cohorts have the same disease-specific hazards, the
crude probability of death of the cohort with the lower population hazards may be higher:
Some patients may die of other reasons before they could die from cancer in a cohort with
high population hazard, whereas they would die of cancer if the population hazard was lower.
We now introduce some further notation needed to define the estimators of the above men-
tioned measures. Let dNi(t) count the number of events of individual i (i = 1, . . . , n) at
time t and dN(t) = ∑

dNi(t) be the total number of events at time t. Ni(t) =
∫ t

0 dNi(s) is
a counting process that starts at 0 and jumps to 1 at the time when the individual i dies.
The at risk process is denoted by Y , we use Yi(t) as the indicator whether a person is still
at risk and Y (t) = ∑

Yi(t) as the total number at risk at time t. Both processes (N and Y )
are observed on the cohort. The information we need from the population mortality tables is
given by λPi(t) – for each individual, we have the population mortality hazard that they are
exposed to at a certain time point. We use it to calculate the cumulative hazard

ΛPi(t) =
∫ t

0
λPi(u)du (3)

and the population survival function for each individual SPi(t) = exp{−ΛPi(t)}.
Using the above defined quantities, the relative survival ratio estimator equals

ŜR(t) = ŜO(t)
ŜP (t)

, (4)

where ŜO(t) is the estimator of the overall survival, i.e., its cumulative hazard function is
estimated as

Λ̂O(t) =
∫ t

0

dN(s)
Y (s) , (5)

and ŜP (t) = 1
n

n∑
i=1

SPi(t).

The standard error of the population mortality data is assumed negligible compared to that of
the observed data, therefore, only the observed part is important for the variance estimation,
i.e.,

V̂AR(ŜR(t)) = 1
Ŝ2
P (t)

V̂AR(ŜO(t))

is used to this end. For the estimator of net survival (Pohar Perme et al. 2012), referred to
as the PP estimator later in the text, the estimator of the cumulative hazard equals

Λ̂E(t) =
∫ t

0

n∑
i=1

dNi(u)
SP i(u)

n∑
i=1

Yi(u)
SP i(u)

−
∫ t

0

n∑
i=1

Yi(u)
SP i(u)dΛPi(u)
n∑
i=1

Yi(u)
SP i(u)

. (6)
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Its variance estimator equals

V̂AR(Λ̂E(t)) =
∫ t

0

J(u)(
n∑
i=1

Yi(u)
SP i(u)

)2

n∑
i=1

dNi(u)
S2
Pi(u) ,

where J(t) = I(Y (t) > 0) is an indicator that prevents from dividing by 0, J(t)/Y (t) equals
0 if Y (t) = 0.
The continuous-time estimator for the crude probability of death equals

F̂C(t) =
∫ t

0
ŜO(u−)dΛ̂C(u), (7)

where dΛ̂C(u) is the estimated increase of the cause specific cumulative hazard (in small
intervals, see Section 3.4 for details), calculated as the difference between dΛ̂O(u) and dΛ̂P (u),
i.e., dΛ̂C(u) = dΛ̂O(u)− dΛ̂P (u) with dΛ̂O(u) = dN(u)

Y (u) and dΛ̂P (u) = 1
Y (u)

n∑
i=1

Yi(u)dΛPi(u):

dΛ̂C(u) = dN(u)
Y (u) −

n∑
i=1

Yi(u)dΛPi(u)

Y (u) .

In order to obtain an estimator for the variance of F̂C(t), we have to define an estimator of
transition probability P(T ≤ t, death due to disease |T > s):

F̂C(s, t) =
∫ t

s

ŜO(u−)
ŜO(s)

dΛ̂C(u).

Note that the estimator of the crude probability of death satisfies F̂C(t) = F̂C(0, t). Following
Andersen, Borgan, Gill, and Keiding (1993, pp. 290–293) we propose the following estimator
for the variance:

V̂AR(F̂C(t)) =
∫ t

0
[ŜO(u)]2[1− F̂C(u, t)]2dN(u)

Y (u)2 . (8)

3. R functions and technical considerations
The three concepts are joined into two main functions:

• rs.surv: This function estimates net survival or relative survival ratio. The desired
estimator is chosen using the argument method:

– method = "pohar-perme": The net survival estimator with the cumulative hazard
given by (6). This method is chosen by default.

– method = "ederer1": The relative survival ratio estimator given by (4).
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– method = "hakulinen": The correction of the relative survival ratio useful in the
presence of informative (covariate-dependent) censoring due to the heterogeneity
of potential follow-up times (Hakulinen and Tenkanen 1987). Since this is an ad-
hoc correction that does not entirely remove the bias and can introduce additional
bias in the presence of non-informative censoring (Rebolj Kodre and Pohar Perme
2013), we do not recommend this method to be used. It is nevertheless included
for historical reasons and comparisons.

– method = "ederer2": Another method included mainly for historical reasons and
comparisons, results in biased estimation of net survival (Pohar Perme et al. 2012).
An age-standardized version of this estimator can have a smaller bias and is more
frequently used.

• cmp.rel: The function for estimating the crude probability of death from the disease
in question F̂C(t) (7) and the crude probability of death from other causes F̂P (t).

In terms of computational options available, the rs.surv function mimics the survfit func-
tion of the survival package (Therneau 2018) while the cmp.rel function follows the cuminc
function of the cmprsk package (Gray 2014).
As in the survfit function, we allow two options to calculate the survival function from
the cumulative hazard. The "kaplan-meier" option uses the formula Ŝ(t) = ∏

(0,t]{1 −
dΛ̂(s)}, while the "fleming-harrington" method uses the exponential association between
the functionals, i.e., Ŝ(t) = exp{−Λ̂(t)}. The two options are available for all the methods
implemented in rs.surv, in case of relative survival ratio, the overall cumulative hazard is
given by (5), while the cumulative hazard for the net survival is given by (6).
Several options are also available for the calculation of the confidence intervals – the variance
is reported on the cumulative hazard scale and the conf.type options for the calculation of
the confidence intervals return the "log-log", "log" or "plain" versions of the confidence
intervals.
The cmp.rel function allows for less options, as in the cuminc function, the observed survival
ŜO in the formula (7) is always calculated using the cumulative product and the variance is
reported on the cumulative probability scale with the confidence intervals symmetrical on the
same scale.

3.1. Expected number of years lost
An additional parameter that may be of interest in the analysis is the average number of
years lost until a certain time point. As presented in Andersen (2013), the integral under
each cumulative probability curve until a given time τ can be interpreted as the number of
years lost to that cause compared to a cohort where nobody dies before τ . We can thus
split the total number of years lost in a certain interval into the number of years lost due
to the disease of interest and the number of years lost due to other causes. The values are
automatically reported in the output of the cmp.rel function as area. We limit ourselves
to reporting the number of years lost until time point τ to avoid extrapolation beyond the
last observation time. This time point can be set with the argument tau, the default is the
maximum observation time. Note that tau does not only affect the calculation of number
of years lost, but also the final point until which the curve is calculated – all individuals are
censored beyond tau.
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3.2. Comparison of net survival curves

Recently a new test for comparison of net survival curves has been proposed (Grafféo, Castell,
Belot, and Giorgi 2016). It combines the ideas from the PP estimator (Pohar Perme et al.
2012) and the log-rank test statistic (Fleming and Harrington 1991). Its properties have been
further explored in Pavlič and Pohar Perme (2017). Both the stratified and nonstratified
version of the test have been developed and both are included in the function rs.diff.

3.3. Net expected sample size

Some authors (Lambert, Dickman, and Rutherford 2015; Dickman, Lambert, Coviello, and
Rutherford 2013) report overly large variability when using the PP estimator, particularly
when considering long-term net survival. While this may seem like a practical issue with a
particular estimator, it is indeed an intrinsic property of the definition of the net survival.
Since net survival is defined as the survival in the hypothetical world where individuals can
die only of cancer, one cannot estimate it if no data on this world are available, i.e., if all
patients of a certain group die of other causes. In other words, it simply does not make
sense to estimate 15-year net survival of patients aged 90, since their probability of being still
alive at that time even if they do not have the disease is practically 0. Since the overall net
survival is the average over all individuals in the sample (2) it is crucial that the estimation
is sensible for all individuals in the sample. Therefore, one must either limit the calculation
to the follow-up interval in which all patients included have a large enough probability of not
yet dying due to other causes or consider only a subgroup of patients for which this is true.
By limiting to age groups for which we can expect enough patients to be still alive by the
time of interest, we do not throw away data but rather limit the estimation to the subset
for which the information is actually available. If we nevertheless wish to estimate long term
net survival for all individuals, some parametric assumptions and hence extrapolation of the
required information must be made.
As a guideline on what might still be sensible, we provide a function nessie that calculates
the net expected sample size, i.e., the number of people that are still exposed at a certain time
point after the expected deaths due to population reasons are removed. This should provide
some insight into the length of the time interval in which it is still sensible to estimate net
survival for a given age group and to thus avoid estimation based on very few individuals. Note
that the censoring pattern is not included in this calculation, so the expected numbers are
often even lower. As an alternative possible guideline, we also report the expected remaining
lifetime of a certain age group in the population.

3.4. Relative survival particularities

This subsection covers some important differences between the estimators in the classical and
relative survival field, i.e., points where one should be careful and cannot directly use the
classical survival analogy. While this subsection can be skipped by the first-time users of the
relative survival methodology, it is crucial for a deeper understanding of the estimators in the
field.

The estimators are not step functions

The most important difference to note is that while the value of stochastic integrals with
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respect to dN (e.g., the first integral in (6)) only jumps at event times, the cumulative
population hazard ΛP is a continuous function. The integral with respect to dΛP (e.g., the
second integral in (6)) is continuously changing between event times, which means that the
estimators are not step functions. All estimators of survival shall increase between the event
times and jump at event times whereas the estimate of the crude probability of death shall
decrease between event times and also jump at event times. This is true for all nonparametric
relative survival estimators, though it has, to our knowledge, never been specifically mentioned
or cared about in practice. Instead, when reporting the estimated value at a given time point
(say 5 years) at which there was no event, the last value is carried forward, though this incurs
some bias. The size of this bias depends on the length of the gaps between event times,
however, with the large data sets typically occurring in the field, it is often negligible in
practice.

Population hazard changes in time

To understand how the population survival in time is calculated in our functions, consider the
integral (3). A standard population mortality table typically reports the yearly probabilities
split by age, sex and year. More precisely, they report the probability that a person of a
certain sex and of age a at the beginning of year y survived until the end of that year.
Under the assumption that the hazard was constant within that year, the daily hazards λP
are calculated for each combination of age, year and sex and included in the tables. When
using these tables to get λPi(t) for an individual i, the value which corresponds to the age
and calendar year of person i at time t is considered. This means that the λPi(t) used for
calculations for each individual i changes in time – it starts at the age and year of diagnosis
and then changes when the individual either gets one year older or a new calendar year starts.
Therefore, λPi(t) is a step-wise constant function of time that changes twice a year for each
individual, the times of jumps are different for each individual. The integral ΛPi(t) is an
increasing piecewise linear function.

Controlling how the population hazards are used in the functions

Since the value of λPi(t) changes at different times for each individual, the actual calculation is
made by splitting into small intervals in which λPi(t) is regarded as constant. In all functions,
dΛ̂P (t) is then calculated as λP (t) · dt. By default, the argument precision which specifies
the length of these intervals is set to 1, which implies daily intervals. In practice, taking daily
intervals should suffice for any calculation, since the fact that λPi(t) is a step-wise constant
function is anyway an artefact of the available data. However, the estimated values might
change slightly if even narrower intervals are set.

Numerical integration in the PP estimator

In the case of the PP estimator (and the log-rank type test, which follows the same logic),
the integration between event times is slightly more complex than in other cases, as the
second integral in (6) contains also SPi(u) which continuously decreases. Therefore, numerical
integration is needed – we calculate the integral as the average of the values at the first and
last point of the interval times the length of the interval. Again, the default for precision is
set to 1 day.
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Figure 1: Distribution of computing times for different functions from the package.

Controlling the times at which the results are reported

Note that having more terms in the sum can considerably increase the computational intensity
if the event times are few, however, the default precision shall only add few time points with
large data sets where the event times already occur almost daily. Estimates at these additional
time points are not included in the output to keep the output manageable and to be consistent
with the survival package where the output includes only the results at observed times. An
additional argument add.times is then included to ensure correct reporting of the results at
pre-given time points that do not equal any of the observed times.

Computational intensity

Since the cancer registry data sets may be very large (more than 100000 patients), the cal-
culation of the estimators and their variances may become computationally very intensive,
in particular if performed in short intervals. To speed up the calculation, most functions use
subroutines written in C that considerably speed up the process, C subroutines written for
the survival package (Therneau 2018) are also included. The total processing time depends
on the number of individuals and the number of unique event times. To illustrate the com-
puting times of different functions, we performed a small simulation study. The distribution
of computing time (in seconds) is presented in Figure 1. The functions are written sufficiently
fast that they give results in a few minutes even for samples of 500000 patients.
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Simulation details. An exponential model was used for the excess hazard. The follow-up
time was either 5 or 10 years – around 30% or 50% of patients had an event in the first or in
the second case, respectively. A log-rank type test was used to compare two groups of equal
size with the same excess hazard. In each case 100 samples were simulated and the computing
times for the different functions were measured.

4. Usage
Ignoring for the moment all the additional options available, the rs.surv, the cmp.rel and
the rs.diff functions all have the same basic syntax:

rs.surv(formula, data, ratetable)
cmp.rel(formula, data, ratetable)
rs.diff(formula, data, ratetable)

The data on the observed cohort are passed through the argument data, the mortality table
to be used should be specified with the argument ratetable. The mortality tables need to be
organized as a ‘ratetable’ object which is defined in the survival package. For all the details
on this object see Therneau and Offord (1999); further advice on its usage and purpose-made
functions to simplify this work can be found in Pohar and Stare (2007) or Pohar and Stare
(2006). While it may be time consuming to organize a table of population mortality hazards
when first importing it into R, no further reorganization of this object is needed for each of
the survival or relsurv package functions. Using and comparing different estimators is thus
particularly simple in R.
The syntax of the formula equals that of the survival package.

formula = Surv(time, cens) ~ 1

The ‘Surv’ object contains the follow-up time and the censoring indicator, which equals 1
for a time of death (of any cause) and 0 for the time when a person is lost from follow-up.
It is important that the follow-up time is always expressed in days, since the hazards in the
‘ratetable’ objects are also expressed in days. The value 1 to the right of the ~ sign indicates
that only curves for the entire cohort are required – if one wishes to estimate curves with
respect to subgroups formed by a certain variable, that variable (or a sum of several variables)
should be written to the right of the ~ sign.
If the demographic covariates by which the mortality tables are split (usually age, sex and
calendar year) are not organized or named in the same way in the observed data set on
the cohort as they are in the population tables (‘ratetable’ object), they can be properly
matched using the argument rmap. Note that the calendar year must be in a date format
(date, Date and POSIXt are allowed), but the date formats in the ratetable and in the data
may differ.
Several functions of the package need to transform between days and years, the factor 365.241
is used for this transformation in all the cases. Therefore, whenever this transformation is
used with the data, the same factor should be used.
All three functions have methods for printing the output and the first two also have methods
for plotting the curves, each of them mimicking the analogous methods in the classical survival
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functions. Additionally, the summary method from the survival package may also be used for
printing the rs.surv output at specific time points. Note that since this is a survival package
function, it assumes a step-wise function between event times, the option add.times should
be used in the rs.surv function when we wish to evaluate survival also at specific time points
(additional to all observed times). The standard error reported with the summary method
is the standard error of the net survival curve, while the confidence intervals are calculated
using the method specified with the conf.type argument in rs.surv.
The summary method also prints the output of cmp.rel at specific time points, again the
add.times option in the cmp.rel function ensures that the last value is not simply carried
forward and that the output is actually evaluated at that time.
By default, the plot method plots the curve at event and censoring times only (and, if
specified, at times added by add.times), a step curve is drawn in between. This is only an
approximation of the curve, for more accuracy between these points, the argument all.times
should be set to TRUE, which shall return a more ragged but more exact curve (this option
will plot the curve at all times at which it was estimated, i.e., also at times determined by
the argument precision).
Other functions that can be useful in the analysis are also included in the relsurv package.
The functions transrate, transrate.hmd, transrate.hld and joinrate may be useful when
organizing the mortality tables and rsadd can be used to fit the Estève additive model (Estève,
Benhamou, Croasdale, and Raymond 1990) and thus compare the curves within subgroups.
The functions were described in Pohar and Stare (2006) and Pohar and Stare (2007).

5. Example
To illustrate the usage of the functions from the relsurv package we will use a subset of the
data set colrec which is included in the package. This data set consists of 5971 patients
diagnosed with colon or rectum cancer between January 1st, 1994 and December 31st, 2000.
It has been provided by the Cancer Registry of Slovenia and analyzed in Zadnik, Primic
Žakelj, and Krajc (2012) and Zadnik, Žagar, and Primic Žakelj (2016). The age, time and
date of diagnosis variables are randomly perturbed to make the identification of patients
impossible.
The goal of our illustrative example is to compare 10-year survival of patients diagnosed with
colon cancer from January 1st, 1994 to December 31st, 1995 to survival of those diagnosed
from January 1st, 1999 to December 31st, 2000. The subsets were chosen only as an example
and since the data are perturbed to some extent, no medical conclusions should be made
based on these results. We nevertheless attempt some interpretation of the results to help
the user in this integral part of the analysis. Our analysis shall be performed in the following
steps:

• Forming the data set: Choosing the subset of patients diagnosed with colon cancer
during the two periods; censor them after ten years and add a variable that indicates
the period of diagnosis.

• Importing the ‘ratetable’ object: Import and check the table of event rates (‘ratetable’
object) if it is already available; construct it otherwise.

• Matching the variables: Match the data set to the ‘ratetable’ object.
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• Estimation of relative survival ratio for the two periods of diagnosis.

• Limiting the data set: Limit the analysis to the subgroups of patients for which it is
sensible to estimate net survival after ten years.

• Estimation and comparison of net survival for the two periods of diagnosis.

• Estimation of crude probability of death for the two periods of diagnosis.

Before we proceed we have to load the relsurv package.

R> library("relsurv")

5.1. Forming the data set

Below are the first three lines of the colrec data set.

R> colrec[1:3, ]

sex age diag time stat stage site
1 1 23004 12656 16 0 1 rectum
2 2 12082 13388 504 0 3 rectum
3 1 24277 12711 22 0 3 colon

The crucial variables for the relative survival analysis are observed time (time) and status
(stat), gender (sex), age at diagnosis (age) and date of diagnosis (diag). Additionally, the
variables stage and site are included. Gender is coded as 1 for male and 2 for female, age
and time are given in days and diag is in date format (days since January 1st, 1960). For
our example we choose only two subgroups of patients. To this end, we form an additional
variable d.int that indicates whether the patient was diagnosed during the first or the second
period.

R> d1 <- subset(colrec, site == "colon" & diag >= as.date("1Jan1994") &
+ diag <= as.date("31Dec1995"))
R> d1$d.int <- 1
R> d2 <- subset(colrec, site == "colon" & diag >= as.date("1Jan1999") &
+ diag <= as.date("31Dec2000"))
R> d2$d.int <- 2
R> d <- rbind(d1, d2)

Since we are interested in 10-year survival, we censor all patients that were still alive after
ten years.

R> ind <- which(d$time > 365.241 * 10)
R> d$time[ind] <- 365.241 * 10
R> d$stat[ind] <- 0



14 relsurv: Nonparametric Relative Survival Analysis in R

This data set consists of 2003 patients where 883 were diagnosed during the first period and
1120 during the second.
Further notes: The steps described above may not be needed when one wants to analyze one’s
own data, but they are included anyway for the sake of reproducibility of this example.

5.2. Importing the ‘ratetable’ object

Since our data set is from the Cancer Registry of Slovenia, we have to use the ‘ratetable’
object for Slovenia. It is included in the package. It has three dimensions:

R> attributes(slopop)$dimid

[1] "age" "year" "sex"

and contains hazards for each combination of covariates from mortality tables. It is thus a
tridimensional array. We can look at the hazards for, say, 50 and 70 year old individuals in
1990 and 2000 by using the following line of code.

R> slopop[c("50", "70"), c("1990", "2000"), ]

Rate table with dimension(s): age year sex
, , sex = male

year
age 1990 2000

50 2.735107e-05 1.537543e-05
70 1.324940e-04 1.225977e-04

, , sex = female

year
age 1990 2000

50 1.036894e-05 8.500730e-06
70 6.903729e-05 5.377721e-05

Note that the hazards are expressed per day, hence the small values. As expected, the hazard
is higher for males, older individuals and those who lived earlier. Once the ‘ratetable’ object
is constructed, it can be used with any function from the relsurv package without further
changes.
Further notes: For other countries such an object may not be available and has to be con-
structed first. The relsurv package includes the following functions to simplify this step:
transrate, transrate.hld, transrate.hmd and joinrate. The most straightforward to
use is the function transrate.hmd, which transforms the tables that can be downloaded
from the web site Human Mortality Database (HMD, http://www.mortality.org/) to an
object of type ‘ratetable’. For example, to construct a ‘ratetable’ object for Slovenia, one
should download the yearly “period life tables” (files mltper_1x1.txt and fltper_1x1.txt
for males and females respectively) and use the following code.

http://www.mortality.org/
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R> slotab <- transrate.hmd(male = "mltper_1x1.txt",
+ female = "fltper_1x1.txt")

5.3. Matching the variables

Having imported the population mortality tables into the format ‘ratetable’, we now have
to match the observed data and the population tables. We have seen that the Slovene
‘ratetable’ object slopop has dimensions age, year and sex, so the same three variables
must exist also in the observed data set. If the names and the format of the variables are
equal in both data sets, no further work has to be done, otherwise, one can take care of the
matching via the argument rmap in each function call.
In our case, the format of the variables matches (our age is in days, the diagnosis year is in
date format), but the names are not the same, we therefore write:

rmap = list(age = age, sex = sex, year = diag)

Further notes: If age was reported in years and not in days (in a variable named agey), the
argument rmap should be

rmap = list(age = agey * 365.241, sex = sex, year = diag)

5.4. Estimation of relative survival ratio

To estimate the relative survival ratio, we use the function rs.surv with the argument method
specified as "ederer1". We estimate it with respect to the variable d.int, which denotes the
period in which the patient was diagnosed – this variable is included in the formula described
in the previous subsection. We compare the observed cohort to the Slovene population tables
and hence set the ratetable argument to slopop. The argument add.times is used to
specify that the curve should be evaluated at five and ten years (see Section 4 for details).

R> fit_rsr <- rs.surv(Surv(time, stat) ~ d.int,
+ data = d, ratetable = slopop, method = "ederer1",
+ add.times = c(5, 10) * 365.241,
+ rmap = list(age = age, sex = sex, year = diag))

Methods such as summary and plot can be used to explore the results. To print the estimated
values of the relative survival ratio at five and ten years, we write:

R> summary(fit_rsr, times = c(5, 10) * 365.241)

Call: rs.surv(formula = Surv(time, stat) ~ d.int, data = d,
ratetable = slopop, method = "ederer1", add.times = c(5, 10) *
365.241, rmap = list(age = age, sex = sex, year = diag))

d.int=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
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Figure 2: Relative survival ratio for patients diagnosed in the first period (black) and in the
second period (red).

1826 287 594 0.409 0.0198 0.372 0.450
3652 216 71 0.396 0.0234 0.353 0.444

d.int=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1826 441 679 0.497 0.0184 0.462 0.535
3652 332 109 0.493 0.0227 0.451 0.540

The relative survival ratio for those diagnosed during the first period is lower compared to
the relative survival ratio of those diagnosed during the second period. This means that even
though the population mortality has improved between the two periods, the observed survival
of the patients has improved even more, thus increasing the relative survival ratio. The same
can be seen in Figure 2.

5.5. Limiting the data set
Since we are interested in estimating 10-year net survival, we have to limit ourselves to those
patients for which such an estimate is sensible, i.e., their probability not to have died due to
other causes in that period is high enough (see Section 3.3 for details). The function nessie
reports the number of patients we can expect to remain at risk after a certain time if our
patients died due to population hazards only. As this is a guideline only, the choice of age
groups in which we do the calculation is arbitrary, we choose 5-year age intervals.

R> breaks <- c(0, seq(from = 45, to = 90, by = 5), Inf)
R> d$agegr <- cut(d$age / 365.241, breaks)
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We call the function with the same syntax as in the previous section:

R> nessie(Surv(time, stat) ~ d.int + agegr,
+ data = d[d$age / 365.241 > 70,], ratetable = slopop,
+ times = seq(0, 10, 2), rmap = list(age = age, sex = sex, year = diag))

The net expected sample size is estimated with respect to two different time periods (variable
d.int) and with respect to different age groups (variable agegr). The first variable is included
because we wish to produce a separate net survival estimate in each of these two calendar
periods and the second one is included to give us some insight on what is the oldest age group
for which it is still sensible to estimate 10-year net survival. Since only older patients can be
problematic, we limit ourselves to individuals above 70. The times argument specifies that
the estimation is required in two-year long intervals.

0 2 4 6 8 10 c.exp.surv
d.int=1,agegr(70,75] 150 137.2 123.8 110.0 95.7 80.7 11.0
d.int=1,agegr(75,80] 73 63.5 53.8 44.3 35.2 26.7 8.6
d.int=1,agegr(80,85] 87 68.4 51.3 36.8 25.0 15.8 5.9
d.int=1,agegr(85,90] 40 26.8 16.9 10.0 5.6 2.8 4.1
d.int=1,agegr(90,Inf] 4 2.2 1.1 0.5 0.2 0.0 2.9
d.int=2,agegr(70,75] 207 190.3 172.9 154.5 134.8 114.7 11.8
d.int=2,agegr(75,80] 162 142.8 122.6 101.2 74.2 51.8 8.4
d.int=2,agegr(80,85] 62 50.0 38.5 28.3 20.8 14.5 6.5
d.int=2,agegr(85,90] 65 45.6 29.9 18.0 9.3 4.3 4.3
d.int=2,agegr(90,Inf] 21 11.3 5.3 1.9 0.5 0.1 2.7

As we can see, the net expected sample sizes after ten years in the first time period are only
15.8, 2.8 and 0.0 for the oldest three age groups. Also, the expected life time for those between
80 and 85 years old is only 5.9 years. Similar estimates can be seen in the second time period.
In our data set, we can expect even considerably less patients, since the patients shall also
die of cancer. Therefore, following the above table, we focus on patients aged 80 years or less
at the time of diagnosis.

R> d2 <- d[d$age < 80 * 365.241, ]

This data set consists of 1724 patients aged 80 or less (752 patients diagnosed in the first and
972 in the second period) and it will be used in the analysis of net survival.

5.6. Estimation and comparison of net survival

To estimate net survival, the function rs.surv is used with the argument method set to
"pohar-perme". As before, estimation is performed with respect to the variable d.int and
argument add.times is used as we shall require the estimates to be reported at 5 and 10
years.

R> fit_net <- rs.surv(Surv(time, stat) ~ d.int, data = d2,
+ ratetable = slopop, method = "pohar-perme", add.times = c(5, 10) *
+ 365.241, rmap = list(age = age, sex = sex, year = diag))



18 relsurv: Nonparametric Relative Survival Analysis in R

Again, we consider the estimated net survival at five and ten years with the method summary.

R> summary(fit_net, times = c(5, 10) * 365.241)

Call: rs.surv(formula = Surv(time, stat) ~ d.int, data = d2,
ratetable = slopop, method = "pohar-perme", add.times = c(5, 10) *
365.241, rmap = list(age = age, sex = sex, year = diag))

d.int=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1826 269 482 0.414 0.0204 0.376 0.456
3652 212 57 0.396 0.0244 0.351 0.447

d.int=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1826 427 545 0.509 0.0187 0.474 0.547
3652 328 99 0.497 0.0247 0.451 0.548

Net survival is higher for the patients diagnosed during the second period and the differences
between the periods are similar both at five and ten years. The values imply that in a
hypothetical world, where the patients would be exposed to cancer hazard only, the 5-year
survival would be 0.41 and 0.51 for the two periods, respectively. The estimated net survival
then stays practically equal for the next five years indicating that the hazard of dying due to
cancer is practically 0 in that interval.
Having estimated net survival, we have made the two periods directly comparable even if
the population mortality has considerably changed in between. The better survival in the
second period can be thus attributed to the lowered cancer specific hazard. The only other
cause for this difference could be in the different covariate distribution of the patients in the
second period (e.g., younger patients, earlier stage, less smoking) – this can then be further
investigated using regression modeling (to this end the function rsadd can be used, see Pohar
and Stare 2006 for details).
Figure 3 presents the estimated net survival of the patients diagnosed in each time period,
we can use the log-rank type test to test whether the net survival is significantly different for
patients diagnosed in different time periods. To this end, we use the function rs.diff.

R> rs.diff(Surv(time, stat) ~ d.int, data = d2, ratetable = slopop,
+ rmap = list(age = age, sex = sex, year = diag))

Value of test statistic: 9.254295
Degrees of freedom: 1
P value: 0.002349437

Results include the value of the test statistic, the number of degrees of freedom and the
p value. As expected from Figure 3 we reject the null hypothesis of equal net survival in the
two periods. Using the same function, we can also consider the stratified log-rank test, e.g.,
test whether the differences persist within different age groups. We use the variable agegr to
form the strata.
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Figure 3: Net survival for patients diagnosed in the first period (black) and in the second
period (red).

R> rs.diff(Surv(time, stat) ~ d.int + strata(agegr), data = d2,
+ ratetable = slopop, rmap = list(age = age, sex = sex, year = diag))

Value of test statistic: 10.36237
Degrees of freedom: 1
P value: 0.0012861

The value of the test statistic has slightly increased. This implies that the difference between
net survival in different periods is even larger within the age groups.
Further notes: Function rs.diff also has an option precision which is by default set to 1.
This value can be decreased to allow even more accurate calculations or increased to allow
faster calculations.

R> rs.diff(Surv(time, stat) ~ d.int, data = d2, ratetable = slopop,
+ precision = 0.1, rmap = list(age = age, sex = sex, year = diag))

Value of test statistic: 9.253211
Degrees of freedom: 1
P value: 0.002350829

Comparing this result with the first one above, we can notice that the increased precision
changed the results only minimally. This is in line with our experience, which shows that
precision lower than 1 day is practically never needed. Since our data set is rather large, the
gaps between event and censoring times are rather small (median gap is 2 days), therefore,
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increasing the argument precision also does not change the result (the value of the test statistic
becomes equal to 9.29). However, if the gaps between the event and censoring times were
larger, setting the precision to smaller intervals is crucial for exact calculation even if it slows
down the function’s performance.
When considering the log-rank test with less than ten events in any of the groups, the function
gives a warning.

5.7. Estimation of crude probability of death

We finally turn to the estimation of the crude probability of death in the two diagnosis periods.
We use the cmp.rel function for this purpose.

R> cmp_fit <- cmp.rel(Surv(time, stat) ~ d.int, data = d,
+ ratetable = slopop, rmap = list(age = age, sex = sex, year = diag))

The results of this function can be viewed with the function summary. It has four arguments.
The first one is a ‘cmp.rel’ object, i.e., the output of the function cmp.rel, e.g., the object
cmp_fit in our case. The second argument times is used to specify the time points at which
the estimates are required, the third argument specifies the units in which the times are given,
the default is 365.241 and represents years, since we wish a report at 5 and 10 years, the
scale is set to 365.241 and is included just for the sake of completeness. The last argument
is used to specify whether the area under the curve should be printed out.

R> summary(cmp_fit, times = c(5, 10), scale = 365.241, area = TRUE)

$`est`
5 10

causeSpec d.int=1 0.57954704 0.5980827
population d.int=1 0.09463701 0.1567039
causeSpec d.int=2 0.50712920 0.5237839
population d.int=2 0.09912080 0.1797875

$var
5 10

causeSpec d.int=1 3.308489e-04 3.862212e-04
population d.int=1 7.433284e-06 3.216670e-05
causeSpec d.int=2 2.763276e-04 3.408826e-04
population d.int=2 5.279948e-06 2.784507e-05

$area
Area at tau = 10

causeSpec d.int=1 5.2602207
population d.int=1 0.9032382
causeSpec d.int=2 4.6132087
population d.int=2 0.9771146

The output contains the estimates of cause-specific and population mortality and variances
of these estimates at several time points for both groups defined by the variable at the right
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Figure 4: Crude (cause-specific) probability of death curves with confidence intervals and
other cause (population) mortality curves for patients diagnosed in the two periods.

hand side of ~ in the formula part. It also includes the area under the curve up to time
tau, which is by default the maximum observed time (ten years in our example, can be set
otherwise in the tau argument of function cmp.rel). Patients diagnosed in the first period
have approximately 0.1 higher probability of dying due to the disease at five and ten years
than patients in the second period. On the contrary, the probability of dying from other
causes is slightly higher in the second period. This can probably be attributed to the fact
that fewer patients die from cancer, all the observed results could also be a consequence of
the different distribution of covariates in the second period. The theory for exploring this
directly via regression models has not been introduced yet in the relative survival field.
The area under the curve tells us that patients diagnosed during the first period have lost
approximately 5.3 years due to cancer in the 10-year period, whereas the patients diagnosed
in the second period lost 4.6 years. For comparison, the years lost in the same time due to
other causes were much fewer – slightly below one year in both periods.
These results can also be presented graphically using the plot method.

R> plot(cmp_fit, col = 1:4, lwd = 3, xscale = 365.241,
+ xlab = "Time (years)", conf.int = c(3, 1))

We have provided several arguments to make this plot more readable; the result is given in
Figure 4. The xscale puts the scale of ordinal axis into years instead of the default (1),
which is days. By default, all estimated cumulative incidence curves are plotted, this could
be changed with the argument curves (the default is 1:4, i.e., all curves, see the output
of summary for the order of curves and their total number). The same is true also for the
confidence intervals – we choose to plot the confidence intervals for cancer specific curves only
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(first and third curve in our case). Notice that we can specify the order in which confidence
intervals are to be plotted to emphasize how they overlap (Figure 4).
Further notes: Function cmp.rel prints warnings when it has issues with the calculation
of confidence intervals for the crude probability of death. When the estimated variance is
negative, the square root of variance cannot be evaluated and the standard deviation cannot
be obtained. This will often happen in the early intervals and sometimes towards the end
of follow-up. The graph can be used to further evaluate the importance of this warning
(intervals with the negative estimated variance shall be missing). The function cmp.rel also
has arguments add.times and precision that play the same role as in the function rs.surv.
When one wants to estimate crude cause-specific probability of death in a shorter time interval
or the areas under these curves are of interest up to a specific time point the argument tau
can be used. By default it is set to the maximum observed time. If we are interested in the
areas under the curves at five years, we can set it to 5 * 365.241.

R> cmp_fit2 <- cmp.rel(Surv(time, stat) ~ d.int, data = d,
+ ratetable = slopop, tau = 5 * 365.241,
+ rmap = list(age = age, sex = sex, year = diag))

The ‘cmp.rel’ object is a list, where the length matches the number of estimated curves plus
one – the last element is the value of the argument tau. The output can also be read directly,
without using the summary method, e.g., areas under the crude cause-specific probability of
death curves in both time intervals can be obtained in the following way:

R> cmp_fit2[[1]]$area

[1] 2.29866

R> cmp_fit2[[3]]$area

[1] 2.012484

We can see that patients diagnosed during the first period have lost around 2.3 years due
to cause-specific reasons in five years and patients diagnosed in the second period have lost
around 2 years due to the cause-specific reasons in a five years time. In a similar fashion the
values of estimators, variances and lower or upper boundaries of confidence intervals can be
obtained.
The results of the function cmp.rel, i.e., a ‘cmp.rel’ object, can be also printed with the
method print, which chooses the time points for output by itself. The summary method is
used as an alternative with more user control.

6. Discussion and conclusions
Several new advances have been made in the field of relative survival over the past decade.
Among them the theoretical clarification of the different measures and the new proposal for
net survival estimator were a key step (Pohar Perme et al. 2012). Furthermore, the need for
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estimating crude probability of death has been emphasized (Eloranta, Adolfsson, Lambert,
Stattin, Akre, Andersson, and Dickman 2013).
A substantial gap between the theory available and the methods in use can be observed, with
the estimators that have been shown not to be consistent (e.g., using Ederer II method for
estimation of net survival) still being frequently used.
By making the new developments available in a user friendly software, we hope to decrease the
gap between the theory and practice – we ensure that the methods can be more directly used
and also that the properties of the methods can be further studied. Some of the proposed
methodology requires only ad-hoc changes of the existing functions (e.g., age-standardized
Ederer II). The focus of this paper is on the two estimators, where the algorithm is rather
complex. Both the PP estimator of net survival and the continuous-time estimator of crude
probability of death require the population mortality hazard to be known for each individual
at all times while still alive, thus making the matching of the observed data and the popula-
tion tables a nuisance that prevents even the more enthusiastic users from programming the
functions by themselves. We explain the specifics of the relative survival estimators which
make any simplifications of these estimators biased. In particular, these specifics help under-
stand why the estimator shall be biased when only discretely recorded times of events are
available (for example only the number of events per month). While some ad-hoc methods
for accounting for this problem have been proposed (Seppä, Hakulinen, and Pokhrel 2015),
this requires some future work in terms of theory and software development.
When comparing our package to other software packages, Stata is the only one with the
same extent of methodology available, while others like SAS (SAS Institute Inc. 2015) and
SEER*Stat (Surveillance Research Program 2016) are still lagging behind. Three commands
for net survival estimation exist in Stata (stns, Clerc-Urmès, Grzebyk, and Hédelin 2014;
strs, Dickman and Coviello 2015; stnet, Coviello, Dickman, Seppä, and Pokhrel 2015) and
in SEER*Stat the PP estimator is available as of version 8.3.1. While the command stns
uses the same algorithm as our function rs.surv in R, the commands strs and stnet use
a life-table approach based on the idea of inverse weighting from the PP estimator. Since
this approach can produce a non-negligible bias when the intervals between events are too
wide, some further work has been done to account for that (Seppä et al. 2015). The only
current difference between the rs.surv in R and stns in Stata is the fact that stns calculates
the estimates only at observed times and assumes a step-function in between – when the
gaps between the event times are small, the results of the two functions are practically the
same. Both the strs and stnet commands also provide the Ederer II estimator of relative
survival ratio and the first one also includes commands that have traditionally been used for
net survival estimation (Hakulinen, Ederer I). For interval data, a nonparametric estimation
of the crude probability of death function (Cronin and Feuer 2000) is also available in Stata
command strs. The output of the stns function offers all the parts needed for the estimation
of crude probability of death (but not its variance). On the other hand, a considerable amount
of work has been done in Stata in terms of predicting crude probability curves based on a
flexible parametric model (Royston and Lambert 2011).
Though the focus of this paper is on two nonparametric methods, package relsurv includes all
the necessary tools for a high quality relative survival analysis, from functions for importing
the population tables (which try simplifying this, typically most time-consuming part of
any relative survival analysis) to regression modeling. The paper also describes the most
important recent inclusions, for which our package is still the only existing software package,



24 relsurv: Nonparametric Relative Survival Analysis in R

but which we believe may be useful in any quality nonparametric analysis: the log-rank
type test for comparison of net survival curves, the calculation of the area below the crude
probability curves which can be interpreted as the number of years lost by the patient and
the calculation of the net expected sample size which can provide a guideline for sensible
estimation of net survival.
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