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Abstract

Predictor effect displays, introduced in this article, visualize the response surface of
complex regression models by averaging and conditioning, producing a sequence of 2D line
graphs, one graph or set of graphs for each predictor in the regression problem. Partial
residual plots visualize lack of fit, traditionally in relatively simple additive regression
models. We combine partial residuals with effect displays to visualize both fit and lack of
fit simultaneously in complex regression models, plotting residuals from a model around
2D slices of the fitted response surface. Employing fundamental results on partial residual
plots along with examples for both real and contrived data, we discuss and illustrate both
the strengths and limitations of the resulting graphs. The methods described in this paper
are implemented in the effects package for R.

Keywords: interaction, nonlinearity, model misspecification, component plus residual plot, R,
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1. Introduction
Predictor effect displays, a reinterpretation of effect displays introduced by Fox (1987) for
generalized linear models, visualize the response surface of complex regression models with
a linear predictor that includes main effects and interactions by averaging and conditioning,
producing a sequence of 2D line graphs for the predictors in a model. Partial residual plots,
also called component plus residual plots, visualize lack of fit, traditionally in relatively sim-
ple additive regression models. The properties of partial residuals plots were systematically
explored by Cook (1993) and Cook and Croos-Dabrera (1998).
In the first part of this article we describe predictor effect displays, which require one or more
2D line graphs to describe the dependence of a fitted regression surface on each predictor.

https://doi.org/10.18637/jss.v087.i09
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This approach corresponds closely to the way most analyses are traditionally summarized
based on tests and estimates. We then show how to combine partial residuals with predictor
effect displays to visualize both fit and lack of fit simultaneously in complex regression models,
plotting residuals from a model around 2D slices of the fitted response surface. Referencing
Cook’s fundamental results, we discuss and illustrate both the strengths and limitations of
the resulting graphs. The extension to predictor effect displays is implemented for linear and
generalized linear models of arbitrary complexity in the current version of the effects package
for R (Fox 2003; Fox and Hong 2009; Fox, Weisberg, Friendly, and Hong 2018a), which we
use to generate the illustrations in the paper. As summarized in Section 5, predictor effect
displays have been extended to a wide variety of other models that include a linear predictor
in the mean function.
Section 2 of the paper describes the general setting that we address and introduces predictor
effect displays. We also discuss the relationship of predictor effect displays to term effect
displays, as previously described by Fox (1987). Section 3 reviews partial residual plots,
connecting them to predictor effect displays. Section 4 develops a variety of examples, using
both real and contrived data, to explore the utility and limitations of adding partial residuals
to effect displays. The paper concludes in Section 5 with advice about using partial residuals in
effect displays to explore lack of fit in complex regression models, and compares our approach
to related work.

2. Predictor effect displays
We address the following situation: There is a response y and a set of p predictors x =
(x1, . . . , xp), along with a regression model for the conditional mean E(y|x). Predictors in
a parametric regression model are represented by regressors. For example, if xj is a factor
with k levels, then a main effect for xj would be represented by k − 1 indicator or contrast
regressors. A numeric xj can be represented by xj itself, by a transformation such as log(xj),
by a set of polynomial basis functions, by a spline basis, or perhaps by other regressors. The
correspondence between predictors and regressors is not unique, but the methods we discuss
are invariant under changes in parameterization. As is conventional, we define an interaction
term xj :xj′ to be the set of all pairwise products of the regressors that are derived from xj

with all the those derived from xj′ . This definition extends straightforwardly to interactions
of more than two predictors, such as the three-way interaction xj :xj′ :xj′′ .
We define the linear predictor h(β,x) to be a linear combination of regressors in the main
effects and interactions created from the predictors x, with the regression coefficients β pro-
viding the weights that multiply the regressors. An intercept β0 is generally included in h
with a corresponding constant regressor, that is, a column of ones. We consider only mean
functions of the form

E(y|x) = η−1 [h(β,x)] (1)

for some known invertible link function η. This class of regression models includes linear
and generalized linear models, additive and generalized additive models, as well as linear and
generalized linear mixed models, among others.
Given a suitable estimate β̂ of β, we write ŷ(x) = η−1[h(β̂,x)] as the estimated mean function.
The goal is to visualize the dependence of h(β̂,x) or of ŷ(x) on x. The most general approach
would examine a single high-dimensional display with h(β̂,x) or ŷ(x) on the “vertical” axis
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and x on the “horizontal” axes. Although concentrating on predictors rather than regressors
has reduced the dimension of the visualization problem from approximately the number of lin-
early independent regressors to approximately the number of linearly independent predictors
plus one for the response, this graph is likely to be useful only for p ≤ 2.
Standard practice in summarizing a regression model is to proceed predictor-by-predictor.
Predictors that occur in main effects only are generally summarized by statements or estimates
or tests that essentially average over, or conditionally fix, all other predictors. Predictors that
occur in interactions require a more complex summary that conditions successively on the
combinations of values of the other predictors in the interactions. Predictor effect displays
follow this paradigm.
Suppose that we are interested in the visual summary of a particular focal predictor xf in the
set of predictors. We assume that the formula defining the linear predictor is hierarchical,
meaning that if an interaction is present in the model, then so are all of its lower-order
relatives, equivalent to the principle of marginality (Nelder 1977). For example, the inclusion
of xj :xj′ implies that both xj and xj′ are in the formula. We can then partition the set of
predictors x = (xf ,x1,x2), where xj ∈ x1 if xf :xj is in the model formula, and the subvector
x2 contains all the remaining predictors. Either of x1 or x2 may be empty.
For a given xf , we can always fix the values of the predictors in x2, if any, and plot, in linear
predictor scale,

h
[
β̂, (xf ,x1,xa

2)
]
versus xf (2)

where xa
2 is a fixed value of x2, typically determined by averaging in some meaningful way.

In the effects package, we use by default the arithmetic average for continuous predictors.
For factors, we average by default over the levels of the factor, with weights given by the
sample sizes at each level; this procedure is equivalent to averaging the columns of the model
matrix encoding a conditionally fixed factor and is therefore invariant with respect to contrast
coding. These defaults can be changed, for example to set continuous predictors equal to some
meaningful value, or to average a factor over its levels using a different weighting scheme. Then
the vertical values in (2) are simply

h
[
β̂, (xf ,x1,xa

2)
]

= C + h
[
β̂, (xf ,x1,0)

]
(3)

for some constant C that depends on xa
2. Thus, choice of x2 affects only the height of the

predictor effect display in linear predictor scale for xf , but not its shape, and x2 is therefore
generally unimportant for examination of the effect of xf . In mean scale, conditioning is not
entirely benign if the link function is nonlinear, as the shape of the plot can depend on xa

2.
Understanding these plots is therefore generally simpler in linear predictor scale.
In the important special case of x1 = ∅, the empty set, xf appears in the formula only
through a main effect. If the regressor representing xf is xf itself, then the predictor effect
display in linear predictor scale for xf is a straight line with slope equal to the estimated
coefficient corresponding to xf , and hence the plot merely displays this estimated slope,
along with an essentially arbitrary intercept. If xf is represented some other way, for example
by a transformation such as log(xf ), a polynomial, a smooth estimated using an additive or
generalized additive model, or a spline basis, then the display will visualize the appropriate
nonlinear effect of xf in the linear predictor scale.
If, however, x1 is not empty, then the plot described by (2) is as a practical matter inadequate
because it describes a graph with 1 + dim(x1) “vertical” axes and one horizontal axis. To
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reduce this high-dimensional graph to a sequence of 2D graphs, we invoke conditioning: For
each xj ∈ x1 define a grid of a few values in the range of xj . If xj is a factor, then the “grid”
typically consists of all factor levels, while for continuous xj , selected quantiles or values
evenly spread over the range of xj can be used to form the grid. If the jth predictor has Gj

grid points, there are then G = ∏
Gj combinations of grid values of the predictors in x1.

Let xg
1 be one of the G sets of grid values. Then the corresponding graph in the predictor

effect display for xf is of
h

[
β̂, (xf ,xg

1,xa
2)

]
versus xf . (4)

The predictor effect display in its entirety consists of the sequence of separate 2D line graphs
of (4) for each of the G choices of g. Often visualization can be simplified by overlaying some
of these 2D line graphs on the same plot, creating a multi-line display.

2.1. Example: Infant mortality by per-capita GDP and national group

We begin by loading the effects package:

R> library("effects")

Loading required package: carData
lattice theme set by effectsTheme()
See ?effectsTheme for details.

Loading the effects package also loads the carData package (Fox, Weisberg, and Price 2018b),
which contains a variety of regression data sets, and, if the lattice package (Sarkar 2008) is
not loaded, sets a custom theme for lattice graphics. On some platforms, setting the lattice
theme may open a trellis graphics device (see ?trellis.device).
To develop a simple example of predictor effect displays, we use the UN data set in the carData
package. UN member states and observer states were divided into three groups – African
states, OECD states, and other non-African states. The response variable in the example
is infantMortality, the infant mortality rate (infant deaths per 1000 live births) for each
country, and the predictors are ppgdp, per-person GDP in U.S. dollars, and group. The data
are from approximately 2011.
We want to visualize the fit of a model for infant mortality as a function of per person GDP
and the three national groups, permitting ppgdp to interact with group:

R> m1 <- lm(log(infantMortality) ~ group * log(ppgdp), data = UN,
+ subset = rownames(UN) != "Equatorial Guinea")
R> summary(m1)

Call:
lm(formula = log(infantMortality) ~ group * log(ppgdp), data = UN,

subset = rownames(UN) != "Equatorial Guinea")

Residuals:
Min 1Q Median 3Q Max

-1.11823 -0.27109 0.02494 0.28529 1.14925
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.47641 1.30955 4.946 0.00000169
groupother 0.94287 1.34496 0.701 0.484155
groupafrica -0.04564 1.36583 -0.033 0.973379
log(ppgdp) -0.48455 0.12617 -3.840 0.000168
groupother:log(ppgdp) -0.05885 0.13110 -0.449 0.654028
groupafrica:log(ppgdp) 0.14201 0.13766 1.032 0.303613

Residual standard error: 0.4413 on 186 degrees of freedom
(20 observations deleted due to missingness)

Multiple R-squared: 0.8391, Adjusted R-squared: 0.8348
F-statistic: 194.1 on 5 and 186 DF, p-value: < 2.2e-16

This linear model has two predictors: the factor group, with three levels, and the numeric
variable ppgdp. Both the response variable and ppgdp are log-transformed to linearize the
partial relationship between the two, a point to which we return in Section 3. The regressors
in the model include log(ppgdp) to represent ppgdp, two indicator regressors for the levels of
group, and two product regressors for the interactions. Because the linear model uses the
identity link function, the mean function and linear predictor are the same. In fitting the
model to the data, we removed the African country Equatorial Guinea, for a reason that will
become apparent as we further develop this example in Section 3.1.
The interactions and log transformations make it inconvenient to interpret the model directly
from the coefficients, and so we turn to predictor effect plots for group and ppgdp, invoking
the predictorEffect function in the effects package:

R> plot(predictorEffect("group", m1,
+ transformation = list(link = log, inverse = exp),
+ xlevels = list(ppgdp = 10 ^ (2 : 5))),
+ lines = list(multiline = TRUE), axes = list(x = list(rotate = 45),
+ y = list(lab = "Infant Mortality", ticks = list(at = 2 ^ (1 : 8)))),
+ confint = list(style = "auto"))
R> plot(predictorEffect("ppgdp", m1,
+ transformation = list(link = log, inverse = exp)),
+ lines = list(multiline = TRUE), axes = list(x = list(rotate = 45),
+ y = list(lab = "Infant Mortality", ticks = list(at = 2 ^ (1 : 8)))),
+ confint = list(style = "auto"))

The objects returned by predictorEffect are graphed by a corresponding plot method.
The calls to predictorEffect and plot use several optional arguments to customize the
resulting graphs:

• The transformation argument to predictorEffects reverses the log transformation
of the response variable, to express the infant-mortality rate as deaths per 1000 births.
The effect is plotted on the log(infantMortality) scale, where the structure of the
model is linear, but the axis is labeled on the untransformed scale. Adding type =
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Figure 1: Predictor effect displays for the model for infantMortality fit to the UN data.

"response" to the y-axis specification list would plot the effect on the scale of the
response, producing a less informative graph (try it!).

• The xlevels argument to predictorEffect sets the values to which the predictor
ppgdp is conditionally fixed in the predictor effect display for group. The default is to
evaluate the numeric predictor ppgdp on a grid of five approximately equally spaced
values rounded to “nice” numbers. By supplying the ppgdp grid directly, we can use
values that are evenly spaced on the log scale of the regressor log(ppgpd) rather than
the default of equally spaced values in the arithmetic scale of the predictor ppgdp.

• The lines argument to plot specifies a multi-line graph for each predictor effect; the
default is to draw separate panels for each grid value of the conditioning predictor, or
combination of grid values of conditioning predictors when there are more than one.

• The axes argument rotates the horizontal-axis tick-labels, changes the label on the
vertical axis to reflect untransformed infant mortality, and customizes the placement of
the vertical-axis tick marks.

• The argument confint = list(style = "auto") displays 95-percent point-wise con-
fidence intervals for the fitted effects, using error-bars for factors and bands for numeric
predictors. The default in multi-line displays is to suppress confidence intervals.

See ?predictorEffect, ?Effect, and ?plot.eff for details of these and other optional
arguments.
The predictor effect displays are shown in Figure 1. The left panel has the focal predictor
group on the horizontal axis. The remaining predictor, the numeric predictor ppgdp, interacts
with group and hence is evaluated at the supplied grid of four values equally spaced on the
log scale, with a separate line drawn for each of the grid values of ppdgp. Because group
is a factor, ŷ(x), which is equivalent to the linear predictor because the link function η is
the identity link, is computed only at the factor levels, indicated by the plotting symbols,
which are slightly displaced horizontally to avoid overplotting. The lines joining the plotting
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symbols are an aid for viewing the graph, and may be suppressed if desired. We see that,
in general, infant mortality at fixed levels of ppgdp is lowest in the oecd group and highest
in africa; at the lowest level of ppgdp, however, fitted infantMorality is slightly lower in
africa than in the other group, and the confidence interval for the oecd group is very wide,
because there are no oecd countries at this level of ppgdp. In all three groups, infant mortality
declines with ppgdp, though less so in africa than in the other groups.
The display in the right panel of Figure 1 is for the effect of ppgdp, with separate lines for
the three groups of states overlaid on the same graph. The lines are curved because ppgdp
is represented by the regressor log(ppgdp) in the model. By default, a rug plot, showing the
marginal distribution of ppgdp, is shown at the bottom of the graph. In this instance the
inference is the same from the second plot as it is from the first, namely that infant mortality
declines with per-capita GDP in all three groups, though less so in africa than in the other
two groups, and that except at the lowest levels of ppgdp, infant mortality is lowest among
the oecd states and highest in africa at fixed levels of ppgdp,

2.2. Term effects versus predictor effects
Previous discussions of effect plots (such as Fox 1987), and previous versions of the effects
package, develop what might be called high-order term effects, or, for short, term effects:
Term effect displays are drawn for combinations of predictors corresponding to the high-order
terms in a model – that is, terms that are not marginal to any terms in the model.
Consider, for example, the model formula y ~ a*b + a*c. We adopt the version of the
Wilkinson and Rogers (1973) notation for linear models that is used in S and R (Chambers
and Hastie 1992). In this notation, ~ separates the left- and right-hand sides of the model
and * is the crossing operator, and so, in expanded form, the model is y ~ 1 + a + b + c
+ a:b + a:c, where y is the response, 1 represents the intercept, a, b and c are the main
effects of the three predictors, and a:b and a:c are interactions. The high-order terms in
the model are a:b and a:c.
The allEffects function applied to a model with this formula produces two plots, one with
a and b as the focal predictors, and the other with a and c as the focal predictors. The
plot method for more than one focal predictor uses an algorithm to choose which predictor
is plotted on the horizontal axis and which is used as a conditioning variable. If the formula
has numeric predictors, then the left-most predictor in the formula is used for the horizontal
axis.
For example, if b were the only numeric predictor and a and c were factors, then the term
effect plot for a:b would average over c, have b on the horizontal axis, and condition on a.
The term effect plot for a:c would average over b, and, for the horizontal axis, would use the
factor with the fewest levels or the left-most factor if they have the same number of levels.
Neither of these plots corresponds to a predictor effect plot because they average over, rather
than condition on, c in the first plot and b in the second plot, producing a display that is not
invariant in shape with respect to the manner in which the levels of the factor c are averaged
over in the term effect plot for a:b, or the typical value to which the numeric b is set in
the term effect plot for a:c. In contrast, recall that averaging over or fixing the values of
predictors in predictor effect plots affects only the height, and not the shape, of the effect. It
is largely this invariance property that leads us to prefer predictor effects to term effects.
The most general function in the effects package is Effect, in which the predictors in an
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effect are specified explicitly. Effect may be used to produce both predictor and term effect
displays, including effect displays for terms that do not appear in the model, such as an
interaction higher-order term to those in the model. For example, a plot equivalent to the
predictor effect plot for b could be obtained with the command

R> plot(Effect(c("a", "b", "c"), m), x.var = "b")

where m is the regression-model object. This specification recognizes that b interacts with
both a and c, and the x.var argument overrides the default procedure for determining the
predictor on the horizontal axis of the graph. Predictor effect plots for the other two predictors
are obtained by providing each predictor in turn as the x.var argument.
All predictor effect plots can be produced more conveniently using

R> plot(predictorEffects(m))

The three predictor effect plots in this example are views of the same four-dimensional sur-
face from three different view points. In the preceding infant-mortality example, we used
predictorEffect in preference to predictorEffects to exert finer-grain control over the
resulting graphs.

3. Partial residual plots
Whereas predictor effect plots are designed to summarize the conditional effects of each pre-
dictor given the others in a correctly specified regression model, partial residual plots are used
to visualize misspecification of the mean function attributable to continuous predictors. We
begin with a working model given by (1) that is potentially misspecified. Suppose that xi is
the vector of predictors for the ith of n observations in the data, and yi is the correspond-
ing value of the response. The estimated working linear predictor for the ith observation is
h(β̂,xi), and the corresponding working residuals are e(xi) = [yi − ŷ(xi)]η′(xi), where η′(xi)
is the first derivative of η with respect to E(y|xi) (Cook and Croos-Dabrera 1998), which
translates from the mean scale to the linear predictor scale. Partial residual plots are always
drawn in the linear predictor scale and only for numeric predictors.
Paralleling the development of predictor effect displays, for a numeric focal predictor xf , we
divide the ith vector of observed predictors into xi = (xfi,x1i,x2i). Partial residual plots
are traditionally defined only when x1 = ∅. In this case, the partial residual plot for a focal
predictor xf is a graph of n points, the ith of which is

e(xi) +
{
h[β̂, (xfi, ∅,0)]− β̂0

}
versus xfi (5)

where ∅ has been inserted as a placeholder for the empty value of x1. The term in curly
braces in (5) is called a partial regression function and it represents the component of the
fitted mean function that depends on xfi. The working residuals e(xi) appear as random
scatter around the partial regression function for a correctly specified model.
In certain circumstances, however, the scatter added by the residuals will be systematic.
Suppose that in place of the working linear predictor in (1), the “true” linear predictor is

h(β,x) + {t(xf )− h [β, (xf , ∅,0)]} (6)
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where t(xf ) is a potentially nonlinear function of xf . If all the regressors (not the predictors)
in x are at least approximately linearly related, and the method used to estimate parameters is
Fisher consistent, then a smoother fit to the partial residual plot for xf provides a visualization
of t (Cook 1993, Lemma 2.1) and possible misspecification with respect to xf . Extension from
linear models to generalized linear models is provided by Cook and Croos-Dabrera (1998).
Comparing (5) to (2), we can superimpose the partial residuals on the predictor effect plot
simply by adding the constant β̂0 + C to the abscissa of the points in (5). The partial
residuals are linearly translated, but nonlinear shapes, the main focus of the partial residuals,
are unaffected.
When x1 6= ∅, the predictor effect display consists of G 2D line plots by conditioning on xg

1.
The points we add to the gth 2D plot are

e(xi) + h
[
β̂, (xfi,x1i,xa

2)
]

+ C versus xf (7)

for all i such that |x1i − xg
1| is minimized over g for each element of x1, and the constant C

is chosen to match the intercept in the predictor effect display. Cook’s lemma can then be
applied to each grid value separately to diagnose unmodelled curvature with respect to xf

separately for each g.

3.1. Example: Infant mortality revisited

Continuing with the UN infant mortality example in Section 2.1, we start with the response
variable infantMortality and predictor ppgdp unlogged. The predictor effect plot for ppgdp
with partial residuals is shown in Figure 2. We initially leave Equatorial Guinea in the data
set.

R> m2 <- lm(infantMortality ~ group * ppgdp, data = UN)
R> plot(predictorEffects(m2, ~ ppgdp, partial.residuals = TRUE),
+ axes = list(x = list(rotate = 25), y = list(lim = c(0, 150))),
+ id = list(n = 1))

The effects package suppresses partial residuals for multi-line plots because of the confusion
produced by overlapping residuals for different values of a conditioning predictor. Instead,
the residuals are plotted with the lines corresponding to different values of the conditioning
predictors, here just the predictor group, in separate panels. The blue line in each panel
represents the fitted model, with a point-wise 95-percent confidence band shown around the
fitted effect. The magenta line in each panel is a loess nonparametric regression smooth
(Cleveland, Grosse, and Shyu 1992), using a span of 2/3 by default. The argument id =
list(n = 1) to plot identifies the most unusual point in each panel, defined as the point
with the largest Mahalanobis distance from the centroid of the points.
The points for other and africa are a clear mismatch for the fitted line, perhaps suggesting
the log-transformations of infantMortality and ppgdp used in the initial example in Sec-
tion 2.1. The right-most point in africa, for Equatorial Guinea, is out of line with the rest
of the African states, pairing a large value of ppgdp with a large value of infantMortality.
The most unusual points in the other panels, Turkey in the oecd group and Afghanistan in
the other group, are not out of line with the other points in their groups to the same degree.
While extreme in their values of ppgdp and infantMortality, these two countries follow the
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Figure 2: Predictor effect plot with partial residuals for ppgdp when neither it nor the response
infantMortality is log-transformed, labeling the most unusual point in each panel.
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Figure 3: Predictor effect plot with partial residuals for ppgdp in the model with ppgdp and
the response infantMortality log-transformed.

general pattern of the data. Recall that we removed Equatorial Guinea, but not Turkey or
Afghanistan, in the model fit in Section 2.1.
The partial residuals have the added benefit of highlighting that while ppgdp is both relatively
high and highly variable in the oecd group, it has relatively small variation in africa, where it
is concentrated in very low values. The other group is intermediate. When both the response
variable and ppgdp are log-transformed, as in model m1 in Section 2.1, the partial-residual
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plots are much more satisfactory (see Figure 3):

R> plot(predictorEffects(m1, ~ ppgdp, partial.residuals = TRUE),
+ axes = list(x = list(rotate = 25)))

3.2. Conditioning on continuous predictors

When x1 includes continuous numeric predictors, as in the first example in the next section,
the assignment of partial residuals to one of the grid of conditioning values introduces addi-
tional variation, because the linear predictor is evaluated at (xfi,x1i,xa

2) rather than at the
grid value (xfi,xg

1,xa
2). That is, there is a potential extra source of variability in the plot due

to conditioning. If we assume that the value of this difference has a symmetric distribution
about zero, then, from Cook (1993, Lemma 2.1), the unadjusted partial residual plot (7) vi-
sualizes t(xf ) with extra variation. If the difference is not symmetrically distributed, as is
likely, for example, for extreme values of the continuous predictors in x1, then bias may be
introduced.
A predictor effect display in linear predictor scale with partial residuals adjusted for condi-
tioning includes the points given for the gth plot by

e(xi) + h
[
β̂, (xfi,xg

1,xa
2)

]
+ C versus xf (8)

substituting the grid values xg
1 for the data values x1i of the conditioning predictors. This

plot also visualizes t(xf ) for each g under the same conditions as the unadjusted version, but
the visualization may be sharper. The adjusted version is implemented in the effects package.
The requirement of linearly related regressors for the usefulness of partial residual plots may
be restrictive on its face, particularly in problems with x1 6= ∅. Because we are conditioning
on x1 = xg

1, however, linearly related regressors are only required within a fixed value of
x1. Moreover, experience suggests that only fairly strong nonlinear relationships among the
regressors prove to be problematic.

4. More examples

4.1. Volunteering for a psychological experiment

Cowles and Davis (1987) conducted a study on volunteering for a psychological experiment,
in which the subjects were students in an introductory psychology course. The authors of the
study collected data on the students’ gender, on the personality dimensions extraversion and
neuroticism, each of which ranges potentially from zero to 24, and on the students’ willingness
to volunteer for an experiment. Of the 1421 students for whom data were collected, 597 were
willing to serve as volunteers. The data are in the Cowles data frame in the carData package:

R> summary(Cowles)

neuroticism extraversion sex volunteer
Min. : 0.00 Min. : 2.00 female:780 no :824
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1st Qu.: 8.00 1st Qu.:10.00 male :641 yes:597
Median :11.00 Median :13.00
Mean :11.47 Mean :12.37
3rd Qu.:15.00 3rd Qu.:15.00
Max. :24.00 Max. :23.00

Cowles and Davis expected extraversion and neuroticism to interact in affecting volunteering,
leading to the following logistic regression model:

R> library("car")
R> mod.cowles.1 <- glm(volunteer ~ sex + neuroticism * extraversion,
+ data = Cowles, family = binomial)
R> summary(mod.cowles.1)

Call:
glm(formula = volunteer ~ sex + neuroticism * extraversion, family = binomial,

data = Cowles)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.4749 -1.0602 -0.8934 1.2609 1.9978

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.358207 0.501320 -4.704 0.00000255
sexmale -0.247152 0.111631 -2.214 0.02683
neuroticism 0.110777 0.037648 2.942 0.00326
extraversion 0.166816 0.037719 4.423 0.00000975
neuroticism:extraversion -0.008552 0.002934 -2.915 0.00355

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1933.5 on 1420 degrees of freedom
Residual deviance: 1897.4 on 1416 degrees of freedom
AIC: 1907.4

Number of Fisher Scoring iterations: 4

R> Anova(mod.cowles.1)

Analysis of Deviance Table (Type II tests)

Response: volunteer
LR Chisq Df Pr(>Chisq)

sex 4.9184 1 0.026572
neuroticism 0.3139 1 0.575316
extraversion 22.1372 1 0.000002538
neuroticism:extraversion 8.6213 1 0.003323
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Figure 4: Predictor effect displays for Cowles and Davis’s logistic regression for volunteering
for a psychological experiment.

We use the Anova function in the car package (Fox and Weisberg 2011) to obtain Type II
tests for the terms in the model. As expected, the interaction between neuroticism and
extraversion has a small p value, and some evidence for a difference between the sexes is
also apparent.
The predictor effect displays in mean scale (i.e., the probability scale) can all be drawn
simultaneously by the predictorEffects function, as shown in Figure 4:

R> plot(predictorEffects(mod.cowles.1,
+ xlevels = list(extraversion = seq(0, 24, by = 6),
+ neuroticism = seq(0, 24, by = 6))),
+ axes = list(y = list(type = "response")),
+ lines = list(multiline = TRUE), rows = 1, cols = 3)

The lines in the predictor effect plots for neuroticism and extroversion are not straight
because of the conversion from linear predictor (logit) to mean (probability) scale, obtained
by specifying the argument axes = list(y = list(type = "response")) to plot. As be-
fore, we obtain multi-line plots for the continuous predictors by lines = list(multiline =
TRUE). We use the xlevels argument to predictorEffects to exert control over the values
of these predictors. The rows and cols arguments to plot specify that the meta-array of
effect displays should be arranged horizontally. By default, confidence intervals around the
estimated effects are suppressed in multi-line plots; as before, they could be turned on by
confint = list(style = "auto"). The predictorEffects function can also be used for a
subset of predictors; see the function’s help page.
The effect plot for sex is little more than a visualization of the regression coefficient for this
factor, with females somewhat more likely than males to volunteer, and because the difference
in estimated probabilities is small, the change to mean scale suggests that this visualization
would apply for any meaningful averaging over the remaining predictors. The other two
displays are two views of the same 3D surface, because both have x2 = (sex) fixed in the
same way. The second display suggests clearly that as neuroticism increases, the probability
of volunteering increases for subjects with low extraversion, but decreases for subjects with
high extraversion. The third display, with extraversion on the horizontal axis, shows that
the probability of volunteering generally increases with extraversion, at a very high rate
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Figure 5: Predictor effect display for neuroticism showing partial residuals.

when extraversion is low, and a much lower rate when neuroticism is high; at the highest
level of neuroticism, the relationship becomes negative. In this instance, both displays of
the interactions can be useful, as they emphasize somewhat different stories.
Figure 5 is the predictor effect plot for neuroticism in linear predictor (logit) scale with the
partial residuals shown:

R> plot(predictorEffects(mod.cowles.1, ~ neuroticism,
+ partial.residuals = TRUE), lattice = list(layout = c(4, 1)))

The lattice argument to plot sets the lattice package layout argument, producing a plot
with four panels arranged in one row (with the unusual column, row order standard for the
lattice layout argument). The conditionally fixed values of extraversion increase from left
to right across the range of this predictor, as indicated by the black line in the strip at the
top of each panel.
For this logistic regression, the vertical axis is on the logit scale, and the default in the effects
package is to label tick-marks on this axis with values of the inverse link function applied to
the logits – that is, with corresponding probabilities. Because this is a diagnostic plot, we
have not bothered to customize the location of the tick-marks on the vertical axis. The partial
residuals are given by the magenta open circles, and the magenta line is the loess smooth of
the partial residuals, with default span of 2/3. As before, the blue lines, which are straight on
the logit scale, represent the fitted model, with the 95-percent point-wise confidence envelope
around the fit superimposed. Robust smooths for non-Gaussian generalized linear models can
result in substantial bias in the fitted curve (Landwehr, Pregibon, and Shoemaker 1980), and
so a non-robust loess smoother is used. The general agreement of the smooths with the fitted
effect suggests that the model reasonably represents the data.
As an additional check, we fit an alternative model to Cowles and Davis’s data, in which
each of neuroticism and extraversion is represented by a five-degree-of-freedom natural
regression spline. The resulting model uses 25 degrees of freedom for the interaction, along
with five degrees of freedom for each of the neuroticism and extraversion main effects, and is
consequently much more flexible than the original model with a linear-by-linear interaction.
A likelihood-ratio test comparing the new model to the original one fails to reveal significant
lack of fit in the original model, and the original model is strongly preferred by both the AIC
and BIC:
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R> library("splines")
R> mod.cowles.2 <- glm(volunteer ~ sex + ns(neuroticism, 5) *
+ ns(extraversion, 5), data = Cowles, family = binomial)
R> anova(mod.cowles.1, mod.cowles.2, test = "Chisq")

Analysis of Deviance Table

Model 1: volunteer ~ sex + neuroticism * extraversion
Model 2: volunteer ~ sex + ns(neuroticism, 5) * ns(extraversion, 5)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1416 1897.4
2 1384 1857.0 32 40.468 0.1448

R> cbind(AIC(mod.cowles.1, mod.cowles.2), BIC(mod.cowles.1, mod.cowles.2))

df AIC df BIC
mod.cowles.1 5 1907.440 5 1933.736
mod.cowles.2 37 1930.972 37 2125.560

4.2. Canadian occupational prestige data

Blishen and McRoberts (1976) assembled data on the prestige, income level, and education
level of males in 102 Canadian occupations, with the purpose of developing a prediction
equation for occupational prestige based on income and education. We analyze similar data
here, although the income and education scores in our data set are for all occupational
incumbents, rather than just for men. These data were also analyzed by Fox and Suschnigg
(1989). The prestige scores are average ratings for the occupations in a national survey
conducted in the mid-1960s (Pineo and Porter 1967). The income and education scores are
averages from the 1971 Canadian census. We classified 98 of the occupations by type: blue
collar, white collar, and professional or managerial. Four of the occupations – “athletes,”
“newsboys,” “babysitters,” and “farmers” – did not fit into this classification and are dropped
from our analysis. The Canadian occupational prestige data are in the data frame Prestige
in the carData package:

R> summary(Prestige)

education income women prestige
Min. : 6.380 Min. : 611 Min. : 0.000 Min. :14.80
1st Qu.: 8.445 1st Qu.: 4106 1st Qu.: 3.592 1st Qu.:35.23
Median :10.540 Median : 5930 Median :13.600 Median :43.60
Mean :10.738 Mean : 6798 Mean :28.979 Mean :46.83
3rd Qu.:12.648 3rd Qu.: 8187 3rd Qu.:52.203 3rd Qu.:59.27
Max. :15.970 Max. :25879 Max. :97.510 Max. :87.20

census type
Min. :1113 bc :44
1st Qu.:3120 prof:31
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Median :5135 wc :23
Mean :5402 NA's: 4
3rd Qu.:8312
Max. :9517

Similar to the analysis by Blishen and McRoberts, we will begin by fitting an additive linear
model with continuous numeric predictors income and education, and factor predictor type.
Blishen and McRoberts’s original analysis did not, however, include the predictor type. We
reorder the levels of type from their default alphabetical ordering to their natural ordering:

R> Prestige$type <- factor(Prestige$type, levels = c("bc", "wc", "prof"))
R> mod.prestige.1 <- lm(prestige ~ income + education + type,
+ data = Prestige)
R> summary(mod.prestige.1)

Call:
lm(formula = prestige ~ income + education + type, data = Prestige)

Residuals:
Min 1Q Median 3Q Max

-14.9529 -4.4486 0.1678 5.0566 18.6320

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6229292 5.2275255 -0.119 0.905
income 0.0010132 0.0002209 4.586 0.000014049
education 3.6731661 0.6405016 5.735 0.000000121
typewc -2.7372307 2.5139324 -1.089 0.279
typeprof 6.0389707 3.8668551 1.562 0.122

Residual standard error: 7.095 on 93 degrees of freedom
(4 observations deleted due to missingness)

Multiple R-squared: 0.8349, Adjusted R-squared: 0.8278
F-statistic: 117.5 on 4 and 93 DF, p-value: < 2.2e-16

R> Anova(mod.prestige.1)

Anova Table (Type II tests)

Response: prestige
Sum Sq Df F value Pr(>F)

income 1058.8 1 21.0339 0.0000140492
education 1655.5 1 32.8882 0.0000001205
type 591.2 2 5.8721 0.003966
Residuals 4681.3 93

The ANOVA table for the model reveals that all three terms have very small p values, sug-
gesting that all three predictors may be useful.
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Figure 6: Predictor effect display with partial residuals for income in the additive regression
of prestige on income, education, and type of occupation.

An effect plot with partial residuals for income in this additive model is, except for the scaling
of the vertical axis, a traditional partial residual plot:

R> plot(predictorEffects(mod.prestige.1, ~ income,
+ partial.residuals = TRUE))

The resulting graph, shown in Figure 6, reveals apparent nonlinearity in the partial regression
of prestige on income.
An alternative story, however, is told by the term effect plot for income and type of occupa-
tion, which is higher-order than the terms actually in the model, and which can be computed
using the Effect function in the effects package, producing Figure 7:

R> plot(Effect(c("income", "type"), mod.prestige.1,
+ partial.residuals = TRUE), partial.residuals = list(span = 0.9),
+ axes = list(x = list(rotate = 25)), lattice = list(layout = c(3, 1)))

We use a large span of 0.9 for the loess smoothers in this graph because dividing the data by
the levels of the factor type leaves relatively few cases in each panel of the graph. Although
the relationship between prestige and income in each panel appears positive and reasonably
linear, the assumption that the slopes are equal in the panels is questionable, with an appar-
ently larger slope for blue-collar occupations, a smaller slope for professional and managerial
occupations, and an intermediate slope for white-collar occupations.
Adding the linear income-by-type interaction to the model, as suggested by Figure 7, confirms
this impression:

R> mod.prestige.2 <- lm(prestige ~ type * income + education,
+ data = Prestige)
R> anova(mod.prestige.1, mod.prestige.2)
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Figure 7: Term effect display with partial residuals for the predictors income and type in the
additive regression of prestige on income, education, and type of occupation.

Analysis of Variance Table

Model 1: prestige ~ income + education + type
Model 2: prestige ~ type * income + education

Res.Df RSS Df Sum of Sq F Pr(>F)
1 93 4681.3
2 91 3791.3 2 890.02 10.681 0.00006809

Of course, the test for the interaction needs to be taken with a grain of salt, in that we added
the interaction to the model after examining the data.
Figure 8 is the term effect plot for income and type (equivalent to the predictor effect plot
for income) in the model that includes the income-by-type interaction:

R> plot(Effect(c("income", "type"), mod.prestige.2,
+ partial.residuals = TRUE), partial.residuals = list(span = 0.9),
+ axes = list(x = list(rotate = 25)), lattice = list(layout = c(3, 1)))

The nonlinearity apparent in the partial residual plot for income in the additive model in Fig-
ure 6 was induced by the relationship between income and occupational type, together with
the unmodelled income-by-type interaction: Blue-collar occupations, for which the income
slope is steep, are clustered at lower incomes, while professional occupations, for which the
income slope is smaller, tend to have higher incomes. In addition to supporting the respec-
ified regression, Figure 8 makes a useful pedagogical point about precision of estimation of
the regression surface: The confidence envelopes show that the fitted regression is sensibly
imprecisely estimated where there are no data.
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Figure 8: Term effect display with partial residuals for income and type in the model incor-
porating the income:type interaction.

4.3. Contrived regression data

We will analyze contrived data generated according to the following setup:

• We sample n = 5000 observations from a trivariate distribution for predictors x1, x2,
and x3, with uniform margins on the interval [−2, 2], and with a prespecified bivari-
ate correlation ρ between each pair of predictors. The method employed, described by
Schumann (2009) and traceable to results reported by Pearson (1907), produces pre-
dictors that are nearly linearly related. Using 5000 observations allows us to focus on
essentially asymptotic behavior of partial residuals in effect plots while still being able
to discern individual points in the resulting graphs.

• We then generate the response y according to the model

y = β0 + h (β, {x1, x2, x3}) + ε (9)

where ε ∼ N(0, 1.52). The regression function h(·) varies from example to example.

A variety of contrived examples generated in this manner, along with R functions for flexibly
generating simulated data, are included in a vignette in the effects package.
In a sense, the example developed in this section and the examples in the vignette are unnec-
essary, because the results obtained are generally predictable from Cook’s theoretical analysis
of partial-residual plots, discussed in Section 3. We nevertheless think that these examples
are useful for illustrating the application of Cook’s analysis to partial-residual effect plots and
for cultivating judgment about how to interpret these plots.
We consider a true model that combines nonlinearity and interaction, E(y|x) = x2

1 +x2x3; the
predictors are moderately correlated, with ρ = 0.5. We then fit the incorrect working model
y ~x1 + x2 + x3 to the data, producing the predictor effect displays with partial residuals in



20 Effect Plots with Partial Residuals

x1 predictor effect plot

x1

y

−5

 0

 5

10

−2 −1  0  1  2

x2 predictor effect plot

x2

y

−5

 0

 5

10

−2 −1  0  1  2

x3 predictor effect plot

x3

y

−5

 0

 5

10

−2 −1  0  1  2

Figure 9: Effect displays with partial residuals for the predictors x1, x2, and x3 in the incorrect
model y ~x1 + x2 + x3 fit to data generated with the mean function E(y|x) = x2

1 + x2x3, with
moderately correlated predictors.
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Figure 10: Term effect displays with partial residuals for {x2, x3} (top) and for {x1, x2} (bot-
tom), the first of which corresponds to the missing x2:x3 interaction in the model generating
the data.

Figure 9, for the predictors x1, x2, and x3, which appear additively in the working model,
and the term effect displays in Figure 10 for {x2, x3} and {x1, x2}, corresponding respectively
to the incorrectly excluded x2:x3 term and the correctly excluded x1:x2 interaction.
The nonlinearity in the partial relationship of y to x1 shows up clearly. The nonlinearity
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Figure 11: Effect displays with partial residuals for x1 and {x2, x3}, which correspond to the
terms in the model generating and fitted to the data, y ~x2

1 + x2 ∗ x3, and for {x1, x2}, which
corresponds to an interaction that is not in the model.

apparent in the plots for x2 and x3 is partly due to contamination with x1, but largely to
the unmodelled interaction between x2 and x3, coupled with the correlation between these
predictors. A similar phenomenon was noted in our analysis of the Canadian occupational
prestige data in Section 4.2, where the unmodelled interaction between type and income in-
duced nonlinearity in the partial relationship of prestige to income. The plot corresponding
to the missing x2:x3 term (in the top panel of Figure 10) does a good job of detecting the
unmodelled interaction, and curvature in this plot is slight. The plot for the x1:x2 term (in
the bottom panel of Figure 10), a term neither in the true model nor in the working model,
primarily reveals the unmodelled nonlinearity in the partial relationship of y to x1.
If we fit the correct model, y ~x2

1 +x2∗x3, to the data, we obtain the plots shown in Figure 11.
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As theory suggests, the partial residuals in these effect displays validate the model, supporting
the exclusion of the x1:x2 interaction, the linear-by-linear interaction between x2 and x3, and
the quadratic partial relationship of y to x1.

5. Discussion
Graphical methods play a central role in many aspects of statistical data analysis. Their use
roughly divides into three phases: an exploratory phase, in which an analyst examines data
graphically for expected and unexpected structure (Tukey 1977); an analysis phase, in which
graphs are used as an aid in formulating and assessing the adequacy of statistical models
fit to the data; and a presentation phase, in which graphs provide summaries of an analysis
that may be shared with others. Predictor effect plots are straightforward summary graphs
for each predictor in a regression model. These plots are analogous to the usual numeric
summaries of a fitted model, providing a separate explanation of the role of each predictor in
a regression model after conditioning on all other relevant predictors.
The contribution of this article and the associated software in the effects package is two-fold:

1. We introduce predictor effect displays as an alternative to term effect displays. Predic-
tor effect displays correspond more naturally to how researchers interpret the results of
complex regression models, are simpler to describe formally, and have improved invari-
ance properties relative to term effect displays.

2. Although effect displays, including effect plots with partial residuals, are related to
other approaches for interpreting complex regression models, and although the general
scheme employed using two-dimensional conditioning plots is not entirely original (see
below for both of these points), the conceptualization described in this paper and its
implementation in the effects package are novel in certain respects and more general
than alternative approaches.

Partial residuals in effect plots can help to detect incorrectly specified models and point toward
their improvement. If the model is correctly specified, then partial residuals for predictor
effects, for the high-order terms of the model, and for effects of higher-order to those included
in the model, should confirm the correctness of the model. On the other hand, if the model
is incorrectly specified, then partial residual plots should not be interpreted naïvely, because
a failure in one part of the model can contaminate plots for other combinations of predictors.
For example, as we have shown, failure to model an interaction can appear as nonlinearity
in a partial residual plot for one of the predictors entering the unmodelled interaction; and
unmodelled nonlinearity in one predictor can also appear in the partial residuals for other
predictors that are correlated with it. Awareness of these potential artifacts increases the
utility of partial-residual effect plots in improving complex regression models. For example, if
multiple issues are detected in partial residual plots, it is generally sensible to address them
one at a time, rechecking at each step.
Displays similar to effect plots are also available in a number of other implementations.

• In R, the visreg (Breheny and Burchett 2018) package is most similar to effects, but it
provides only for conditioning on specific levels of a factor rather than averaging over
them, as is done in the effects package. The visreg package also seems to be limited
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to two-factor interactions, excluding the possibility of plotting higher-order terms, so
problems with more than one interaction may not be properly displayed.

• The margins and marginsplot programs in Stata (StataCorp. 2015) create displays
that are similar to effect plots, except averaging or conditioning is over the empirical
distribution of the regressors rather than the predictors, which can lead to invariance
problems. As far was we can see, partial residuals cannot be added to a margins plot.

• Least-squares means, a generalization of adjusted means in analysis of covariance, intro-
duced by Fisher 1936, as implemented in SAS (SAS Institute Inc. 2012) and the lsmeans
package for R (Lenth 2016, 2018b), are capable of displaying interactions among factors,
and in certain instances least-squares means coincide with effect displays. Partial resid-
uals are not relevant to displays of least-squares means, however. The lsmeans package
has been superseded by the emmeans package (Lenth 2018a).

For a linear predictor with only main effects, adding partial residuals to an effect plot is
straightforward, and provides little that is new. For example, the plots produced by the gam
functions in the mgcv (Wood 2017) and gam (Hastie 2018) packages are effect plots with
partial residuals added. In an early general article on Trellis displays, Becker, Cleveland, and
Shyu (1996) include a graph (their Figure 6) that they describe as a partial residual plot.
Rather than fitting an explicit model to the data, however, they subtract marginal means
for one factor from the data in a three-way classification with one case per cell, and then
plot the resulting values against the other two factors. This procedure works because the
data are balanced, and is equivalent to fitting a one-way ANOVA for one of the three factors.
The procedure is not general, however, and the plotted values would not typically be termed
partial residuals.
The functions in the effects package rely on the presence of a linear predictor in a regression
model, and are therefore not suitable for less structured approaches to regression, such as
regression trees. For this case, Friedman (2001) suggested plots obtained by averaging the
estimate of ŷ(x) over the empirical distribution of the predictors. Goldstein, Kapelner, Ble-
ich, and Pitkin (2015) call these individual conditional expectation or ICE plots, and have
implemented them in the ICEbox package (Goldstein et al. 2015) for R. These plots do not
use a linear predictor and are therefore likely to be harder to interpret than predictor effect
plots in problems for which the latter are appropriate.
The new ideas and software described in this article were not developed in a vacuum. In
particular, we owe a debt to the general notion of conditioning plots (Cleveland 1993, 1994)
and to their implementation in Trellis graphics (Becker and Cleveland 1996). In particular, the
manner in which we handle the computation and display of partial residuals is loosely inspired
by “shingles” in Trellis graphics, although it does not use shingles (overlapping sub-ranges
for a continuous variable) in the literal sense. We also clearly lean heavily on the theoretical
results concerning partial residuals developed by Cook (1993) and Cook and Croos-Dabrera
(1998).
Predictor effect plots are reasonably easy to apply to a variety of modeling frameworks that
use a linear predictor. In the effects package for R, we have included methods for linear,
multivariate linear, and generalized linear models fit by the standard lm and glm functions
and by the svyglm function in the survey package (Lumley 2004); linear models fit by gen-
eralized least squares using the gls function in the nlme package (Pinheiro, Bates, DebRoy,
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Sarkar, and R Core Team 2018); multinomial regression models fit by multinom in the nnet
package (Venables and Ripley 2002); ordinal regression models using polr from the MASS
package (Venables and Ripley 2002) and clm and clm2 from the ordinal package (Christensen
2018); linear and generalized linear mixed models using the lme function in the nlme package
(Pinheiro et al. 2018) and the lmer and glmer functions in the lme4 package (Bates, Mächler,
Bolker, and Walker 2015); and latent class models fit by poLCA in the poLCA package (Linzer
and Lewis 2011). We also include a generic method that may work with models fit by other
functions that employ a linear predictor. Partial residuals, however, are not available, or even
useful, for many of these classes of models. At present, we provide partial residuals for models
of arbitrary complexity fit by lm, glm, lmer, glmer, and lme.
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