
JSS Journal of Statistical Software
November 2018, Volume 87, Issue 10. doi: 10.18637/jss.v087.i10

rTensor: An R Package for Multidimensional Array
(Tensor) Unfolding, Multiplication,

and Decomposition

James Li
Facebook

Jacob Bien
Cornell University

Martin T. Wells
Cornell University

Abstract

rTensor is an R package designed to provide a common set of operations and decompo-
sitions for multidimensional arrays (tensors). We provide an S4 class that wraps around
the base ‘array’ class and overloads familiar operations to users of ‘array’, and we provide
additional functionality for tensor operations that are becoming more relevant in recent
literature. We also provide a general unfolding operation, for which the k-mode unfolding
and the matrix vectorization are special cases of. Finally, package rTensor implements
common tensor decompositions such as canonical polyadic decomposition, Tucker decom-
position, multilinear principal component analysis, t-singular value decomposition, as well
as related matrix-based algorithms such as generalized low rank approximation of matrices
and popular value decomposition.

Keywords: tensor, multidimensional arrays, S4, Tucker decomposition, multilinear principal
components analysis, generalized low rank approximation of matrices, population valued de-
composition, CANDECOMP/PARAFAC, tensor singular value decomposition.

1. Introduction

Advances in medical imaging technology as well as telecommunication data-collection have
ushered in massive datasets that make multidimensional data more commonplace. The multi-
linear structure of such datasets (e.g., individuals × traits × time) gives impetus for statistical
techniques that preserve the dimensionality while still tying into the familiar framework of
statistical inference and learning.
Flattening of the data (treating one or more of the levels as simply more observations or
more variables) and then applying traditional matrix-based methods are often used (Yang,

https://doi.org/10.18637/jss.v087.i10

2 rTensor: Multidimensional Arrays in R

Zhang, Frangi, and Yang 2004; Zhang and Zhou 2005); however, methods that do not reduce
the structural integrity of the data often outperform in both model parsimony and predictive
performance (Vasilescu 2009; Sheehan and Saad 2007; Lathauwer, Moor, and Vanderwalle
2000b,a). Hence it is important to extend the statistical framework to datasets that inherently
have multi-level structures.
The tensor framework generalizes the familiar notions of vectors and matrices and has been
actively used and investigated in chemometrics, image sensing, facial recognition, and psycho-
metrics. We point to Kolda (2006) for a very comprehensive list of references of tensor uses
in a variety of fields. Also more recently, there has been a rise of tensor usage in data mining
(Acar, Dunlavy, Kolda, and Morup 2011a; Yilmaz, Cemgil, and Simsekli 2011; Acar, Kolda,
and Dunlavy 2011b; Morup 2011; Anandkumar, Ge, Hsu, Kakade, and Telgarsky 2014) and
computation (Acar et al. 2009; Golub and Van Loan 2012; Kang, Papalexakis, Harpale, and
Faloutsos 2012). In fact, many of the techniques that have been developed in lieu of a for-
mal tensor setup are later shown to be special cases of models based on the tensor structure
(Sheehan and Saad 2007), which further supports the notion that the tensor framework is
wide-reaching and important to develop further.
Many papers exist for cataloging and surveying the use of tensor techniques, such as Kolda
(2006); Kolda and Bader (2009); Lu, Plataniotis, and Venetsanopoulos (2011); Vasilescu
(2009) and Grasedyck, Kressner, and Tobler (2013). Over the past few years, much has
changed in the landscape of tensor analysis. This warrants a much more serious considera-
tion of adopting tensor methodology in the statistical community. Our aim in building this
R (R Core Team 2018) package is to facilitate tensor manipulation, modeling, and method-
ological research amongst statisticians. We also believe that with so many different ways to
represent a general tensor in matrix form (unfoldings), it is important to have a consistent
notation and terminology for such representations.

1.1. Software review

Tensor software is available in multiple platforms. We surveyed and used most of the freely-
available ones before deciding to build rTensor (Li, Bien, and Wells 2018). In MATLAB
(The MathWorks Inc. 2017), Andersson and Bro (2000) created the N-way Toolbox to fit the
canonical polyadic (CP) decomposition, Tucker decomposition, as well as other multilinear
models. This toolbox also handles missing values. Bader and Kolda (2004, 2006) created
the Tensor Toolbox that provides classes for dense, sparse, and structured tensors. Bader
and Kolda (2004, 2006) also provides tensor decompositions such as CP and Tucker. In
C++, there are also several libraries designed for tensor operations. Boost (Garcia, Siek, and
Lumsdaine 2001) and Blitz++ (Veldhuizen, Cummings, Guio, Stokes, and Shende 2011) both
implement multidimensional arrays that promise efficiency and large number of dimensions.
However, we found these C++ libraries are mainly lacking both in the decompositions that are
supported and in tensor objects where the number of modes that can be dynamically altered
after compile-time. While computational efficiency is certainly important, we needed more
flexibility in a tensor software that allowed easy tensor analysis and prototyping of models.
In R, the package tensorA (Van den Boogaart 2010) provides Einstein and Riemann summing
conventions as well as parallel computations for tensors. It does not support any tensor
models and decompositions. The package PTAk (Leibovici 2010, 2015) does support CP,
general Tucker, and two-dimensional principal component analysis (2dPCA), but does not

Journal of Statistical Software 3

cover the population value decomposition (PVD), the t-product and the t-singular value
decomposition (t-SVD) cases. Package rTensor aims to provide a tensor class with general
matrix unfolding operations and fundamental tensor operations to support novel development
of tensor methods, while package PTAk is more specific in its application to spatio-temporal
decompositions. Of course, there is also the ‘array’ class, which supports multidimensional
arrays. Our package aims to extend the functionality of this base ‘array’ class by adding
k-mode multiplication, t-products, transpose, unfolding, as well as various multidimensional
decompositions. Package rTensor is available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=rTensor.
Special care is taken to prevent too much slowdown in the code. For instance, consider the
unfold function, which is central to all of the decompositions and most of the operations
featured in our package. There are still significant speed differences between our unfold and
that of MATLAB’s Tensor Toolbox, but those are mostly due to speed differences between R’s
base aperm function and those of MATLAB:

R> tnsr <- rand_tensor(rep(20, 6))
R> Rprof()
R> mtx <- unfold(tnsr, row_idx = c(4, 1, 3), col_idx = c(2, 5, 6))
R> Rprof(NULL)
R> summaryRprof()

$by.self
self.time self.pct total.time total.pct

"aperm.default" 0.52 100 0.52 100

$by.total
total.time total.pct self.time self.pct

"aperm.default" 0.52 100 0.52 100
"aperm" 0.52 100 0.00 0
"unfold" 0.52 100 0.00 0

$sample.interval
[1] 0.02

$sampling.time
[1] 0.52

>> T = randn(20, 20, 20, 20, 20, 20);
>> tic, b = permute(T, [4, 1, 3, 2, 5, 6]); b = reshape(b, 20^3, 20^3); toc,

Elapsed time is 0.182706 seconds.

2. rTensor basics
A tensor used in data analysis is a multi-dimensional array (MDA). The modes of a tensor
correspond to the dimensions of a MDA. A vector is a 1-tensor, a matrix a 2-tensor, and

http://CRAN.R-project.org/package=rTensor

4 rTensor: Multidimensional Arrays in R

Slot name Type Description
num_modes ‘integer’ The number of modes, or K.
modes ‘vector’ The vector of modes/sizes/extents/

dimensions.
data ‘vector’, ‘matrix’, or ‘array’ The actual data of the tensor.

Table 1: List of slots in the ‘Tensor’ S4 class.

tensors with 3 or more modes are generally called higher-order tensors. Decompositions
of higher-order tensors are often called multi-way analysis or multi-linear models. In this
section, we will give an overview of tensor basics as well as how to perform the basic tensor
manipulation tasks in package rTensor.

2.1. S4 class

Package rTensor exports the ‘Tensor’ S4 class, which extends the base ‘array’ class that
ships with every version of R. The most accurate way to consider the ‘Tensor’ class is to
see it as an API to the default R multidimensional array, allowing the user to easily create,
manipulate and model tensors coherent with the set of terminology and algorithms set forth
by Kilmer, Braman, Hao, and Hoover (2013); Vasilescu (2009); Kolda (2006); Bro (1997).
The ‘Tensor’ class contains three slots which are given in Table 1.
Let K denote the number of modes for a tensor, and let n1×n2× . . .×nK denote the extents
of the modes associated with a K-tensor; nk specifies the extent of the tensor along mode
k. Creation of a ‘Tensor’ object is done mostly via as.tensor, which takes in an ‘array’,
‘matrix’, or ‘vector’ as argument. It is also possible to initialize a ‘Tensor’ object using the
new("Tensor", num_modes, modes, data) command.
Addition and subtraction is defined element-wise for tensors of the same modes, while the
Frobenius norm extends the matrix case in the usual manner:

‖X‖2F =
n1∑
i1=1

n2∑
i2=1

. . .
nK∑
iK=1

x2
i1,...,iK .

Element-wise operations such as addition, subtraction, element-wise exponentiation, etc. have
been overloaded for the ‘Tensor’ class. For binary element-wise operations, we can provide
a ‘Tensor’ operand along with a ‘array’ operand as long as the dimensions match up. The
same rules apply for ‘matrix’ objects and ‘numeric’ vectors.
The Frobenius norm of a K-tensor can be obtained using the method fnorm, and we can
sum or average across any mode of the tensor to obtain a (K − 1)-tensor using the methods
modeSum or modeMean. The inner product of two tensors of equal modes can be calculated via
the method innerProd.
We can subset a ‘Tensor’ just as we would an ‘array’ object: simply invoke the subsetting
operator [and provide the indices of the subset. Any index that is left blank will retrieve
the entire range of that mode. To assign the subset of a tensor a value, we would do the
expected thing. When a ‘Tensor’ object is printed to the screen, we only display the first few
elements of the data, along with the number of modes and the mode vector. To save space,
we omit the data output of printing the tensor. The following code illustrates how to create
and operate on a tensor:

Journal of Statistical Software 5

R> library("rTensor")
R> indices <- c(10, 20, 30, 40)
R> arr <- array(rnorm(prod(indices)), dim = indices)
R> tnsr <- as.tensor(arr)
R> tnsr

Numeric Tensor of 4 Modes
Modes: 10 20 30 40
Data:
[1] -1.1284629 1.0675542 0.8046051 -1.4006100 0.1571699 -1.7975627

R> fnorm(tnsr)

[1] 489.8707

R> modeSum(tnsr, m = 1, drop = FALSE)

Numeric Tensor of 4 Modes
Modes: 1 20 30 40
Data:
[1] -1.8845470 -4.2588321 0.8585407 0.3425072 2.7341223 -2.8549452

R> modeSum(tnsr, m = 1, drop = TRUE)

Numeric Tensor of 3 Modes
Modes: 20 30 40
Data:
[1] -1.8845470 -4.2588321 0.8585407 0.3425072 2.7341223 -2.8549452

R> innerProd(tnsr, tnsr)

[1] 239973.3

R> tnsr[, 1:2, 1, 1]

Numeric Tensor of 2 Modes
Modes: 10 2
Data:

[,1] [,2]
[1,] -1.1284629 -1.5121679
[2,] 1.0675542 1.1324152
[3,] 0.8046051 -1.4471833
[4,] -1.4006100 2.3082239
[5,] 0.1571699 -1.7088971
[6,] -1.7975627 -0.5560895

6 rTensor: Multidimensional Arrays in R

2.2. Datasets

We include the AT&T database of faces (Cambridge 1994) in tensor format in this package,
which contains images of 40 individuals under 10 different lightings, each image with 92×112
pixels. We structured this dataset as a 4-tensor with modes 92 × 112 × 40 × 10, where the
first two modes correspond to the image pixels, the third mode corresponds to the individual,
and the last mode corresponds to the lighting condition. The data object can be accessed
using faces_tnsr. It is also fairly simple to plot any of the images in this dataset, using the
function plot_orl. The following snippet of code generates the image corresponding to the
5th individual under the 10th lighting condition:

R> plot_orl(subject = 5, condition = 10)

2.3. Tensor unfolding

For K ≥ 3, it is often useful to be able to represent a K-tensor as a matrix or as a vector,
especially as a first step in defining a tensor multiplication. This representation is often called
unfolding or flattening. To represent a general K-tensor as a matrix, one can choose exactly
which modes to map onto the rows and columns. While there are a few conventions that have
prevailed in the tensor literature, package rTensor provides a general unfolding function that
encompasses these conventions as special cases. The folding operations, which invert these
unfold operations, are defined through the unfolding themselves. It is important to note that
the foldings operate on any arbitrary matrix, so it becomes necessary to specify the exact
modes of the resulting tensor.
The general matrix unfolding maps a subset of the modes as indices in the rows and the
remaining modes as indices in the columns. As such, it needs to know both which modes
are mapped to the rows (row_idx =) and which are mapped to the columns (col_idx =).
The orders of the indices within the rows and columns depend on the order given in these
two parameters. Consider the following example. We first use the function rand_tensor to
generate a 4-tensor consisting of i.i.d. random Normal(µ = 0, σ = 1) entries, then unfold in
two different ways:

R> tnsr <- rand_tensor(modes = c(3, 4, 5, 6))
R> unfold(tnsr, row_idx = c(1, 2), col_idx = c(3, 4))

Numeric Tensor of 2 Modes
Modes: 12 30
Data:

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.3598239 0.3199540 1.80046216 0.5264169 -1.1703683 1.6642430
[2,] -0.8469362 -0.2649620 -0.74235168 1.4504419 0.2085634 -0.5773225
[3,] -0.3771786 -0.2427662 0.61483068 -0.6173013 -1.5779438 -0.9869397
[4,] 0.1302490 -0.1866406 -0.04535539 0.5563735 -1.4252314 0.3929646
[5,] 0.9022722 -2.1842911 -0.48736317 0.7888372 1.6272044 -0.3522744
[6,] 1.2760479 -0.2878594 3.96839056 0.9474990 0.1303110 -0.4910413

[...]

Journal of Statistical Software 7

R> unfold(tnsr, row_idx = c(2, 3), col_idx = c(1, 4))

Numeric Tensor of 2 Modes
Modes: 20 18
Data:

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.359823902 -0.8469362 -0.377178615 1.6642430 -0.57732251 -0.9869397
[2,] 0.130249009 0.9022722 1.276047904 0.3929646 -0.35227443 -0.4910413
[3,] 0.001396795 1.5585043 1.289323895 0.4914713 -0.40570634 -0.9339438
[4,] -1.305624607 -0.2760775 0.005373203 0.9010271 -1.37015962 0.8131647
[5,] 0.319953957 -0.2649620 -0.242766237 -0.6987564 0.38338092 0.1212665
[6,] -0.186640559 -2.1842911 -0.287859359 -1.0538028 0.07329372 1.8191891

[...]

In the general fold method, we would need to specify the full modes of the original ‘Tensor’
object as well as row_idx and col_idx.

R> tnsr <- rand_tensor(modes = c(3, 4, 5, 6))
R> unfolded <- unfold(tnsr, row_idx = c(2, 3), col_idx = c(1, 4))
R> folded_back <- fold(unfolded, row_idx = c(2, 3), col_idx = c(1, 4),
+ modes = c(3, 4, 5, 6))
R> identical(folded_back, tnsr)

[1] TRUE

Special cases of this general unfolding include the vec(·) operation, which simply stacks the
tensor element-wise into a n1n2 . . . nK vector. In this case, the row indices is the entire set of
modes, while the column indices is the null set. Here we abide by the reverse lexicographical
ordering, which is to allow the first index to vary the fastest and the last index to vary the
slowest, i.e.,

vec(X) =

x111
x211
...

x121
x221
...

xN1N2N3

∈ Rn1n2n3 ,X ∈ Rn1×n2×n3 .

To invoke the vec(·) operation, the user can call unfold(tnsr, row_idx = tnsr@modes).
The default for col_idx is NULL so it does not need to be specified. We also provide a
convenience function vec.
Another prevalent unfolding is called the k-mode matricization/unfolding (Kolda 2006). For
X ∈ Rn1×n2×...×nK , denote the unfolding in the kth mode as

X(k) ∈ Rnk×
∏

j 6=k
nj .

8 rTensor: Multidimensional Arrays in R

Figure 1: Illustration of the 1-mode, 2-mode, and 3-mode unfoldings for a 3-tensor X ∈
Rn1×n2×n3 .

The formal notation for this operation gives a mapping from the (i1, i2, . . . , iK)th element to
the (ik, j)th element of the resulting matrix, where

j = 1 +
K∑
p6=k

(ip − 1)Jp, with Jp =
p−1∏
q 6=k

nq.

We stay consistent to the convention in the permutation of the indices {n1, . . . , nk−1, nk+1,
. . . , nK}. For a 3-tensor, there are three k-mode unfoldings, denoted X(1), X(2), and X(3).
Figure 1 shows how the extents of the original tensor map onto the rows and columns of the
three unfoldings.
To invoke the k-mode unfolding in the mode k using package rTensor, the user can call unfold
by specifying row_idx = k or use the convenience function k_unfold with m = k.

R> tnsr <- rand_tensor(modes = c(2, 3, 4, 5, 6))
R> k_unfold(tnsr, m = 2)

Numeric Tensor of 2 Modes
Modes: 3 240
Data:

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.3578831 -0.8032793 -0.06559354 -0.2990532 -1.232756 -0.6948367
[2,] 1.4607161 -0.7265681 0.65618704 0.1993923 -2.420022 -1.1161419
[3,] -0.3419790 -1.0873609 1.17385498 0.8827398 -1.010616 0.4219558

[...]

R> k_unfold(tnsr, m = 4)

Numeric Tensor of 2 Modes
Modes: 5 144

Journal of Statistical Software 9

Figure 2: matvec(X) for X ∈ Rn1×n2×n3 which results in a n1n3 × n2 matrix.

Data:
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.35788311 -0.80327927 1.4607161 -0.7265681 -0.3419790 -1.0873609
[2,] 0.09652643 -0.00963707 0.3724675 -1.2845784 0.4300722 0.8459963
[3,] -2.58818372 -0.05481498 -1.8795606 0.7851252 -1.3425023 -0.3089504
[4,] 0.60717572 0.20758000 2.0156336 0.2923068 2.7739223 0.5589189
[5,] -0.22042844 -0.09737430 -0.7436792 0.1000862 0.6692409 -0.6806083

[...]

The corresponding k_fold method, on the other hand, requires the modes of the original
‘Tensor’ object, since all it sees is the matrix as the input.

R> tnsr <- rand_tensor(modes = c(2, 3, 4, 5, 6))
R> unfolded <- k_unfold(tnsr, m = 4)
R> k_fold(unfolded, m = 4, modes = c(2, 3, 4, 5, 6))

Numeric Tensor of 5 Modes
Modes: 2 3 4 5 6
Data:
[1] -1.07334966 0.01239117 -0.17909191 -0.67723446 -1.16584575 -1.23881803

R> identical(k_fold(unfolded, m = 4, modes = c(2, 3, 4, 5, 6)), tnsr)

[1] TRUE

Kilmer and Martin (2011) proposed another tensor unfolding known as the matvec(·) opera-
tion. For X ∈ Rn1×n2×n3 , let Xj := X [:, :, j], j = 1, . . . , n3, then the matrix vectorization of
X , denoted matvec(X), is

matvec(X) =

 X1
...

Xn3

 ∈ Rn1n3×n2 .

10 rTensor: Multidimensional Arrays in R

The matvec(·) is more explicitly illustrated in Figure 2. Observe that matvec(X) = X>(2). The
user could easily perform the matvec(·) operation using the transpose of k_unfold(..., m =
2). Nevertheless, we provide the function matvec that avoids the matrix transpose and maps
the second mode directly to the row indices. We also provide the inverse folding function
unmatvec.

2.4. Tensor multiplication

The k-mode product specifies multiplication between a K-tensor X ∈ Rn1×n2×...×nK and a
matrix M ∈ RJ×nk , where nk is the k-mode for X (Kolda 2006). The result is a K-tensor in
Rn1×...×nk−1×J×nk+1×...×nK . This is defined element-wise to be

(X ×kM)i1,...,ik−1,j,ik+1,...,iK =
nk∑
ik=1
Xi1,...,iK ·Mj,ik .

As the name suggests, this product definition is closely related to the k-mode unfolding. In
fact

Y = X ×kM ⇔ Y(k) = M · X(k),

where “·” denotes the usual matrix multiplication.
In other words, we can think about the k-mode product as a left matrix multiplication onto
the k-mode vectors: each k-mode vector of the resulting tensor Y is a result of a matrix-vector
multiplication between M and the corresponding k-mode vector of X . Note that if M is a
vector (i.e., J = 1), then each k-mode vector of Y is the result of an inner product between
two vectors, and Y will have the kth mode being 1 and is essentially a (K − 1)-tensor.
Also note that if X ∈ Rn1×n2 were a matrix, then the k-mode product between X and
M1 ∈ RJ1×n1 ,M2 ∈ RJ2×n2 is equivalent to the following matrix products

X ×1 M1 = M>1 ·X ∈ RJ1×n2

X ×2 M2 = X ·M2 ∈ Rn1×J2 .

The function to perform k-mode multiplication is ttm – short for “tensor times matrix”, the
name of a function with similar usage in the MATLAB Tensor Toolbox (Bader and Kolda
2004). ttm takes in a ‘Tensor’ object, a ‘matrix’ object, and the mode for multiplication.
It then proceeds to unfold the ‘Tensor’ object in the mode specified, to perform matrix
multiplication with the ‘matrix’ object on the left, and to fold the resulting matrix back into
a ‘Tensor’. Naturally, the number of columns of the ‘matrix’ object must match the mode
specified for the original ‘Tensor’ object.

R> tnsr <- rand_tensor(modes = c(4, 6, 8, 10))
R> mat <- matrix(rnorm(12), ncol = 6)
R> ttm(tnsr = tnsr, mat = mat, m = 2)

Numeric Tensor of 4 Modes
Modes: 4 2 8 10
Data:
[1] -1.4457715 -0.1249305 2.3950996 -0.7543450 -0.1727204 0.7295488

Journal of Statistical Software 11

The k-mode product serves as the basis for many tensor decompositions and regression models,
including the Tucker decomposition and the CP decomposition. It also bears mentioning that
the Kronecker product permits a matrix view of the product between a general K-tensor and
a list of matrices (Kolda 2006)

Y = X ×1 M1 ×2 M2 . . .×K MK

⇔Y(k) = Mk · X(k) · (MK ⊗ . . .⊗Mk+1 ⊗Mk−1 . . .⊗M1)>.

For many tensor decompositions, there is frequently a need to perform a series of k-mode
multiplications using multiple factor matrices. To this end, ttl is a function that takes in
a single tensor X , a ‘list’ of ‘matrix’ objects {M1,M2, . . . ,Mn}, and a vector of modes
(i1, i2, . . . , in), and then returns the output X ×i1 M1 ×i1 M1 ×i3 . . .×in Mn. The number of
columns of each matrix must match the corresponding modes of X .

R> mat2 <- matrix(rnorm(24), ncol = 8)
R> ttl(tnsr = tnsr, list_mat = list(mat, mat2), ms = c(2, 3))

Numeric Tensor of 4 Modes
Modes: 4 2 3 10
Data:
[1] -8.385004 -7.194387 5.908805 1.689403 -2.678040 -3.381004

To illustrate the k-mode multiplication further, let us consider a more visual example using
a single subject from faces_tnsr. We can swap the positions of the images in the subject
3-tensor (92× 112× 10) by multiplying it with a 10× 10 matrix with 1 in the coordinates of
the swap, and 0 everywhere else. Consider the following example:

R> subject <- faces_tnsr[, , 1,]
R> new_positions <- c(7, 10, 1, 6, 3, 2, 5, 8, 9, 4)
R> mat <- matrix(0, 10, 10)
R> for (i in 1:10L) {
+ mat[new_positions[i], i] <- 1
+ }
R> subject_new <- ttm(subject, mat, m = 3)
R> all(identical(subject_new[, , new_positions], subject[, , seq(1, 10)]))

TRUE

For more properties of the k-mode product, see Kolda (2006). While the k-mode product
defines multiplication between a tensor and a matrix, it does not provide a natural way to
multiply two 3-tensors. To this end, the t-product has recently been proposed by Kilmer
and Martin (2011). First we must illustrate the block circulant matrix generated from the
matvec(·) of a tensor. Let X ∈ Rn1×n2×n3 , then

circ(matvec(X)) =

X1 Xn3 Xn3−1 . . . X2
X2 X1 Xn3 . . . X3
X3 X2 X1 . . . X4
...

...
...

Xn3 Xn3−1 Xn3−2 . . . X1

 ,

12 rTensor: Multidimensional Arrays in R

Figure 3: k-mode product of X ∈ Rn1×n2×n3 and matrices Mk ∈ RJk×nk . The result is
Y ∈ RJ1×J2×J3 .

where Xj = X [:, :, j] is defined to be the jth slice of X along mode 3.
The t-product is defined via the block circulant structure and the matvec(·) operator and
allows for a direct multiplication of two 3-tensors. For A ∈ Rn1×n2×n3 and B ∈ Rn2×L×n3 , the
t-product is A ∗ B ∈ Rn1×L×n3 , where the matvec(A ∗ B) is a result of matrix multiplication

matvec(A ∗ B) = circ(matvec(A)) ·matvec(B)

=

A1 An3 An3−1 . . . A2
A2 A1 An3 . . . A3
A3 A2 A1 . . . A4
...

...
...

An3 An3−1 An3−2 . . . A1

 ·

B1
B2
B3
...

Bn3

 ∈ Rn1n3×L.

Here Aj = A[:, :, j], Bj = B[:, :, j] are the jth slices along mode 3 of A and B respectively. To
get the tensor product A ∗ B, we simply have to fold matvec(A ∗ B) using the inverse folding
for matvec(·), denoted unmatvec(·). Hence A ∗ B = unmatvec(circ(matvec(A)) ·matvec(B)).
From the definition of the t-product, we can see that each mode-3 slice of the resulting tensor
A ∗ B is given by a sum of products of the mode-3 slices of A and B. In fact, the t-product
A∗B defines a linear map that takes B ∈ Rn2×L×n3 to Rn1×L×n3 (Martin, Shafer, and LaRue
2013). It also allows the extension of familiar linear algebra concepts such as the transpose,
orthogonality, nullspace, and range. For detailed accounts of these properties, refer to Kilmer
and Martin (2011). When n3 = 1, we get back the usual matrix multiplication.
The t-product is implemented via the function t_mult. It takes in two ‘Tensor’ objects,
X ∈ Rn1×n2×n3 ,Y ∈ Rn2×L×n3 , and returns X ∗ Y ∈ Rn1×L×n3 (Algorithm 1). Note that we
take the fast Fourier transform based algorithm approach as found in Kilmer et al. (2013)
in our implementation. This implementation avoids creating the prohibitively large block
circulant matrix that is involved in the definition of the t-product.

R> tnsr1 <- rand_tensor(modes = c(3, 4, 5))
R> tnsr2 <- rand_tensor(modes = c(4, 6, 5))
R> t_mult(tnsr1, tnsr2)

Journal of Statistical Software 13

Numeric Tensor of 3 Modes
Modes: 3 6 5
Data:
[1] -0.08515525 1.65217442 0.86002207 3.33730964 1.87913580 -1.59224659

3. rTensor decompositions
In this section, we describe tensor decompositions that are implemented in package rTensor.
These decomposition models represent the bulk of the tensor methodology used in facial
recognition, data mining, and statistical analysis of images. Throughout this section, we
illustrate the various decomposition functions in package rTensor using the AT&T face dataset
(Cambridge 1994), which is included in the package as faces_tnsr.

3.1. CP, HOSVD, and Tucker

The CP decomposition stems independently from psychometrics (Carroll and Chang 1970)
and chemometrics (Bro 1997), where the same method was separately named canonical de-
composition (CANDECOMP) and parallel factors (PARAFAC).
A K-tensor X ∈ Rn1×n2×...×nK is called rank-1 if it can be expressed as an outer product of
K vectors. More precisely, the rank of a K-tensor is defined as the minimal value of r for
which the tensor can be expressed as as sum of r rank-1 tensors:

X =
r∑
`=1

v1` ◦ v2` . . . ◦ vK`, where vk` ∈ Rnk , 1 ≤ ` ≤ r, 1 ≤ k ≤ K.

For matrices, the well-known Eckhart Young theorem provides the existence and form of
an optimal lower-rank approximation. However, this type of result has been shown not to
generalize to K-tensors for K ≥ 3 (Kolda 2003).
The CP decomposition provides an approximation of X using a rank-r tensor X̂ , where r is
given a priori. The goal is then to construct a rank-r tensor that minimizes the Frobenius
norm of the difference between X and X̂

min
all vk`

‖X − X̂‖F ,

where

X̂ =
r∑
`=1

v1` ◦ v2` . . . ◦ vK` (1)

=
r∑
`=1

λ` · u1` ◦ u2` . . . ◦ uK`, uk` = vk`
‖vk`‖

(2)

= Λ×1 U1 ×2 U2 ×3 . . .×K UK , (3)

with Uk =
[
uk1 uk2 . . . ukr

]
∈ Rnk×r and Λ ∈ Rr×r×r a 3-tensor that contains the λ’s on

the super-diagonal and 0 elsewhere, as seen in Figure 4.

14 rTensor: Multidimensional Arrays in R

Figure 4: CP decomposition for a X ∈ Rn1×n2×n3 . The first part shows a representation
using a sum of rank-1 tensors. The second part shows a representation using factor matrices.

The equivalence of lines (1) and (2) above are due to the fact that each uk` vector is vk`
normalized by its norm with the norm information stored in the λr’s. Furthermore, we can
store the uk` vectors as a factor matrix Uk for each k = 1, . . . ,K (Kroonenberg 2012), leading
to the form in line (3). Note that here the Uk matrices are not orthogonal. This relationship
is illustrated for a 3-tensor below in Figure 4.
The cp function implements the classical alternating least squares method to compute the CP
decomposition of a general K-tensor.1 Note that this algorithm is not guaranteed to converge
to the global minimum (Kolda 2006). The function returns lambdas and U_list. lambdas is
a vector containing the elements in the super-diagonal core tensor λ, while U_list is the list
of factor matrices U1, . . . , UK . We demonstrate the CP decomposition on one of the subjects
(#14) in the AT&T face database.

R> subject14 <- faces_tnsr[, , 14,]
R> cp1 <- cp(subject14, num_components = 50)
R> cp2 <- cp(subject14, num_components = 10)
R> cp1$norm_percent

[1] 87.4869

R> cp2$norm_percent

[1] 81.16162

1Acceleration techniques for CP decompositions have recently been proposed in Phan, Tichavsky, and
Cichocki (2013).

Journal of Statistical Software 15

Figure 5: CP decomposition with 50 components and 10 components on subject 14 in the
AT&T face dataset. Picture 1 of 10 shown. Left: Original. Middle: 50 components. Right:
10 components.

The Tucker decomposition (Tucker 1966; Kroonenberg 2012; Lathauwer et al. 2000b) is still
based on the idea of obtaining the best approximation of X , but relaxes the constraint that X̂
must be expressed as a sum of r rank-1 tensors. Instead, the Tucker decomposition constructs
X̂ to approximate X ∈ Rn1×n2×...×nK using a reduced core tensor G ∈ Rr1×...×rK and K factor
matrices, each of rank rk ≤ nk, k = 1, . . . ,K,

X̂ = G ×1 U1 ×2 U2 ×3 . . .×K UK .

If this looks similar to the CP, it is because the CP decomposition is a specialized version of
the Tucker decomposition with all the ranks equal, (i.e., r = r1 = . . . = rK) (Kolda 2006).
One way to compute the Tucker decomposition is via the higher order orthogonal iteration
(HOOI) (Lathauwer et al. 2000b), which constrains the factor matrices to be orthogonal.
Before we demonstrate HOOI, we first discuss the very much related higher-order singular
value decomposition (HOSVD) provided by the seminal paper by Lathauwer et al. (2000a).
HOSVD decomposes a K-tensor X ∈ Rn1×n2×...×nK as follows

X = G ×1 U1 ×2 U2 ×3 . . .×K UK ,

where each square matrix Uk ∈ Rnk×nk is orthogonal and the core tensor G ∈ Rn1×n2×...×nK

has the special property that for any k, 1 ≤ k ≤ K, it is

• all-orthogonal: 〈Gik=α,Gik=β〉 = 0 for any α 6= β, and

• ordered: ‖Gik=1‖F ≥ ‖Gik=2‖F ≥ . . . ‖Gik=nk
‖F .

All-orthogonality of G means that for any of the K modes, any subtensor of size K − 1 with
different indices (i.e., α and β) along the same mode has an inner-product of 0. For example,
if K = 3, then any two matrix slices with different indices along that mode has an inner-
product of 0. It is important to note that the resulting G is a diagonal tensor under the CP
decomposition, but not necessarily so under Tucker.

16 rTensor: Multidimensional Arrays in R

Algorithm 1: Illustration of the higher-order singular value decomposition (HOSVD).
input : X ∈ Rn1×n2×...×nK .
for k = 1, . . . ,K do

Uk ← left orthogonal matrix of the SVD of X(k)
end
G ← X ×1 U

>
1 ×2 U

>
2 ×3 . . .×K U>K

output : core tensor G ∈ Rn1×n2×...×nK , orthogonal factor matrices U1, . . . , UK , each
Uk ∈ Rnk×nk

The corresponding algorithm to compute the HOSVD illustrates its crucial connection be-
tween the k-mode unfolding: for each k-mode unfolding, perform a matrix SVD for X(k) so
that X(k) = UkΣkV

>
k . Now we can simply define G := X ×1 U

>
1 ×2 U

>
2 . . .×K U>K , then

G(k) = U>k · X(k) · (U>K ⊗ . . .⊗ U>k+1 ⊗ U>k−1 ⊗ . . .⊗ U>1)>

⇒ X(k) = Uk · G(k) · (UK ⊗ . . .⊗ Uk+1 ⊗ Uk−1 ⊗ . . .⊗ U1)>

⇒ X = G ×1 U1 ×2 U2 ×3 . . .×K UK ,

giving us the HOSVD.2 We demonstrate below how to do this in package rTensor.

R> tnsr <- rand_tensor(modes = c(2, 4, 6, 8))
R> hosvd1 <- hosvd(tnsr)
R> hosvd1$U[[1]] %*% t(hosvd1$U[[1]])

[,1] [,2]
[1,] 1.000000e+00 1.110223e-16
[2,] 1.110223e-16 1.000000e+00

Note that we can also allow the orthogonal factor matrices to be truncated in a HOSVD (i.e.,
truncate each Uk to its first rk columns for each 1 ≤ k ≤ K), thereby compressing X and
forming an approximation. This procedure is called the truncated HOSVD (Lathauwer et al.
2000b), and it is done simply by specifying the reduced ranks in the hosvd function. The
truncated HOSVD forms the conceptual basis for HOOI.

R> hosvd2 <- hosvd(tnsr, ranks = c(1, 2, 3, 4))
R> 1 - hosvd2$fnorm_resid / fnorm(tnsr)

[1] 0.0944159

What makes HOOI different from HOSVD is that HOOI essentially involvesmultiple iterations
of this alternating truncation and SVD for all the modes to give us a locally optimized
approximation X̂ . The full algorithm for HOOI is given in Algorithm 2 and illustrated in
Figure 6.

2Amore efficient strategy for performing (truncated-)HOSVD, which leads to almost the same quasi-optimal
accuracy, has been described in Vannieuwenhoven, Vandebril, and Meerbergen (2012).

Journal of Statistical Software 17

Algorithm 2: Illustrations of the orthogonal Tucker alternating least squares (HOOI).
input : X ∈ Rn1×n2×...×nK , and desired ranks r1, . . . , rK .
initialize: U1, . . . , UK via HOSVD
while Not converged do

for k = 1, . . . ,K do
Y ← X ×1 U

>
1 ×2 . . .×k−1 U

>
k−1 ×k+1 U

>
k+1 . . .×K U>K

Uk ← rk leading singular vectors of Y(k)
end

end
G ← X ×1 U

>
1 ×2 . . .×K U>K

output : core tensor G ∈ Rr1×...×rK , factor matrices with orthogonal columns
U1, . . . , UK , each Uk ∈ Rnk×rk

Figure 6: The Tucker decomposition for X ∈ Rn1×n2×n3 results in factor matrices with
orthogonal columns Uk ∈ Rnk×rk , k = 1, 2, 3 and an all-orthogonal core tensor G ∈ Rr1×r2×r3 .

For HOOI and the remaining iterative algorithms we describe in this paper, we use the same
convergence criterion. At each iteration of the algorithm, we check for convergence by first
forming a current estimate of the original tensor based on the estimated Uk’s, then measure
the difference between the estimation error of the current iteration and the estimation error
of the previous iteration. If this difference is smaller than the difference tolerance set by the
user, then we stop iterating. By default there is also a maximum number of iterations set in
place, which can also be adjusted by the user.
We apply the more general HOOI on the entire face dataset, compressing on all 4 modes
(including the mode running across the individuals), as demonstrated in Figure 7.

R> tucker1 <- tucker(faces_tnsr, ranks = c(46, 56, 35, 8))
R> tucker1$norm_percent

[1] 88.78375

R> tucker2 <- tucker(faces_tnsr, ranks = c(23, 28, 10, 3))

18 rTensor: Multidimensional Arrays in R

Figure 7: Illustration of the HOOI with various ranks on the entire AT&T face dataset.
Subject 11, picture 6 shown. Left: Original. Middle: r1 = 46, r2 = 56, r3 = 35, r4 = 8. Right:
r1 = 23, r2 = 28, r3 = 10, r4 = 3.

R> tucker2$norm_percent

[1] 77.86446

3.2. GLRAM, MPCA, and PVD

In this section, we discuss several statistical models that are unified under the Tucker frame-
work. While some of these models explicitly use tensor notation and methodology, others use
a series of matrices as inputs.
The generalized low rank approximation of matrices (GLRAM; Ye 2005) belongs in the latter
category. For a series of matrices of the same size,M1, . . . ,Mn3 ∈ Rn1×n2 , GLRAM constructs
orthogonal matrices L ∈ Rn1×r1 , R ∈ Rn2×r2 and a series of core matrices Gj ∈ Rr1×r2 to

minimize the quantity
n3∑
j=1
‖Mj −L ·Gj ·R>‖2F . The parameters r1 and r2 would also need to

be given a priori.
The series of images GLRAM takes as input can be restructured into a 3-tensor X ∈
Rn1×n2×n3 , where X [:, :, j] = Mj . This has been done in Sheehan and Saad (2007), where it is
shown that when structured in this way, GLRAM becomes a special case of the HOOI. During
GLRAM, we are essentially performing compression over only the first two modes, leaving
the third mode uncompressed. We present the GLRAM algorithm using tensor notation in
Algorithm 3 and demonstrate the function glram on subject 21 in the AT&T face dataset in
Figure 8.

R> subject21 <- faces_tnsr[, , 21,]
R> glram1 <- tucker(subject21, ranks = c(46, 56, 10))
R> glram1$norm_percent

[1] 95.65463

Journal of Statistical Software 19

Algorithm 3: GLRAM using tensor notation.
input : X ∈ Rn1×n2×n3 , ranks r1, r2.
initialize: U1, U2 via HOSVD, U3 = In3

while Not converged do
Y ← X ×1 U

>
2

U1 ← r1 leading singular vectors of Y(1)
Y ← X ×1 U

>
1

U2 ← r1 leading singular vectors of Y(2)
end
G ← X ×1 U

>
1 ×2 U

>
2

output : L = U1; R = U2; (G1, . . . , Gn3) = matvec(G)

Figure 8: GLRAM with various ranks on subject 21 in the AT&T face dataset. Picture 2
shown. Left: Original. Middle: r1 = 46, r2 = 56. Right: r1 = 23, r2 = 28.

R> glram2 <- tucker(subject21, ranks = c(23, 28, 10))
R> glram2$norm_percent

[1] 91.88975

Multilinear principal component analysis (MPCA; Lu, Plataniotis, and Venetsanopoulos 2008)
is a special case of the general Tucker decomposition for K-tensors, compressing on K − 1
modes and leaving one mode uncompressed. Hence GLRAM can be viewed as a special case
of MPCA as GLRAM is designed specifically for 3-tensors. Notationally, MPCA is equivalent
to HOOI with UK = Ink

.
We turn next to the entire face database of 40 individuals and run MPCA on the 4-tensor,
compressing on the first three modes (e.g., image row, image column, and pictures), using
the same r1 and r2 as in GLRAM. We can also examine the Frobenius norm recovered using
MPCA, and it seems as though having more individuals (and hence having a 4-tensor) did
not help in recovery. This is also noticeable from the estimated images.

R> mpca1 <- tucker(faces_tnsr, ranks = c(46, 56, 20, 10))

20 rTensor: Multidimensional Arrays in R

Figure 9: MPCA with various ranks on the entire AT&T face dataset. Subject 35, picture 8
shown. Left: Original. Middle: r1 = 46, r2 = 56, r3 = 20. Right: r1 = 46, r2 = 56, r3 = 10.

R> mpca1$norm_percent

[1] 84.54957

R> mpca2 <- tucker(faces_tnsr, ranks = c(46, 56, 10, 10))
R> mpca2$norm_percent

[1] 79.65943

PVD was recently proposed by Crainiceanu, Caffo, Luo, Zipunnikov, and Punjabi (2013) and
provides a framework to construct population-level factor matrices for a series of images.
We show in this section that PVD can be viewed as a variant of GLRAM. This point was
first made by Lock, Nobel, and Marron (2011) in the rejoinder of the original PVD paper
Crainiceanu et al. (2013), and Crainiceanu et al. replied that PVD differs from Tucker (or
specifically, GLRAM) in many ways. Most notably, the matrices P and D do not have to
be orthogonal and the default PVD has a closed form solution. We first present PVD and
the default algorithm suggested by the authors to construct the population matrices P and
D, then examine the differences between PVD and GLRAM. Finally, we discuss how PVD
might be cast into the tensor framework.
Like GLRAM, PVD is a model designed for a series of matrices instead of a 3-tensor. Given a
sample of imagesM1, . . . ,Mn3 ∈ Rn1×n2 , and 2n3 +2 parameters, PVD constructs population
level matrices P ∈ Rn1×r1 andD ∈ Rn2×r2 such thatXj = P ·Vj ·D+Ej , where the Vj ∈ Rr1×r2 ,
j = 1, . . . , n3, are called the core matrices. In addition to the 2 parameters ri ≤ ni, i = 1, 2,
we also would need to choose 2n3 compression parameters, l1, . . . , ln3 , h1, . . . , hn3 , that will
determine how much left and right truncation will occur for each of the n3 matrices.
The PVD procedure starts with a separate SVD of each image, Mj = UjΣjW

>
j , truncating

(possibly differently for each image) the left and right eigenvectors to form Ũj and W̃j . Then
one stacks the Ũj ’s column wise to form a big matrix U and does the same for W̃j ’s to form

Journal of Statistical Software 21

Figure 10: PVD of a series of images M1, . . . ,Mn3 . Each Mj is approximated by P · Vj ·D>.

W . The final step is to conduct an eigenvalue decomposition of U · U> and W ·W> to form
the population level matrices P and D. In the end, each Mj has a projection

M̂j = P · {(P> · Ũj) · Σ
(lj ,hj)
j · (W̃j ·D>)}︸ ︷︷ ︸
Vj

·D,

where Σ(lj ,hj)
j is the lj × hj left upper block of Σj .

Unlike the usual algorithm needed to solve GLRAM, the algorithm to solve the default PVD
is not iterative, although the computational cost of the model does scale up with the number
of images, since each image requires a separate SVD. Furthermore, with a large n3, the UU>
and WW> matrices may be intractable for a full eigenvalue decomposition. We present the
matrix version of the default PVD algorithm below.
We decided that the input into a PVD model should be a 3-tensor X ∈ Rn1×n2×n3 , with n3
being the number of images in the series, and each n1×n2 X [:, :, j] being an image, 1 ≤ j ≤ n3.
As with the ranks of HOOI and CP, optimizing the parameters required by the PVD model
is currently mostly ad-hoc. Recall that for X ∈ Rn1×n2×n3 , there are 2n3 + 2 parameters. At
each of the n3 SVDs of individual images, `j and hj are the truncation indices for the left
and right eigenvectors, respectively. These are the uranks and wranks. At the end, we also
have r1 and r2, which are the truncation indices for the two final eigenvalue decompositions
of the two large covariance matrices. These are the parameters a and b required by the pvd
function. Empirically, we have found that having `j > r1 or having hj > r2 resulted in poor
fits of the data. To illustrate pvd, we return to the AT&T face dataset, choosing subject #
8 subject this time.

R> subject8 <- faces_tnsr[, , 8,]
R> pvd1 <- pvd(subject8, uranks = rep(46, 10), wranks = rep(56, 10),
+ a = 46, b = 56)
R> pvd2 <- pvd(subject8, uranks = rep(46, 10), wranks = rep(56, 10),
+ a = 23, b = 28)
R> pvd1$norm_percent

[1] 96.67298

22 rTensor: Multidimensional Arrays in R

Algorithm 4: Default PVD.
input : Matrices M1, . . . ,Mn3 , matrix-wise ranks l1, . . . , ln3 , h1, . . . , hn3 , final ranks

r1, r2.
for j = 1, . . . , n3 do

Perform SVD to obtain Mj = Uj · Σj ·W>j
Ũj ← left lj columns of Uj
W̃j ← left hj columns of Wj

end
Stack the Ũj column-wise to construct U =

[
Ũ1 . . . Ũn3

]
and similarly stack the W̃j to form W =

[
W̃1 . . . W̃n3

]
.

P ← eigenvectors corresponding to the r1 leading eigenvalues of U · U>
D ← eigenvectors corresponding to the r2 leading eigenvalues of W ·W>
for j = 1, . . . , n3 do

Vj ← P> · Ũj · Σ
(lj ,rj)
j · W̃>j D>

end
output: P,D, V1, . . . , Vn3

Figure 11: PVD model with various ranks on subject 8 in the AT&T face dataset. Picture 4
shown. Left: Original. Middle: l1 = . . . = ln3 = r1 = 46, h1 = . . . = hn3 = r2 = 56. Right:
l1 = . . . = ln3 = 46, h1 = . . . = hn3 = 56, r1 = 23, r2 = 28.

R> pvd2$norm_percent

[1] 92.8208

3.3. t-SVD

The decomposition t-SVD is based on the t-product (recall its definition from Section 2.4)
(Kilmer et al. 2013). Before we discuss the t-SVD, we first introduce the notion of the tensor

Journal of Statistical Software 23

transpose based on the t-product. Let X ∈ Rn1×n2×n3 , then

X> := unmatvec(

X>1
X>n3...
X>2

), where Xj = X [:, :, j].

It is easily verified that (X>)> = X . Furthermore, let the identity tensor I ∈ Rn1×n1×n3 be
defined with I[:, :, 1] = In1 , the matrix identity of size n1, and the rest of I is set to 0. These
two definitions then facilitate the notion of tensor orthogonality via the t-product

Q ∈ Rn1×n1×n3 is orthogonal if and only if Q ∗ Q> = Q> ∗ Q = I ∈ Rn1×n1×n3 .

We have overloaded the transpose function t for the ‘Tensor’ class. Note, however, that this
is only currently defined for 3-tensors and not for general K-tensors.

R> tnsr <- rand_tensor(c(4, 5, 6))
R> tnsr

Numeric Tensor of 3 Modes
Modes: 4 5 6
Data:
[1] 0.1721087 -0.5029503 -1.4179078 -0.3187059 0.2417989 -0.6050234

R> t_tnsr <- t(tnsr)
R> t_tnsr

Numeric Tensor of 3 Modes
Modes: 5 4 6
Data:
[1] 0.1721087 0.2417989 1.2417775 -2.1195366 -0.8991089 -0.5029503

R> identical(t(t_tnsr), tnsr)

[1] TRUE

As shown in Kilmer et al. (2013), an orthogonal tensor preserves the Frobenius norm under
the t-product. In other words, if Q ∈ Rn1×n1×n3 is orthogonal and X ∈ Rn1×n2×n3 , then
‖Q ∗ X‖F = ‖X‖F . We can now describe the t-SVD: let X ∈ Rn1×n2×n3 , then X admits a
decomposition

X = U ∗ S ∗ V>,

where U ,V are orthogonal tensors of sizes n1×n1×n3 and n2×n2×n3 respectively, and S is
of size n1×n2×n3 and consists of diagonal matrices along the third mode. When n3 = 1, then
t-SVD reduces to the matrix SVD of X ∈ Rn1×n2 (Kilmer et al. 2013). This is a consequence
of the fact that the t-product reduces to matrix multiplication when n3 = 1.

24 rTensor: Multidimensional Arrays in R

Figure 12: The t-SVD for a X ∈ Rn1×n2×n3 results in two orthogonal tensors – U ∈ Rn1×n1×n3

and V ∈ Rn2×n2×n3 – and S ∈ Rn1×n2×n3 has diagonal faces along n3.

Algorithm 5: An illustration of the t-singular value decomposition (t-SVD).
input : X ∈ Rn1×n2×n3

for i1 = 1, . . . , n1 do
for i2 = 1, . . . , n2 do
D[i1, i2, :] = fft(X [i1, i2, :])

end
end
for j = 1, . . . , n3 do

Compute the SVD of the complex D[:, :, j] to yield D[:, :, j] = Uj · Σj · V >j
U [:, :, j]← Uj
V[:, :, j]← Vj
S[:, :, j]← Σj

end
for i1 = 1, . . . , n1 do

for i2 = 1, . . . , n1 do
U [i1, i2, :] =ifft(U [i1, i2, :])

end
end
for i1 = 1, . . . , n2 do

for i2 = 1, . . . , n2 do
V[i1, i2, :] =ifft(V[i1, i2, :])

end
end
for i1 = 1, . . . , n1 do

for i2 = 1, . . . , n2 do
S[i1, i2, :] =ifft(S[i1, i2, :])

end
end
output: Orthogonal tensors U ∈ Rn1×n1×n3 ,V ∈ Rn2×n2×n3 and S ∈ Rn1×n2×n3 with

diagonal slices along the third mode

Journal of Statistical Software 25

The S tensor contains the eigentubes S[i, i, :], 1 ≤ i ≤ ñ := min(n1, n2), each of which is
a vector of length n3. Similar to the matrix eigenvalue counterparts, these eigentubes are
ordered by the Frobenius norm

‖S[1, 1, :]‖F ≥ ‖S[2, 2, :]‖F ≥ . . . ≥ ‖S[ñ, ñ, :]‖F .

Computations involving the t-product is not carried out via the block circulant matrices but
rather via the fast Fourier transform based algorithms given by Kilmer and Martin (2011).
FFT facilitates the computation since the matrix formed by unfolding the first tensor is block
circulant, and the transform gives rise to a block diagonal structure in Fourier space, which
allows for significant reduction in computation of the product. While complex values are
involved in the computation, if X consists of real values, then U ,V and S are all real as well.
We demonstrate how to compute the t-SVD using package rTensor below. Unfortunately,
by using the fft function in R, there is some round-off error that occurs when we transform
a series using FFT, then transform it back using the inverse FFT. Our calculations in the
t-SVD inherit these round-off errors, as we observe in the example below.

R> tnsr <- rand_tensor(c(3, 4, 5))
R> decomp <- t_svd(tnsr)
R> decomp

$U
Numeric Tensor of 3 Modes
Modes: 3 3 5
Data:
[1] -0.10611584 0.02219984 0.08776625 -0.02380716 0.22520605 0.05009474

$V
Numeric Tensor of 3 Modes
Modes: 4 4 5
Data:
[1] -0.041270397 -0.057252769 0.536529617 0.009139057 0.052476990
[6] -0.006963590

$S
Numeric Tensor of 3 Modes
Modes: 3 4 5
Data:
[1] 5.911667 0.000000 0.000000 0.000000 3.251907 0.000000

R> decomp$S@data

, , 1

[,1] [,2] [,3] [,4]
[1,] 5.911667 0.000000 0.000000 0
[2,] 0.000000 3.251907 0.000000 0

26 rTensor: Multidimensional Arrays in R

[3,] 0.000000 0.000000 1.772416 0

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.4903723 0.000000 0.0000000 0
[2,] 0.0000000 0.833781 0.0000000 0
[3,] 0.0000000 0.000000 0.6733481 0

, , 3

[,1] [,2] [,3] [,4]
[1,] 0.6469147 0.0000000 0.0000000 0
[2,] 0.0000000 0.3426009 0.0000000 0
[3,] 0.0000000 0.0000000 0.4197653 0

, , 4

[,1] [,2] [,3] [,4]
[1,] 0.6469147 0.0000000 0.0000000 0
[2,] 0.0000000 0.3426009 0.0000000 0
[3,] 0.0000000 0.0000000 0.4197653 0

, , 5

[,1] [,2] [,3] [,4]
[1,] 0.4903723 0.000000 0.0000000 0
[2,] 0.0000000 0.833781 0.0000000 0
[3,] 0.0000000 0.000000 0.6733481 0

R> recovered <- t_mult(t_mult(decomp$U, decomp$S), t(decomp$V))
R> mean(recovered@data - tnsr@data)

[1] -1.60115e-16

4. Summary
We provide an R package that implements prevalent tensor unfolding/refolding, multiplica-
tion, and decompositions. This article is meant to guide users of our package as well as
connect several themes in the tensor literature. Tensor methodology is still under active de-
velopment, and the landscape of tensor computation can change very rapidly due to surging
interests from the field of statistics and machine learning.
The following table summarizes all of the decompositions and the inputs. These decomposi-
tions represent the bulk of the package, and we try to be consistent in the outputs of each
decomposition. The output to every function is a standard list containing objects that are
relevant to that decomposition.

Journal of Statistical Software 27

Function Tensor size Other parameters

cp n1 × n2 × . . .× nK
number of components r,
maximum number of iterations, convergence criterion

mpca n1 × n2 × . . .× nK
vector of ranks r = (r1, . . . , rK−1),
maximum number of iterations, convergence criterion

tucker n1 × n2 × . . .× nK
vector of ranks r = (r1, . . . , rK),
maximum number of iterations, convergence criterion

pvd n1 × n2 × n3

vector of left ranks ` = (`1, . . . , `n3),
vector of right ranks h = (h1, . . . , hn3),
final left rank r1, final right rank r2

hosvd n1 × n2 × . . .× nK optional: vector of ranks r = (r1, . . . , rK−1)
t_svd n1 × n2 × n3 none

Table 2: List of tensor decompositions in package rTensor.

For decompositions that allow for compression – cp, mpca, tucker, pvd, and t_compress, the
output for each function will all be a list containing:

• est – the compressed estimate of the original ‘Tensor’ object.

• fnorm_resid – the Frobenius norm of the difference between est and the original
‘Tensor’ object.

• norm_percent – the percent of the Frobenius norm “recovered” by the compressed
estimated. This is calculated as 1 – fnorm_resid/fnorm(tnsr).

• conv – whether or not the algorithm converged by the maximum iteration (only for the
iterative algorithms such as cp, mpca, and tucker).

• all_resids – a vector of residuals at each iteration (only for the iterative algorithms).

References

Acar E, Dunlavy D, Kolda T, Morup M (2011a). “Scalable Tensor Factorizations for In-
complete Data.” Chemometrics and Intelligent Laboratory Systems, 106(1), 41–56. doi:
10.1016/j.chemolab.2010.08.004.

Acar E, Kolda T, Dunlavy D (2011b). “All-at-Once Optimization for Coupled Matrix and
Tensor Factorizations.” arXiv:1105.3422 [math.NA], URL https://arxiv.org/abs/1105.
3422.

Acar E, et al. (2009). “Workshop Report: Future Directions in Tensor-Based Computation
and Modeling.” URL http://www.cs.cornell.edu/cv/TenWork/FinalReport.pdf.

https://doi.org/10.1016/j.chemolab.2010.08.004
https://doi.org/10.1016/j.chemolab.2010.08.004
https://arxiv.org/abs/1105.3422
https://arxiv.org/abs/1105.3422
http://www.cs.cornell.edu/cv/TenWork/FinalReport.pdf

28 rTensor: Multidimensional Arrays in R

Anandkumar A, Ge R, Hsu D, Kakade SM, Telgarsky M (2014). “Tensor Decompositions for
Learning Latent Variable Models.” Journal of Machine Learning Research, 15, 2773–2832.
URL http://jmlr.org/papers/v15/anandkumar14b.html.

Andersson CA, Bro R (2000). “The N-Way Toolbox for MATLAB.” Chemometrics and
Intelligent Laboratory Systems, 52(1), 1–4. doi:10.1016/s0169-7439(00)00071-x.

Bader B, Kolda T (2004). “MATLAB Tensor Classes for Fast Algorithm Prototyping.” Tech-
nical report, Sandia National Laboratories.

Bader BW, Kolda TG (2006). “Algorithm 862: MATLAB Tensor Classes for Fast Algorithm
Prototyping.” ACM Transactions on Mathematical Software, 32(4), 635–653. doi:10.
1145/1186785.1186794.

Bro R (1997). “PARAFAC. Tutorial and Applications.” Chemometrics and Intelligent Labo-
ratory Systems, 38(2), 149–171. doi:10.1016/s0169-7439(97)00032-4.

Cambridge AL (1994). AT&T “The Database of Faces” (Formerly “The ORL Database
of Faces”. URL http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html.

Carroll JD, Chang JJ (1970). “Analysis of Individual Differences in Multidimensional Scaling
via an N-Way Generalization of Eckhart-Young Decomposition.” Psychometrika, 35(3),
283–319. doi:10.1007/bf02310791.

Crainiceanu C, Caffo B, Luo S, Zipunnikov V, Punjabi N (2013). “Population Value Decom-
position: A Framework for the Analysis of Image Populations.” Journal of the American
Statistical Association, 106(495), 775–790. doi:10.1198/jasa.2011.ap10089.

Garcia R, Siek J, Lumsdaine A (2001). Boost.MultiArray: The Boost Multidimensional Ar-
ray Library. URL https://www.boost.org/doc/libs/1_55_0/libs/multi_array/doc/.

Golub GH, Van Loan C (2012). Matrix Computations. 4th edition. John Hopkins University
Press.

Grasedyck L, Kressner D, Tobler C (2013). “A Literature Survey of Low-Rank Tensor Ap-
proximation Techniques.” GAMM-Mitteilungen, pp. 53–78.

Kang U, Papalexakis E, Harpale A, Faloutsos C (2012). “GigaTensor: Scaling Tensor Analysis
Up by 100 Times – Algorithms and Discoveries.” In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’12, pp. 316–324.
ACM, New York. doi:10.1145/2339530.2339583.

Kilmer M, Braman K, Hao N, Hoover R (2013). “Third-Order Tensors as Operators on Ma-
trices: A Theoretical and Computational Framework with Applications in Imaging.” SIAM
Journal on Matrix Analysis and Applications, 34(1), 148–172. doi:10.1137/110837711.

Kilmer M, Martin C (2011). “Facial Recognition Using Tensor-Tensor Decomposition.” SIAM
Linear Algebra and Its Applications, 435(3), 641–658. doi:10.1016/j.laa.2010.09.020.

Kolda T (2006). “Multilinear Operators for Higher-Order Decompositions.” Technical report,
Sandia National Laboratories.

http://jmlr.org/papers/v15/anandkumar14b.html
https://doi.org/10.1016/s0169-7439(00)00071-x
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1016/s0169-7439(97)00032-4
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://doi.org/10.1007/bf02310791
https://doi.org/10.1198/jasa.2011.ap10089
https://www.boost.org/doc/libs/1_55_0/libs/multi_array/doc/
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1137/110837711
https://doi.org/10.1016/j.laa.2010.09.020

Journal of Statistical Software 29

Kolda TG (2003). “A Counterexample to the Possibility of an Extension of the Eckart-
Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decompo-
sition.” SIAM Journal of Matrix Analysis and Applications, 24(3), 762–767. doi:
10.1137/s0895479801394465.

Kolda TG, Bader BW (2009). “Tensor Decomposition and Applications.” SIAM Review,
51(3), 455–500. doi:10.1137/07070111x.

Kroonenberg PM (2012). Applied Multiway Data Analysis. John Wiley & Sons.

Lathauwer L, Moor BD, Vanderwalle J (2000a). “A Multilinear Singular Value De-
composition.” Journal of Matrix Analysis and Applications, 21(4), 1253–1278. doi:
10.1137/s0895479896305696.

Lathauwer L, Moor BD, Vanderwalle J (2000b). “On the Best Rank-1 and Rank(R1, R2, . . . ,
RN) Approximation of Higher-Order Tensors.” Journal of Matrix Analysis and Applications,
21(4), 1324–1342. doi:10.1137/s0895479898346995.

Leibovici D (2015). PTAk: Principal Tensor Analysis on k Modes. R package version 1.2-12,
URL https://CRAN.R-project.org/package=PTAk.

Leibovici DG (2010). “Spatio-Temporal Multiway Data Decomposition Using Principal Tensor
Analysis on k-Modes: The R Package PTAk.” Journal of Statistical Software, 34(10), 1–34.
doi:10.18637/jss.v034.i10.

Li J, Bien J, Wells M (2018). rTensor: Tools for Tensor Analysis and Decomposition. R
package version 1.4, URL https://CRAN.R-project.org/package=rTensor.

Lock EF, Nobel AB, Marron JS (2011). “Comment on “Population Value Decomposition, a
Framework for the Analysis of Image Populations” by Crainiceanu et al.” Journal of the
American Statistical Association, 106(495), 798–802. doi:10.1198/jasa.2011.ap11236.

Lu H, Plataniotis K, Venetsanopoulos A (2008). “MPCA: Multilinear Principal Component
Analysis of Tensor Objects.” IEEE Transactions on Neural Networks, 19(1), 18–39. doi:
10.1109/tnn.2007.901277.

Lu H, Plataniotis K, Venetsanopoulos A (2011). “A Survey of Multilinear Subspace Learning
for Tensor Data.” Pattern Recognition, 44(7), 1540–1551. doi:10.1016/j.patcog.2011.
01.004.

Martin C, Shafer R, LaRue B (2013). “An Order-p Tensor Factorization with Applications
in Imaging.” SIAM Journal on Scientific Computing, 35(1), A474–A490. doi:10.1137/
110841229.

Morup M (2011). “Applications of Tensor (Multiway Array) Factorizations and Decompo-
sitions in Data Mining.” WIREs Data Mining Knowledge Discovery, 1(1), 24–40. doi:
10.1002/widm.1.

Phan AH, Tichavsky P, Cichocki A (2013). “Fast Alternating LS Algorithms for High Order
CANDECOMP/PARAFAC Tensor Factorizations.” IEEE Transactions on Signal Process-
ing, 61(19), 4834–4846. doi:10.1109/tsp.2013.2269903.

https://doi.org/10.1137/s0895479801394465
https://doi.org/10.1137/s0895479801394465
https://doi.org/10.1137/07070111x
https://doi.org/10.1137/s0895479896305696
https://doi.org/10.1137/s0895479896305696
https://doi.org/10.1137/s0895479898346995
https://CRAN.R-project.org/package=PTAk
https://doi.org/10.18637/jss.v034.i10
https://CRAN.R-project.org/package=rTensor
https://doi.org/10.1198/jasa.2011.ap11236
https://doi.org/10.1109/tnn.2007.901277
https://doi.org/10.1109/tnn.2007.901277
https://doi.org/10.1016/j.patcog.2011.01.004
https://doi.org/10.1016/j.patcog.2011.01.004
https://doi.org/10.1137/110841229
https://doi.org/10.1137/110841229
https://doi.org/10.1002/widm.1
https://doi.org/10.1002/widm.1
https://doi.org/10.1109/tsp.2013.2269903

30 rTensor: Multidimensional Arrays in R

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sheehan BN, Saad Y (2007). “Higher Order Orthogonal Iteration of Tensors (HOOI) and Its
Relation to PCA and GLRAM.” In SDM, pp. 355–365. SIAM.

The MathWorks Inc (2017). MATLAB – The Language of Technical Computing, Version
R2017b. Natick. URL http://www.mathworks.com/products/matlab/.

Tucker LR (1966). “Some Mathematical Notes on Three-Mode Factor Analysis.” Psychome-
trika, 31(3), 279–311. doi:10.1007/bf02289464.

Van den Boogaart KG (2010). tensorA: Advanced Tensors Arithmetic with Named Indices.
R package version 0.36, URL https://CRAN.R-project.org/package=tensorA.

Vannieuwenhoven N, Vandebril R, Meerbergen K (2012). “A New Truncation Strategy for
the Higher-Order Decomposition.” SIAM Journal on Scientific Computing, 34(2), A1027–
A1052. doi:10.1137/110836067.

Vasilescu M (2009). A Multilinear (Tensor) Algebraic Framework for Computer Graphics,
Computer Vision, and Machine Learning. Ph.D. thesis, Department of Computer Science,
University of Toronto.

Veldhuizen T, Cummings J, Guio P, Stokes A, Shende S (2011). The Blitz++ Library. URL
http://blitz.sourceforge.net/.

Yang J, Zhang D, Frangi A, Yang J (2004). “Two-Dimensional PCA: A New Approach to
Appearance-Based Face Representation and Recognition.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(1), 131–137. doi:10.1109/tpami.2004.1261097.

Ye J (2005). “Generalized Low Rank Approximations of Matrices.” Machine Learning, 61(1–
3), 167–191. doi:10.1007/s10994-005-3561-6.

Yilmaz KY, Cemgil AT, Simsekli U (2011). “Generalised Coupled Tensor Factorisation.” In
J Shawe-Taylor, RS Zemel, P Bartlett, FCN Pereira, KQ Weinberger (eds.), Advances in
Neural Information Processing Systems 24, pp. 2151–2159. NIPS.

Zhang D, Zhou Z (2005). “(2D)2 PCA: Two-Directional Two-Dimensional PCA for Efficient
Face Representation and Recognition.” Neurocomputing, 69(1–3), 224–231. doi:10.1016/
j.neucom.2005.06.004.

https://www.R-project.org/
http://www.mathworks.com/products/matlab/
https://doi.org/10.1007/bf02289464
https://CRAN.R-project.org/package=tensorA
https://doi.org/10.1137/110836067
http://blitz.sourceforge.net/
https://doi.org/10.1109/tpami.2004.1261097
https://doi.org/10.1007/s10994-005-3561-6
https://doi.org/10.1016/j.neucom.2005.06.004
https://doi.org/10.1016/j.neucom.2005.06.004

Journal of Statistical Software 31

Affiliation:
James Li
Facebook
E-mail: jamesyili@gmail.com
URL: http://jamesyili.github.io/rTensor/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2018, Volume 87, Issue 10 Submitted: 2016-02-24
doi:10.18637/jss.v087.i10 Accepted: 2017-06-12

mailto:jamesyili@gmail.com
http://jamesyili.github.io/rTensor/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v087.i10

	Introduction
	Software review

	rTensor basics
	S4 class
	Datasets
	Tensor unfolding
	Tensor multiplication

	rTensor decompositions
	CP, HOSVD, and Tucker
	GLRAM, MPCA, and PVD
	t-SVD

	Summary

